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Abstract—Higher compression efficiency in HEVC encoders
comes with increased computational complexity, making real
time encoding of high resolution videos a challenging task. This
challenge can be addressed by software, yet hardware solutions
are more appealing due to their superior performance and
low power consumption. This paper presents an FPGA based
hardware implementation of an all intra HEVC encoder, which
can encode 8 bits per sample, 1920x1080 resolution, 30 frames
per second raw video, that is viable in real time even at low
operating frequencies. A major obstacle to real time encoding
in available architectures is the dependency created by reference
generation. Moreover, each coding unit (CU) has to be processed
in multiple configurations to determine the most efficient split
and prediction mode representation, based on the bit stream
generated. We propose a new three stage architecture to reduce
these dependencies and increase parallelism. Feedback needed for
CU split and prediction direction decision from binarization is
avoided by a Hadamard based early decision method. Feedback
constrained coefficient and reconstruction derivation module
exploits several optimization techniques. All modules can operate
at 200 MHz and the encoder can achieve real time encoding with a
minimum operating frequency of 140 MHz. The design consumes
83K LUTs, 28K registers, and 34 DSPs when implemented on
Xilinx Zynq ZC706.

Index Terms—high efficiency video coding, video coding on
fpga, intra coding, early CU partitioning, early mode decision,
low latency encoding

I. INTRODUCTION

Developed by Joint Collaborative Team on Video Coding
(JCT-VC), H.265/High Efficiency Video Coding (HEVC) is
the successor to the highly popular video encoding standard
H.264/Advanced Video Coding (AVC). Formally ratified in
early 2013, HEVC is designed to achieve over 50% bit rate
reduction over H.264 and is expected to be the video codec of
choice for the future. This improvement of coding efficiency
comes with increased computational complexity, especially at
the encoder end, making real-time encoding a major challenge.

Even though this can be addressed by software solutions, a
huge demand for hardware HEVC encoders exists, especially
in broadcasting and mobile applications, due to their superior
performance, high reliability, and low power consumption.
Hardware encoders can be implemented by either application
specific integrated circuits (ASICs) or field programmable gate
arrays (FPGAs). While ASIC solutions have higher perfor-
mance, it is only economical for very large volume production
as they require custom made silicon chip. Whereas FPGA
based encoders, which are implemented using already existing
configurable hardware platforms, are more cost effective for
low volume production making it suitable for encoding solu-

tions during adoption period. Moreover, it entails less risk as
it could be easily configured to match an evolving standard.

HEVC introduces an enhanced prediction model over
H.264. 16x16 macroblocks found in H.264 are replaced by
64x64 coding tree units (CTUs), where CTUs can be split
recursively into coding units (CUs). Each CU can then be
split recursively into transform units (TUs) and prediction units
(PUs). HEVC further introduces 35 modes for intra prediction
in contrast to 9 modes in H.264. The best compression
efficiency can be achieved by using rate distortion optimization
(RDO) where optimal mode (prediction direction and splitting
structure) is searched in a computationally expensive brute
force manner. HM reference encoder version 16.7 uses the
sum of absolute transformed differences as the cost function
to preselect few modes instead of performing full RDO for
all modes [1]. However, considerable amount of modes still
undergo full RD cost optimization resulting in a significant
time to encode raw videos.

The number of complete hardware implementations for
HEVC encoding still remains low. Although there are a few
commercial hardware encoders, their architecture and algo-
rithms remain proprietary. Very few works related to entire
encoder implementations exist in literature, while many have
focused on implementations of different parts of the encoder.
Work by Miyazawa et al. [2] presents an implementation of
an HEVC encoder for real time encoding of 1080p, 10 bits
per sample, 60 frames/s video without specifying the operating
frequency or the resource usage. HEVC encoder proposed by
Zhu et al. [3] estimates the rate distortion (RD) cost from
source image textures and preselects two modes for RDO
processing. It can support real time encoding at 1080p, 44
frames/s video. However, the ASIC implementation has a high
area cost with 2269k gates and runs at a 357 MHz operating
frequency. Pastuszak et al. [4] presents a computationally
scalable algorithm and a hardware architecture able to support
intra encoding up to 2160p, 30 frames/s resolution. The
encoder selects a set of candidate modes by processing 8x8
predictions computed from original samples and also takes
advantage of simplified bin count based on RDO. The FPGA
implementation of this work can encode 1080p video up to
35 frames/s. This implementation uses much higher numbers
of lookup tables (LUTs) and digital signal processor (DSP)
blocks than our proposed design.

In this paper, we present an FPGA based hardware imple-
mentation of an all intra HEVC encoder which can encode
HD quality, 8 bits per sample, 30 frames/s raw video in
real time. The architecture is optimized to achieve real time
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Fig. 1. Overall architecture of encoder

encoding with an operating frequency of 140 MHz while using
minimum hardware resources. The design was emulated in a
Xilinx Zynq ZC706 platform. Our design introduces following
novelties in the architecture to the best of our knowledge.

• Reconstruction loop architecture avoiding multiple feed-
back and shared between luma and chroma

• Early split structure and mode decision entirely avoiding
RD optimization process

• Pipelined TU coding architecture of 4x4 block per cycle
• Intra prediction architecture optimized for 4x4 blocks to

predict 19 modes in parallel
The rest of the paper is organized as follows. Section II

describes the overall architecture of the encoder. Key modules
are described in detail in Section III. Implementation results
are presented in Section IV.

II. OVERALL ARCHITECTURE

The system level architecture of our encoder design is
shown in Fig. 1. The encoder consists of a three stage,
highly pipelined architecture, devoid of any feedback between
stages, to support real time encoding. To enable separate
development and verification, each stage is made independent
of others. Memories with subspaces are placed between stages
to establish a coherent method of passing data to the next
stage. The architecture also focuses on increasing parallelism
in modular level and reducing resource consumption.

First stage of the architecture consists of a controller module
for input picture buffer and an internal memory along with
split and early mode decision module. Split and early mode
decision module selects the suitable quad-tree structure and
prediction direction for each CU in the quad-tree. These data
along with the raw pixels are passed to the picture memory.

The second stage includes the reconstruction loop, where
dependencies are created by reference pixels required by intra
prediction. Therefore, this stage is optimized to reduce latency
of the loop. To achieve the desired latency and to minimize
resource usage, our design proposes novel architectures for

intra prediction and a combined architecture for forward and
inverse transform. The modules are also shared between luma
and chroma color planes to further reduce the resource usage.
The final stage consists of syntax generation unit, binary parser
and entropy coder which operate sequentially to achieve the
required output bit rate for HEVC encoding of 30 frames/s
video.

TU and PU partitions are kept as same as CU partition
except for 8x8 CUs to reduce the amount of comparisons
needed to be performed. Since the maximum TU block size
is 32x32, this implementation provides CU blocks only up to
32x32.

III. KEY MODULES

A. Early Mode Decision

Proposed methods of deducing the optimal split structure
determined from computationally expensive full RDO process
fall into two broad approaches. One attempts to speed up
decision by early terminating the RDO process, and the other
assists mode decision by using low complexity RD cost es-
timators [5]. Even though some such implementations reduce
feedback requirement for certain stages [5], feedback from
reconstruction loop is essential for full RD cost comparison
of quad tree structure in both these approaches. This feedback
restricts full parallel implementation of encoding algorithms.
Early split and mode decision devoid of any feedback infor-
mation from reconstruction loop is one of the key novelties in
the architecture we propose.

While different RD cost estimators can be employed, a
Hadamard transform based RD cost estimation is selected
to evaluate early decision approach in this implementation.
Original pixels are used in place of the reconstructed pixels for
reference generation in split and mode decision. This enables
the subsequent encoding to be carried out to a predetermined
split and mode structure.

Furthermore, to reduce resource usage, each CU sized
original pixel array and reference pixel array are subsampled
to a 4x4 block for prediction and Hadamard cost calculation.
Top level architecture of early mode decision module is shown
in Fig. 2. Intra prediction on all 35 prediction modes are done
for each 4x4 block generated by sub-sampling process. The
residual generated from the prediction undergoes a Hadamard
transformation process. The selection unit picks the best mode
for each block based on distortion results and makes a split
decision if this best mode cost surpasses the cumulative cost
from the optimal smaller block structure.

The intra prediction module applied in early mode decision
is different from the intra prediction module implemented
within the reconstruction loop. As intra prediction within
early mode decision module is no longer bounded by la-
tency, more focus is given on maximizing throughput and
parallel implementation of submodules. The highly parallel
architecture consists of 17 angular prediction modules, one
planar prediction module and one DC prediction module. Each
module is designed to output 4 pixels (1 row in a 4x4 block)
per cycle.
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Fig. 2. Early split architecture combining intra prediction and Hadamard transformation

Intra prediction operation for any row for modes 2-17 can be
obtained by shifting the horizontal reference samples used to
predict the row above in the same block. This reduces the need
to implement separate multiplications for all 16 pixel locations.
Prediction values for modes 18-34 are obtained by interleaving
horizontal and vertical reference buffers and transposition of
original block, as these modes are diagonal mirror images of
modes 2-16, further reducing resource usage. As each intra
prediction module is dedicated to one single mode, the two
variable multiplication in intra prediction equation [6] can be
implemented as a constant factor multiplication for each pixel
requiring merely shifters and adders.

Hadamard transformation is implemented in two stages.
Each incoming row undergoes a row transformation. The
output of row transformation is stored in an intermediate buffer
until all 4 row transformations are completed. These data then
undergo a column transformation one column per cycle. Using
the given architecture, Hadamard distortion parameters for all
35 modes for a certain block can be calculated in 19 clock
cycles with a throughput of 8 cycles per block.

B. Intra Prediction

Several architectures have been proposed to increase the
throughput of intra prediction. However, as intra prediction is
traditionally implemented in mode decision, most algorithms
including [7], [8], and [9] focus on optimizing prediction of
same block using different prediction directions. In this work,
more focus is given on reducing the latency of prediction since
mode decision is taken earlier.

The picture memory consists of two buffers named vertical
and horizontal buffers which are equal to picture width (1920
pixels) and height (1080 pixels) alongside a 32x32 raw pixel
block. Intra prediction unit can access 4 reference samples
from each buffer and a 4x4 block of raw pixels per cycle.
These reference values are filled to two internal reference
buffers. Extrapolation and pre-filtering of reference values are
performed at 8 elements per cycle. Same internal buffers are
updated to reduce the resource usage.

The multiplication operations in planar prediction mode is
replaced by a series of shifters and adders to reduce the need
of 32 multipliers per 4x4 block. For DC mode, an adder tree
is implemented to calculate the DC value. The output blocks
from the prediction unit undergoes post filtering for specific
prediction directions at a maximum of 4 pixels per cycle.

Fig. 3. Architecture for combined forward and inverse transform

At the final stage, predicted values are substituted from the
original values and the difference is passed to the transform
module. The predicted pixel values are passed alongside to the
reconstruction module. The intra prediction operation occurs
at one 4x4 block per cycle with a latency of 6 cycles and can
run on a frequency up to 200 MHz.

As our architecture uses the same luma prediction direction
for chroma mode, chroma prediction begins soon after the
luma prediction finishes. This reduces the resource usage
and utilizes idle time due to data dependencies in the luma
reconstruction loop.

C. Forward and Inverse Transform

Transform modules contain 2D matrix multiplications which
have a very high area cost when implemented in hardware di-
rectly. [10] and [11] propose multiplierless, butterfly structure
hardware architecture and [12] proposes a unified forward and
inverse transform architecture to reduce the area cost for the
transforms. In this architecture, discrete sine transform (DST)
is implemented separately from discrete cosine transform
(DCT). The forward and inverse transforms for DST are
implemented separately supporting 4x4 blocks. A combined
transform architecture is used for DCT which can support
4x4, 8x8, 16x16, and 32x32 block sizes. The input matrix
first undergoes a column transformation followed by stage 1
shift operation. The row transform is achieved by having the
column transformation applied to the transpose of the resultant
matrix. Fig. 3 shows high level architecture of this module.

The implemented DCT can perform one stage of transform
for all 4 columns of a 4x4 block, single column of a 8x8
block, 1/2 of a single column of a 16x16 block, and 1/4 of
a single column of a 32x32 block in one pass. In addition
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to transformation, this module performs quantization, sign
bit hiding, and dequantization. The highly pipelined design
enables processing of both luma and chroma blocks in the
same module to reduce the resource usage. However, this
architecture is highly optimized for HD quality, 30 frames/s
video and may not be sufficient for higher resolution videos.

D. Syntax Generation

The syntax generation unit converts PU and TU data to
HEVC syntax. This consists of a block selection unit, co-
efficient syntax generation unit, prediction syntax generation
unit, and a syntax ordering unit. To prevent any latency
built up in syntax generation from affecting the time critical
reconstruction loop, coefficient memory is used to separate the
two sections. Coefficient memory unit consists of 2 subspaces,
one undergoing reconstruction loop and the other subspace
undergoing coefficient coding, to improve parallelism.

Block ordering unit picks 4x4 coefficient blocks in coding
order, depending on the prediction direction and transform
block size and pushes them to the coefficient syntax generation
unit. The coefficient syntax generation unit is a 7 stage pipeline
design which can extract syntax elements and other parameters
needed for binary conversion and context assignment. The unit
has a throughput of a 4x4 block per cycle and a latency of 7
clock cycles and can run on a frequency up to 250 MHz on a
Zynq ZC706 FPGA. The throughput of a 4x4 block per cycle
is useful when improving the performance of binary parsing
and entropy coding unit to accommodate higher resolutions
and frame rates, as it prevents pipelines in those modules from
slowing down due to data dependencies. The syntax ordering
unit picks the TU and PU level data and orders them according
to HEVC syntax and passes them to binary parser, where each
syntax element is passed to the entropy coding module with
a context table and a context increment for each bin position.

E. Entropy coding

Common bottleneck in coefficient coding is the lengthy
feedback loop in the entropy coder. Several approaches have
been proposed to increase the throughput of entropy coding.
[13] is one of the early works to surpass 1 bin per cycle
in HEVC encoding on FPGA. [14] proposes an architecture
which could encode 4 entropy coding bins per cycle targeting
90 nm. However, as work mentioned in this paper is targeting
commercial FPGA designs the throughput is kept at 1 bin per
cycle for entropy coding. [13] has shown this is sufficient to
encode 60 frames/s video beyond 2560x1600 resolution.

The proposed entropy coding unit has 5 stages as shown in
Fig. 4. At stage 1, variables valMPS and PStateIdx are pre-
calculated and updated for each bin to reduce the critical path
delay. At stage 2 and 3, values of ivlCurrRange and ivlLow at
the end of renormalization operation are also pre-calculated to
remove the feedback required from renormalization module.
ivlLow and ivlCurrRange update of bypass coding is also
implemented in parallel to the 3 stages. Stage 4 is the
renormalization pipeline which generates the final bit stream
in multiple steps with a throughput of 1 renormalize operation

Fig. 4. Top level architecture of entropy coding unit

TABLE I
RESOURCE UTILIZATION OF KEY MODULES

Module LUTs Registers DSP

Intra prediction in reconstruction loop 6116 3682 33
Intra prediction in early mode decision 6853 3789
Hadamard transformation 2825 1540
Picture memory handling 1343 985
Forward and inverse transformation 54308 12789
Prediction data coding 1233 547
Residual coding pipeline 5233 2447
Binary parser 796 790
Entropy coder 3177 969 1

per cycle. The latency of this module is no longer critical as
the final encoder states are not dependent on the result of the
renormalize operation. The final stage of the entropy coder is
the emulation preventer, which also adds HEVC headers to
the bit stream and outputs the final bit stream in 8 bit units.

IV. RESULTS

The HEVC encoder proposed by the authors are specified
in Verilog and is targeting Zynq ZC706 FPGA platform. The
overall encoder is synthesized at 140 MHz, while individual
modules are synthesized at 200 MHz during standalone imple-
mentations. The design has been verified at 30 frames/s and
is capable of operating at higher frequencies. Table I shows
the resource utilization of key modules. The total resource
utilization is 83548 LUTs, 28303 registers, and 34 DSPs.

It can be seen that transformation modules use most of the
resources (65%). In earlier implementations, we used separate
reconstruction loops for luma and chroma, which required
114K LUTs with transformation requiring 72% of it.

When comparing with existing literature, most of the work
are implemented in ASIC targeting TSMC libraries. Therefore,
it is not possible to achieve a proper performance compar-
ison. However, Miyazawa et al. [2] and Pastuzak et al. [4]
have given some results for FPGA implementations of their
architectures. Along with them, this work is compared with
the work of Zhu et al. [3] in Table II. It can be seen that the
proposed architecture requires the least amount of resources
(LUT count and DSP count) when implemented in FPGA.
However, the lack of specific results for configurations HD,
8 bit, and 30 frames/s prevents us from making a more
meaningful comparison.
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TABLE II
COMPARISON WITH EXISTING LITERATURE

Design [2] [3] [4] This work

Technology FPGA TSMC 90nm FPGA1 FPGA
Frequency - 357 MHz 100 MHz2 140 MHz
Resolution 1080p 1080p 1080p 1080p
Frames/s 60 44 60 30
LUT count - 2269k gates 93184 83548
DSP count - - 481 34
1Synthesized on Arria II GX, which uses 8-input LUTs.
2Some modules run at 200 MHz.

TABLE III
CODING OVERHEAD DUE TO EARLY SPLIT STRUCTURE

Video BD rate Video BD rate

Kimono 10.51 Old town cross 8.67
Park Scene 8.60 Station 2 11.40
Cactus 25.56 Sunflower 19.22
In to tree 8.50 Crowd run 8.76

Average 12.66

Fig. 5. PSNR vs bit rate plots of encoding. Green line indicates results of
HM v16.7 and blue line indicates results of early split decision tested in HM

Coding performance of our architecture depends on the
success of the early split and mode decision. Therefore, the
early split structure is compared with HM reference encoder
version 16.7 [1] for evaluation of several HD test video
sequences at quantization parameter (QP) = 22,27,32,37. The
metric used for the test is Bjontegaard Delta Rate (BD- Rate).
As shown in Table III, the proposed early split decision
technique in our architecture results in an average bit rate
increment of 13% for real time encoding. Videos mentioned in
Table III, Kimono, Park Scene, and Cactus are class B videos
in JCT-VC common test conditions. The rest are from the test
media collection at [15]. The results due to early split is further
elaborated in the plots shown in Fig. 5.

V. CONCLUSION

The architecture suggested in this paper uses a novel design
of isolating split decision and mode decision from the feedback
loop. Due to eliminating RD optimization for multiple modes,
the proposed encoder is able to reduce the encoding time and
resource utilization significantly. However, a coding overhead
of around 13% is added due to the current early split algorithm.
This trade-off is justifiable when the resource reduction and
real time 30 frames/s encoding is considered. Moreover, this
coding overhead could be further reduced by improving the
early split algorithm. Therefore, the authors consider this as a
viable path for real time HEVC encoders on FPGA.
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