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Abstract We present a model of construction using iterative amorphous
depositions and give a distributed algorithm to reliably build ramps in un-
structured environments. The relatively simple local strategy for interacting
with irregularly shaped, partially built structures gives rise robust adaptive
global properties. We illustrate the algorithm in both the single robot and
multi-robot case via simulations and describe how to solve key technical chal-
lenges to implementing this algorithm via a robotic prototype.

1 Introduction

Robots are best suited for dirty, dull, and dangerous tasks. This paper focuses
on algorithms for the dirty and dangerous task of construction in unstruc-
tured terrain. Applications range from rapid disaster response, like building
levees and support structures, to remote construction in mines or space. The
requirement of working in unstructured terrain frequently coincides with a
lack of infrastructure, such as global positioning or a consistent shared global
state estimate, that simplifies coordination of multiple robots and deliberative
planing. Distributed algorithms that use limited local information and coor-
dinate through stigmergy solve this problem and provide scalable solutions.
Robustness to poor sensing and irregular terrain can further be improved by
using amorphous construction materials that comply to obstacles. Such con-
struction is locally reactive, both on an algorithmic level, i.e. where robots
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Fig. 1 Examples of amorphous construction. (a) Amorphous construction in biology. A
termite preparing an amorphous dollop of mud for deposition. Inset shows a mound built
around a tree. (b) Prototype of a construction robot. The robot was remote controlled to
build a ramp using amorphous foam depositions. Inset shows a cone-shaped deposition.

deposit based on local cues, and a physical level, i.e. amorphous construction
materials react by changing shape to conform to their environment.

Our approach is inspired by biological systems, such as mound building ter-
mites [20], that are very adept at building in unstructured terrain, Fig. 1(a).
Their skill combines scalable coordination through stigmergy and the use of
amorphous building materials that interface with an irregular environment.
We would like to endow scalable robot teams with similar skill, however an al-
gorithmic foundation for doing so is lacking. Current models for autonomous
robotic construction focus on assembling pre-fabricated building materials
and cannot accommodate the continuous nature of amorphous building ma-
terials. The contribution of this paper is twofold:(A) A mathematical frame-
work for reasoning about robots that construct with amorphous materials,
and (B) a distributed, locally reactive algorithm for adaptive ramp build-
ing. This work is a step away from robots assembling discrete pre-fabricated
components and instead embracing the messy continuous world, Fig. 1(b).

Section 2 presents mathematical models for amorphous construction and
adaptive ramp building. Section 3 gives a local strategy for creating struc-
tures that robots can climb; Sec. 4 extends those results to include physical
constraints for single and multiple robots. Section 5 discusses future work.

1.1 Related Work

Currently, there is much interest in the topic of robotic construction with mo-
bile robots [4, 5, 7, 11, 12, 17], as well as decentralized algorithms by which
multiple robots can coordinate construction [1, 10, 13, 19]. These systems
are mainly focused on building pre-specified structures using lattice-based
building materials [6, 22]. Lattice-based building blocks have good struc-
tural properties—being strong, stiff, and light—but place assumptions on
the initial environment being level and devoid of obstacles. These methods
are difficult to extend to unstructured environments with irregularly shaped
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obstacles. Furthermore, alignment and attachment restrictions affect all other
aspects of design, for example adding complex assembly order constraints.

In contrast, amorphous building materials—e.g. foam, mud, sandbags or
compliant blocks—sidestep these limitations [14]. They can help compensate
for uncertainty and measurement errors without requiring complex sensing
or reasoning. For example, compliant and amorphous materials are used for
rapidly building flood protection in disaster zones [8, 21] or pouring foun-
dations over irregular terrain. Similarly, the requirement of fixed attachment
orientations can be relaxed by using adhesive in the autonomous robotic con-
struction of curved walls [2, 4]. The closely related works [3, 18] use amor-
phous materials, such as hot-melt adhesive or foam, to adapt robot parts to a
unknown tasks. Digital manufacturing via CAD/CAM, and some large-scale
robotic construction systems, such as [9], also use amorphous materials to
build continuous shapes. While these systems are not specifically focused on
construction in unstructured environments, we can exploit the materials and
design principles to design robots that utilize amorphous materials.

2 Problem Formulation and Questions

We present a solution to the adaptive ramp building problem as a particu-
lar example of a distributed construction task in unstructured terrain. The
problem is to design a deposition and motion strategy to reach an arbitrary
goal position, despite irregularly shaped obstacles. Robots can sense the goal
direction, move on partially built structures, and deposit amorphous mate-
rials to make non-climbable structures climbable. Adaptive ramp building is
an example of how amorphous construction materials can be used to create
robust behavior and also provides a primitive behavior for solving more com-
plex tasks. The remainder of this section presents mathematical models for
continuous structures, amorphous depositions, and climbable structures.

2.1 Mathematical Model for Continuous Structures

We model construction in two or three dimensions. Gravity constrains robots
to move along surfaces on which they can incrementally deposit construction
material. We assume that the construction area Q is a connected, compact,
and finite subset of R1 (or R

2) and the domain of a bounded, non-negative
height function h : Q → R

+. The graph of h, (x, h(x)) x ∈ Q, describes a
structure. Robots move on structures and modify them.

If structures are modeled as functions, depositions are operators on func-
tions. To distinguish the two, function spaces are denoted by scripted letters.
For example, let Q be the space of real-valued, bounded functions on Q, and
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Fig. 2 Parameter Geometry. (a) Robot making an amorphous deposition (gray). The
top surface is defined by the deposition’s shape function f . The bottom is defined by the
environment h. (b,c) Relation ofK to the maximal steepness a robot can climb and descend,
(solid) without discontinuity (dashed) with discontinuity. (d) Relation of steepness K to
the required ground clearance to drive over the apex of a cone. (e) A height function on h

and its projections onto Lipschitz functions with different parameters K3 > K2 > K1.

Q+ ⊂ Q the subset of non-negative ones. Function application to points is
denoted by parentheses (·) and operator application to functions by brackets
[·]. For example, applying function h ∈ Q+ to a point x ∈ Q is written as
h(x), and applying operator D : Q+ → Q+ to h is denoted by D[h]. In the
case of functions, all relational symbols should be interpreted pointwise, e.g.
given h, g ∈ Q+, h ≤ g ≡ h(x) ≤ g(x) ∀x ∈ Q.

One limitation of modeling structures as functions is that many physical
terrains have overhangs and are not functions. However, the benefit of this
restrictive model is that it comes with analysis tools, such as continuity and
integration, that can be used to reason about construction algorithms.

2.2 Model for Amorphous Deposition

Robots can deposit amorphous construction material and control its volume
and position, Fig. 1(b). The top surface of each deposition is modeled by shape
function f ∈ Q, which the robot can control, while the bottom conforms to
the structure, Fig. 2(a). As a simple, yet sufficiently general, family of shape
functions we use cones. Given an apex position (φ, σ) ∈ Q×R

+ and steepness
KD ∈ R

+ let
f(φ,σ)(x) = σ −KD|φ− x|. (1)

The deposition operatorD : Q×Q+ → Q+ models interactions of depositions
with the environment, here simply covering it. Given a structure h ∈ Q+ with
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h(φ) < σ, the new structure after deposition f(φ,σ) is given by

D[f(φ,σ), h](x) = max{f(x), h(x)}. (2)

Given an initial structure h0 ∈ Q+ larger structures are built up by a se-
quence of depositions, each characterized by their shape parameters (φ1, σ1),
(φ2, σ2), (φ3, σ3), etc. The height function hn after n depositions is defined
recursively by

hn(x) = D[f(φn,σn), hn−1](x). (3)

After the n-th deposition, the local reactive rules of each robot direct it to
move on hn and possibly make a deposition resulting in a new structure hn+1.

This deposition model preserves continuity, independent of the particular
parameter choices (φn, σn). In this and the following proofs, let Bε(x) denote
the open ball of radius ε around x, i.e. y ∈ Bε(x) if and only if |y − x| < ε.

Lemma 1 Given a continuous h0 ∈ Q+ and ε ∈ R
+ then ∃δ s.t. ∀x ∈ Q,

∀y ∈ Bδ(x) and any hn created according to (3), hn(y) ∈ Bε(hn(x))).

Proof. By continuity of h0 and compactness of Q, for any given ε ∈ R ∃δ′ s.t.
∀y ∈ Bδ′(x), h0(y) ∈ Bε(h(x)). By construction of hn, δ = min{δ′, ε/KD}
has the above property.

Our proposed solution to the ramp building problem can accommodate un-
certainty in both the deposition location and size, see Sec. 4.1 end. However,
for clarity we assume an exact shape function f in the following presentation.

2.3 Navigable Structures

Building a ramp means turning a structure that robots cannot climb into one
they can climb. As such, any algorithm to adaptively build ramps needs a
tractable description of climbable structures. This section defines the notion
of navigable functions on Q, which represent climbable physical structures.

We use three parameters to describe robot specific motion constraints:
K ∈ R

+, to model the maximum steepness robots can drive up or down,
ǫ ∈ R

+, to model the largest discontinuity robots can freely move past, and
d ∈ R

+, to limit the amount of discontinuity in a small area (i.e. robot length),
Fig. 2(b)–2(d). Formally, navigable structures are locally (parameter d) close
(parameter ǫ) to K−Lipschitz continuous [16, p. 594], i.e

|h(x) − h(y)| ≤ K|x− y| ∀x, y ∈ Q. (4)

Specifically, a function h ∈ Q is called navigable if and only if

|h(x)− h(y)| ≤ ǫ+K|x− y| ∀x, y ∈ Q and |x− y| ≤ d. (5)
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To reason about global guarantees of our local algorithms, we construct
the operator PK , defined by (7). It maps any structure to the closest K-
Lipschitz function that can be built by only adding material, Fig. 2(e). At
a given point x ∈ Q, PK takes the maximum value of any cones that need
to be added so all other points fulfill condition (4). There are two important
properties of PK . Firstly, by construction

PK [h](x) ≥ h(x) ∀h ∈ Q. (6)

Since depositions are additive, it is important PK [h] can be reached by only
adding to h. Secondly, PK [h] returns the smallest function in LK , the space
of K-Lipschitz functions on Q, in the following sense:

Theorem 2 Given any two functions h ∈ Q and g ∈ LK with g ≥ h, the
operator

PK [h](x) = max
y∈Q

{h(y)−K|y − x|} (7)

with K ∈ R
+, has the following properties:

1. PK [h] is K-Lipschitz,
2. g ≥ PK [h].

See Sec. 6 for proof. The following theorem shows that if steeper features are
allowed, less material needs to be added, Fig. 2(d).

Theorem 3 Given an arbitrary function h ∈ Q and K1,K2 ∈ R
+ with

K1 ≤ K2 the projections onto LK1
and LK2

obey PK2
[h] ≤ PK1

[h].

Proof. For a given point y ∈ Q in (7), h(y) −K2|y − x| ≤ h(y) −K1|y − x|
since the |y − x| is non-negative. ⊓⊔

Given an initial function h0, the next section gives a locally reactive depo-
sition strategy such that after N depositions hN is navigable, i.e. fulfills (5),
and is bounded above by PK [h0].

3 Local Reactive Deposition Algorithm

In a local deposition strategy, robots with limited sensing range r ∈ R
+ (with

r > d) move on top of the structure and react to features in their sensing
range. Algorithm 1 relates local checks and depositions to global properties.
It checks for points that imply a non-navigable feature and deposits in such
a way as to decrease the distance from the current structure to closest K-
Lipschitz structure. Specifically, Alg.1 searches for points |y − x| ≤ d s.t.

|y − x|K + ǫ < |h(y)− h(x)|. (8)
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Fig. 3 Simulations of deposition algorithms. The initial structure h0 is shown as solid
black and the upper bound PK [h0] as a dashed black line. The simulation parameters
are: Q = [0, 2], K = 0.5, KD = 1.5, ǫ = 0.05, and d = 0.1. Depositions progressively
change color, see color-bar. (a) Deposition locations are picked randomly and the height
according to Alg. 1. (b) Deposition locations and heights are picked according to Alg. 2,
with x0 = 0.2 and x∗ = 1.9. As the colors show, in both cases information about the cliff
on the right propagate backward through stigmergy. Additional motion and deposition
height constraints in Alg. 2 result in a layered structure and smaller depositions, see [15]
for simulation movies. The simulations incorporate additive noise to the deposition shape
function, see Sec. 4.1.

Algorithm 1 Local Deposition Strategy. Pick point pairs that imply a local
non-navigable feature and deposit on the lower one.

1: Given h ∈ Q+.
2: h0 ← h

3: while ∃ x, y ∈ Q s.t. |x− y| ≤ d, K|y − x|+ ǫ < |hn(y) − hn(x)| do

4: if hn(x) < hn(y) then

5: x′ ← x

6: y′ ← y

7: else

8: x′ ← y

9: y′ ← x

10: end if

11: Pick any ω ∈ [ǫ, hn(y′)− hn(x′)−K|x′ − y′|]
12: Deposit at x′ with height ω, i.e. hn+1 = D[f(x′,ω+hn(x′)), hn]
13: end while

3.1 Correctness of Local Deposition Strategy

The correct behavior of Alg. 1 is that after a finite number of depositions
the resulting structure hN is navigable. The proof proceeds in two steps. (A)
Thm. 4 shows progress, i.e. every deposition has a strictly positive volume.
(B) Thm. 5 shows depositions obey the invariant upper bound PK [h0]. By
combining them, Thm. 6 shows correct behavior. Note that since PK [h0] is
the smallest dominating K-Lipschitz function, Alg. 1 is also efficient in the
sense that it avoids unnecessary depositions, i.e. construction beyond the
conservatively navigable PK [h0], see Fig. 3(a).

The volume of the difference between two structures g, h ∈ Q+ is given by
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Fig. 4 Diagrams for proofs in Sec. 3 and Sec. 4.(a) Diagram of Thm. 5. When point
pairs and depositions are picked according to Alg. 1, shown in gray, the mapping to LK

remains invariant, i.e. PK [hn] = PK [h0]. (b) Parameter constraints for Alg. 2. When robot
parameters shown in Fig. 5(a) fulfill Condition (11), then the maximum extent that a
deposition can have into previously navigable terrain is limited by d.

V (g, h) = ||g − h||1 ≡

∫

Q

|g(x)− h(x)| dx. (9)

Similarly, the volume of a particular deposition is given by V (D[f(φ,σ), h], h).

Theorem 4 (Progress) Given a pair of points x, y ∈ Q s.t. hn(x) < hn(y)
and the property that

|x− y|K + ǫ < |hn(x) − hn(y)|,

depositing on x with a height

ω ∈ [ǫ,
hn(y)− hn(x)

K|x− y|
]

results in a deposition volume V (D[f(x,ω), hn], hn) > ε that is bounded below
by a strictly positive number.

Proof. Note that the deposition height is at least ǫ. By Lem. 1 there ex-
ists some δ s.t. hn maps every Bδ(x) ⊂ Q into Bǫ/3(hn(x)). As a result,

∀p ∈ Bδ(x), h(p) < h(x) + ǫ
3 and h(x) + 2ǫ

3 < D[f(x,ω), hn](p). Therefore,
V (D[f(x,ω), hn], hn) >

∫
Bδ(x)

ǫ
3 = ε > 0. ⊓⊔

Theorem 5 (Invariant) Assuming that KD > K, depositions made with
Alg. 1 leave the mapping onto LKinvariant, i.e. PK [hn] = PK [h0].

See Fig. 4(a) for an illustration and Sec. 6 for proof.

Theorem 6 Given an initial structure h0 ∈ Q+, following Alg. 1 terminates
after a finite number of steps, N ; and for no points in Q does hN fulfill
non-navigability condition (8), i.e. ∀z ∈ Q and x, y ∈ B d

2

(z),

|x− y|K + ǫ ≥ |hN (x) − hN(y)|.
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Proof. The expression for the remaining volume V (P [h0], hn) = ||P [h0]− hn||1 =∫
Q |P [h0](x)− hn(x)|dx can be rewritten as

∫

Q

|P [h0](x) − hn+1(x) + hn+1(x)− hn(x)|dx.

By Thm. 5 and (6), P [h0](x) − hn+1(x) ≥ 0 and hn+1(x) − hn(x) ≥ 0,
therefore

V (P [h0], hn) =

∫

Q

|P [h0](x) − hn+1(x)|dx +

∫

Q

|hn+1(x)− hn(x)|dx

= V (P [h0], hn+1) + V (hn+1, hn).

By Thm. 4 the second term is bounded below by a positive number ε, thus

V (P [h0], hn+1) < V (P [h0], hn)− ε.

Since volume is always non-negative, condition (8) for making depositions
must be violated after a finite number of steps N . ⊓⊔

4 Adaptive Ramp Building

The local deposition algorithm Alg. 1 does not specify which points to pick
if the non-navigability condition (8) is true for multiple pairs, nor does it
consider physical robot size or whether robots can reach deposition locations.
The benefit of this vagueness is generality. Algorithm 1 works in arbitrary
dimensions with an arbitrary number of robots making depositions in any
order. It forms the theoretical underpinning for Alg. 2, Fig. 3, which takes
such physical considerations into account. It gives a local deposition and
motion strategy that allows robots in an arbitrary starting position x0 ∈ Q
to reach a goal position x∗ ∈ Q. By using a more or less conservative ǫ
the built structures can be made more or less smooth. While we focus on
correctness, we point out some opportunities for improving efficiency.

4.1 Adaptive Ramp Building with a Single Robot

To solve the adaptive ramp building problem via Alg. 1, robots need to iden-
tify point pairs that imply non-navigable features and make depositions. The
strategy in Alg. 2 is to move toward the goal x∗ unless a robot encounters a
non-navigable feature that impedes its progress. In that case, a robot deposits
according to Alg. 1 and backs up to check that the new deposition does not
itself represent a non-navigable feature.
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Fig. 5 Physical parameters. (a) Relevant robot dimension based on the prototype shown
in Fig. 1(b). (b) Parameters for bounds of an arbitrary deposition shape function.

Algorithm 2 Adaptive ramp building. Given a structure h0, an initial po-
sition x0, and a goal position x∗, the following algorithm builds a ramp over
irregular structures based on local sensing. Assume, w.l.o.g. that x0 < x∗.
1: while x 6= x∗ do

2: Move toward goal until ∃y ∈ [x, x + r] that the pair y and x + d violate condition
(8) , or x = x∗

3: if x 6= x∗ then

4: Move to the lower the point. (Note that all points in [x0, x+ r) are climbable.)
5: Pick height according to Alg.1 and condition (12).
6: x← x− 2d
7: end if

8: end while

Since deposition and motion constraints depend on a robot’s physical di-
mensions, Fig. 5(a), additional parameter constraints are necessary to prove
correctness of Alg. 2. First, to guarantee that robots have enough room to
back up we assume they start at a point x0 ∈ Q on the initial structure h0

and can move freely within a radius r0 ∈ R
+ without making any depositions,

PK [h0](y) = h0(y), ∀y ∈ Br0(x0) ⊂ Q. (10)

Second, key dimensions of the robot as well as the deposition parameter KD

need to obey the following constraints, Fig. 5(a):

KD ≥ K +
ǫ+ lheight

d
, (11)

lheight > ǫ, (12)

r0 > 2d+ lrobot. (13)

Condition (11) limits how far backward new depositions can extend into pre-
viously navigable terrain, Fig. 4(b). It ensures that the motion and deposi-
tion strategy will not direct robots to deposit directly underneath themselves.
Condition (12) ensures that the deposition mechanism has enough clearance
to make depositions that conform with the assumptions in Alg.1. Condi-
tion (13), conservatively, ensures that a physical robot has enough space to
back up.



Distributed Amorphous Ramp Construction in Unstructured Environments 11

Theorem 7 Given a robot that fulfills parameter conditions (11)-(13) with
starting position x0 that fulfills (10) following Alg. 2 will reach a goal point
x∗ after a finite number of steps.

Proof. Denote the interval [x0 − r0, x + d] in which no point pairs fulfill (8)
by A (accessible region). Robots stay inside the accessible region at all times
while finding points to deposit on. First, condition (12) guarantees a robot
can make a deposition of height ǫ, as required by Alg. 1. Second, condition
(11) guarantees that depositions with a maximum height of lheight made in
the interval [x, x+ d] will not extend into [x0 − r0, x− d]. As a result, moving
to x − 2d after a deposition guarantees that no point pairs in A fulfill (8).
By (10) and the deposition strategy there are always accessible points, i.e.
[x0 − r0, x0] ⊂ A. By Alg. 1 this algorithm terminates after a finite number
of depositions with x = x∗. ⊓⊔

Figure 3(b) shows a series of depositions made via Alg. 2. This strategy also
guarantees that robots can always reach x0 without requiring additional de-
positions, which could allow robots to replenish supplies. Conversely, the ac-
cessible region provides cooperating robots access the deposition site, Sec. 4.2.

Physical depositions are not perfect cones, Fig. 1(b). Algorithm 2 explicitly
allows for uncertainty in the target structure (via ǫ), but not for deposition
uncertainty. In fact, the upper bound for target structures requires that no
depositions accidentally make intermediate structures larger than PK [h0].
Following is a short description on how to address this problem and allow
depositions with arbitrary continuous shape functions f (and bounded deriva-
tive f ′

max), as long as f can be sandwiched between two cones, Fig. 5(b). As
long as ldep < ǫ. Alg. 1 (and as a result Alg. 2) still work with the following
substitutions: In Lem. 1 f ′

max takes the place of KD. In Thm. 4 the minimum
height is ǫ − ldep instead of ǫ. In Thm. 5 and condition (11)KD is replaced
with Ka. In addition to uncertainty in shape, this approach of bounding cones
also allows for uncertainty in the exact deposition location and volume.

4.2 Adaptive Ramp Building with Multiple Robots

The locally reactive nature of Alg. 2 makes extension to multiple robots
easy. Robots do not need to communicate the state of the building process in
order to cooperate. However, they still need to coordinate locally to determine
which one deposits as to not obstruct one another. This section outlines two
different approaches: first, cooperation to build large structures where each
robot only has a limited amount of building material; second, cooperation to
achieve speedup through parallelism when robots are initially distributed in
the terrain.

Sensible strategies of what a robot should do after it runs out of building
material depend on wether robots can move past one anohter. If they can,
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Fig. 6 Simulations of cooperative adaptive ramp building with limited building supplies.

Parameters are x0 = 0.2, x∗ = 1.9, d = 0.05 and otherwise the same as in Fig. 3. (a)
Behavioral state diagram for building when robots can pass one another, see text for
state descriptions. (b) Final structure when 3 robots are limited to 20 depositions. Each
deposition set is indicated by a different color. (c) State diagram for building when robots
cannot pass one another and, when depleted, become part of the ramp structure. (c)
Simulation with 10 robots where each is limited to making 20 depositions, see [15] for
simulation movies.

Capacity 1 Robot 2 Robots 3 Robots

5 1614 ± 82 869 ± 56 680 ± 40
10 1077 ± 39 577 ± 50 507 ± 31
20 719 ± 59 451 ± 31 436 ± 22

Table 1 Results of cooperative ramp building simulations with varying number of robots
and deposition capacities. The table shows the %95 confidence intervals for estimating
the mean number of simulations steps (5 samples). The speed of each robot is 0.05 per
simulation step. Each deposition takes one simulation step. Reloading building supplies
takes one simulation step. Variations in completion times arise from both additive noise to
the deposition shape and random selection of parameters from their legal ranges in Alg. 1.

multiple robots can cooperate by returning to the starting position and resup-
plying their stock of building material while other robots continue building.
This approach takes advantage of the fact that Alg. 2 maintains an accessi-
ble region A, which always allows robots to return to the starting position
without having to make additional depositions.

A distributed implementation of this strategy that requires only local coor-
dination between robots is shown in Fig. 6(a). It consists of three behavioral
states. In follow mode a robot moves toward the goal and starts following
any other robots that are not in resupply mode. When it senses an obstacle
it switches to executing Alg. 2. Robots execute Alg. 2 until they run out
of building material and switch to a resupply mode. When a robot is in re-
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Fig. 7 Simulation of parallel adaptive ramp building. Parameters are the same as in
Fig. 6. (a) Behavioral state diagram for parallel ramp building. Robots with unlimited
supplies of building material execute Alg. 2 until they become stuck. (b) Final structure
(333 simulation steps) of multiple robots working concurrently. If a robot becomes stuck,

it is treated as a obstacle by other robots.

supply mode other robots cease following it and instead let the resupplying
robot pass. The robot moves back toward the starting point where its stock of
building material is restored. Once the resupply is finished, the robot switches
back to follow mode.

Compared to a single robot resupplying this cooperative approach is faster
because the team can keep building while individual robots resupply, see
Tab. 1. The benefit of this strategy depends on the deposition capacity and
number of robots relative to the particular geometry of the problem. If the
time it takes a robot to resupply and return to the building site is shorter
than the time it takes all other robots to exhaust their building materials,
there is no benefit to adding more robots to the team or expanding their
capacity to carry building material, e.g. last line of Tab. 1.

If robots cannot pass one another, the locally reactive nature of the algo-
rithm can be used to treat spent robots as obstacles. The strategy is shown in
Fig 6(c). Similar to the previous case, it consists of three behavioral states.
The follow and ramp building modes are the same. Robots start in follow
mode and execute it until they sense an obstacle. When a robot runs out of
building material it enters stop mode, becomes inactive, and is treated as an
obstacle by other robots, Fig. 6(d). Strictly speaking, the correctness proof
Thm. 7 is no longer valid since robots cannot be resized like depositions, i.e.
it is possible for a depleted robot to violate the upper bound constraint used
in proving the stopping condition Thm. 6. However, if a robot occasionally
violates the upper bound, it simply creates a new one for subsequent deposi-
tions. As long as this bad behavior occurs rarely one would expect Alg. 2 to
still yield correct results, e.g. Fig. 6(d). Investigating the exact conditions for
termination with this execution model would be an interesting extension of
this work. Alternatively, the depleted robot could make additional moves to
optimize building progress or ensuring that it does not violate the invariant
upper bound.

In the second scenario, robots initially start distributed along the building
domain and execute Alg. 2 concurrently. For example, to build a large ramp
toward a beacon where multiple robots have been dropped along the con-
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(a) (b) (c)

Fig. 8 Scanning foam deposition mechanism. (a) A scanning carriage holds a downward
facing IR-distance sensor and mixing nozzle. Pressurized foam precursors are delivered to
the nozzle by flexible tubing. (b) Top, Initial obstacle before leveling deposition. Bottom,
final structure after deposition episode. (c) Cross sections of final structure. Each leveling
deposition episode represents one cone-like deposition in Alg. 2.

struction path. Each robot starts building a ramp. However, without initially
fulfilling starting condition (10) robots might become stuck, i.e. cannot move
to an appropriate place to make the next deposition, Fig. 7(b) right. Further,
without coordination one robot might deposit on another, Fig. 7(b) middle.
Despite these failures, if one robot initially fulfills (10) the process will suc-
cessfully complete. Other robots can provide speed up through parallelism
until they become stuck. This approach is similar to Fig. 6(c)(with a different
stopping condition) and illustrated in Fig. 7(a).

As the previous examples illustrate, the locally reactive nature of Alg. 2
can be exploited to create distributed cooperative construction strategies for
multiple robots. When structures are only modified by depositions, the proofs
carry over directly. When defunct robots are treated as part of the structure
Alg. 2 often works, but care must be taken to not repeatedly violate the
upper bound PK [hn].

4.3 Physical Implementation and Experimental Results

We built a remote controlled prototype robot, Fig. 1(b), and a scanning foam
deposition mechanism, Fig. 8(a), for testing solutions to the key technical
challenges presented by Alg. 2. The prototype shows that robots can, in
principle, build and navigate relatively large foam structures. The scanning
deposition mechanism demonstrates autonomous leveling behavior that can
be used to turn the physical construction problem into the simplified problem
solved by Alg. 2. The approach is to fix a path in the building domain and
run the adaptive ramp building algorithm along this 1 dimensional subspace.

One major challenge is designing a deposition mechanism and select-
ing an appropriate material [14]. The prototype robot and scanning depo-
sition mechanism both use two compartment syringes with mixing nozzles
(McMaster-Carr PN: 74695A11 with 74695A63, 7451A22 with 7816A32) and
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high expansion poly-urethane casting foam (US-Composites 2 lb foam) to
make amorphous depositions.

The scanning deposition mechanism consists of a mixing nozzle and dis-
tance sensor mounted on moving carriage, Fig 8(a). By running a Alg. 1 along
the direction of carriage travel (with K = 0, ǫ = 2 cm and d covering all of Q)
this mechanism autonomously creates a level structure from amorphous de-
positions. Mounting this mechanism on the front of a robot and treating each
leveling deposition episode as a single deposition in Alg. 2, turns the physical
construction problem into the simplified model. Viewed from the side, each
leveled line under the carriage represents the apex of a conical deposition.
Algorithm 2 simply picks the next point to level.

5 Conclusion

We developed a continuous model for amorphous depositions, and used it to
prove correctness of a distributed algorithm that solves the adaptive ramp
building problem. This example application illustrates how locally reactive
behavior and amorphous building material together can create reliable build-
ing behavior in unstructured terrain.

Adaptive ramp building can also serve as a base behavior for composing
more complicated behaviors. For example, it could guarantee accessibility to
locations where support structures need to be built. With the ability to con-
sistently encode virtual points in a group of robots, adaptive ramp building
could be used to build arbitrary (K-Lipschitz) structures by building ramps
to a carefully chosen set of virtual points: an approach we plan to explore.

There are a number of ways the presented algorithms could be improved.
Our presentation focuses on correctness, not optimality. Robots could be
much smarter about coordination between robots and selection deposition
points to maximize the volume of each deposition, especially if their sensing
radius was much larger than d. For implementations, it would also be worth-
while to explicitly consider different shape functions and structures that are
not well modeled as functions, i.e. have overhangs.

6 Proofs

Proof (Thm. 2). 2.1) Assume to the contrary that ∃x, y ∈ Q s.t.

|PK [h](x)− P [h](y)| > K|x− y|. (14)

Assume w.l.o.g. that PK [h](y) ≤ PK [h](x) and since PK [h] is a positive scalar
function |PK [h](x)−P [h]K(y)| = PK [h](x)−PK [h](y). Rearranging the terms
in (14) leads to the contradiction PK [h](x) − K|x − y| > PK [h](y), since
the max in PK [h](y), see (7), is taken over the entire domain, including x.
Therefore points violating the Lipschitz condition cannot exist in P [h]. ⊓⊔
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2.2) Assume to the contrary that there exists a point x ∈ Q s.t. PK [h](x) >
g(x) ≥ h(x). Since there cannot be equality between PK [h](x) and g(x) the
maximization in (7) must take its maximum value at some other point y ∈ Q.
Rearranging PK [h](x) = h(y)−k|x−y| > g(x) results in h(y)−g(x) > k|x−y|,
and since g > h g(y)− g(x) > k|x − y| which is a contradiction, as it would
violate the Lipschitz continuity of g. ⊓⊔

Proof (Thm. 5). First, note that P can be applied to non-continuous func-
tions, specifically continuous structures with a single discontinuous point. Let
h̃n,(φ,σ)(x) = hn(x) + (σ − hn(φ))δφx where δ denotes the Kronecker delta.

Next, since φ is in the search set of max for point PK [hn](x) in (7) hn(φ) ≤
σ = hn(φ) + ω ≤ PK [hn](φ), consequently

h̃n,(φ,σ) ≤ PK [hn]. (15)

Finally, since restricting y ∈ {x, φ} ⊂ Q in (7) results in the same expression

as (2) D[f(φ,σ), hn] = hn+1 ≤ PKD
[h̃n,(φ,σ)]. Thus, hn+1 ≤ PKD

[h̃n,(φ,σ)].

By Thm. 3 and assuming that KD > K, PKD
[h̃n,(φ,σ)] ≤ PK [h̃n,(φ,σ)]. To-

gether Thm. 2.2 and (15) imply that PK [h̃n,(φ,σ)] ≤ PK [hn], which results in

the series of relations hn+1 ≤ PK [h̃n,(φ,σ)] ≤ PK [hn]. And again, by Thm. 2.2
PK [hn+1] ≤ PK [hn]. However, hn+1 ≥ hn implies PK [hn+1] ≥ PK [hn], thus
PK [hn+1] = PK [hn]. By induction, PK [hn] = PK [h0]. ⊓⊔
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