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1 Abstract

Task-based parallel programming frameworks offer compelling productivity and
performance benefits for modern chip multi-processors (CMPs). At the same time,
CMPs also provide packed-SIMD units to exploit fine-grain data parallelism. Two
fundamental challenges make using packed-SIMD units with task-parallel
programs particularly difficult: (1) the intra-core parallel abstraction gap; and
(2) inefficient execution of irregular tasks. To address these challenges, we
propose augmenting CMPs with intra-core loop-task accelerators (LTAs). We
introduce a lightweight hint in the instruction set to elegantly encode loop-task
execution and an LTA microarchitectural template that can be configured at design
time for different amounts of spatial/temporal decoupling to efficiently execute both
regular and irregular loop tasks. Compared to an in-order CMP baseline, CMP+LTA
results in an average speedup of 4.2× (1.8× area normalized) and similar
energy efficiency. Compared to an out-of-order CMP baseline, CMP+LTA results
in an average speedup of 2.3× (1.5× area normalized) and also improves
energy efficiency by 3.2×. Our work suggests augmenting CMPs with lightweight
LTAs can improve performance and efficiency on both regular and irregular loop-task
parallel programs with minimal software changes.

2 Motivation

Loop-task parallelism is a common parallel pattern usually captured with the parallel
for primitive, where a loop task functor is applied to a blocked range. There are two
fundamental challenges that make using packed-SIMD units in this loop-task context
particularly difficult.
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. Intra-Core Parallel Abstraction Gap – Two fundamentally different parallel
abstractions reduce productivity: tasks for inter-core parallelism (e.g., TBB) and
packed-SIMD for intra-core parallelism (e.g., AVX). Auto-vectorization and explicit
vectorization are challenging to perform since tasks can be arbitrarily complex and
sizes/alignments are not known at compile time, potentially preventing
”multiplicative speedup”.

. Inefficient Execution of Irregular Tasks – Loop tasks are often complex with
nested loops and function calls, data-dependent control flow, indirect memory
accesses, and atomic operations compared to the scalar implementation.
Converting branches into arithmetic results in wasted work, extra memory
alignment and/or data transformations adds overhead, scatter/gather accesses
often have much lower throughput, and a less efficient algorithm may be required
for vectorization. All of these reasons derive from the fact that the
microarchitecture for packed-SIMD extensions is fundamentally designed to excel
at executing regular data parallelism as opposed to the more general loop-task
parallelism.
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In this paper, we propose intra-core loop-task accelerators (LTAs) to address these
challenges. A standard runtime schedules tasks across general purpose processors
(GPPs) and small software changes enable a GPP to use an LTA to accelerate
loop-task execution.

3 LTA Software

Programming Interface

// Element -Wise Vector -Vector Addition

// with LTA_PARALLEL_FOR Macro

void vvadd( int dest[], int src0[], int src1[], int size )

{

LTA_PARALLEL_FOR( 0, size , (dest ,src0 ,src1), ({

dest[i] = src0[i] + src1[i];

}));

}

The LTA PARALLEL FOR macro generates an indirect function call in-place with
runtime management code around it. The destination of the indirect function call is
the following loop task function.

// The Loop -Task Function Generated by the Macro

void task_func( void* a, int start , int end , int step=1 )

{

args_t* args = static_cast <args_t*>(a);

int* dest = args ->dest;

int* src0 = args ->src0; int* src1 = args ->src1;

for ( int i = start; i < end; i += step )

dest[i] = src0[i] + src1[i];

}

In general, a loop task is a four-tuple of a function pointer, an argument pointer, and
the start/end indices of the range.

ISA Extension: jalr.lta

jalr.lta  $rd, $rs

$rs $a0 $a1 $a2 $a3

*loop_task_func *args 0 N step

We propose a new jalr.lta instruction that has the same semantics as normal indirect
function call jalr, but serves as a hint to the underlying hardware that the function has
the special signature of loop task.

LTA-Enabled Work-Stealing Runtime

The LTA-enabled work-stealing runtime still recursively partitions loop tasks into
subtasks to facilitate load balancing until the range is less than the core task size, but
then uses the jalr.lta instruction. If an LTA is available, the GPP can potentially use the
LTA to further partition the core task into µtasks, each responsible for a smaller range
of iterations. The LTA groups µtasks into task groups which execute on a set of
µthreads in lockstep (i.e., same instruction), exploiting structure for efficient execution.
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If an LTA is not available (GPP 2 in the above diagram), a jalr.lta can be treated as a
standard jalr executing on the GPP. This approach requires minimal changes to a
standard work-stealing runtime and practically no changes to the parallel program.
Compare this to the significant software changes required to combine task-parallel
programming and packed-SIMD extensions.

4 LTA Hardware

Spatial and Temporal Task Coupling
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5 Cycle-Level Evaluation

We utilize a co-simulation framework with gem5 and PyMTL, a Python-based
hardware modeling framework. The cycle-level models for LTAs were implemented in
PyMTL. Each core and its LTA share the L1 caches and all cores share the L2 cache.
We simulate a bare-metal system with system call emulation. We ported 16 C++
application kernels to a MIPS-like architecture. We used a cross-compiler based on
GCC-4.4.1, Newlib-1.17.0, and the GNU standard C++ library. Application kernels
were either ported from Problem Based Benchmark Suite (PBBS) or developed
in-house to create a suite with diverse task-level and instruction-level characteristics.

Performance vs. HW Resource
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128-µthread LTA with aggressive front-end, eight memory ports, and eight LLFUs.
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128-µthread LTA with realistic front-end, eight memory ports, and eight LLFUs.
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32-µthread LTA with realistic front-end, eight memory ports, and eight LLFUs.
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32-µthread LTA with realistic front-end, two memory ports, and eight LLFUs.
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Chip-Multiprocessor(CMP) with LTA
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Compared to CMP-IO, CMP+LTA improves average raw performance by up to 4.2×,
performance per area by 1.8× (excluding the L2), and energy efficiency by 1.1×.
Compared to a more aggressive CMP-O3, CMP+LTA improves performance by 2.3×,
performance per area by 1.5× (excluding the L2), and energy efficiency by 3.2×.

Using the jalr.lta instruction closes the intra-core parallel abstraction gap, and allows
porting the kernels from TBB implementations with minimal changes. A single
implementation is written and compiled once, then executed on a system with any
combination of GPPs and homogeneous or heterogeneous LTAs.
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