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Abstract—Screen content coding (SCC) extension to High
Efficiency Video Coding (HEVC) offers substantial compression
efficiency over the existing HEVC standard for computer gen-
erated content. However, this gain in compression efficiency is
achieved at the expense of further computational complexity with
several resource hungry coding tools. Hence, extension of SCC
to HEVC hardware encoders can be challenging. This paper
presents resource efficient hardware designs for two key SCC
tools, Intra Block Copy and Palette Coding. Moreover, a new
hash search approach is proposed for Intra Block Copy, while
a hardware friendly palette indices coding scheme is suggested
for Palette Coding. These designs are targeted to achieve the
throughput necessary for an 1080p 30 frames/s encoder, and
incurs coding loss of 11.4% and 5.1% respectively in all intra
configurations. The designs are synthesized for a Virtex-7 VC707
evaluation platform.

Index Terms—high efficiency video coding, screen content
coding, real time systems, video coding on fpga, low latency
encoding

I. INTRODUCTION

The High Efficiency Video Coding (HEVC) standard was
introduced by the Joint Collaborative Team on Video Coding
(JCT-VC) as the successor for H.264/MPEG-4 Advanced
Video Coding (AVC). Despite the 50% gain in compression
efficiency, HEVC, similar to H.264 was developed primarily
for camera captured sequences. However, recent video appli-
cations employ more than just camera captured material, but
also computer generated video such as text and graphics with
motion and animation [1]. Therefore, a new extension was
initiated in 2014 to achieve better compression for such screen
content (SC). This development exploits unique characteristics
in SC including large uniformly flat areas, repeated patterns,
highly saturated or a limited number of different colors, and
numerically identical blocks or regions among a sequence of
pictures. SC extension was finalized in February 2016, and

undergoes incremental development [2]. The reference encoder
for SC, JCTVC Screen Content Model Software Ver. 8 (SCM-
8.0) [3] offers over 50% bit-rate reduction across all encoding
profiles for text and graphics with motion video content in
comparison with HEVC test model, HM reference encoder
version 16.7 [4]. Sizable gains are also witnessed in mixed
content and animation videos [1].

The new extension for the HEVC standard Rec. ITU-T
H.265 |ISO/IEC 23008-2 version 4 [2], aimed at achieving
higher compression efficiency for SC, introduces several cod-
ing tools for Intra coding in addition to intra prediction. These
tools include Intra Block Copy (IBC), Palette Coding (PLT),
Adaptive Color Transform and Adaptive Motion Compensa-
tion Precision [1]. Out of these, Intra Block Copy employs
a motion compensation within the current frame. Effective in
dealing with repetitive symbols in a picture, IBC is carried
out at prediction unit (PU) level and treated as an inter PU
for coding. Palette coding can offer better efficiency than the
prediction-then-transform approach, especially when coding
high contrast regions with limited colors.

However, additional tools over intra encoding brings further
computational burden, onto the already computationally com-
plex compression standard for high throughput real time en-
coding [5]. IBC introduces substantial computational overhead
in order to carry out an exhaustive search over frame infor-
mation for intra frame motion compensation. PLT also entails
further computations including several exhaustive searches to
employ a different approach of pixel encoding. Such resource
hungry computations for these additional features at each
coding unit (CU) level add more complexity for the overall
computation of traversing the quad-tree. Reference software
runs of the two encoders demonstrate two to three times
increase in computational time for SCC (Table: I).
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TABLE I
PERFORMANCE COMPARISON BETWEEN HM AND SCM

Average bytes
per frame

Average
PSNR

Encoding time
per frame

ChineseEditing HM 426124.4 45.42 35.96
SCM 238301.7 47.20 105.39

MissionControl
Clip3

HM 265420.7 46.54 29.95
SCM 113866.7 47.05 73.20

SC Console HM 188639.5 49.87 25.18
SCM 69322.2 55.22 48.67

Fast HEVC implementations on software [6] and hardware
[5] [7] employ pre-estimations of candidate modes and pre-
processing based quad tree pruning to achieve speed up during
encoding. However, IBC and PLT cannot thus be directly
extended to these implementations as the new SCC tools
require brute force searching and complete traversal of the
quad-tree to derive the most efficient encoding. Hence these
techniques would require corresponding estimations to limit
rigorous search and early CU decisions to employ pruning to
fit into existing encoding architectures. Moreover, additional
dependencies now occur at rate-distortion (RD) optimization,
as the SCC coding tools must also be completed to make the
final selection for a particular CU.

IBC implementation in SCC is discussed in detail in Xu
et al. [8]. However, this approach could introduce a lot of
dependencies to RD optimization and require considerable
resources to achieve a comprehensive search. Although some
complexity reduction techniques have been evaluated in [9]–
[12], IBC would still require substantial resources to be imple-
mented. Likewise, PLT implementation in SCM is presented
in Xiu et al [13]. Even though prior research work is scarce for
PLT hardware design, several approaches have been proposed
for K means clustering on hardware [14] [15]. However,
the clustering technique implemented on SCM 8.0 can be
implemented on hardware more efficiently.

In this paper, we propose new architectures for IBC and
PLT to be integrated to high throughput HEVC encoding ar-
chitectures. Moreover, the hash search in IBC is parametrized
to adjust search range depending on resources available. The
novelties discussed in this paper include,

• Three stage architecture for IBC
• Three stage architecture for PLT
• New Hash Table to minimize resource usage by x8 with

minimal coding loss
• Palette sorting architecture used in PLT comparisons.
• Alternate coding approach to code PLT syntax in parallel

to be used in estimating RD cost.

II. INTRA BLOCK COPY(IBC)

A. Overview of IBC

Intra Block Copy, introduced as a coding tool for screen
content coding, is similar to inter prediction. In place of
previous frames in inter, IBC uses current picture as the
reference frame. However, Block Vector (BV) search for IBC
differs considerably from Inter prediction.

The current version of IBC implemented in SCM employs
several search methods to maximize coding efficiency.

• Most probable candidate matching - Block matching is
performed on a list of most probable BV. The candidates
for this list contains spatial neighboring BVs and BVs
best matched for previous blocks.

• Horizontal and vertical 1-D search - Search is generally
done for a region of 1x2 Coding Tree Units (CTUs), but
is expanded for the full frame for Nx2N PU and 16x16
CU.

• 2-D local search - A local region of 1x2 CTUs is searched
for 8x8 blocks if luma activity for the current block is
beyond a threshold of 168. Luma activity is calculated as
the minimum of horizontal and vertical gradients.

• Hash Search - Performed for 8x8 CUs with 2Nx2N PU.
A hash value is generated to capture features of 8x8 CUs
in order to group similar blocks together. Hash value is
a 16 bit value formed from 1.

H = (MSB3(DC0) << 13) + (MSB3(DC1) << 10)

+ (MSB3(DC2) << 7) + (MSB3(DC3) << 4)

+MSB4(Grad) (1)

Where DC0, DC1, DC2 and DC3 are the luma intensity
averages of sub-divided 4x4 blocks from an 8x8 CU. Grad
is the average of horizontal luma gradient and vertical luma
gradient. MSBm(X) refers to the m most significant bits of X.
Blocks that can be easily predicted using intra prediction are
removed from hash table. Hash table is updated after every
CTU and reset after every frame. [1]

Since large CU sizes are less likely to encounter repeating
patterns within a frame [16], most of the search is done for 8x8
CUs. 32x32 CU is searched only in most probable candidate
search and 16x16 CU in horizontal and vertical search.

B. Overall IBC architecture

The IBC operation is divided into two stages; estimation
and high throughput stage. In estimation stage most probable
candidates are selected using original pixels of the previously
coded area. As the estimation stage is devoid of feedback, it
can operate in parallel to the reconstruction dependent loop.
High throughput stage create residuals using reduced candidate
list. The next subsections describe these sections in detail.

C. Estimation Stage

In the proposed hardware architecture, a single processing
element is employed to perform both forms of local searches,
horizontal and vertical 1-D local search and the 2-D local
search. Figure 1 shows the local search module which can
search BV candidates for one 8x8 CU in a single pass. Four
such modules are used in parallel to process four 8x8 CUs
simultaneously. There are five modules to check BV validity of
each candidate PU size. The derived best candidates are used
to create combined BV list. Search area for all CU sizes has
been limited to 1x2 CTUs in 1-D and 2-D search to optimize
the trade-off between timing restrictions and resources. If
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Fig. 1. Block diagram of IBC estimation stage

resources are not a constraint, modules can be added in parallel
to current local search module to expand the search area.

The number of BVs stored per hash key is unrestricted in
SCM. This has to be limited in hardware although it reduces
coding efficiency. When analyzing the distribution of the hash
table in SCM, large number of empty bins can be observed.
Therefore, it is desirable to uniformly distribute the hash
values. To achieve that, 4 bit gradient is reduced to 1 bit
making hash key size 13 bits. This reduces hash table size
by a factor of 8. The new hash function is shown in 2.

H = (MSB3(DC0) << 10) + (MSB3(DC1) << 7

+ (MSB3(DC2) << 4) + (MSB3(DC3) << 1) + δ (2)

Where δ is set to zero only if four Most Significant Bits of
gradient is zero, else δ is set to one.

Table II shows the results for the SCM implemented 16
bit hash search with a limited number of BVs per hash key
and proposed 13 bit hash scheme. Incremental coding gain
is calculated with respect to SCM implementation excluding
hash search. Comparison shows that proposed hash scheme
is almost similar as or slightly better than the existing hash
scheme when hash table size needs to be constrained.

Hash update module calculates hash keys for CTU and
updates the table. Hash table is stored in external DRAM
and information about filled status of hash table for each key
is stored in block RAMs. Using these information BVs are
fetched from the hash table and then predicted blocks are
fetched according to BVs. Hash matching process is pipelined
so that effect of DRAM latency is reduced.

D. High Throughput Stage

In the high throughput stage, multiple BVs are predicted and
evaluated to refine the BVs selected from estimation stage.
This stage predicts a CU in five different combinations and
choose the best prediction.

TABLE II
BITRATE AGAINST PSNR PERFORMANCE WITH THE MAXIMUM POSSIBLE

HASH KEY ITEMS FOR THE EXISTING AND PROPOSED HASH SCHEMES

Maximum candidate Average ∆ BD rate Average ∆ BD rate
limit per hash key for existing for proposed

Hash scheme Hash scheme
1000 -4.8812 -4.9735
100 -8.5989 -8.7481
50 -10.1337 -10.2859
10 -13.9869 -14.5229

Fig. 2. Block diagram of IBC high throughput stage

Main constraint in the high throughput stage is the memory
accesses for external DRAM memory since it has a high
memory access latency. As shown in Figure 2, a cache module
is used to reduce this latency. The Main Controller reads
configuration packets from a FIFO and calculate correspond-
ing reconstructed reference pixel locations for IBC prediction.
Generated locations are sent to Reconstructed Residual Loader.
It loads the reconstructed reference pixels through the cache
module and generate prediction data which are then sent to
the Residual Generator for pixel residual value generation.

Reconstructed pixel feedback to Write to DDR module is
buffered in a 32x32 memory block. It writes to DRAM in row
basis using 256 bit AXI data bus. Result of this module is sent
to the Completed CTU Tracker to update the validity of the
DRAM memory. Completed CTU Tracker module keeps track
of the completion of the reconstructed memory writes along
the CTU rows. Parameters required for the Syntax Generator is
provided by Motion Vector Candidate module using prediction
mode and motion vectors of the neighboring CUs.

Assuming the reconstructed pixels are always available
when needed and no cache misses, the timing details can be
derived for the given architecture for producing five different
predictions for a CU. Table III shows timing details derived
for a 1080p video at 30 frames/s.

III. PALETTE CODING (PLT)

A. Overview of Palette Coding

Palette coding is a new tool used in HEVC-SCC to effi-
ciently code areas having few distinct colors. Unlike camera
captured content which has continuous shades of colors,
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TABLE III
TIMING INFORMATION FOR IBC HIGH THROUGHPUT STAGE

CU size 8x8 16x16 32x32
Available clock cycles 140 560 2240
Required clock cycles 45 125 475

computer generated content have highly contrasting regions of
uniform colors [1]. When transformation based conventional
approach is used to code such regions, edges get distorted or
blurred due to clipping of high frequency components in the
transformation process.

The proposed palette coding approach used in HEVC-
SCC indicates the color values of each pixel separately. The
different color values are listed in a table called palette pre-
diction table and each pixel is assigned an index representing
the location of its color value in the list. The standard has
provisions to denote a sequence of similarly indexed pixels
efficiently, reducing the number of bits needed to transmit.
Moreover, only the new entries of the palette prediction table
are sent to the decoder and existing entries are simply signaled
whether they are used in the current block or not.

B. Hardware Implementation

A palette coding algorithm is implemented in the reference
software encoder (SCM-8.0) [3] with three main stages [13].
They are palette table derivation, palette table coding and
palette index coding. In palette table derivation, first the
histogram of each CU is clustered around few initial points.
This process is iterated few times to find the best center points
of clusters for the given block. In palette table coding each
center point is compared with the nearest entry in palette table
of previous block to decide whether to code as a separate entry.
Palette index coding is then performed to find the cost of the
CU palette operation. This process starts from the largest CU
and continues downward the quad tree structure.

This approach however makes real time palette coding
a challenge. As coding of one CU block depends on the
completion of previous palette coding block, the latency of
the operation is more critical than throughput. Moreover,
the iterative optimization explored in software may not be
as attractive in hardware implementations. Therefore, in this
section we have introduced a new palette coding architecture
by reducing the operations depending on feedback by pre-
processing and using estimations.

C. Overall Palette Architecture

The proposed architecture consists of three stages; palette
clustering operation, palette prediction list and palette indices
list creation and palette entropy coding stage. Among the
above three stages only the palette prediction list and palette
indices list creation stage is dependent on feedback making it
the only stage needed to be optimized for latency.

D. Palette Clustering Operation

Clustering requires considerable amount of resources and
significant time for the operation making real time encoding a

Fig. 3. Architecture of palette prediction list and palette indices list generation
module

challenge. Therefore, we use an initial clustering based only
on raw pixel values. Hence the complex operation of palette
clustering is removed from the feedback dependent path.

Raw YUV values of each 8X8 CU is fed into the palette
clustering module. Histogram based refinement of K-mean
clustering algorithm is used to cluster the pixels. The error
margin is derived from QP using the same equation as used in
SCM [3]. By combining the results of successive blocks the
means of clusters of corresponding 16x16 and 32x32 blocks
can be obtained. Throughput is increased by pipelining these
stages. The number of maximum clusters are limited to 64
to limit the resource usage. The resulting slight increase in
distortion is justified by the gains in both time and resource
utilization.

E. Palette Prediction List and Palette Indices List Generation

Figure 3 shows the architecture of this module consisting
of palette controller module and 3 CU coders for 8X8, 16X16
and 32X32 CUs. In figure 3, only one CU coder is described
in detail as others also have a similar architecture. As this
module is feedback dependent, more priority is given to reduce
the latency of the operation.

1) Palette controller module: This module acts as the
central controller of the palette operations. It analyzes the quad
tree partition structures used in other prediction channels for
the same block (intra and IBC) and the selected prediction
mode sizes of previous blocks. From these data it schedules
the process order of CU coders. Depending on the CU size that
is being processed in intra and IBC, more than one CU can be
processed serially without waiting for the feedback. This is a
major advantage of this parallel processing CU Coding system.
In addition, the controller module maintains most recently used
palette predictor table of each CU coder and updates them
depending on the final selection from RD optimization.
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2) CU coders: Each CU coder accepts the list of centers
of the clusters in the relevant CU, one item at a time from the
palette clustering module. First CU coder maps each incoming
such palette with existing palette items to find the closest
match. Absolute difference between the new palette and each
old palette is used as the metric to calculate the closest match.
A three stage pipelined comparator system is implemented to
find this match. The incoming palette is then added to the
palette list if the sum of squared difference with the closest
match is greater than a predefined threshold.

As the new palettes are fed into the above pipe-lined system
sequentially, if n number of new palettes are fed into the
system, modified palette list creating process is completed in
n+6 clock cycles. In comparison, the SCM encoder compares
each old palette entry with a list of new palette entries to find
the closest match. If this procedure is used in hardware the
palette mapping process cannot be started until the transfer
of all new palette entries have been completed. Therefore, by
using our approach we were able to eliminate a significant idle
time in a latency critical module.

The drawback in this approach is that the selected old palette
entries and new palette entries get interleaved. As old palette
indices must be followed by new-palette indices, a palette
sorting module is added to our architecture. 32 2-element
comparators compare each element at even positions in the
palette array with the element above and element below in
alternative clock cycles.

After the palette table is created each pixel value is com-
pared with combined palette entry list to find the closest palette
entry similar to the one used to map old palette entries with
new palette entries. As there are 64 pixels, the process is sped
up by dividing the pixel array into four sub blocks at the
expense of resource usage.

The final step in the CU coder is the coding of palette
indices by properly utilizaing ‘copy from above’, ‘copy from
left’ and ‘copy from above final’ flags. To prevent missing of
‘copy from above final flag’, each segment is coded in reverse
so that preceding pixel of the first occurrence of copy from
left flag is marked as copy from above final flag. The selection
of ‘copy from above’ and ‘copy from left’ is done by entropy
coding in SCM. However, this approach hinders parallelism
and it is estimated in our approach by selecting the mode
which has the longest run length. In order to speed up the
coding process, each CU is divided into 4 and combined by
connecting flags in the boundaries.

In SCM encoder, the data generated from palette coding is
entropy coded to obtain the number of bits used for palette
coding to compare it with other prediction directions. How-
ever, this operation is time consuming and not suitable for a
feedback constrained loop. Therefore, we estimate the number
of bits used for each of these operations using bits needed for
binary conversion. The drawback in this approach is that the
bits reduced form Context Adaptive Binary Arithmetic Coder
(CABAC) is not considered. However, this can be justified,
as eliminating the CABAC enables to calculate the number of
bits for above syntax elements in parallel.

F. Palette entropy coding stage

The final stage in PLT consists of entropy coding the
selected old palette entries, new palette entries, CU Coding
data (traversing method, traversing count, palette index) and
escape flags. As feedback of this stage is not needed, a multi-
stage pipeline is implemented to gain the required throughput
in entropy coding similar to the one used in [5].

IV. RESULTS

Our proposed modifications for IBC and PLT were imple-
mented on reference HEVC encoder SCM 8.0 [3]. Results
for Screen content, Animation and for mixed content video
sequences are provided in Table IV with reference to intra-
main-scc profile. Proposed changes in palette mode results
BD rate loss of only 5.10% on average. Proposed changes
related to IBC with SCM 8.0 implemented hash search results
11.39% BD rate loss and IBC changes with the new hash for
100 BVs per hash key incur a BD-rate penalty of 18.55%
in average. These BD rate reductions are compensated with
improved throughput and lower memory requirement (memory
requirement drops to 1/8th of that of the HM). BD plots
for several video sequences are provided in Figure 4 and
Figure 5 for proposed IBC and palette changes. From these
graphs it is clearly visible that the BD rate drop with respect
to the reference HM-intra-main-scc encoder by the proposed
architecture is justifiable compared to the BD rate gain relative
to that of the HM-intra-main encoder. The proposed architec-
ture provides the opportunity of hardware implementation of
SCC modules with real time operation compromising coding
efficiency.

The proposed architecture for HEVC-SCC modules is tar-
geting Xilinx VC707 platform. The design is targeted to
handle an average throughput of 0.45 pixels per clock cycle,
sufficient to support 1080p 30 frames/s video. Individual
modules are initially synthesized at 200MHz during standalone
implementation and the integrated design is synthesized at
140MHz.

Resource utilization for key modules are listed in the Table
V. PLT unit requires a total of 66K LUTs and it has to be
incorporated to an existing HEVC encoder as a separate unit.
IBC unit takes 51K LUTs for an standalone implementation
but an existing inter prediction architecture can be upgraded
to support IBC with only 38K LUTs by resource sharing with
inter prediction units.

V. CONCLUSION

This paper suggests algorithms and architectures for hard-
ware implementation of SCC IBC and PLT tools. Additionally,
several novel approaches are proposed for these tools to
achieve better resource utilization. However, a coding over-
head is introduced for each coding tool, estimated to be
11.4% and 5.1% respectively. In spite of that, this trade-off
should enable real time 30 frames/s encoding in 1080p. Future
extensions of this project may include hardware designs for
additional SCC coding tools and integration of these SCC
coding tools to develop a real time SCC encoder on hardware.
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TABLE IV
ESTIMATED INCREASE OF BIT-RATE AGAINST PSNR FOR PROPOSED

HARDWARE DESIGN FOR SCC CODING TOOLS

Sequence Resolution ∆ BD-rate %

PLT IBC IBC new
hash

Screen content
ChineseEditing 1920x1080 8.60 5.09 10.66
sc console 1920x1080 3.67 24.48 28.65
sc desktop 1920x1080 3.86 16.52 23.02
sc map 1280x720 3.15 2.39 3.98

Animation
sc robot 1280x720 0.05 0.52 0.65
ChinaSpeed 1024x768 3.6633 17.59 35.42

Mixed
MissionControl 1920x1080 3.02 7.02 17.52

TABLE V
RESOURCE UTILIZATION OF PROPOSED UNITS

Module LUT REG Block RAM
Palette coding unit
Palette Clustering 20K 5K 8
Palette Controller 20K 5K -
CU Coder 12K 2K -
Palette Coding 14K 3K 14
Intra block copy unit
2D Search 23K 8K 3
HASH Search 15K 4K 3
High Throughput Stage 13K 11K 24
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