
Constraint Programming for Component-Level Robot Design

Andrew Wilhelm1∗ and Nils Napp1

Abstract— Effective design automation for building robots
would make development faster and easier while also less prone
to design errors. However, complex multi-domain constraints
make creating such tools difficult. One persistent challenge in
achieving this goal of design automation is the fundamental
problem of component selection, an optimization problem
where, given a general robot model, components must be
selected from a possibly large set of catalogs to minimize
design objectives while meeting target specifications. Different
approaches to this problem have used Monotone Co-Design
Problems (MCDPs) or linear and quadratic programming,
but these require judicious system approximations that af-
fect the accuracy of the solution. We take an alternative
approach formulating the component selection problem as a
combinatorial optimization problem, which does not require
any system approximations, and using constraint programming
(CP) to solve this problem with a depth-first branch-and-bound
algorithm. As the efficacy of CP critically depends upon the
orderings of variables and their domain values, we present
two heuristics specific to the problem of component selection
that significantly improve solve time compared to traditional
constraint satisfaction programming heuristics. We also add
redundant constraints to the optimization problem to further
improve run time by evaluating certain global constraints before
all relevant variables are assigned. We demonstrate that our
CP approach can find optimal solutions from over 20 trillion
candidate solutions in only seconds, up to 48 times faster than
an MCDP approach solving the same problem. Finally, for three
different robot designs we build the corresponding robots to
physically validate that the selected components meet the target
design specifications.

I. INTRODUCTION
Designing robots is difficult because it involves nested, multi-
domain, multi-objective constraints. Given a target perfor-
mance specification such as payload, endurance, or speed,
designers need expertise in several domains to translate it
into a final robot design. Errors in one part of the system
may result in subtle, difficult to diagnose failures in other
subsystems. For example, a designer proficient in systems
programming may forget to account for the combined tran-
sient power draw of components resulting in a design that
produces intermittent, difficult to replicate faults even though
it passes static and component-level testing. By decreasing
the chance of such design errors, automating component
selection for robot design can reduce both the development
time and likelihood of encountering failures during testing.

Component selection is a particularly difficult optimization
problem since the discrete solution space increases combi-
natorially as the number of available components increase,
making brute force search methods intractable except for the

1Department of Electrical and Computer Engineering, Cornell University,
Ithaca, NY, 14850, United States

∗Correspondence to ajw343@cornell.edu

Fig. 1: Overview of the component selection problem for robot
design. Given high-level performance specifications, our bounded
constraint optimization algorithm selects components from an avail-
able parts list. We designed and physically validated three different
differential drive robot designs using our algorithm. (Component
images from pololu.com)

smallest of problems. Furthermore, the categorical nature of
component choices makes it difficult to directly map the
problem onto well-developed industrial integer, or mixed-
integer solvers, such as IBM CPLEX [1], or Gurobi [2].
One approach is to build simplified robot models that map
onto such solvers, but this requires judicious approximations
typically by an expert, see Sec. II.

Another approach that has been explored in the context of
design problems is to formulate robots as a monotone co-
design problem (MCDP) [3]. Given one or more objectives,
these can be solved iteratively using a fixed-point algorithm
to compute the Pareto front of minimal solutions that meet
the target specification. This framework has a convenient
modeling language and unit-checking of designs and can
easily express non-linear (albeit monotone) relationships be-
tween components. This makes it somewhat easier to express
the component selection problems without approximations,
yet the current solver does not scale well with larger catalogs
and many circular dependencies between components.

We take an alternative approach of solving a useful sub-
class of problems and focus on a combinatorial optimization
problem without having to approximate our system as linear
or monotone. Our approach uses constraint programming
(CP) and a depth-first branch-and-bound algorithm, see Sec.
III. Compared to the MCDP formulation our approach cannot
handle continuous decision variables or determine a multi-
objective Pareto front of solutions, but it can compute
multiple minima if they exist.

Our key contributions are as follows:

• We formalize the component selection problem as a
combinatorial optimization problem which does not

require an approximated model.
• The effectiveness of CP depends on heuristics for order-

ing variables and domains. We solve the optimization
problem using CP and present two heuristics that sig-
nificantly speed up solving this specific problem type.

We also describe a number of techniques necessary to
achieve practical run times, including adding redundant con-
straints to more efficiently trim the search space. We demon-
strate our CP approach can determine optimal solutions up
to 48 times quicker than an MCDP approach solving an
identical problem and have validated the effectiveness of our
proposed heuristics when using an industrial constraint pro-
grammer. We have also physically built three different robot
designs and validated that they meet target specifications.

II. RELATED WORK
Ideally the robot design process can be automated, provide
formal guarantees, generate minimal solutions, and be fully
integrated in an end-to-end system [4]. Methods developed
for single-domain problems cannot achieve these goals so
deliberate progress must be made towards automating multi-
domain design and synthesis tools.

One approach to automate the design process is to use
expert-designed modular components that facilitate composi-
tion. When carefully chosen, even a small set of components
allows these approaches to meet a wide variety of perfor-
mance specifications. Modular components can abstract and
simplify the design process (and are even used in some
children toys [5], [6]), which is essential for non-expert users.

For instance, [7] developed a system to allow novice
users to design printable and foldable robots using a li-
brary of basic and pre-designed components. This system
was later extended in [8] to allow users to describe robot
behavior using structured English, but users still needed
to associate components with grammatical definitions and
specify structural parameters during the design process. [9]
also developed a tool to generate foldable robot designs
that simulated and evaluated proposed designs to provide
feedback and guide users via an iterative design process,
and [10] developed a visual design environment that used
a heuristic guided tree search algorithm to autocomplete
user designs. Similar to [8], these approaches used a limited
number of expert defined or hand-picked modules and did
not provide guarantees on the electronics system working.

In contrast to approaches that use modular components,
model-based approaches constrain or parameterize the robot
geometry but can accommodate a wider range of generic
components. Often these approaches receive limited or no
user feedback during the design process which makes them
suitable for optimization based synthesis.

If choosing components from a finite set, the problem
becomes a combinatorial optimization problem in which the
objective is to find an optimal object from a finite set of ob-
jects [11]. Without approximations and/or highly constrained
scenarios these optimization problems are frequently difficult
to solve since the problem tends to be a non-convex, non-
linear combinatorial optimization problem. There are several

approaches to solving constrained combinatorial optimiza-
tion problems including deep learning [12] or particle swarm
optimization [13], but here we present techniques specifically
used in system and robot design.

The most common model-based approaches are linear and
quadratic programming approaches. By linearizing their sys-
tem, [14] and [15] used more traditional linear optimization
techniques (mixed integer and binary programming, respec-
tively) to determine component selection for quadcopters.
Quadratic programming has also been extensively used in
[16], [17], and [18], but all three of these approaches used
parametrized components and without the ability to select
pre-defined components from a catalog.

MCDPs are a different model-based approach that can be
used to solve combinatorial optimization problems. Kleene’s
algorithm is used to compute an anti-chain of solutions
and determine the Pareto front of minimal solutions. For
the computational approach to work, the mappings between
functionalities and required resources of each component
need to be monotone, but can otherwise be non-linear, non-
convex, or non-continuous [3].

Many of these prior works primarily optimize the robot’s
morphology and use relatively small catalogs of (parame-
terized) components operating under the assumption that a
designer has a set of pre-selected suitable components. In
contrast our approach prioritizes component selection from
a large catalog (hundreds of distinct components instead
of dozens) which is a typical situation a designer might
encounter using an online parts vendor. This creates a much
larger search space containing trillions of candidate solutions.

Our approach utilizes a branch-and-bound algorithm to
efficiently trim and exhaustively search the entire combi-
natorial space. Branch-and-bound uses a branch step that
partitions the search space into subsets, and a bound step that
provides a lower bound on the cost for a given subset [19].
This bound is continually refined and used to prune regions
of the search space. The branch-and-bound technique is the
best known framework for many NP-hard combinatorial op-
timization problems [19] including design problems related
to robotics and automation, such as designing soft actuator
systems [20], spatial layout problems for manufacturing
equipment [21], and wiring inside logic circuits [22].

III. METHODS
This section first describes the notation and solution tech-
niques of the easier constraint satisfaction problem (CSP)
(Sec. III-A) as it forms the basis for the constrained optimiza-
tion problem (COP) we use to solve for optimal components
(Sec. III-B). Sec. III-C describes techniques for speeding up
the COP for robot component selection that are necessary to
achieve practical solve times.

In this paper, we use a differential drive, transport robot as
an example design problem since this type of robot contains
common components (such as motors, microcontroller, etc.)
and is widely used in industrial applications. We assume
the designer knows the robot model and, given a set of
target specifications such as speed, endurance, and maximum

Fig. 2: The bipartite constraints graph for our differential drive
robot model. The combinatorial optimization problem’s variables
are the components (center) represented as gray ovals. Unary,
binary, and global constraints are green, black, and blue rectangles,
respectively. Redundant binary constraints added to improve run
time (Sec. III-C.3) are indicated by a dashed outline. Each constraint
node implies a mathematical constraint that expresses component
compatibility in terms of variable properties. An edge between a
constraint and a variable indicates that those variable properties are
present in that constraint.

navigable incline, would like to select components to meet
these high-level specifications while minimizing cost.

A. Constraint Satisfaction Problems
A CSP describes problems using constraints on variables and
is commonly applied to problems such as job scheduling,
map coloring, sudoku, and the 8-queens problem [23]. While
our goal for robot design is to optimize for cost, the goal of
solving a CSP is to find any feasible solution such that no
constraints are violated. The typical solution technique is to
use a back-tracking search that uses the constraints to skip
over infeasible regions of the search space, and our proposed
solution uses the same core ideas but simply keeps searching
and refining constraints, Sec. III-B.

A CSP has a finite set of variables V = {v1, v2, . . . , vn},
a set of finite domains (one for each variable) Di =
{di,1, di,2, . . . , di,m}, and a finite set of constraints C =
{C1, C2, . . . , Cp} that specify valid combinations of values.

This formulation lends itself to the component selection
problem where one knows a general robot model (e.g. a
differential drive robot) and needs to select specific items
from possibly large yet finite sets of potential components.
Each variable vi describes one component type that needs
to be selected, and the associated domain Di is the set of
all available components of that type. Here, the domains are
populated from parts that can be easily ordered from online
vendors. Each variable or component type has associated
properties, which are required for determining whether or
not component combinations are viable. For instance, in our
implementation the variable vmotor represents the motor class
of components, and this variable has properties such as ωmax

or Istall representing the maximum angular speed and stall
current of the motor, respectively, which are populated from
the motor documentation.

Constraints Ci are relational constraints between the prop-
erties of components that can be expressed as mathematical
expressions, e.g.

Vmax ≤ vmotor.ωmax ∗ vwheel.radius

where Vmax is the maximum speed of the robot, and the terms
of the right hand side refer to the associated properties of the
motor and wheel variables. These constraints encode not only
viable combinations of components but also the performance
specification of the robot, which can be expressed using
mathematical relations on variable properties.

For our example problem selecting components for a
differential drive robot, we use 7 different component types
which have between 3 and 9 associated properties. There
are 17 total constraints in our model, but 6 of these are
redundant binary constraints added to improve run time
(see Fig. 2 and Sec. III-C.3). These constraints ensure the
target performance specifications are met (e.g. the motor
can provide enough torque and angular speed to move the
maximum payload up the maximum incline) and also account
for system considerations (e.g. compatible operating and
logic voltages or sufficient number of I/O lines). While these
constraints may involve several variables, the expressions
themselves are not complicated and have been omitted due
to space limitations.

A satisfying assignment for a CSP is a list of specific
values for each variable that is chosen from the associated
domains such that all constraints are met. A partial assign-
ment is where only a subset of the variables have an assigned
domain value while other variables remain unassigned.

A key idea is that even a partial assignment can restrict
the possible values of the unassigned variables. The search
of satisfying solutions proceeds by assigning variables and
then ruling out possible values of the unassigned variables
from their domains based on the constraints. If any of the
domains of unassigned variables become empty, there is no
satisfying solution that contains the assigned variables and
that portion of the search space can be eliminated without
having to enumerate all possible combinations.

Constraints can be classified based on the number of vari-
ables they are connected to, which determines how they are
used to rule out values during the search. Unary constraints

are constraints on the domain values of a single variable, and
can be treated in a pre-processing step to eliminate elements
of the domain. Binary constraints are connected to two vari-
ables and can be efficiently propagated via a method called
Maintaining Arc Consistency (MAC) [23], which uses the
AC-3 algorithm to propagate binary constraints. Constraints
on three or more variables are called global constraints.
These constraints are checked as soon as possible but are
not directly propagated by MAC, see Sec. III-C. We express
the structure of the constraints as a bipartite graph between
constraints and variables, where an edge between a variable
and a constraint indicates its mathematical expression uses
capabilities from that particular variable (see Fig. 2).

One way to improve efficiency is the order in which
to assign variables and their domain values using domain-
independent heuristics. In determining which order to select
variables, a common approach is the Minimum-remaining-
values (MRV) heuristic which chooses the variable with
the fewest “legal” values. The intuition behind this is to
pick a variable that is more likely to fail soon, resulting
in fewer combinations to check since the search space is
pruned more efficiently. In contrast, to determine the order
to select domain values, the least-constraining-value (LCV)
heuristic chooses domain values that eliminate the fewest
domain values of neighboring variables. Since the objective
of solving a CSP is to find any feasible solution, selecting
domain values by LCV helps to find a solution quicker since
it chooses the most likely values to be in a solution.

B. Component Selection as a COP
For the component selection problem, we assume the robot
model and performance specification have been expressed as
constraints between components, and among all satisfying
solutions for the associated CSP the designer is looking for
an optimal component selection to minimize system cost.

While many of the same CSP techniques can be used
in solving a COP, the approach to solving standard CSPs
is good at finding a feasible solution quickly but does not
provide an optimal solution. A CSP solver stops as soon
as it reaches a valid assignment for all variables, whereas
a COP solver must continue iterating to exhaustively check
the entire search space. Since the search space could contain
a large number of valid solutions, simply removing the
previously found combination and running the CSP solver
again would quickly become intractable. Instead, to find
an optimal solution we use a depth-first branch-and-bound
algorithm that uses the current minimal cost to further prune
the search tree as minimal solutions are found.

1) Depth-first Branch-and-Bound Using a Cost Bound:
The goal of branch-and-bound is to efficiently consider all
possible solutions while minimizing the number of solutions
that have to be evaluated. To do this, the search space is
recursively split into smaller sets, called branching. After
branching, a lower bound of the smaller search space is
determined and compared to a global upper bound. If the
lower bound is larger than the global upper bound, the
algorithm does not need to continue searching that solution
subset since the minimal solution cannot be in that subset.

In our example design problem, we are attempting to
minimize the cost of a differential drive, transport robot. In
this case the global upper bound is the cost of the cheapest
solution found so far. To determine a lower bound on cost, we
evaluate the total cost of the current partial assignment. Our
approach maintains a list of all solutions with the same cost
(solns in Algorithm 1) and clears the list if a cheaper solution
is found. If the algorithm is terminated early during solving,
it can still provide locally minimal (but not necessarily
globally minimal) solutions.

Algorithm 1 gives the pseudocode for a recursive bounded
constraint optimization algorithm for component-level robot
design. Using the techniques discussed above, the algorithm
attempts to efficiently prune the search space and provide the
set of all minimal solutions for a given set of specifications.
If no solution exists, the algorithm returns an empty set.

C. Improving Constrained Optimization for Component Se-
lection

In the remainder of this section we present methods to
improve the solve time of our CP approach. Even with
depth-first branch-and-bound, application-specific heuristic
strategies are important for efficiently solving a COP [24]. In

Algorithm 1 Constraint Programming Algorithm: Our CP
algorithm uses a recursive function backtrack to solve a COP.
Variables a, cb, v, and d represent the current assignment, global
cost bound, COP variable, and domain value, respectively. The
get next var and order domain vals functions use the variable and
value ordering heuristics presented in Section III-C.1 and III-
C.2 to select the next variable or domain value. The function
eval global constr evaluates the global constraints on partial vari-
able assignments.

Input: ConstraintOptimizationProblem cop
Output: solns

1: solns← {}, cb← 0
2: assert unary constraints(cop)
3: cb, solns← backtrack({}, solns, cb)
4: return solns
5:
6: function backtrack(a, solns, cb)
7: if is complete assignment(a) then
8: total cost←get total cost(a)
9: if total cost < cb then

10: cb← total cost
11: solns← {}
12: end if
13: solns.append(a)
14: return cb, solns
15: end if
16: v ← get next var(cop, a)
17: for d in order domain vals(cop, v, a) do
18: if cop.num constr conflicts(v, d, a) is 0 then
19: cop.assign(v, d, a)
20: if forward check(cop, v, d, a) then
21: if eval global constr(cop, v, d, a, cb) then
22: cb, solns← backtrack(a, solns, cb)
23: end if
24: end if
25: end if
26: end for
27: cop.unassign(v, a)
28: return cb, solns
29: end function

this context, we present heuristics for selecting variables and
domain values that are specific to the component selection
problem. We also discuss how placing redundant binary
constraints on the optimization problem can further improve
solve time and identify which types of constraints benefit
from this technique.

1) Variable Ordering – Least Cost Difference (LCDiff):
In determining which variable to select next, we use the least
difference in cost between the cheapest and most expensive
domain values of each variable:

least cost diff = argmin
var

max
di,dj

|di.cost − dj .cost|

for di, dj ∈ Dvar

The rationale behind this variable ordering is that the
solver can get caught in a regime where it is evaluating many
possible solutions that are providing only minor reductions to
the global cost (since backtracking changes the last variables
in the assignment). By ordering the variables such that the
largest difference variables are selected last, any changes to
complete assignments after backtracking have the potential to
provide a large reduction in the global cost bound, helping to
eliminate large portions of the search tree. Variable ordering
is performed on line 16 of Algorithm 1.

2) Domain Value Ordering – Least Cost Lexicographic
Order (LCLO): Our approach to domain value ordering uses
a lexicographic order to sort the components by their general
“utility” based on their properties (line 17 of Algorithm 1).
First, components are ordered by increasing cost since the
problem objective is to minimize system cost. In the event
where two domain values have the same associated cost, we
create a lexicographic order based on their other properties
where components that can provide greater functionality with
fewer resources are ordered first.

The intuition behind this approach is to first and foremost
pick the cheapest component as the problem objective is cost
minimization. Otherwise, one should pick the “best” domain
value available. For instance, if two motors are the same
cost but one motor could provide greater torque and angular
speed, then choosing this motor would be advantageous as
it is more likely to be part of an optimal solution.

3) Redundant Constraints: When generating partial as-
signments, the sooner a global constraint can be evaluated,
the quicker the solve time. With this in mind, we add redun-
dant binary constraints that allow certain global constraints
to be evaluated before all of their associated variables have
been assigned. Placing redundant constraints on COPs is a
common technique that improves run time through better
constraint propagation and faster domain reduction without
affecting the solution space [25], [26], [27].

Under certain conditions a global constraint can be evalu-
ated before all of its associated variables have been assigned.
The key requirement is that after certain “critical” variables
have been assigned, assigning more variables will not cause
a constraint that is violated to become unviolated. If this
property were not to hold, then sections of the search space
could be trimmed even though viable solutions might still
exist in that space. In context of our target application of

robot design, we have found this is a common property for
global constraints to have since many global constraints have
summation terms that increase monotonically.

For example, the global constraint on torque is a function
of the system weight, wheel diameter, and motor torque:
vmotor.τ ≥ vwheel.radius ∗ system weight ∗max incline+
friction torque. Since system weight is the summation of
each component’s weight, this global constraint is connected
to all variables. However, only the motor and wheel are
“critical” variables since, after these variables are assigned,
the system weight can only increase monotonically as more
components are added and, once this constraint is violated,
it cannot be unviolated after assigning more variables.

Although these redundant constraints provide a looser
bound than the global constraint (since only a subset of
variables are being evaluated instead of all variables in the
constraint), in particular binary redundant constraints are
advantageous since MAC can then be used to propagate
binary constraints and reduce the size of the search space
before proceeding to check candidate partial assignments.
Note that the original global constraint is still in the model so
answer accuracy is not affected. The constraints with dashed,
black outlines in Fig. 2 are redundant binary constraints
derived from global constraints that were added to our robot
model to improve run time. In Algorithm 1 we evaluate the
global constraints on line 21.

IV. RESULTS
We have used our CP algorithm to design and physically
implement three different robots, and have also analyzed the
algorithm’s run time for different ordering heuristics and
in comparison to the MCDP approach. We have chosen
to compare to MCDP since our robot model is already
monotone and it is straightforward to conduct a direct
comparison between methods as these are already solving
identical problems. To compare to LP or QP methods we
would otherwise need to linearize the model. All provided
run times in this section were collected over 10 trials on a
standard office desktop computer (2.10 GHz CPU with 12
cores, 16 GB RAM).

While the backtracking, depth-first search algorithm in
Algorithm 1 is a common technique to solve COPs, we have
written our own implementation as we are interested in even-
tually extending our work to multi-objective problems. Cur-
rently available industrial constraint programmers are highly
optimized but only perform single objective optimization and
do not keep track of a Pareto front of solutions. However,
later in this section we provide experimental data where we
have implemented our proposed heuristics with an industrial
constraint programmer to not only provide example solve
times on a standard office computer when using a highly
optimized solver but also demonstrate that our proposed
heuristics are effective with these solvers (Table IV).

The high-level design specifications for three robots were
selected to generate differential drive, transport robot de-
signs that each prioritize different possible functionalities of
the final design: navigating a steep incline (Steep Incline
specifications), operating for an extended period of time on

Steep
Incline Endurance Heavy

Payload

Motors
(1/1/3 Chosen)

6V, HP,
300:1

$16.95 x 2

6V, HP,
100:1

$16.95 x 2

6V, MP,
250:1

$16.95 x 2

Battery
(1/2/1 Chosen)

NiMH,
350 mAh

$7.55

NiMH,
2200 mAh

$15.15

NiMH,
350 mAh

$7.55
Wheel

(3/1/3 Chosen)
�60mm

$4.25
�32 mm

$2.95
�70 mm

$4.75
Motor Driver
(1/1/1 Chosen)

Dual 1 Amp
$3.33

Dual 1 Amp
$3.33

Dual 1 Amp
$3.33

Microcontroller
(4/4/4 Chosen)

16 MHz
A-Star, 5V

$4.95

16 MHz
A-Star, 5V

$4.95

16 MHz
A-Star, 5V

$4.95
Photosensor

(2/2/2 Chosen)
7×, analog

$5.40
7×, analog

$5.40
7×, analog

$5.40

Total Cost $59.38 $65.68 $59.88

TABLE I: Design System Results – Component Selection:
The components selected by our CP algorithm for each of the
three different sets of performance specifications. Each design uses
the same motor driver and voltage regulator. For each of these
designs, the tool determined 16 or more different combinations
of components could be used interchangeably and still meet the
performance specifications. To simplify physical testing, we chose
to test with only one of these combinations and have included those
component specifications in the table.

First Solution Optimal
Solution

Solve
Time

MRV,
LCV

0.44 sec
(0.44, 0.46)

3556 sec
(3530, 3567)

4000 sec
(3973, 4013)

MRV,
LCLO

105 sec
(105, 106)

183 sec
(181, 184)

2523 sec
(2508, 2541)

LCDiff,
LCV

0.080 sec
(0.072, 0.092)

90.8 sec
(90.6, 90.9)

91.3 sec
(91.2, 91.5)

LCDiff,
LCLO

0.079 sec
(0.072, 0.089)

0.079 sec
(0.072, 0.089)

58.8 sec
(58.6, 59.1)

TABLE II: Run Time Results – Variable and Domain Value
Ordering: Run times of our CP algorithm with and without using
the variable and domain value ordering heuristic presented in
Sections III-C.1 and III-C.2. Each row uses a different combination
of variable and value orderings. Times shown are for the median
(bolded), 10th, and 90th percentiles over 10 trials when solving the
component selection problem using the Endurance robot specifica-
tion. Our proposed heuristics (bottom row) significantly improve
the algorithm’s performance compared to traditional CSP ordering
heuristics (top row).

one battery charge (Endurance specifications), and carrying
a heavy payload (Heavy Payload specifications).

Table I shows the designs generated by the system using
651 distinct off-the-shelf components from Pololu’s online
catalog, a common robot parts supplier. These components
produce 21.8 trillion (2.18 · 1013) candidate solutions our
solver must search for an optimal solution. For each of the
three different sets of performance specifications, our algo-
rithm provided 16 or more optimal designs. These designs all
had the same cost, but used different wheels, motors, micro-
controllers, and photosensors. To simplify physical testing,
only the designs using a 5V @ 16 MHz microcontroller and
an analog output photosensor were tested.

To demonstrate the efficacy of our proposed heuristics,
we ran trials to compare the run times using different

Constraint Programming
Algorithm MCDP

First
Solution

Optimal
Solution

Solve
Time

Solve
Time

Steep
Incline

0.031 sec
(0.031,
0.050)

14.3 sec
(14.3, 22.8)

118 sec
(113,
159)

52 min
(47,
125)

Endurance
0.079 sec

(0.072,
0.089)

0.079 sec
(0.072,
0.089)

58.8 sec
(58.6,
59.1)

48 min
(46,
170)

Heavy
Payload

0.040 sec
(0.040,
0.063)

115 sec
(114, 146)

245 sec
(245,
301)

64 min
(46,
354)

TABLE III: Run Time Results – Algorithm Comparison: Run
times for our CP approach and the MCDP framework. Times shown
are for the median (bolded), 10th, and 90th percentiles over 10 trials.
As our algorithm provides intermediate answers while solving, we
have also included the time to find the first feasible solution and
the time to find the first optimal solution.

Steep Incline Endurance Heavy
Payload

Industrial
Solver

Heuristics

4.85 sec
(4.83, 4.95)

4.88 sec
(4.79, 4.95)

4.96 sec
(4.90, 5.01)

Our
Heuristics

4.72 sec
(4.66, 4.76)

4.75 sec
(4.70, 4.94)

4.74 sec
(4.66, 4.77)

TABLE IV: Run Time Results – Heuristic Comparison with
Industrial Solver: Run times for the default variable and value
ordering heuristics of an industrial solver (IBM CP Optimizer)
compared to our proposed heuristics (presented in Sections III-C.1
and III-C.2) implemented in the same solver. Times shown are for
the median (bolded), 10th, and 90th percentiles over 10 trials. For
the problem of component selection, there is a small but significant
(p < .05) reduction in run time when using our proposed heuristics
(bottom row) over the default heuristics of IBM CP Optimizer when
performing a depth-first search.

combinations of our proposed heuristics (LCDiff and LCLO)
with heuristics traditionally used in solving CSPs (MRV
and LCV), see Table II. As our CP approach can provide
intermediate solutions, we have included the times to deter-
mine the first and optimal solutions. Each of our proposed
heuristics individually reduces the solve time, and using these
heuristics in combination solves the optimization problem
almost 70 times quicker than using MRV and LCV together.

We directly compared the run time of our CP approach
to an MCDP approach (Table III). Across all three robot
designs, our CP approach provides an optimal solution at
least 15 times and up to 48 times faster than the MCDP
approach and determines a feasible solution within one tenth
of a second.

We also used our heuristics within IBM CP Optimizer, an
industrial constraint programming solver, and compared the
performance using the industrial solver’s default variable and
value ordering heuristics to our proposed heuristics (Table
IV). When solving the component selection problem using a
depth-first search, there is a small but significant (p < .05)
reduction in run time when using our proposed heuristics
over the default heuristics.

Finally, each of the three robots were tested over three
trials to empirically verify that they met the target speci-
fications. At the maximum payload and speed, the average

endurance over three trials was 56.3 min, 207.2 min, and 69.5
min for the Steep Incline, Endurance, and Heavy Payload
robots, respectively. All three robots were able to operate
for longer than their minimum endurance and thus all three
surpassed their respective target performance specifications.

V. CONCLUSION
In this paper we presented an alternative approach to the
component selection problem for robot design using a COP
formulation and developed a depth-first branch-and-bound
algorithm to solve this problem. To improve the run time
of our algorithm, we proposed two heuristics for ordering
variable and domain values specific to the component se-
lection optimization problem, and also applied redundant
binary constraints for better constraint propagation and faster
domain reduction. We demonstrate that the run time of our
approach is significantly quicker than the MCDP approach,
and physically built robots using the solutions generated from
our approach and validated they met the target specifications.

Our approach is well-suited for the discrete combinatorial
optimization problem of component selection in which even
small catalogs can produce trillions of combinations. How-
ever, our CP algorithm cannot solve for solutions that have
continuous or mixed domains, which the MCDP framework
and linear and quadratic programming can handle.

Additionally, when using our CP algorithm the model
does not need to be made linear or monotone. For the
other approaches, these approximations provide trade-offs.
Linear and quadratic programming can have quicker solve
times since the linearization allows for computationally quick
matrix operations to be used to solve the problem, while
a monotone model allows MCDPS to solve multi-objective
optimization problems.

In future work we plan to conduct a further analysis of run
time, determining how the algorithm scales as component
catalogs increase in size and how the run time complexity
compares to other approaches. Since one would expect CP
to work better when the problem is highly constrained and
there are fewer satisfying solutions, it would be useful to
compare run times between such cases. Finally, we plan to
extend our current work to a larger library of robot models
and eventually develop a more complete, automated design
system that accounts for more aspects of robot design such
as the robot morphology and design of a suitable controller.

ACKNOWLEDGMENT
This material is based on work supported by the National Sci-
ence Foundation grants NSF#1846340, NSF#2054744, and
the Graduate Research Fellowship Program DGE#2139899.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] International Business Machines Corporation (IBM),
“User’s Manual for CPLEX,” 2023. [Online]. Available:
https://www.ibm.com/products/ilog-cplex-optimization-studio

[2] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[3] A. Censi, “A mathematical theory of co-design,” arXiv preprint
arXiv:1512.08055, 2015.

[4] A. Q. Nilles, D. A. Shell, and J. M. O’Kane, “Robot design: For-
malisms, representations, and the role of the designer,” arXiv preprint
arXiv:1806.05157, 2018.

[5] KINEMATICS GMBH, “Tinkerbots,” Accessed Mar. 1, 2022 [Online].
[Online]. Available: https://www.tinkerbots.de/?lang=en

[6] Mod Robotics, “Cubelets Robot Blocks,” Accessed Mar. 1, 2022
[Online]. [Online]. Available: https://modrobotics.com/

[7] A. M. Mehta, J. DelPreto, B. Shaya, and D. Rus, “Cogeneration of
mechanical, electrical, and software designs for printable robots from
structural specifications,” in 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2014, pp. 2892–2897.

[8] A. M. Mehta, J. DelPreto, K. W. Wong, S. Hamill, H. Kress-Gazit, and
D. Rus, “Robot creation from functional specifications,” in Robotics
Research. Springer, 2018, pp. 631–648.

[9] A. Schulz, C. Sung, A. Spielberg, W. Zhao, R. Cheng, E. Grinspun,
D. Rus, and W. Matusik, “Interactive robogami: An end-to-end system
for design of robots with ground locomotion,” The International
Journal of Robotics Research, vol. 36, no. 10, pp. 1131–1147, 2017.

[10] R. Desai, Y. Yuan, and S. Coros, “Computational abstractions for
interactive design of robotic devices,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
1196–1203.

[11] A. Schrijver et al., Combinatorial optimization: polyhedra and effi-
ciency. Springer, 2003, vol. 24.

[12] J. Whitman, M. Travers, and H. Choset, “Modular mobile robot design
selection with deep reinforcement learning,” in NeurIPS Workshop on
ML for engineering modeling, simulation and design, 2020.

[13] Q. Gu, Q. Wang, X. Li, and X. Li, “A surrogate-assisted multi-
objective particle swarm optimization of expensive constrained combi-
natorial optimization problems,” Knowledge-Based Systems, vol. 223,
p. 107049, 2021.

[14] Ø. Magnussen, M. Ottestad, and G. Hovland, “Multicopter design
optimization and validation,” 2015.

[15] L. Carlone and C. Pinciroli, “Robot co-design: beyond the monotone
case,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 3024–3030.

[16] A. Spielberg, B. Araki, C. Sung, R. Tedrake, and D. Rus, “Functional
co-optimization of articulated robots,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
5035–5042.

[17] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Computational
co-optimization of design parameters and motion trajectories for
robotic systems,” The International Journal of Robotics Research,
vol. 37, no. 13-14, pp. 1521–1536, 2018.

[18] T. Du, A. Schulz, B. Zhu, B. Bickel, and W. Matusik, “Computational
multicopter design,” 2016.

[19] B. H. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial
optimization. Springer, 2011, vol. 1.

[20] N. Ebrahimi, T. Guda, M. Alamaniotis, D. Miserlis, and A. Jafari,
“Design optimization of a novel networked electromagnetic soft ac-
tuators system based on branch and bound algorithm,” IEEE Access,
vol. 8, pp. 119 324–119 335, 2020.

[21] M. Solimanpur and A. Jafari, “Optimal solution for the two-
dimensional facility layout problem using a branch-and-bound algo-
rithm,” Computers & Industrial Engineering, vol. 55, no. 3, pp. 606–
619, 2008.

[22] B. Taylor and L. Pileggi, “Exact combinatorial optimization methods
for physical design of regular logic bricks,” in Proceedings of the 44th
annual Design Automation Conference, 2007, pp. 344–349.

[23] S. J. Russell, Artificial intelligence a modern approach. Pearson
Education, Inc., 2010.

[24] B. Liu and Y.-W. Ku, “Constraintlisp: an object-oriented constraint
programming language,” ACM SIGPLAN Notices, vol. 27, no. 11, pp.
17–26, 1992.

[25] B. Cheng, K. M. F. Choi, J. H.-M. Lee, and J. Wu, “Increasing
constraint propagation by redundant modeling: an experience report,”
Constraints, vol. 4, pp. 167–192, 1999.

[26] P. Van Hentenryck, “Parallel constraint satisfaction in logic program-
ming: Prelimiary results of chip with pepsys,” in 6th International
Conference on Logic Programming, 1989, pp. 165–180.

[27] N. Beldiceanu and E. Contejean, “Introducing global constraints in
chip,” Mathematical and computer Modelling, vol. 20, no. 12, pp.
97–123, 1994.

