
Soft-Output Sphere Decoding:
Performance and Implementation Aspects

C. Studer∗, M. Wenk∗, A. Burg∗, and H. Bölcskei†

∗Integrated Systems Laboratory
ETH Zurich, Switzerland

email: {studer, mawenk, apburg}@iis.ee.ethz.ch

†Communication Technology Laboratory
ETH Zurich, Switzerland

email: boelcskei@nari.ee.ethz.ch

Abstract— Multiple-input multiple-output (MIMO) detection
algorithms providing soft information for a subsequent channel
decoder pose significant implementation challenges due to their
high computational complexity. In this paper, we show how
sphere decoding can be used as an efficient tool to implement
soft-output MIMO detection with flexible trade-offs between
computational complexity and (error rate) performance. In
particular, we demonstrate that single tree search, ordered QR
decomposition, channel matrix regularization, and log-likelihood
ratio clipping are the key ingredients for realizing soft-output
MIMO detectors with near max-log performance at a computa-
tional complexity that is reasonably close to that of hard-output
sphere decoding.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless systems
employ multiple antennas on both sides of the wireless link
and offer increased spectral efficiency (compared to single-
antenna systems) by transmitting multiple data streams concur-
rently and in the same frequency band (spatial multiplexing).
MIMO technology constitutes the basis for upcoming wireless
communication standards, such as IEEE 802.11n and IEEE
802.16e.

The main challenge in the practical realization of MIMO
wireless systems lies in the efficient implementation of the
detector which needs to separate the spatially multiplexed data
streams. To this end, a wide range of algorithms offering
various trade-offs between performance and computational
complexity have been developed [1]. Linear detection produc-
ing hard-decision outputs constitutes one extreme of the com-
plexity/performance trade-off region, while computationally
demanding a posteriori probability (APP) detection algorithms
result in the opposite extreme. The computational complexity
of a MIMO detection algorithm depends on the symbol
constellation size and the number of spatially multiplexed data
streams, but often also on the instantaneous MIMO channel
realization and the signal-to-noise ratio (SNR). On the other
hand, the overall decoding effort is typically constrained by
system bandwidth, latency requirements, and limitations on
power consumption. Implementing different algorithms, each
optimized for a maximum allowed decoding effort and/or a
particular system configuration, would entail a considerable

This work was supported by the STREP project No. IST-026905 (MAS-
COT) within the sixth framework programme (FP6) of the European Com-
mission.

hardware overhead and in addition be highly inefficient since
large portions of the chip would remain idle most of the time.
A practical MIMO receiver design must therefore be able to
cover a wide range of complexity/performance trade-offs using
a single tunable detection algorithm.

Contributions: In this (predominantly tutorial) paper, we
provide a formulation of the sphere decoder [2], [3] as a
tunable MIMO detector with performance ranging from that of
successive interference cancellation (SIC) to that of max-log
APP detection. Tuning of the detector is achieved through log-
likelihood ratio (LLR) clipping, preprocessing, and imposing
constraints on the maximum computational complexity of the
decoder. We formulate a framework for systematically char-
acterizing the resulting complexity/performance trade-offs. Fi-
nally, we elaborate on, and provide some refinements of, the
tree-search algorithm introduced in [4] and the LLR clipping
approach proposed in [5].

Outline: The remainder of this paper is organized as fol-
lows. Section II reviews the transformation of the MIMO
detection and LLR computation problems into a tree-search
problem. Section III reviews max-log APP sphere decod-
ing and proposes some refinements of existing algorithms.
In Section IV, we describe methods for reducing the tree-
search complexity. A framework for evaluating the complex-
ity/performance trade-offs of the resulting class of detectors is
introduced in Section V. We conclude in Section VI.

II. SOFT-OUTPUT SPHERE DECODING

Consider a MIMO system with MT transmit and MR ≥MT

receive antennas. The coded bit-stream is mapped to
MT -dimensional transmit vector symbols s ∈ OMT , where O
stands for the underlying complex-valued scalar constellation
of cardinality 2Q. The individual coded bits are denoted by
xj,b, where the indices j and b refer to the bth bit in the
binary label of the jth entry of s, respectively. The resulting
complex baseband input-output relation is given by

y = Hs + n (1)

where H denotes the MR × MT channel matrix and n is
an i.i.d. proper complex Gaussian distributed MR-dimensional
noise vector with variance No per complex entry.

A. Max-Log Soft-Output Computation

Soft-output MIMO detection requires the computation of
LLRs for all coded bits. In order to reduce the corresponding
computational complexity, we employ the max-log approxi-
mation [6]

L
(
xj,b

)
= min

s∈X (0)
j,b

‖y −Hs‖2 − min
s∈X (1)

j,b

‖y −Hs‖2 (2)

where X (0)
j,b and X (1)

j,b are the disjoint sets of vector symbols
that have the bth bit in the label of the jth scalar symbol equal
to 0 and 1, respectively, and the LLRs in (2) are normalized
to avoid dependence on the noise variance. For each bit, one
of the two minima in (2) is given by λML = ‖y −HsML‖2,
where

sML = arg min
s∈OMT

‖y −Hs‖2 (3)

is the maximum likelihood (ML) solution. The other minimum
in (2) is given by

λML
j,b = min

s∈X
(xML

j,b)
j,b

‖y −Hs‖2 (4)

where the counter-hypothesis xML
j,b denotes the binary comple-

ment of the bth bit in the binary label of the jth entry of sML.
With (3) and (4) the max-log LLRs can be written as

L
(
xj,b

)
=

{
λML − λML

j,b , xML
j,b = 0

λML
j,b − λML , xML

j,b = 1 .
(5)

From (5) we can conclude that efficient max-log APP MIMO
detection reduces to efficiently identifying sML, λML, and λML

j,b

for j = 1, 2, . . . ,MT and b = 1, 2, . . . , Q [7].

B. Max-Log APP MIMO Detection as a Tree Search

Transforming (3) and (4) into tree-search problems and
using the sphere decoding algorithm [2], [3] allows to effi-
ciently compute the LLRs (5). To this end, the channel matrix
H is first QR-decomposed according to H = QR, where Q
is unitary of dimension MR ×MT and the upper-triangular
MT×MT matrix R has real-valued positive entries on its main
diagonal. Left-multiplying (1) by1 QH leads to the modified
input-output relation

ỹ = Rs + QHn with ỹ = QHy

and hence, noting that QHn has the same statistics as n, to
the equivalent formulation of λML and λML

j,b as

λML = min
s∈OMT

‖ỹ −Rs‖2 (6)

λML
j,b = min

s∈X
(xML

j,b)
j,b

‖ỹ −Rs‖2. (7)

We next define the partial symbol vectors (PSVs)
s(i) = [si si+1 · · · sMT

]T and note that the s(i) can be
arranged in a tree that has its root just above level i = MT

and leaves, which correspond to possible candidate symbol
vectors, on level i = 1. After initializing dMT +1 = 0, the

1The superscript H stands for conjugate transposition.

Euclidean distances d(s) = ‖ỹ −Rs‖2 in (6) and (7) can be
computed recursively as d(s) = d1 with the partial Euclidean
distances (PEDs)

di = di+1 + |ei|2 , i = MT ,MT − 1, . . . , 1 (8)

and the distance increments (DIs)

|ei|2 =
∣∣∣ỹi −

MT∑
j=i

Ri,jsj

∣∣∣2. (9)

Since the dependence of the PEDs di on the symbol vector s
is only through s(i), we have transformed ML detection and
the computation of the max-log LLRs into a weighted tree-
search problem: PEDs and PSVs are associated with nodes,
branches correspond to DIs. Each path from the root down
to a leaf corresponds to a symbol vector s ∈ OMT . The

leaf associated with the smallest metric in OMT and X
“

xML
j,b

”
j,b

corresponds to the solution of (6) and (7), respectively. The
basic building block underlying the two tree traversal strategies
described in the next section is the Schnorr-Euchner sphere
decoder (SESD) with radius reduction [8], briefly summarized
as follows: The SESD constrains the search to nodes which
lie within a radius r around ỹ and traverses the tree depth-
first, visiting the children of a given node in ascending order
of their PEDs. The basic idea of radius reduction is to start
the algorithm with r =∞ and to update the radius according
to r2 ← d(s) whenever a leaf s has been reached. This avoids
the problem of selecting a suitable (initial) radius and leads to
efficient pruning of the tree.

Throughout this paper, computational complexity is defined
as the number of visited nodes. This complexity measure
is directly related to the throughput of corresponding VLSI
implementations [9].

III. TREE-TRAVERSAL STRATEGIES

Computing the LLRs as in (5) requires determining the
metric λML

j,b , which is achieved by traversing only those parts

of the tree that have leaves in X
“

xML
j,b

”
j,b . Since this computation

has to be carried out for every coded bit, it is immediately
obvious that the resulting need for repeated tree traversals can
lead to a major computational burden. In the following, we
review two alternative tree-traversal strategies, proposed in [7]
and [4], respectively, for solving (6) and (7). In addition, we
propose some minor refinements of the tree-search algorithm
introduced in [4].

A. Repeated Tree Search

An algorithm for computing the LLRs based on repeated
tree search (RTS) was described in [7]. The basic idea is
to start by solving (6) (using the SESD) and to rerun the
SESD to solve (7) for each coded bit (i.e., QMT times) in
the vector symbol. When rerunning the SESD to determine
λML

j,b , the search tree is prepruned by forcing the decoder to
exclude all nodes (and the corresponding subtrees) from the
search for which xj,b = xML

j,b . This prepruning procedure is
illustrated in Fig. 1. Initializing the SESD with r = ∞ in

0

1

1

1

0 0

0 0 0 0

x
ML
1 = 1

x
ML
2 = 0 x

ML
3 = 0

x
ML = [0 1 1]

Fig. 1. Example of the prepruning procedure in the RTS approach. Counter-
hypotheses to the ML solution are found by forcing the algorithm through
the dashed branches.

each of the QMT runs required to obtain λML
j,b will lead to

high computational complexity. It is therefore important to
realize that, without compromising max-log optimality, we
can initialize the search radius rj,b by setting it equal to the

minimum value of ‖ỹ − Rs‖ over all s ∈ X
“

xML
j,b

”
j,b found

during preceding tree traversals.
The main advantage of the RTS strategy lies in the fact

that each traversal of the tree can be performed using a hard-
decision SESD with minimal modifications to account for
the search being carried out on a prepruned tree. The main
disadvantage is the repeated traversal of large parts of the tree.
As noted in [10], this problem can be mitigated somewhat by
changing the detection order in each run. Unfortunately, the
resulting need for multiple QR-decompositions typically leads
to prohibitive overall computational complexity.

B. Single Tree Search

The key to a more efficient (compared to RTS) tree-search
strategy is to ensure that every node in the tree is visited at
most once. This can be accomplished by searching for the ML
solution and all counter-hypotheses concurrently. The basic
idea behind such a single tree search (STS) approach has been
outlined in [4]. In the following, we shall elaborate on the
idea presented in [4] and describe some minor refinements.
Specifically, we formulate update rules and a pruning criterion
based on a list containing the metrics λML and λML

j,b .
The main concept is to have a list containing the metric

λML along with the corresponding bit sequence xML and
the metrics λML

j,b of all counter-hypotheses and to search the
subtree originating from a given node only if the result can
lead to an update of either λML or one of the λML

j,b .
List administration: The algorithm is initialized with

λML = λML
j,b =∞ (∀ j, b). Whenever a leaf with correspond-

ing binary label x has been reached, the decoder distinguishes
between two cases:

1) If a new ML hypothesis is found, i.e., d (x) < λML, all
λML

j,b for which xj,b = xML
j,b are set to λML followed

by the updates λML ← d (x) and xML ← x. In other
words, for each bit in the ML hypothesis that is changed
in the process of the update, the metric of the former
ML hypothesis becomes the metric of the new counter-
hypothesis, followed by an update of the ML hypothesis.
This procedure ensures that all λML

j,b always contain the
metric associated with a valid counter-hypothesis to the
current ML hypothesis.

2) In the case where d (x) ≥ λML, only the counter-
hypotheses have to be checked. For all j and b for
which d (x) < λML

j,b and xj,b = xML
j,b , the decoder up-

dates λML
j,b ← d (x).

Pruning criterion: The key aspect of this algorithm is
the following pruning criterion. A given node s(i) on
level i and the subtree originating from that node have
the partial binary label x(i) consisting of the bits xj,b

(b = 1, 2, . . . , Q and j = i, i + 1, . . . ,MT). The remaining
bits xj,b (j = 1, 2, . . . , i− 1) corresponding to the subtree are
unknown at this point. The pruning criterion for s(i) along
with its subtree is compiled from two conditions. First, the
bits in the partial binary label x(i) are compared with the
corresponding bits in the binary label of the current ML
hypothesis. In this comparison, for all j, b with xj,b = xML

j,b ,
the corresponding counter-hypotheses λML

j,b might be affected
when further searching the node’s subtree. Second, all counter-
hypotheses corresponding to the subtree of s(i) with the asso-
ciated metrics λML

j,b (j = 1, 2, . . . , i− 1) may also be updated
since the corresponding bits are not yet known. In summary,
the metrics which may be affected during further search in the
subtree emanating from a node s(i) are given by the set

A = {al} =
{

λML
j,b

∣∣ xj,b = xML
j,b , j ≥ i

}
∪

{
λML

j,b

∣∣ j < i
}

.

The node s(i) along with its subtree is pruned if its PED
d
(
s(i)

)
satisfies

d
(
s(i)

)
> max

al∈A
al . (10)

This pruning criterion (illustrated in Fig. 2) ensures that the
subtree of a given node is explored only if it can lead to an
update of either the ML hypothesis or of at least one of the
counter-hypotheses. Note that λML does not appear in (10) as
λML ≤ λML

j,b (∀ j, b).

IV. METHODS FOR COMPLEXITY REDUCTION

So far we have discussed tree-search strategies which
solve (2) exactly and hence do not compromise the perfor-
mance of the max-log APP decoder. The goal of this section is
to describe methods that allow to trade-off decoder complexity
with (error rate) performance.

A. LLR Clipping

The dynamic range of LLRs is typically not bounded.
However, practical systems need to constrain the maximum
LLR value to enable fixed-point implementations. Evidently
this will lead to a performance degradation. A straightforward

d

(

s
(i)

)

max

x
(i)

1

0

?

x
ML

1

1 0

1 0

λML

MT ,1 λML

MT ,2

λML

MT−1,2

λML

i,2

λML

i−1,1 λML

i−1,2

λML

1,1λML

1,2

0

?

? ?

counter-hypotheses

λML

MT−1,1

λML

i,1

0

0

0

0 0

0

0
>?

0

level i

Fig. 2. Example of the STS pruning criterion (MT = 5 and two bits per
symbol): The partial binary label x(i) determines which counter-hypotheses
may be affected during the search of the subtree emanating from the current
node.

way of ensuring that LLR values are bounded is to clip them
after the detection stage so that∣∣L(xj,b)

∣∣ ≤ Lmax ∀ j, b . (11)

We emphasize that the constraint in (11) refers to the normal-
ized LLRs L(xj,b) as defined in (2). It has been noted in [5]
that (11) can be built into the tree-search algorithm such that
it leads to a reduction in search complexity. In the following,
we briefly describe the application of the idea proposed in [5]
to the RTS and the STS tree-traversal strategies.

a) LLR Clipping for RTS: Whenever the RTS algorithm
starts to search for a counter-hypothesis, with the search radius
rj,b initialized as described in Section III-A, we first update

rj,b ← min
{
rj,b, λ

ML + Lmax

}
(12)

which ensures that (11) is satisfied. Metrics associated with
counter-hypotheses for which no valid lattice point can be
found are set to λML + Lmax.

b) LLR Clipping for STS: Whenever a leaf has been
reached and a new ML hypothesis has been found after
carrying out the steps in Case 1 in Section III-B, the counter-
hypotheses have to be updated according to

λML
j,b ← min

{
λML

j,b , λML + Lmax

}
∀ j, b . (13)

For Lmax =∞, we obviously get the exact max-log solution,
whereas for Lmax → 0, the decoder performance approaches
that of a hard-output ML detector. On the other hand smaller
Lmax leads to a reduction in complexity, as more aggressive
pruning is performed. The parameter Lmax can therefore be
used to adjust the complexity/performance trade-off (cf. Sec-
tion V).

B. Ordering and Regularization

Ordering: A common approach to reduce complexity in
sphere decoding without compromising the decoder’s perfor-
mance is to adapt the detection ordering of the spatial streams
to the geometry of the instantaneous channel realization by

performing a QR-decomposition on HP (rather than H),
where P is a suitably chosen permutation matrix. More
efficient pruning of the search tree closer to the root is obtained
if “stronger streams” correspond to the levels closer to the root,
i.e., P is chosen such that the main diagonal entries of R in
HP = QR are sorted in ascending order. In the following, this
approach is termed sorted QR-decomposition (SQRD) [11].

Regularization: Poorly conditioned channel realizations H
lead to significant search complexity due to the low effective
SNR on one or multiple of the effective spatial streams. An
efficient way to counter this problem is to perform the tree-
search on a regularized channel matrix by computing[

H
αI

]
P =

[
Q1

Q2

]
R

where I is the MT ×MT -identity matrix, Q1 is of dimension
MR ×MT , Q2 and R are of dimension MT ×MT , and
α > 0 is a suitably chosen regularization parameter. Note
that Q1 is, in general, not unitary. LLRs are then computed
according to

L
(
xj,b

)
= min

s̃∈X (0)
j,b

‖ỹ −Rs̃‖2 − min
s̃∈X (1)

j,b

‖ỹ −Rs̃‖2 (14)

where ỹ = QH
1 y and s̃ = Ps. Note that the LLRs in (14) need

to be reordered at the end of the decoding process to account
for the permutation induced by P. Operating on a regularized
version of the channel matrix clearly entails an (error rate)
performance loss. However, we shall see in Section V that
choosing α according to the minimum mean squared error
(MMSE) criterion (resulting in MMSE-SQRD) as outlined in
[12], degrades the performance only slightly while leading to
considerable savings in terms of search complexity.

C. Run-Time Constraints
A disadvantage of all SDs is that the computational com-

plexity required to find the ML solution (and the LLR values)
depends on the realization of the channel matrix and the noise;
the worst-case complexity corresponds to an exhaustive search.
On the other hand, in order to meet the practically important
requirement of a fixed throughput, the algorithm run-time must
be constrained, which leads to a constraint on the maximum
detection effort. This, in turn, generally prevents the detector
from achieving ML or max-log APP performance.

A straightforward way of enforcing a run-time constraint
is to terminate the search, on a symbol vector by symbol
vector basis, after a maximum number of visited nodes. The
detector then returns the best solution found so far, i.e., the
current ML and counter-hypotheses. A better solution is to
impose an aggregate run-time constraint of NDavg visited
nodes for an entire block of N vector symbols2. The maximum
complexity allocated to the detection of the kth vector symbol
can, for example, be chosen according to the maximum-first
(MF) scheduling strategy [13] as

Dmax(k) = NDavg −
k−1∑
i=1

D(i)− (N − k)MT (15)

2In an OFDM-based MIMO system, N would, for example, be the number
of OFDM tones.

where D(i) denotes the actual number of visited nodes for the
ith vector symbol. The concept behind (15) is that a vector
symbol is allowed to use up all of the remaining run-time
within the block up to a safety margin of (N − k)MT visited
nodes, which allows to find at least the decision feedback
solution for the remaining vector symbols. Setting Davg = MT

maximizes the throughput but reduces the performance to that
of hard-decision SIC.

V. PERFORMANCE/COMPLEXITY TRADE-OFFS

In practice, system engineers are typically faced with the
problem of designing a receiver that achieves a given target
frame error rate (FER) at a given throughput. The quality
of the receiver implementation can then be measured by the
minimum SNR required to achieve this target FER. In the
following, we assess the complexity/performance trade-offs
of the concepts described in Sections III and IV by plotting
the average (over independent channel and noise realizations)
number of visited nodes as a function of this minimum
SNR. Since the number of visited nodes translates directly to
the required chip area per throughput [9], the corresponding
charts allow to associate an SNR penalty with a reduction in
hardware complexity.

All simulation results are for a rate 1/2 (generator poly-
nomials [133o 171o] and constraint length 7) convolutionally
encoded 4× 4 MIMO-OFDM system with 16-QAM constel-
lation (using Gray mapping) and N = 64 tones. A soft-in
Viterbi decoder [14] is employed. One frame consists of 1024
randomly interleaved (across space and frequency) bits and a
TGn type C channel model [15] is used.

A. Comparison of Tree-Search Strategies

Fig. 3 compares the performance of RTS and STS max-
log APP decoders, and the list sphere decoder (LSD) [6] for
different target FERs, different values of Lmax and in the case
of the LSD for different list sizes. Changing the list size allows
to adjust the complexity/performance trade-off.

The STS approach is seen to clearly outperform the RTS
strategy in terms of average complexity. We can furthermore
see that for this setup max-log APP performance is achieved
for Lmax = 0.2. Increasing the LLR clipping level beyond
this value only increases complexity without improving per-
formance.

The implementation of the LSD requires additional memory
and logic for the administration of the candidate list, which is
not accounted for in this comparison. Fig. 3 shows that even
when this additional complexity is ignored, the LSD is still
inferior to the STS algorithm.

B. Impact of Preprocessing and Regularization

Fig. 4 compares the impact of SQRD, MMSE-SQRD, and
standard (unordered) QRD-based preprocessing on the com-
plexity/performance trade-off of the STS algorithm at a target
FER of 0.01. It can be seen that the improvement resulting
from SQRD compared to unordered QRD becomes significant
in the low (but realistic) complexity region. Further (minor)

15.5 16 16.5 17 17.5 18 18.5 19
0

50

100

150

200

250

300

350

400

450

0.0125
0.025

0.05

0.1

0.2

0.4

0.0125

0.025

0.05

0.1

0.2

0.4

0.01250.0250.05
0.1

0.2

0.4

0.0125

0.1

0.2

0.4

4

8

16

32

64

2
4

8

16

32

64

A
ve

ra
ge

 n
um

be
r o

f v
is

ite
d

no
de

s

Minimum SNR for a given FER

RTS, FER=0.04
RTS, FER=0.01
STS, FER=0.04
STS, FER=0.01
LSD [6], FER=0.04
LSD [6], FER=0.01

0.05
0.025

2

Fig. 3. Comparison of repeated tree search (RTS), single tree search (STS)
and the list sphere decoder (LSD) as proposed in [6]. The numbers next to
the curves correspond to Lmax for RTS and STS and to the list size in the
case of the LSD.

16.5 17 17.5 18 18.5 19 19.5 20
0

20

40

60

80

100

120

hard-output
SESD

0.0125
0.025

0.05

0.1

0.2

0.01250.025
0.05

0.1

0.2

0.01250.025
0.05

0.1

0.2

0.4

A
ve

ra
ge

 n
um

be
r o

f v
is

ite
d

no
de

s

Minimum SNR for a given FER

QRD
SQRD
MMSE-SQRD

Fig. 4. Comparison of unordered QRD, SQRD and MMSE-SQRD prepro-
cessing applied to STS at a target FER of 0.01. The numbers next to the
curves correspond to Lmax. For Lmax → 0, the performance approaches
that of hard-output SESD.

improvements are obtained from regularization using MMSE-
SQRD. In the region where the average complexity is very
high, the performance penalty resulting from regularization
eventually renders MMSE-SQRD inferior to SQRD.

C. LLR Clipping

Both Fig. 3 and Fig. 4 show that adjusting the LLR clipping
level Lmax allows to sweep an entire family of sphere decoders
ranging from the exact max-log APP SESD (obtained, in our
setup, for Lmax ≥ 0.2) to hard-output SESD (Lmax = 0). The
LLR clipping level is therefore an important design parameter
which can be used to conveniently adjust the decoder at
runtime to a given complexity constraint.

16 17 18 19 20 21 22
0

5

10

15

20

25

30

35

40

45

50

0.1250.025

0.05 0.1
0.2

0.0125
0.025

0.05

0.1 0.2

0.1

0.2

0.05

0.1

0.2

A
ve

ra
ge

 n
um

be
r o

f v
is

ite
d

no
de

s

Minimum SNR for a given FER

Davg=8

Davg=16

Davg=32

Davg=64

Davg=128

Fig. 5. Impact of run-time constraints with MF scheduling on STS SESD
with MMSE-SQRD preprocessing at a FER of 0.01. The performance can be
optimized by choosing an appropriate LLR clipping level (shown next to the
curves) for a given average run-time constraint Davg.

D. Run-time Constraints

In Fig. 5, we finally demonstrate the impact of imposing a
maximum run-time constraint of NDavg visited nodes for a
block of N = 64 vector symbols using the strategy described
in Section IV-C. The resulting curves essentially consist of
two regions:

• If the LLR clipping level is large (corresponding to high
search complexity), the run-time constrained detector is
not able to compute accurate LLR values, which results
in (very) poor performance, unless Davg is large. For
Davg = 128, the performance is very close to that of the
unconstrained max-log APP decoder.

• In the region where Lmax is small, the performance is
dominated by aggressive LLR clipping rather than by the
run-time constraint.

In summary, we can conclude that for a given average run-
time constraint there exists an optimum LLR clipping level,
which minimizes the SNR required to achieve a certain target
FER. It is therefore of paramount importance to choose the
LLR clipping level in accordance with the average run-time
constraint.

VI. CONCLUSIONS

The sphere decoder is a suitable tool to implement MIMO
detection with flexible complexity/performance trade-offs. In
particular, adjusting the LLR clipping level is an efficient way
of realizing an entire family of decoders ranging from exact
max-log soft-output SD to hard-output SIC detection. The keys
to achieving low complexity are the single tree-search strategy
in Section III-B, MMSE-SQRD preprocessing, LLR clipping,
and imposing run-time constraints with MF scheduling. Our
results demonstrate that MIMO detection with near max-log
APP performance can be realized with a complexity that is
reasonably close to that of a hard-output sphere decoder.

REFERENCES

[1] H. Bölcskei, D. Gesbert, C. Papadias, and A. J. van der Veen, Eds.,
Space-Time Wireless Systems: From Array Processing to MIMO Com-
munications. Cambridge Univ. Press, 2006.

[2] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems,” Math. Programming,
vol. 66, no. 2, pp. 181–191, Sept. 1994.

[3] U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis.” Mathematics
of Computation, vol. 44, pp. 463–471, Apr. 1985.

[4] J. Jaldén and B. Ottersten, “Parallel implementation of a soft output
sphere decoder,” in Proceedings Asilomar Conference on Signals, Sys-
tems and Computers, Nov. 2005, pp. 581–585.

[5] M. S. Yee, “Max-Log-Map sphere decoder,” in Proc. IEEE ICASSP
2005, vol. 3, Mar. 2005, pp. 1013–1016.

[6] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Transactions on Communications,
vol. 51, no. 3, pp. 389–399, Mar. 2003.

[7] R.Wang and G. Giannakis, “Approaching MIMO channel capacity with
reduced-complexity soft sphere decoding,” in Proc. of IEEE Wireless
Communications and Networking Conf. (WCNC), vol. 3, Mar. 2004, pp.
1620–1625.

[8] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in
lattices,” IEEE Transactions on Information Theory, vol. 48, no. 8, pp.
2201–2214, Aug. 2002.

[9] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bölcskei, “VLSI implementation of MIMO detection using the sphere
decoder algorithm,” IEEE Journal of Solid-State Circuits, vol. 40, no. 7,
pp. 1566–1577, July 2005.

[10] P. Marsch, E. Zimmermann, and G. Fettweis, “Smart candidate adding:
A new low-complexity approach towards near-capacity MIMO detec-
tion,” in Proceedings of 13th European Signal Processing Conference
(EUSIPCO), Sept. 2005.

[11] D. Wübben, R. Böhnke, J. Rinas, V. Kühn, and K. Kammeyer, “Efficient
algorithm for decoding layered space-time codes,” IEE Electronics
Letters, vol. 37, no. 22, pp. 1348–1350, Oct. 2001.

[12] D. Wübben, R. Böhnke, V. Kühn, and K. Kammeyer, “MMSE extension
of V-BLAST based on sorted QR decomposition,” in IEEE Proc.
Vehicular Technology Conference (Fall), vol. 1, Oct. 2003, pp. 508–512.

[13] A. Burg, M. Borgmann, M. Wenk, C. Studer, and H. Bölcskei, “Ad-
vanced receiver algorithms for MIMO wireless communications,” in
Proceedings of the Design Automation and Test Europe Conf. (DATE),
vol. 1, May 2006, pp. 593–598.

[14] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Transactions on Information Theory,
vol. 42, no. 2, pp. 429–445, Mar. 1996.

[15] V. Erceg et al., TGn channel models, May 2004, IEEE 802.11 document
03/940r4.

