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Abstract— In this paper, a generalization of tree-search algo-
rithms with maximum likelihood (ML) error rate performance
for the detection in multiple-input multiple-output (MIMO) sys-
tems is presented. The Schnorr-Euchner sphere decoder [1], Djik-
stra’s algorithm [2] applied to MIMO detection [3], and an ML-
optimal variant of the K-best [4] detector are shown to be special
cases of the presented unification. The complexity of the detection
procedure is characterized by three different measures, relevant
for VLSI implementations, and the corresponding trade-offs
between hardware complexity and throughput are investigated.
Finally, efficient detector configurations are identified which
are suitable for MIMO detection of higher-order modulation
alphabets and for large numbers of transmit antennas.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology consti-
tutes the basis for next-generation wireless communication
systems. Spatial multiplexing allows to achieve high spectral
efficiency, but comes at cost of increased signal processing
complexity, most prominently in the detection unit. The opti-
mum detector in terms of vector error rate is the maximum
likelihood (ML) detector. Unfortunately, a straightforward
implementation of this scheme with an exhaustive search
(EMLD) over all possible transmitted vector symbols has an
exponentially growing complexity in the number of transmit
antennas. However, the ML criterion can be reformulated in
such a way that the unstructured brute-force exhaustive search
can be carried out by efficient tree-traversal and tree-pruning
algorithms which ultimately lead to a considerable reduction of
the average number of operations (computational complexity).

Recent publications have produced a variety different tree-
search algorithms, constantly aiming at a reduction of the
computational complexity. Limiting our scope to ML-optimal
schemes, it can be observed that mainly two strains of
algorithms have been reported: the Schnorr-Euchner sphere
decoder (SESD) [1] which performs a depth-first tree traversal
and Dijkstra’s search applied to MIMO detection (DSD) [3],
[5] which follows a metric-first strategy. The SESD has a
slightly higher complexity than the DSD, but requires only
a small amount of memory. The DSD performs the tree-
traversal more efficiently in terms of computational complexity
[6], but an implementation requires an exponentially growing
amount of memory in the number of spatial streams. Since the
complexity of a VLSI implementation is ultimately determined
by both, the number of operations and by worst-case memory
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requirement, we claim that there is a fundamental trade-off
between these two measures.

Contributions: We present a unified tree-search strategy for
ML-optimal MIMO detection which allows to realize a vari-
ety of trade-offs between computational complexity, memory
requirements and the ability to provide early estimates of the
result. The presented algorithm contains the SESD, the DSD,
the exhaustive search ML decoder, and an ML-optimal K-best
decoder (MLKBD) as special cases and provides intermediate
solutions between these well-known algorithms. It is shown
how the detector configuration with the lowest complexity can
be identified within the corresponding design-space.

Outline: The remainder of this paper is organized as fol-
lows: Chapter II introduces the system model and explains
the transformation of ML-detection into a tree-search problem.
Chapter III describes the algorithm in detail and its pseudocode
is given. In Chapter IV the properties of our unified view are
studied and finally, conclusions are drawn in Chapter V.

II. SYSTEM MODEL AND DETECTION

We consider a MIMO system with MT transmit and MR

receive antennas and employ spatial multiplexing, where the
transmitter sends MT independent streams and chooses the
components si of the transmit vector s from a complex-valued
set O of constellation points. The transfer function of the
system is given by

y = Hs + n (1)

where the MR-dimensional vector n represents the i.i.d.
circular symmetric complex Gaussian noise, the MR ×MT

channel matrix is denoted by H, and y is the MR-dimensional
received vector.

A. ML Detection

The task of a MIMO detector is to estimate s from the
received vector y using an estimate of the channel H. The
optimum in terms of vector error probability is achieved by
the ML detection rule [7]

ŝ = arg min
s∈OMT

‖Hs− y‖2. (2)

A straightforward approach to solve (2) is an exhaustive search
over all possible candidate vectors OMT . However, such an
implementation becomes quickly prohibitive as the number of
transmit antennas increases.



B. Tree Representation

Tree-search algorithms have been shown to be able to solve
(2) with a low average computational complexity, while still
being ML optimal. To this end, the corresponding schemes
start by factorizing the channel matrix into H = QR, such
that R is upper-triangular and Q is unitary. Left multiplied by
QH leads to

ŝ = arg min
s∈OMT

d(s) with d(s) = ‖Rs− ỹ‖2 (3)

where ỹ = QHy and where d(s) is the Euclidean distance,
which can be computed recursively by using partial Euclidean
distances (PEDs)
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with the initialization dMT +1 = 0 and with the partial
symbol vectors (PSVs) s(i) = [ si · · · sMT

]T . The distance
increments (DIs) are computed according to
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and the PED of level i is only dependent on the previously
chosen s(i+1), the corresponding di+1(s(i+1)), and the DI
which requires a new si ∈ O. Thus, d(s) can be computed by
computing the DIs (5) and PEDs (4) for i = {MT +1, . . . , 1}
recursively. This transforms the ML detection problem (2)
into a weighted tree search. In that tree, PEDs and PSVs are
associated with nodes and branches correspond to DIs. Each
path from top-to-bottom through the tree, i.e., from the root
node down to the leaves, corresponds to a particular symbol
vector s ∈ OMT .

C. Tree-Search Algorithms

With the above described tree representation, efficient ML
detection resorts to finding the leaf associated with the smallest
metric. The silicon implementation complexity of such a
search is characterized by the amount of memory required to
store intermediate results and by the computational complexity
of the tree traversal. Several tree-search strategies exist and
two efficient algorithms are explained in the following.

1) Schnorr-Euchner Sphere Decoder: The SESD [1] per-
forms a depth-first best-expand procedure in the tree, con-
straining its search to nodes which lie in a hypersphere with
radius r around ỹ (sphere constraint). Starting from the root
with r = ∞, the decoder traverses the tree depth-first, always
giving preference to the child associated with the smallest
PED. When a leaf is reached, the ED of that leaf is kept as new
radius r and the depth-first search continues. If none of the
children of the current parent node meets the sphere constraint
the search continues at another unexplored child branching off
the path from the root to the current node until no more valid
children can be found. The path to the leaf with the smallest
PED then corresponds to the ML solution.

2) Dijkstra’s Search: The DSD mainly performs a purely
metric-first procedure in a list of nodes which constitutes the
boundary between the explored and the unexplored nodes of
the tree. First, this list is initialized with only the root node.
Then, the following three steps are performed iteratively: The
decoder considers all children of all nodes in the boundary in
order to identify the child associated with the smallest PED
(note that explicit consideration of all children is usually not
required). This best child is expanded and is added to the
boundary. A node is removed from the boundary, if all of
its children have been expanded. When a leaf is reached (ex-
panded), the algorithm stops and the ML solution corresponds
the path from the root to this leaf. Since the DSD only expands
the best (most promising) available candidates, the number
of expanded nodes is minimized [6], however, the boundary
may become very large, requiring a considerable amount of
memory.

III. UNIFICATION

A. Notation

A node on the ith level is described by Np (sp, di(sp), Ep),
where sp is the corresponding PSV that uniquely identifies
this node in the tree. The associated PED di(sp) is calculated
according to (4) and Ep =

{
e1, e2, . . . , e|O|

}
is the set of DIs

leading to all |O| children of this node on level i − 1. The
PED of the mth child of Np can be calculated by di−1(sc) =
di(sp) + em, where em ∈ Ep and Ep ∈ Np. The level of a
node N in the tree is defined as

L
(
N

)
= i = MT + 1− length(s) s ∈ N .

Leaves are on level 1 and the root, which is defined as
N1(∅, 0, E1), is on level MT + 1. Expanding a parent node
Np into a new child node Nc, can be described as

Nc

(
sc =

[
{O}m sT

p

]T
, di−1(sc) = di(sp) + em, Ec

)
(6)

where {O}m denotes the mth symbol in O. After the compu-
tation of (6), the corresponding DI em ∈ Ep is set to infinity to
remember that the associated child has already been expanded.
In summary, expanding a parent node into its mth child
corresponds to extending the partial symbol vector, adding the
DI to the PED of the parent node, and to calculating the DIs for
the children of the new child node. Note that during expansion,
not all child DIs have to be calculated at once. A possible
method which saves a significant amount of computational
complexity and lowers the memory consumption has been
described in [8].

B. Algorithm

The scheme, summarized by Algorithm 1, is a combination
of the computationally efficient DSD algorithm and the mem-
ory efficient SESD. The main goal is to provide trade-offs
between memory consumption and computational complexity.

To this end, our unification distinguishes between two sets
of nodes: The first set S contains nodes, obtained from
the expansion of other nodes, which can not yet be pruned
from the tree since these nodes may still lead to a leaf
with a PED that is smaller than the PED of the best leaf



expanded nodes

next-best DIs

leaf level

2) expand best child

boundary
�

����� �

estimate
���

4) expand best child 
and remove boundary

	�

stop, since
    is empty

�

1) build boundary 3) build boundary 6) best child >       
remove boundary    

�5) build boundary



�

�

�

�

� � � �

� �

� �

unexplored branch

Fig. 1. Decoding example of a partially explored ternary tree (MT = 3) by using Algorithm 1 with B = 2 and K = 1.

Algorithm 1 [̂s, ne, ns] = Detect(R, ỹ, B,K)
1: initial radius: r := ∞
2: number of searched nodes: ns := 0
3: number of expanded nodes: ne := 1
4: initialize S with the root node: S := {N1}
5: while |S| > 0 do
6: build the boundary B out of S
7: for k := 1 to K do
8: search in B for the node Nb containing the smallest

child PED: d := db + em where db, em ∈ Nb

9: ns := ns + |B|
10: if d < r then
11: if L (Nb) > 1 then
12: ne := ne + 1
13: expand Nb using {O}m into the child Nc

14: insert Nc into S
15: else
16: new estimate: ŝ :=

[
{O}m sT

]T
with s ∈ Nb

17: reduce the search radius: r := d
18: remove B from S and break
19: end if
20: else
21: remove B from S and break
22: end if
23: end for
24: end while

identified so far. The members of S are ordered according
to their level in the tree so that L ({S}i−1) ≥ L ({S}i). The
active boundary B – from which new nodes are expanded –
is extracted from the B lowest-level nodes in S according
to B =

{
N|S|−B+1, . . . ,N|S|

}
. If B is chosen larger than

|S| we set B = S. Since B ⊆ S no additional memory
needs to be allocated for B and we shall see that pruning can
keep the size of the list S much smaller than the size of the
unconstrained boundary in the DSD. With these definitions,
the decoding procedure iterates between the extraction of an
active boundary B from S and the expansion of K children
with the smallest PEDs of parent nodes in the active boundary.
The resulting new nodes are then added to the set S and nodes
in S, which can not lead to a leaf with a PED that is smaller
than the PED of the best leaf identified so far, are removed
from S using a sphere constraint before a new boundary is
extracted. We shall refer to the parameter K which determines
the number of expansion operations per boundary extraction
as the expand effort.

Example for B = 2 and K = 1: Assume that the nodes a
and b have already been expanded (S = {a, b}) as shown on

the left of Fig. 1. In step 1 the decoder builds the boundary
with B = 2 nodes. Then, the best child node c is expanded
(step 2). The new node c is added to S. In step 3 a new
boundary is extracted, here containing b and c. The algorithm
searches the best child (step 4) which turns out to be a leaf.
Thus, a symbol estimate ŝ is found and the search radius can
be updated as r = d1 (̂s). All nodes in the active boundary
can now be removed from the S since all of their children are
known to have a PED that exceeds r and can thus not lead
to a better solution than ŝ (Algorithm 1 line 18). In step 5 a
new boundary is extracted from the sole remaining node a in
S. However, in the example, the PED of the best child of a is
assumed to exceed the radius r so that a can also be pruned
from S which is now empty, leading to the termination of the
algorithm (Algorithm 1 line 5).

IV. PROPERTIES

A. ML-Optimality
Since the proposed algorithm only excludes nodes from

the search whose PED is known to exceed the PED of the
currently best estimate (i.e., the leaf with the smallest PED),
it is guaranteed to find the ML solution for any combination
of K > 0 and B > 0. In the following, we shall thus focus
only on the impact of these two parameters on the memory
requirements and on the computational complexity.

B. Memory Requirements
VLSI implementations are unable to use dynamic memory

allocation and must therefore be built to handle the worst-
case memory consumption. During detection, the set S, which
governs the memory requirement of the algorithm, grows to a
certain maximum size NS , before it gets emptied and refilled
again (cf. lines 14, 18, and 21 of Algorithm 1). Since the the
pace of the con-/destruction of S depends on the choice of K
and B, the upper bound NS on the cardinality of S is also
determined by these two design parameters. Fig. 2 shows NS
as a function of K and B.

The configuration with B = K = 1 corresponds to the
SESD with radius reduction [1] (cf. Section II-C.1). Since
B = 1, the search for the smallest child to be expanded is
limited to the children of a single node. The corresponding
memory requirement for the SESD is given by NS = MT

which is the lowest among all possible configurations. Two
other configurations using low memory are: K = 1 and
zK = B, where z is a positive integer. Counting the maximum
number of nodes in S for these cases results in

NS ≤ (MT − 1) B + 1 (7)



Fig. 2. Memory consumption NS [nodes] dependent on K and B in a 4×4
MIMO system using a 64-QAM symbol alphabet.

which holds with equality if B ≤ |O|. Hence, in these special
cases, memory requirements grow at most linearly with the
boundary size for a given MT .

Inefficient configurations are B = zK + 1, where the
number of expansions of nodes closer to the root is maximized,
since the size of the boundary is at most stages larger than the
number of nodes in S that are on the same lowest level of the
tree. The worst case in terms of memory consumption occurs,
when the decoder advances as slow as possible from the root
down to the leaves, i.e., when it always expands the nodes in
the boundary which are closest to the root.

The global upper bound for memory consumption (over all
choices for B and K) is

NS,max =
|O|MT − 1
|O| − 1

(8)

which is attained by the DSD (B = NS,max and K = 1) and
by an exhaustive traversal of the tree (B = K = NS,max).

C. Decoding Complexity

The proposed algorithm may be implemented by using
different strategies. To remain as generic as possible in our
analysis, two fundamental decoding complexities are identi-
fied: The search complexity ns given by the aggregate effort
required to identify which children should be expanded from
the nodes in the boundary. The expand complexity1 ne is given
by the number of nodes which are actually expanded according
to (6). Since ns and ne are both random variables, we are
interested in the average taken over many symbols, noise-,
and channel realizations. To obtain this average, the required
accounting is included in the pseudocode in Algorithm 1. To
characterize the true detection complexity (denoted by n), the
search and expand complexities have to be weighted according
to the chosen implementation strategy.

1The expand complexity is equal to the number of visited nodes which has
been used in [8] to characterize the throughput of depth-first sphere decoding
implemented with a one-node-per-cycle VLSI architecture.

Fig. 3. Average expanded nodes ne, simulated for 320k channel realizations
in a 4× 4 MIMO system using 64-QAM at 25dB SNR.

1) Expand Complexity: Fig. 3 shows the average expand
complexity ne. For small K and increasing B the average
expand complexity decreases which corresponds to the result
in [6] where it has been proven that the automatic sphere
decoder – which corresponds to the DSD – has the lowest ne

among all sphere decoders since it performs an unconstrained
metric-first search. Unfortunately, this configuration requires a
large ammount of memory (cf. Section IV-B and Fig. 2) and
is therefore not suited for practical implementations.

Since K determines the expand effort, i.e., the maximum
number of nodes which are expanded for the current boundary
B, the expand complexity grows with K. In the region where
K > B, more nodes are expanded than searched, which
quickly becomes inefficient in terms of ne.

2) Search Complexity: Fig. 4 shows the average search
complexity ns. Note that the search complexity is larger than
the expand complexity, since each node may be searched
more than once. However for small boundaries B, the overall
complexity is mostly dominated by the expand complexity as
the search in the boundary can be computed in parallel to
expanding nodes. Additionally, search units are usually smaller
than an expand circuit.

Observing Fig. 4 it can be concluded that the optimum
decoder in terms of ns is achieved by the configuration
K = B = 1, which is equal to the SESD algorithm. However,
this property has not been proven so far.

For large K, the search effort becomes prohibitive. Expand-
ing many nodes from a boundary, also expands nodes which
have large PED. Thus, the search for the lowest PED becomes
difficult since the boundary size B is limited and good PEDs
may lie outside. Additional sorting of the nodes on equal
levels in S according to their PEDs reduces this problem only
slightly and causes additional sorting complexity.

D. Trade-offs
1) Search vs. Expand Complexity: Comparing Fig. 3 and

Fig. 4, we observe (especially for low K) that a tradeoff be-
tween search and expand complexity exists. For an increasing
active boundary size (i.e., increased metric-first ability) B the



Fig. 4. Average searched nodes ns, simulated for 320k channel realizations
in a 4× 4 MIMO system using 64-QAM at 25dB SNR.

average search complexity grows, while the expand complexity
decreases.

Increasing the boundary size lowers the expand complexity
since potentially better children can be found earlier. Addi-
tionally, as searching might be done in parallel to expanding,
increasing B appears to be a valuable technique to speed up
the total detection complexity n. The optimum choice of B in
terms of runtime effort, can be found by minimizing n. We
claim from experience that in practical systems, the optimum
choice of B is either one or only slightly larger.

2) Decoding Complexity vs. Memory Consumption: If B
is increased, e.g., to lower the total detection complexity, the
memory consumption grows (cf. Fig. 2). Thus, B has to be
chosen such that the overall complexity of the decoding unit
is low and the memory consumption remains moderate. As
shown before, a small increase in metric-first ability, already
reduces the average expand complexity, especially for higher
order modulation schemes (e.g. 64-QAM). Therefore, the
actual implementation of the search and expand units decides
on the optimal trade-off.

Starting with an SESD implementation, e.g. [8], and slightly
increasing the metric-first ability B, can reduce the overall
complexity of the MIMO ML detection unit. However, the
expand effort of the decoder should be set to K = 1 to avoid
high computational complexity.

E. Early Estimates
The presented algorithm may find intermediate estimates,

while searching for the ML solution. Such early estimates can
be used if the search must be terminated before completion.
This technique is called early termination [9] and is no longer
ML-optimal. The parameters K and B determine the delivery
window for early estimates, which is essential for scheduling
techniques [9], [10].

The maximum number of ne until the first estimate is
available equals to the case where the most memory is
consumed (cf. Section IV-B). The SESD delivers its first
estimate always after expanding MT nodes and the cases
where zK = B and K = 1 deliver estimates corresponding

to (7). The configuration B = K corresponds to the MLKBD
which expands all nodes in the active boundary. With early
termination after the first leaf has been found, the MLKBD
corresponds to the K-best decoder (KBD) [4], which has
shown to achieve close-to ML error performance. The DSD
delivers no early estimates and might require exponential
growing expand complexity which is not suited for scheduling.

The minimum ne to find an estimate, occurs if the detector
advances as fast as possible from the root to the leaves
and depends on K. If K = 1 the first estimate may be
available after MT expanded nodes and thus, the SESD and
the DSD may deliver their first estimate after expanding MT

nodes. However, the SESD always delivers its first estimate
after expanding MT nodes (since B = 1). The maximum
expand complexity of the DSD is equal to the worst-case
computational complexity.

V. CONCLUSION

The presented algorithm allows a unified view over ML-
optimal tree-search decoders by exploring its adjustable
metric-first ability and adjustable expand effort. It has been
shown that the Schnorr-Euchner sphere decoder (SESD) re-
quires the lowest memory and is already very efficient in
terms of average search complexity. Dijkstra’s search in the
symbol tree outperforms the SESD in terms of expand com-
plexity. However, this approach requires a prohibitively large
amount of memory and is therefore not well-suited for VLSI
implementation. It is shown that there exists a trade-off region
between computational complexity and memory consumption.
Exploiting this trade-off region reveals that slightly enhanc-
ing the metric-first ability of the SESD might be desirable.
Depending on the chosen implementation strategy, the overall
detection complexity of the decoder can be reduced, especially
if decoding higher order symbol alphabets (e.g. 64-QAM) or
employ a large number of transmit antennas.
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