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Abstract— The singular value decomposition (SVD) and the
QR decomposition (QRD) are two prominent matrix decomposi-
tion algorithms used in various signal processing applications.
In the field of multiple-input multiple-output (MIMO) com-
munication systems, the SVD and the QRD are employed for
beamforming and for channel-matrix preprocessing for MIMO
detection, respectively. In this paper, we describe a minimum-
area matrix decomposition architecture that is programmable
to perform QRD and SVD with variable precision and we
investigate the associated design and implementation trade-offs.
Our reference implementation achieves a hardware efficiency of
up to 325 k SVDs/s/mm2 and 1.92 M QRDs/s/mm2 for complex-
valued 4× 4-matrices in 0.18 µm CMOS technology.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication
systems [1] constitute the basis for many upcoming wireless
communication standards (e.g., IEEE 802.11n) and offer in-
creased spectral efficiency (compared to single-antenna sys-
tems) by transmitting multiple data streams concurrently in the
same frequency band. Matrix decomposition algorithms [2],
such as the singular value decomposition (SVD) or the QR
decomposition (QRD), have applications in various signal
processing fields. The SVD, for example, is used in array
processing or data compression, but can also be applied to
MIMO systems in order to increase the system performance
by the use of beamforming and power allocation. The QRD,
for example, is a key prerequisite for many advanced MIMO
detectors, such as the sphere decoder [3].

The SVD and the QRD mainly base on a specific sequence
of Givens rotations [2]. CORDIC (coordinate rotation digital
computer) algorithms have shown to be a suitable tool to
efficiently perform Givens rotations in hardware [4]. Since
the QRD only requires a subset of operations required for the
SVD, an architecture which allows to compute the SVD would
also provide all the functionality to compute the QRD. Hence,
a programmable matrix decomposition architecture based on
CORDIC arithmetic results in a single matrix decomposition
unit (MDU) and is suitable for both decomposition algorithms.

Due to the relatively high computational complexity of the
SVD, systolic arrays based on the Jacobi method have been
proposed [4]–[6]. As illustrated in Fig. 1, systolic arrays lie on
one end of the area/delay trade-off and are usually designed to
achieve short computation time at the cost of large circuit area.
However, in MIMO-OFDM systems [1] for example, multiple
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problems need to be solved concurrently, where the number
of parallel tasks corresponds to the number of OFDM tones.
The throughput of fast but large architectures (e.g., systolic
arrays) is often difficult to match to an arbitrary number of
problems, e.g., one systolic array might be insufficient in terms
of throughput but two might exceed the available circuit area.
Low-area architectures can be obtained by the use of time-
sharing and lie on the other end of the area/delay trade-off (see
Fig. 1). Ideally, time-shared architectures are equally efficient
(in terms of area times the computation time) as systolic arrays
and have the key advantage to be easily adaptable to individual
throughput requirements by the use of parallel instantiation,
i.e., the target throughput can be achieved by replication of a
low-area instance. Additional area savings, while not reducing
the decomposition throughput, can be obtained by iterative
decomposition of each instance (see Fig. 1).

Contributions: We present reference VLSI implementation
results of two MDUs optimzied for MIMO systems. The low-
area implementation mainly bases on CORDIC arithmetic and
is able to perform the QRD and the SVD of complex-valued
4× 4 matrices. In order to improve the overall efficiency, the
involved design and implementation trade-offs are investigated
in detail. We present two architecture variants: one unit has
been optimized for throughput and the other offers enhanced
flexibility by controlling a precision/throughput trade-off.

Outline: The remainder of this paper is organized as fol-
lows. In Sec. II the SVD and QRD algorithms are described
and all required operations are identified. The time-shared ma-
trix decomposition archtecture is described in Sec. III and the
associated design and implementation trade-offs are explored
in Sec. IV. In Sec. V, we provide VLSI implementation results
and conclude in Sec. VI.
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Fig. 1. Ideal impact of architectural transformations [7] on systolic arrays
and time-shared architectures. The dashed box corresponds to the investigated
design-space exploration for both MDUs by the use of iterative decomposition.
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Fig. 2. Illustration of the bidiagonalization and diagonalization phases of the
SVD according to [2] for a complex-valued 3×3 matrix. The entries affected
in the corresponding update have been highlighted.

II. MATRIX DECOMPOSITION ALGORITHMS

To identify all required arithmetic operations and the under-
lying computational sequences, the SVD and QRD algorithms
are briefly summarized below. More details for both matrix
decomposition algorithms can be found in [2].

A. Singular Value Decomposition
The SVD of a complex-valued M ×N -dimensional matrix

A is defined1 as [8]

A = UΣVH (1)

where U and V are complex-valued unitary matrices of
dimension M ×M and N ×N , respectively. The M ×N -
matrix Σ contains the real-valued singular values on its
main diagonal, i.e., diag(Σ) = {σ1, σ2, . . . , σr}, where r =
min{N,M} and σ1 ≥ σ2 ≥ . . . ≥ σr. The SVD procedure
under consideration bases on the Golub-Kahan algorithm
described in [2] and mainly performs the SVD in two phases:

1) Bidiagonalization: First, a memory is initialized with
M = {IM ,A, IN} where IL stands for a L × L identity
matrix. During the bidiagonalization phase, Givens rotations
are successively applied to A from the left-hand side (LHS)
and from the right-hand side (RHS), such that the M × N -
dimensional inner matrix A gets bidiagonal and real-valued
(denoted by B0) as illustrated in Fig. 2. All Givens rotations
applied to A from the LHS and RHS are applied to the
corresponding identity matrices. The resulting unitary matrices
are denoted by Ũ and ṼH and the memory content after the
bidiagonalization phase corresponds to M =

{
Ũ,B0, ṼH

}
where A = ŨB0ṼH .

2) Diagonalization: The diagonalization phase consists of
multiple diagonalization steps (indicated with k) and is illus-
trated in Fig. 2. Givens rotations are subsequently applied from
the LHS and from the RHS to the bidiagonal matrix Bk such

1In the following, the superscripts H and T stand for conjugate transposi-
tion and transposition, respectively.
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Fig. 3. Matrix decomposition architecture overview: the instruction-based
sequencer controls the arithmetic unit and the matrix memory, in order to
perform the decomposition sequence stored in the instruction RAM.

that all off-diagonal entries fi (for i = 1, 2, . . . , r − 1) of Bk

become zero. The diagonalization phase is stopped whenever
all fi are considered to be zero and all di (for i = 1, 2, . . . , r)
correspond to the unordered singular values. In order to ensure
convergence of the diagonalization phase and to reduce the
overall computation time of the SVD, the first Givens rotation
of each diagonalization step (indicated with RHS∗ in Fig. 2) is
performed with a modified input vector [x y]T , where y = t12
and x = t11 − µ uses the Wilkinson shift [2]

µ = an + c− sign(c)
√

a2 + b2
n−1 (2)

with c = 1
2 (an−1−an), T = BH

k Bk, and the trailing non-zero
sub-matrix of T corresponds to

T(n− 1 : n, n− 1 : n) =
(

an−1 bn−1

b∗n−1 an

)
. (3)

Analogous to the bidiagonalization phase, all Givens rotations
are also applied to the corresponding unitary matrices such
that finally, M =

{
U,Σ,VH

}
is the SVD in (1).

B. QR Decomposition

The QR decomposition of a M ×N -dimensional complex-
valued matrix A is defined as [8]

A = QR (4)

where Q is a complex-valued M×N -matrix with orthonormal
colums and the upper-triangular N × N -matrix R has real-
valued entries on its main diagonal. The QRD is performed
in a similar fashion as the bidiagonalization phase of the
SVD (cf. Fig. 2) where only the LHS Givens rotations are
applied. This minor modification of the SVD algorthm results
in an upper-triangular matrix R with real-valued entries on its
main diagonal. All Givens rotations applied from the LHS
to A are also applied to the unitary matrix Q such that
M = {Q,R, IN} corresponds to the QRD in (4).

III. VLSI ARCHITECTURE

In contrast to a systolic array implementation, we describe a
low-area matrix decomposition architecture, which is designed
to operate on complex-valued 4×4-dimensional matrices. The
time-shared architecture is depicted in Fig. 3 and consists of
tree main components described in the following.
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Fig. 4. CORDIC architecture overview: iterative decomposition can (ideally)
reduce the area without affecting the computation time per CORDIC. The
unroll factor corresponds to the number of micro-rotations per clock cycle.

A. Matrix Memory

The matrix memory provides storage for three complex-
valued 4× 4 matrices M =

{
M1,M2,M3

}
, which is suffi-

cient to store the result of an SVD and of a QRD (see Sec. II).
A complex value in M is stored at a single memory adress, is
32 bits wide, and each real and imaginary part requires 16 bits.
The matrix memory consists of a two-port 48× 32 bit SRAM
and requires 0.06 mm2 in 0.18 µm CMOS technology. The
matrix memory interface allows to read or write two different
real or imaginary parts in at most two clock cycles.

B. Arithmetic Unit

In order to design a high-level VLSI architecture of the
arithmetic unit (AU), Givens rotations, square-roots, multi-
plications, and additions/subtractions are required to compute
the SVD and the QRD (cf. Sec. II). Givens rotations and the
square root can efficiently be computed by CORDIC, whereas
multiplications and additions/subtractions are computed in a
multiply-accumulate (MAC) unit.

CORDIC Unit: CORDICs can efficiently compute two-
dimensional rotations [9] by performing a series of micro-
rotations with the aid of shifts and additions/subtractions
(cf. Fig. 4). To keep the circuit area low, a single CORDIC
is used by the means of time sharing and has been designed
to support vectoring and rotation. A complex-valued Givens
rotation is performed by three real-valued vectoring CORDICs
(denoted by C1, C2, and C3), i.e.,[

C
C

]
C1→

[
R
C

]
C2→

[
R
R

]
C3→

[
R
0

]
.

In order to perform the corresponding rotation on a complex-
valued 2-dimensional vector, four rotation CORDICs are re-
quired: the first two (C1 and C2) rotate each complex entry
independently, whereas the third and fourth CORDICs rotates
the real and imaginary part of both complex values by C3.

We emphasize that the square-root required in (2) can
efficiently be computed with the CORDIC in vectoring mode,

since
√

d2 + b2
n−1 corresponds to the nonzero result of the

CORDIC with [d bn−1]T applied to the input.
Multiply-Accumulate Unit: To compute the trailing sub-

matrix of T = BH
k Bk as described in (3), a real-valued

multiply-accumulate (MAC) unit has been instantiated. The
multiplier can be switched off in order to perform additions
or subtractions required in (2).

C. Instruction-Based Sequencer
The programmable MDU contains a micro-code controlled

sequencer. This sequencer consists of a 64× 20 bit instruction
RAM (of size 0.04 mm2 in 0.18 µm CMOS technology) that
provides storage for 64 instructions. The finite state machine
(FSM) decodes instructions, generatates memory adresses, and
provides control signals for the AU.

Instruction Set: The SVD and QRD mainly base on a
specific rotation sequence applied to the matrices in M
(cf. Sec. III-A). To this end, a set of eight instructions has
been defined. Four instructions are used to apply CORDICs
from the left-hand side (LHS) or the right-hand side (RHS) to
one complex-value or two real/imaginary-valued entries of M2

and to update all other affected entries in M. One instruction
is used to initialize the diagonalization phase of the SVD
which subsequently performs all required diagonalization steps
in a self-controlled manner. The remaining instructions are
reserved to configure the number of CORDIC micro-rotations
(see Sec. IV-A) or to control the program flow. The SVD of a
complex-valued 4×4 matrix requires 27 instructions, whereas
a QRD of equal size requires only 17 instructions.

SVD-Algorithm Modifications: To simplify the diagonaliza-
tion phase of the SVD and to obtain a fixed throughput, the
following modifications have been applied to [2]:

1) Off-diagonal entries of Bk (see Fig. 2) are considered
to be zero, whenever fi < 2−ε for i = 1, 2, . . . , r − 1.

2) Since the computational complexity of the diagonaliza-
tion phase is data dependent, an early-stopping criterion
has been introduced to obtain a fixed decomposition
throughput. Whenever k = Kmax, the diagonalization
phase is stopped and the current M is used as an
estimate of (1).

Note that ε and Kmax can be defined in the SVD-initialization
instruction, which allows to reconfigure the arithmetic preci-
sion and the decomposition throughput at run time.

IV. IMPLEMENTATION TRADE-OFFS

To reduce the area of the MDU and to improve the overall
efficiency, implementation trade-offs associated with arith-
metic precision, circuit area, and throughput are investigated
in the following.

A. Fixed-Point Implementation Trade-offs
The arithmetic precision of a fixed-point implementation is

assessed by the bit error rate (BER) of an IEEE 802.11n-
based MIMO-OFDM system with coded beamforming [10].
The baseband input-output relation of the wireless channel
is y = Hs + n where H corresponds to the MR × MT -
dimensional channel matrix, s denotes the MT -dimensional
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transmit signal, n the MR-dimensional Gaussian noise vector,
and y the MR-dimensional receive signal. Beamforming is
simulated by computing the fixed-point SVD of the channel
matrix H and by transmitting s = Vs̃. The receiver converts
the input-output relation into MT single-input single-output
channels

ỹi = σis̃i + ñi for i = 1, 2, . . . ,MT

where ỹ = UHy, σi is the ith singular value, and the
noise vector ñ has equal statistics as n. Finally, a soft-output
demapper produces reliability information for the subsequent
soft-input channel decoder.

Fixed-Point Implementation: To convert the floating-point
model in a fixed-point implementation, the floating-point SVD
has been simulated to determine the threshold parameter ε
and the required maximum number of diagonalization steps.
Simulations have shown that setting ε = 7 and Kmax = 7 does
not result in a significant BER performance loss. Note that
reducing ε or increasing Kmax only increases the computa-
tional complexity of the SVD and does not improve the error
rate performance. Further simulations have shown that a near-
optimal BER is achieved by using 16 fractional bits within
the CORDIC. Finally, the required number of micro-rotations
in the CORDIC has been evaluated. Figure Fig. 5 shows
the impact of micro-rotations to the BER of a beamformed
MIMO-OFDM simuation2. At least 12 micro-rotations are
required to acheive a BER less than 10−6. Reducing the
number of micro-rotations results in a BER floor, which is
not suitable for the scenario under consideration.

Precision/Throughput Trade-off: The number of micro ro-
tations in the CORDIC directly influences the arithmetic
precision of the MDU (see Fig. 5) and has also a significant
impact on the throughput. A lower number of micro-rotations

2We consider a convolutionally encoded (rate 1/2, generator polynomials
[133o 171o], constraint length 7, random interleaving) MIMO-OFDM system
with beamforming [10], four transmit and receive antennas, 16-QAM (using
Gray mapping), 64 tones, and soft-input Viterbi decoding. One codeblock
corresponds to 1024 bits, a TGn type C [11] channel model is used, and
perfect channel state information at the transmitter and receiver is assumed.
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requires less clock cycles, which results in lowered computa-
tional complexity. We emphasize that the arithmetic precision
requirements of a QRD for MIMO detection are usually lower
than the precision for the SVD in the scenario considered
above. As noted in [12], nine micro-rotations have found to
be sufficient for a QRD and thus, it is beneficial to lower the
precision in order to increase the decomposition speed. To this
end, we propose a tunable arithmetic unit (denoted by AU II),
where the number of micro-rotations is programmable, which
allows to adjust the precision/throughput trade-off at run time.
The maximum number of micro-rotations has been set to 12
to support sufficient precision for computing the SVD. An
unroll factor of two has been chosen which allows to chose the
number of micro-rotations from 12, 10, 8, and 6, depending
on the application and precision requirements. Note that all
BERs achievable by AU II are shown in Fig. 5.

B. Area/Delay Trade-off
Replication of a low-area unit can be used to achieve a given

throughput. Lower area implies that the target throughput can
be obtained more accurately. Hence, additional reduction in
terms of area per decomposition unit, without a significant
throughput decrease is highly desirable. To this end, iterative
decomposition has been applied to the CORDIC unit to
determine the optimum choice of the unroll factor. Since
only the area of the AU is affected, the area/delay trade-off
associated with the maximum number of micro-rotations and
the CORDIC unroll factor is shown in Fig. 6. Two different
MDUs have been designed: MDU I uses of the faster but
less-flexible AU I (using 12 micro rotations and an unroll
factor of six), whereas MDU II employs the slightly slower
but configurable AU II (using an unroll factor of two with
12, 10, 8, and 6 micro rotations), which allows to control the
precision/throughput trade-off at run time. Note that the critical
path is not only determined by the CORDIC, but also by the
MAC unit. Thus, to align the critical paths of both units, one
pipelining register has been inserted in the multiplier if the
CORDIC unroll factor is less than four.
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V. IMPLEMENTATION RESULTS

The fabricated ASIC in 0.18 µm technology is depicted
in Fig. 7 and contains both MDUs and an unrelated design.

1) SVD: The VLSI implementation results for the SVD
for each MDU are given in Tbl. I. Note that for highest
precision (i.e., 12 micro-rotations), the first unit achieves a
slightly higher throughput than the MDU II and only requires
0.04 mm2 more area. However, the second unit is able to
achieve 55% higher efficiency (in terms of SVDs per second
per mm2) than MDU I by reducing the arithmetic precision
down to six micro-rotations per CORDIC (see Fig. 5). At
highest precision (i.e., using 12 micro rotations), MDU I and
MDU II consume 160 mW and 106 mW, respectively.

2) QRD: The implementation results for a complex-valued
QRD executed on each MDU are given in Tbl. II. At maximum
precision (i.e., 12 micro-rotations which, however, is only
desirable for the SVD computation), MDU I achieves the
higher throughput than MDU II. Note that approximately
six time more QRDs per second per mm2 than SVDs are
achievable. Reducing the precision of MDU II to six micro-
rotations per CORDIC, allows to achieve 1.92 MQRDs/s/mm2,
which is 51% more efficient than the less-flexible MDU I.
Hence, tuning the precision/throughput trade-off at run time
can improve the overall efficiency of MDU II. Note that the
power consumption increases by reducing the precision.

TABLE II
IMPLEMENTATION RESULTS OF A COMPLEX-VALUED 4× 4 QRD

MDU I II
CORDIC rots. 12 12 10 8 6
QRD time [µs] 1.92 2.82 2.35 1.88 1.41
QRDs/s/mm2 1.27 M 0.96 M 1.15 M 1.44 M 1.92 M
Powera [mW] 155 105 112 118 128

VI. CONCLUSION

We described design and implementation trade-offs of two
programmable matrix decomposition units (MDUs), able to
compute the SVD and the QRD. Low area is achieved through
extensive use of time sharing of a single CORDIC unit. The
low-area MDUs have been shown to be suitable for MIMO-
OFDM systems, since they can be easily adapted to individual
throughput requirements by the use of replication. One unit has
been optimized for throughput, where the throughput of the
second unit is tunable by reducing the arithmetic precision
at run time. The programability of both units allow to use
the same architecture for different systems, which avoids the
design of dedicated architectures for individual requirements.
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TABLE I
REFERENCE IMPLEMENTATION RESULTS OF A COMPLEX-VALUED 4× 4 SVD FOR 0.18 µm (1P/6M) CMOS TECHNOLOGY

MDU I II
CORDIC micro-rotations 12 12 10 8 6
Core area [mm2] 0.41 0.37
Maximum clock frequency [MHz] 133 272
Power Consumptiona [mW] 160 106 113 119 130
Maximum SVD time [µs] 11.57 15.83 13.29 10.75 8.2
Efficiency [SVDs/s/mm2] 210 k 166 k 198 k 244 k 325 k
Bit error rate floor [BER] < 10−6 < 10−6 ≈ 5 · 10−6 ≈ 2 · 10−4 ≈ 7 · 10−3

aPower consumption has been measured at the maximum clock frequency of the corresponding MDU with 1.8 V core supply.


