
Using Intra-Core Loop-Task Accelerators to Improve the
Productivity and Performance of Task-Based Parallel Programs

Ji Kim Shunning Jiang Christopher Torng Moyang Wang
Shreesha Srinath Berkin Ilbeyi Khalid Al-Hawaj Christopher Batten

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{ jyk46, sj634, clt67, mw828, ss2783, bi45, ka429, cbatten }@cornell.edu

ABSTRACT
Task-based parallel programming frameworks offer compelling pro-
ductivity and performance benefits formodern chipmulti-processors
(CMPs). At the same time, CMPs also provide packed-SIMD units
to exploit fine-grain data parallelism. Two fundamental challenges
make using packed-SIMD units with task-parallel programs partic-
ularly difficult: (1) the intra-core parallel abstraction gap; and (2) in-
efficient execution of irregular tasks. To address these challenges,
we propose augmenting CMPs with intra-core loop-task accelerators
(LTAs). We introduce a lightweight hint in the instruction set to el-
egantly encode loop-task execution and an LTA microarchitectural
template that can be configured at design time for different amounts
of spatial/temporal decoupling to efficiently execute both regular
and irregular loop tasks. Compared to an in-order CMP baseline,
CMP+LTA results in an average speedup of 4.2× (1.8× area normal-
ized) and similar energy efficiency. Compared to an out-of-order
CMP baseline, CMP+LTA results in an average speedup of 2.3×
(1.5× area normalized) and also improves energy efficiency by 3.2×.
Our work suggests augmenting CMPs with lightweight LTAs can
improve performance and efficiency on both regular and irregular
loop-task parallel programs with minimal software changes.

CCS CONCEPTS
• Software and its engineering → Runtime environments; •
Computer systems organization→Multicore architectures;
Single instruction, multiple data;

KEYWORDS
task-parallel programming frameworks; work-stealing run-times;
programmable accelerators

ACM Reference Format:
J. Kim, S. Jiang, C. Torng, M. Wang, S. Srinath, B. Ilbeyi, K. Al-Hawaj, and C.
Batten. 2017. Using Intra-Core Loop-Task Accelerators to Improve the Pro-
ductivity and Performance of Task-Based Parallel Programs . In Proceedings
of The 50th Annual IEEE/ACM International Symposium on Microarchitecture,
Boston, MA, USA, October 14-18, 2017 (MICRO’17), 15 pages.
https://doi.org/10.1145/3123939.3123987

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO’17, October 14-18, 2017, Boston, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123987

1 INTRODUCTION
Task-based parallel programming frameworks are one of the most
popular ways to exploit increasing thread counts in CMPs (e.g., In-
tel’s Cilk Plus [29, 41], Intel’s Threading Building Blocks (TBB) [30,
58], and others [5, 10, 36, 40, 56, 57]). Task-based frameworks use a
software runtime to dynamically map many tasks to fewer threads.
Programming with high-level tasks, as opposed to directly using
low-level threads, offers many productivity and performance ben-
efits including: an elegant encoding of fine-grain parallelism, im-
plicit synchronization of serial and parallel regions, efficient load-
balancing of tasks across threads, and portable performance across
a wide range of CMPs.

Packed-SIMD extensions are commonly used in CMPs (e.g., AVX2
in Intel’s Haswell [50], AVX512 in Intel’s Xeon Phi [31], NEON
in ARM’s Cortex processors [26, 27], and MIPS’s SIMD exten-
sions [11]). In this work, we focus on a subset of task parallelism
called loop-task parallelism that can potentially be mapped both
across cores and to intra-core packed-SIMD extensions. Loop-task
parallelism is a common parallel pattern usually captured with the
“parallel for” primitive, where a loop task functor is applied to a
blocked range. Loop-task parallelism is more flexible than fine-grain
loop-level parallelism, but less general than coarse-grain (possibly
nested/recursive) task-level parallelism. We argue there are two
fundamental challenges that make using packed-SIMD units in this
context particularly difficult.

Challenge #1: Intra-Core ParallelAbstractionGap – Packed-
SIMD extensions provide a low-level abstraction of operations on
packed data elements exposed to programmers via compiler intrin-
sics or “auto-vectorization”. Unfortunately, auto-vectorization does
not always guarantee optimal vectorization in real applications [48].
Programmers are forced to use explicit vectorization [19, 24, 38],
i.e., annotating vectorizable loops, explicit SIMD datatypes, SIMD-
aligned memory accesses, converting branches into arithmetic, con-
verting array-of-structs into struct-of-arrays, and annotating non-
overlapping arrays. These optimizations are challenging to perform
in loop-task parallel programs, since tasks can be arbitrarily com-
plex and task sizes/alignments are not known at compile time. More
importantly, this approach requires the programmer to use two
fundamentally different parallel abstractions: tasks for inter-core
parallelism and packed-SIMD for intra-core parallelism. Ultimately,
this challenge reduces programmer productivity and can potentially
prevent “multiplicative speedup” (i.e., the speedup of combining a
task-based parallel runtime with packed-SIMD does not result in
the product of each technique’s speedup in isolation).

Challenge #2: Inefficient Execution of Irregular Tasks –
Loop tasks are often complex with nested loops and function calls,
data-dependent control flow, indirect memory accesses, and atomic

MICRO’17, October 14-18, 2017, Boston, MA, USA J. Kim et al.

memory operations. Even assuming a programmer overcomes the
first challenge and is able to map these irregular tasks to packed-
SIMD extensions, the overall performance is likely to be disappoint-
ing for many reasons: converting branches into arithmetic results
in wasted work, extra memory alignment and/or data transfor-
mations adds overhead, scatter/gather accesses often have much
lower throughput, and a less efficient algorithm may be required
for vectorization. All of these reasons derive from the fact that the
microarchitecture for packed-SIMD extensions is fundamentally
designed to excel at executing regular data parallelism as opposed
to the more general loop-task parallelism. Ultimately, this challenge
further reduces programmer productivity and usually prevents mul-
tiplicative speedup.

Section 2 explores these challenges using our experiences map-
ping regular and irregular applications to CMPs. In this paper, we
propose intra-core loop-task accelerators (LTAs) to address these
challenges. A standard runtime schedules tasks across general pur-
pose processors (GPPs) and small software changes enable a GPP
to use an LTA to accelerate loop-task execution. Although packed-
SIMD applications can be rewritten to use an LTA, we still see
benefit in including packed-SIMD units to manually exploit very
fine-grain data parallelism with maximum efficiency.

Closing the Intra-Core Parallel AbstractionGap – Section 3
describes the novel LTA software/hardware interface, which is
based on adding a new hint in the instruction set that embeds the
loop-task abstraction into the hardware for acceleration. This hint
elegantly encodes loop-task execution by explicitly identifying indi-
rect function calls with a predefined function signature. Leveraging
the hint instruction requires only minor changes to a standard
work-stealing runtime and enables a programmer to use a single
parallel abstraction both across and within cores.

Efficiently Executing both Regular and Irregular Tasks –
Section 4 describes how an LTA’s execution of tasks can be coupled
in either space or time (similar to the lock-step temporal and/or
spatial execution used in SIMDmicroarchitectures), and we propose
a task-coupling taxonomy to motivate our own design-space ex-
ploration. We describe a detailed LTA microarchitectural template
which can be configured at design time for different amounts of
spatial/temporal decoupling. Increased task decoupling can poten-
tially enable better performance when executing irregular tasks, but
also requires additional area and energy. One of the key research
questions we seek to answer in this paper, is whether designers
should favor spatial or temporal task decoupling when designing
LTAs in a relatively resource constrained context.

Our approach is partly inspired by the success of general-purpose
graphics processing units (GPGPUs) [8, 43]. GPGPUs mitigate the
intra-core parallel abstraction gap by providing a fine-grain thread-
based parallel abstraction in the programming model, instruction
set, and SIMT microarchitecture. Section 7.1 crystallizes the fun-
damental differences between a GPGPU and CMP+LTA across the
system architecture, intra-core parallel abstraction, and microar-
chitecture. However, this does raise the question: Are GPGPUs the
right choice to improve the performance of task-based parallel pro-
grams? To answer this question, we must remember that GPGPUs
are first and foremost designed to accelerate graphics rendering and
as a consequence the entire GPGPU platform (e.g., massive tempo-
ral multithreading, lock-step SIMD execution, chip-level hardware
scheduling, limited on-chip private/shared caching) is designed

to excel when executing throughput-focused, regular programs
with tremendous parallelism (i.e., tens of thousands of very similar
threads). While some loop-task parallel programs may fall into this
category, many do not since they include: more modest parallelism,
a fine-grain mix of serial/parallel regions, and moderate to highly
irregular control and memory access patterns. Mapping irregular
loop-task workloads to GPGPUs requires significant software en-
gineering effort [9, 25, 28, 47, 54, 68] and the overall performance
can be mixed. At a high level, GPGPUs extend the intra-core SIMD
abstraction across the entire chip, while CMP+LTAs push the chip-
level task-parallel abstraction down into the core architecture.

Section 5 outlines our vertically integrated research methodol-
ogy, and Section 6 presents cycle-level performance, area, and en-
ergy results which suggest designers should favor spatial over tem-
poral task decoupling within resource constrained contexts. The pri-
mary contributions of this work are: (1) the LTA software/hardware
abstraction based on a new hint instruction that explicitly encodes
loop-task execution within standard software runtimes; (2) the LTA
microarchitectural template with a novel taxonomy for understand-
ing spatial/temporal task decoupling; and (3) a detailed design-space
exploration of the area, energy, and performance implications of
task decoupling and a comprehensive evaluation of CMP+LTA.

2 MOTIVATION
In this section, we describe our experiences traversing an appli-
cation development flow to improve performance on two modern
platforms: Intel Xeon E5-2620 v3 (Haswell) and Intel Xeon Phi
5110P in native mode (MIC). We develop both regular and irregular
loop-task parallel applications and summarize our experiences with
each platform to investigate both key challenges. Application de-
velopment begins with a scalar reference implementation on both
platforms before moving towards exploiting inter-core parallelism
through parallel frameworks (e.g., Intel TBB), exploiting intra-core
parallelism through packed-SIMD extensions (e.g., Intel AVX), or
combining approaches for ideally multiplicative speedups. Table 1
lists the application kernels used (see Section 5.1 for details) and
includes logical source lines of code (LOC; number of C++ state-
ments) as a proxy for programmer productivity. Figure 1 compares
the performance of the four different implementations on both the
Haswell and MIC platforms.

The tbb bars show the performance of the multi-threaded im-
plementation. For this study, we use TBB due to its productive
task-based programming model, library-based implementation, and
work-stealing runtime for fine-grain dynamic load balancing. On
the Haswell platform with 12 threads (6 cores), TBB improves per-
formance for both regular and irregular loop-task parallelism, as
seen by the 2–11× speedup across all kernels. However, the benefits
of multi-threading can be limited by memory bottlenecks; bfs-nd
and maxmatch rely on atomic memory operations that exacerbate
this issue. The MIC platform includes 60 relatively lightweight
single-issue in-order cores, longer cache-to-cache latencies, and no
shared last-level cache [7, 59]. Again, both regular and irregular
kernels scale very well with speedups in the range of 46–153×.
With four-way multithreading in each core, we observed a del-
icate performance tradeoff in the MIC platform between cache
locality and hiding microarchitectural latencies.Key Observation:
TBB is a productive framework. The LOC numbers are similar

Intra-Core Loop-Task Accelerators for Task-Based Parallel Programs MICRO’17, October 14-18, 2017, Boston, MA, USA

compared to the scalar implementation, and only approximately
one programmer-week was required to develop a relatively high-
performance parallel implementation of the benchmark suite.

The avx bars show the performance of the single-threaded im-
plementation with explicit vectorization using AVX. Vectorization
only targets regular loop-task parallelism within a core, as both
control and memory-access divergence can prevent lock-step ex-
ecution. On the Haswell platform, kernels with regular loop-task
parallelism (i.e., sgemm, dct8x8m, mriq, rgb2cmyk) see a speedup
of at least 2.5×, while kernels with irregular loop-task parallelism
(i.e., bfs-nd, maxmatch, strsearch) see negligible benefits. Similarly
for the MIC platform, the regular kernels show speedups in the
range of 1.4–32×, while irregular kernels have no speedup. Because
vectorization primarily increases compute throughput, memory
bottlenecks can still limit performance. Note that on the Haswell
platform, naive vectorization with #pragma simd yielded speedups
of less than 1.10× across all seven kernels. Maximally utilizing
the SIMD units required numerous manual code changes to opti-
mize/annotate alignment, the control flow, data structure layout,
and memory aliasing [3, 19, 24]. Key Observation: Although AVX
can improve performance for regular loop-tasks, we found the
required manual optimizations greatly reduced productivity. Im-
plementing, testing, and tuning kernels for AVX took multiple
programmer-weeks for the full suite. No amount of manual opti-
mization improved performance for irregular loop-tasks.

The tbb-avx bars show the performance of TBB combined with
explicit vectorization using AVX. Regular loop-task parallel applica-
tions can sometimes combine the two approaches for multiplicative
speedup. On the Haswell platform, sgemm achieves a close-to-ideal
multiplicative speedup of 63×. However, combining TBB and AVX
can sometimes worsen performance, as in dct8x8m and mriq, for
several reasons. First, task partitioning with TBB can interfere with
explicit vectorization with AVX: vectorization might fail even if
SIMD-multiple task sizes are specified because TBB cannot guaran-
tee exact task sizes at compile time. Second, vector-optimizations to
enable AVX can limit load balancing with TBB: eliminating control
divergence during vectorization may eliminate opportunities for
load balancing by superficially equalizing the work across the SIMD
width. MICs are designed to accelerate applications with immense
regular loop-task parallelism, so performance depends heavily on
maximally utilizing the SIMD units. Results for regular kernels on
the MIC platform show much less than the expected multiplicative
speedup and also some slowdown. For both platforms, irregular
kernels show no benefit. Key Observation: Besides not guaran-
teeing better performance, combining TBB with AVX negates the
productivity of the former. It took multiple programmer-weeks of
manual optimization to vectorize our original TBB implementations
for similar LOC as avx. In addition, despite using the same soft-
ware framework, optimizing the MIC platform required non-trivial
re-tuning for thread counts, task sizes, and algorithm restructuring.

This study provides evidence for the two key challenges in-
volved in exploiting intra-core parallelism in loop-task parallel
programs on the Haswell and MIC platforms. The Intra-Core Paral-
lel Abstraction Gap: Using either TBB in isolation or packed-SIMD
extensions in isolation can provide performance improvement de-
pending on the application, but unfortunately, combining these two
parallelization strategies is challenging, reduces programmer pro-
ductivity, and results in less than the desired multiplicative speedup.

Name Suite Input scalar tbb avx tbb-avx

sgemm I 2K×2K float matrix 22 26 53 56
dct8x8m I 518K 8×8 blocks 58 63 128 62†
mriq I 262K-space 2K pnts 28 35 76 78
rgb2cmyk I 7680×4320 image 20 17 70 69
bfs-nd [65] rMatG_J5_10M 27 48 29‡ 51‡
maxmatch [65], I randLocG_J5_10M 22 36 24‡ 38‡
strsearch I 512 strs, 512 docs 35 42 38‡ 45‡

Table 1: Application Kernels – I = in-house implementation. The
last six columns show logical source lines of code (LOC). †Lower
LOC because programming model does not support using the more
efficient LLM algorithm [46]. ‡Only auto-vectorization, since ex-
plicit vectorization resulted in no improvement.

sgemm

dct8x8m
mriq

rgb2cmyk
bfs-

nd

maxmatch

str
search

0

5

10

15

20

H
as

w
el

l
S

p
ee

d
u

p

63

sgemm

dct8x8m
mriq

rgb2cmyk
bfs-

nd

maxmatch

str
search

1

10

100

M
IC

 S
p
ee

d
u
p
 (

lo
g
 s

ca
le

)scalar tbb avx tbb-avx

Figure 1: Performance Comparison of Various Implementa-
tions on Haswell and MIC Platforms – Normalized to each re-
spective scalar (non-vectorized single-threaded) implementation.
Haswell = Intel Xeon E5-2620 v3 (12 cores, AVX2/256b); MIC =
Intel Xeon Phi 5110P (60 cores, AVX-512); avx = ICC v15.0.3 with
explicit/auto-vectorization [48]; tbb = TBB v4.3.3.

Inefficient Execution of Irregular Tasks: Despite significant effort
mapping irregular tasks to packed-SIMD extensions, irregular ker-
nels show disappointing performance. These challenges motivate
our interest in a new intra-core loop-task accelerator specifically
designed to enable loop-task parallel applications to seamlessly
exploit both inter- and intra-core parallel execution resources and
produce truly multiplicative speedups.

3 USING LTAS TO CLOSE THE INTRA-CORE
PARALLEL ABSTRACTION GAP

The LTA software/hardware interface closes the intra-core parallel
abstraction gap by adding a lightweight hint in the instruction set
that directly embeds the loop-task parallel abstraction into the hard-
ware for accelerated execution. This section describes the minimal
changes required for a standard work-stealing runtime to leverage
the new interface.

This work uses the parallel_for primitive to express loop
tasks, where a loop task is a functor applied across a range of
loop iterations (see Figure 2(a)). More specifically, a loop task is
a four-tuple of a function pointer, an argument pointer, and the
start/end indices of the range. Figure 2(b) illustrates the loop-task
function generated in this example, which is applied to the range
⟨0, size⟩. The step argument is hidden from the application-level
programmer but provides flexibility in the microarchitecture (see
Section 4).

MICRO’17, October 14-18, 2017, Boston, MA, USA J. Kim et al.

1 void vvadd(int dest[], int src0[], int src1[], int size) {
2 LTA_PARALLEL_FOR(0, size, (dest,src0,src1), ({
3 dest[i] = src0[i] + src1[i];
4 }));
5 }

(a) Element-Wise Vector-Vector Addition with Macro

1 void task_func(void* a, int start, int end, int step=1) {
2 args_t* args = static_cast<args_t*>(a);
3 int* dest = args->dest;
4 int* src0 = args->src0; int* src1 = args->src1;
5 for (int i = start; i < end; i += step)
6 dest[i] = src0[i] + src1[i];
7 }

(b) Loop-Task Function Generated by Macro

Figure 2: LTA Programming API – A parallel_for construct
is used to express loop-tasks that can be exploited across cores
and within a core. We use a preprocessor macro in our current
LTA runtime, since our cross-compiler does not yet support C++11
lambdas.

We have developed our own TBB-inspired task-based work-
stealing runtime. Although we could have extended a commercial
runtime such as TBB itself, developing our own runtime ensures we
have detailed visibility and insight into all aspects of the software
stack. Our runtime uses state-of-the-art techniques to efficiently dis-
tribute tasks across cores. It employs child-stealing, Chase-Lev task
queues [12], and occupancy-based victim selection [16]. Section 5.2
validates that our runtime is comparable to both TBB and Cilk Plus
for the specific features supported by LTAs. Figure 3 illustrates how
a standard work-stealing runtime recursively partitions loop tasks
into subtasks to facilitate load balancing. Tasks are partitioned until
the range is less than the core task size at which point the subtask
is called a core task. The runtime uses a core task size of N /(k × P),
where N is the size of the initial range, k is a scaling factor, and P
is the number of cores. Increasing k generates more core tasks with
smaller ranges (better load balancing, higher overhead), whereas
decreasing k generates fewer core tasks with larger ranges (worse
load balancing, lower overhead). In this work, we found k = 4 to
be a reasonable design point based on sensitivity studies.

The primary change required in an LTA-enabled work-stealing
runtime is in how the runtime executes each core task. A tradi-
tional runtime uses an indirect function call (i.e., jalr) on the core
task’s function pointer with the given range and argument pointer,
while an LTA-enabled runtime uses a new jalr.lta instruction. A
jalr.lta is still an indirect function call with the same semantics
as a jalr, except that it specifies a loop-task function pointer with
the special signature in Figure 2(b). A jalr.lta hints that hardware
can potentially use an LTA to further partition the core task into
micro-tasks (µtasks), each responsible for a smaller range of itera-
tions (see Figure 3). The LTA groups µtasks into task groups which
execute on a set of micro-threads (µthreads) in lockstep (i.e., same
instruction), exploiting structure for efficient execution. If an LTA
is not available, a jalr.lta can be treated as a standard jalr. This
approach requires minimal changes to a standard work-stealing
runtime and practically no changes to the parallel program. Com-
pare this to the significant software changes required to combine
task-parallel programming and packed-SIMD extensions.

0 127 *func *args

0 63 *func *args

0 31 *func *args 32 63 *func *args 64 95 *func *args 96 *func *args

64 *func *args

parallel_for

steal steal

steal

core task

task

task task

core taskcore taskcore task

GPP 1 LTA
jalr.lta

GPP 0 LTA
jalr.lta

GPP 3 LTA
jalr.lta

GPP 2

127

127

32-35 36-39
task group μtask

M
an

ag
ed

 b
y

So
ftw

ar
e

Ru
nt

im
e

M
an

ag
ed

 b
y

H
ar

dw
ar

e

μthread μthread μthread μthread μthread μthread μthread μthread

44-4740-43 48-51 52-55 56-59 60-63
task group task grouptask group

Figure 3: LTA Task Partitioning – Runtime partitions tasks into
core tasks and dynamically distributes core tasks to GPPs. A core
task is responsible for a range of loop iterations. The GPP sends
the core task to an LTA using the jalr.lta instruction. The LTA
further partitions a core task into µtasks. A µtask is responsible for
a smaller range of loop iterations. The LTA groups µtasks into task
groups. Task groups execute in lockstep on a set of µthreads.

4 USING LTAS TO EFFICIENTLY
EXECUTE BOTH REGULAR AND
IRREGULAR LOOP TASKS

In this section, we describe an LTA microarchitecture that im-
plements the jalr.lta instruction to achieve true multiplicative
speedups for both regular and irregular applications. While the LTA
microarchitecture is partly inspired by the success of GPGPUs, a key
LTA design decision will focus on spatial/temporal task decoupling.
Coupled task execution means µtasks are executed in lockstep in
space and/or time; decoupled task execution means µtasks can slip
relative to each other in space and/or time.

4.1 LTA Task-Coupling Taxonomy
An LTA partitions a core task into µtasks which are then mapped
to µthreads. We will use terminology from traditional vector pro-
cessors, where µthreads may be organized spatially across lanes
and temporally with chimes.

Figure 4(a) illustrates one approach for an 8-µthread LTA that
fully couples µthread execution in both space and time. All eight
µthreads must spatially execute in lockstep across the four lanes
and also temporally execute in lockstep across the two chimes. Fully
coupled execution enables the LTA to exploit arithmetic, control,
and memory structure across µtasks to amortize various control
area/energy overheads. At a high level, the task-management unit
(TMU) receives information about a core task from the GPP, di-
vides this core task into eight µtasks, and (compactly) sends the
µtasks to the fetch/dispatch unit (F). The hardware is responsible
for setting the argument registers for each µthread appropriately
(see Section 3). To expose potential memory structure across µtasks,
µthreads on neighboring lanes execute consecutive loop iterations.
To enable this, the hardware sets the range step value mentioned in
Section 3 so that µthreads execute iterations at a stride of eight. Fig-
ure 4(b) illustrates how the core task mapped to GPP 0 in Figure 3
might execute on this fully coupled LTA. The diagram shows how
the fully coupled LTA struggles with divergence and may also force
all µthreads to stall if any µthread stalls due to a RAW dependency

Intra-Core Loop-Task Accelerators for Task-Based Parallel Programs MICRO’17, October 14-18, 2017, Boston, MA, USA

0 1 2 3
4 5 6 7
0 1 2 3
4

5
6 7

0
1

4 5
2 3
6 7
2 38 9

10 1112 13
14 15

IMU
TMU

F F F F

μRF
μRF

μRF
μRF

F F F F

(d) μArch Sketch

(e) Execution

Fully Coupled in Space/Time Fully Decoupled in Space/Time
(c) Abstract View (f) Abstract View

μRF
μRF

μRF
μRF

0 1 2 3
4 5 6 7
0 1 2 3
4

5
6 7

0
1

4 5
2 3
6 7
2 38 9

10 1112 13
14 15

Space (Lanes)

Ti
m

e
(C

hi
m

es
)

A

B

C

A

A

B
C

A

A

B

D
F
E
A

A

B
A

B

C

A

A

B
C

A

A

B

A

A

B

IMU
Space (Lanes)

Ti
m

e
(C

hi
m

es
)

TMU

F

DMU

μRF
μRF

μRF

μRF
μRF

μRF
μRF

μRF

A

B

C

D

E

F

A(a) μArch Sketch

(b) Execution

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7

6 7
8 9 10 11

12 1314 15

0 1
4 5

2 3

2 3

0 1 2 3
4 5 6 7

D
F
E
A
A

0 1 2 3
4 5 6 7

stall

DMUDMU

Figure 4: Coupled vs. Decoupled LTAs – Two 8-µthread LTAs
each with 4 lanes, 2 chimes: (a–c) µthreads are fully coupled in
space and time; (d–f) µthreads are fully decoupled in space and
time. Letters denote instructions. In (b) and (e), µthreads 0, 1, 4, 5
execute instr A, B, C; µthreads 2, 3 execute instr A, B, D, E; µthreads
6, 7 execute A, B, F. Divergent control flows are shown in color.
IMU = instr mgmt unit; TMU = task mgmt unit; DMU = data mgmt
unit; F = fetch/dispatch unit; µRF = µthread regfile.

0 1

2 3

4 5

6 7 Lane
Group

4 Lanes
(execution in space)

2 Chimes
(execution

in time)

Chime
Group

μThread
Task
Group

Figure 5: Terminology
LTA-4/2x2/2 configuration:
8-µthread LTA w/ 4 lanes, 2
chimes, 4 task groups, 2 lane
groups, 2 chime groups.

or cache miss (marked with ×). Overall, fully coupled LTAs perform
well on regular loop-task parallelism, but can perform poorly on
irregular loop-task parallelism.

Figure 4(d) illustrates a different approach for an 8-µthread LTA
that fully decouples µthread execution in both space and time. Fig-
ure 4(e) illustrates how the same core task from the previous exam-
ple might execute on this fully decoupled LTA. All eight µthreads
execute in a completely decoupled fashion in space (i.e., lanes can
slip past other stalling lanes) and in time (i.e., chimes use fine-grain
vertical multi-threading to execute whenever ready). Decoupled ex-
ecution enables the LTA to better tolerate irregular control flow and
memory latencies since each µthread can independently fetch, de-
code, dispatch, issue, and execute instructions. Unfortunately, this
also means decoupled execution requires more front-end overhead.

The microarchitectures in Figure 4 are at two ends of a task-
coupling spectrum. To simplify our discussion, Figures 4(c,f) and 5
illustrate abstract diagrams of how µthreads are coupled within an
LTA. In Figure 5, the µthreads are divided into four task groups;
the two µthreads within the task group execute in lockstep in
both space and time. This example has two lane groups and two
chime groups, which can be executed either spatially or temporally
in a decoupled manner. For the remainder of this work, we ab-
breviate different LTA configurations with the following scheme:
num_lanes/num_lane_дroups x num_chimes/num_chime_дroups .
For example, Figure 5 represents an LTA-4/2x2/2 configuration (four
lanes organized into two lane groups, two chimes organized into
two chime groups).

4/1x8/1 4/2x8/1 4/4x8/1

4/1x8/2 4/2x8/2 4/4x8/2

4/1x8/4 4/2x8/4 4/4x8/4

4/1x8/8 4/2x8/8 4/4x8/8

8/1x4/1 8/2x4/1 8/4x4/1 8/8x4/1

8/1x4/2 8/2x4/2 8/4x4/2 8/8x4/2

8/1x4/4 8/2x4/4 8/4x4/4 8/8x4/4

2/1x4/1 2/2x4/1

2/1x4/2 2/2x4/2

2/1x4/4 2/2x4/4

4/1x2/1 4/2x2/1 4/4x2/1

4/1x2/2 4/2x2/2 4/4x2/2

M
or

e
Te

m
po

ra
l C

ou
pl

in
g

More Spatial Decoupling

(c) 8 Lanes x 4 Chimes (d) 4 Lanes x 8 Chimes

(b) 2 Lanes x 4 Chimes

(a) 4 Lanes x 2 Chimes

More Spatial Coupling

M
or

e
Te

m
po

ra
l D

ec
ou

pl
in

g

Figure 6: Task-Coupling Taxonomy – All possible spatial and
temporal task-coupling configurations for: (a) 4 lanes, 2 chimes;
(b) 2 lanes; 4 chimes; (c) 8 lanes, 4 chimes; (d) 4 lanes, 8 chimes. For
a given subfigure, most-coupled configuration is bottom left and
least-coupled configuration is top right.

Given this terminology, we can describe all possible spatial and
temporal task-coupling configurations for a given number of lanes
and chimes using a task-coupling taxonomy as shown in Figure 6.
Figure 6(a) shows the six configurations for the 8-µthread LTA we
have been discussing with four lanes and two chimes. Figure 6(b)
presents an alternative 8-µthread LTA with two lanes and four
chimes. Increasing the amount of temporal and/or spatial decou-
pling enables the microarchitecture to exploit more thread-level par-
allelism (TLP) across task-groups. However, increasing the amount
of temporal and/or spatial decoupling also means the microarchitec-
ture can exploit less data-level parallelism (DLP) within a task-group.
Varying the amount of spatial and/or temporal decoupling also has
a subtle impact on the ability of the microarchitecture to exploit
instruction-level parallelism (ILP) within a task group.

4.2 LTA Microarchitectural Template
We describe an LTA microarchitectural template that can be con-
figured at design time with any number of µthreads, lanes, lane
groups, chimes, and chime groups (see Figure 7). The template
enables design-space exploration of the task-coupling taxonomy
described in the previous section.

The task management unit (TMU) is the interface between the
GPP and LTA. The GPP sends a core task to the TMU via the
jalr.lta instruction. The TMU then divides the core task into
µtasks, groups these µtasks into task groups, and dynamically sched-
ules the task groups across lane groups using per-lane-group queues.
Upon receiving a new core task, the TMU initializes a pending task
group counter. Lane groups assert a completion bit when they com-
plete a task group. The TMU decrements the counter accordingly
and sends a completion message to the GPP if the counter is zero.
Currently, the GPP stalls until it receives this completion message.

MICRO’17, October 14-18, 2017, Boston, MA, USA J. Kim et al.

IMem Xbar

Lane
Group

PIB

DMem Xbar

FPU
Group

Lane
Group

Lane
Group

MDU
Group

FPU
Xbar

μTask
Queue

MDU
Xbar

PDB

Mem
Ports

IM
U

TM
U

DM
U

L1 Instruction Cache

Task Distributer

L1 Data
Cache

IU Seq

MD Interface FPU Interface

IU Seq IU Seq

Writeback Arbiter

WQ

WCU

DU

FU

FPU Xbar

DMU

IMUTMU

From
GPP

Lane
Group

4B

32B

y

SLFU

u

IQ

y y y

v v

z chimes per
chime group

y lanes per lane group

gc
chime
groups

μRF
μRF

μRF
μRF
μRF

μRF
μRF
μRF

μRF

MDU Xbar

gc

gcgc gc

gl
y SLFU y

gc

LSU y

RT PFB

PC

(a) Top-Level LTA Microarchitecture (b) Detail of Lane Group

Figure 7: LTA Template – IMU = instr
mngmt unit; TMU = task mngmt unit;
DMU = data mngmt unit; PIB = pending
instr buf; FPU = floating-point unit;
MDU = int mult/div unit; PDB = pending
data buf; FU = fetch unit; DU = dispatch
unit; IU = issue unit; Seq = chime
sequencer; SLFU = short-latency int
functional unit; LSU = load-store unit;
WCU = writeback/ commit unit; PC =
program counter; RT = rename table;
PFB = pending fragment buf; IQ = issue
queue; WBQ = writeback queue; µRF =
µthread regfile. l = tot num lanes; дl =
num lane groups; y = num lanes per lane
group (l/дl); c = tot num chimes; дc =
num chime groups; z = num chimes per
chime group (c/дc); u = num of dmem
ports; v = tot scalar FPUs/MDUs. Thick
green arrows = y worth of data per cycle.

A lane group executes the µtasks in a task group by using a set
of µthreads. Task groups begin execution by jumping to the loop-
task function pointer, but they must first initialize their argument
registers: argument pointer in a0, start index in a1, end index in
a2, and the range step value in a3. The range step value is set to
be the number of µthreads in a task group, resulting in the µtask
partitioning described in Section 4.1. Note that load balancing oc-
curs naturally as faster lane groups obtain more task groups from
the TMU. The level of spatial task coupling can be configured by
organizing the lanes into different numbers of lane groups, each
of which has an independent instruction stream and dynamically
arbitrates for shared resources. The level of temporal task coupling
can be configured by organizing the chimes into chime groups;
one chime group per lane executes a task group. If a lane group
supports multiple task groups, the execution of these task groups
can be interleaved on a cycle-by-cycle basis.

Each lane group is further composed of a fetch unit (FU), a de-
code/dispatch unit (DU), issue units (IUs), short-latency functional
units (SLFU), a load-store unit (LSU), and a writeback-commit unit
(WCU). These units are connected by latency-insensitive interfaces,
enabling a highly elastic pipeline. Recall that µthreads within a task
group must execute in lockstep in both space and time. In this case,
the frontend (e.g., FU, DU, IU) is amortized across the entire task
group and each instruction operates at a task-group granularity.
The FU has a program counter (PC) for each task group and an in-
struction from a different task group is fetched every cycle. The DU
can temporally multiplex task groups by dispatching instructions
from different task groups with round-robin arbitration. Note that
task groups must stall on conditional branches until all µthreads
in the task group have resolved the branch, but another indepen-
dent task group can be dispatched to hide this latency. Instructions
are dispatched in order within a chime group, but simple register
renaming is used to allow out-of-order writeback. Dispatched in-
structions wait in the in-order issue queue (IQ) until its operands
are ready to be bypassed or read from the register file. Operands

are read for the entire task group from a 6r3w register file with
per-µthread banks. The IU then sequences the chimes, which are
executed by the appropriate functional unit; the µthreads within a
chime are executed in parallel across the lanes. The SLFU handles
integer operations and branches, while the LSU handles memory
operations. The LSU can generate one memory request per lane
per cycle. With three IUs, each lane group effectively has three
issue slots. The WCU arbitrates writes from functional units to the
writeback queue (WQ) at chime granularities. The register file is
updated in order once the entire task group has written to the WQ.

Within a lane group, divergent branch resolutions within a task
group are handled by executing the not-taken µthreads (active) first
and pushing a task group fragment representing the taken µthreads
(inactive) into a pending fragment buffer (PFB) to be executed later.
Fragments in the PFB can reconverge with other fragments (in-
cluding the active fragment) with matching PCs. We implement a
two-stack PFB as described in [33, 39] that prioritizes fragments in
current loop iterations.

At the top-level, the L1 instruction cache port is managed by the
instruction management unit (IMU) and is always shared across the
lane groups. The IMU includes per-lane-group pending instruction
buffers (PIBs) that can store a cache-line-worth (32B) of instructions
to amplify the fetch bandwidth, and a crossbar with round-robin
arbitration. Provisioning an L1 data cache port, an integer multi-
ply/divide unit (MDU), and a floating-point unit (FPU) for each
lane can result in significant area overhead. In addition, highly
multi-ported L1 data caches can significantly increase the energy
per access. Thus, our template also enables sharing these expen-
sive resources both within and across lane groups using an FPU
crossbar, MDU crossbar, and a data-memory unit (DMU) at the top-
level. Figure 8 illustrates the technique used to share two memory
ports and a long-latency functional unit (LLFU = either an MDU or
an FPU) with a scalar throughput of four operations/cycle across
eight lanes. For the memory ports, the eight lanes are divided into
two groups regardless of the amount of spatial decoupling, and

Intra-Core Loop-Task Accelerators for Task-Based Parallel Programs MICRO’17, October 14-18, 2017, Boston, MA, USA

Su
it
e

lo
op

s
fu
nc

co
nd

in
d

am
os DynInst (M) Avg Size Intensity CMP LTA-8/1x4/1 LTA-8/4x4/1 LTA-8/1x4/4

Name Input S P T% Loop Iter slfu llfu mem IO IO O3 IF A IU M IF A IU M IF A IU M

mriq C 100-space, 256 pts F X 11 11 99% 256 23K 53% 20% 21% 13.9 4.0 4.1 0.04 32 0.24 0.0 0.14 32 0.31 0.0 0.13 32 0.22 0.0
sgemm C 256×256 fp matrix F 75 76 99% 576 131K 47% 19% 21% 110.7 3.7 4.0 0.03 32 0.21 3.5 0.13 32 0.31 0.2 0.13 32 0.21 3.5
bilateral C 256×256 image F 26 27 99% 66K 409 25% 51% 16% 60.0 4.0 3.6 0.03 31 0.20 0.6 0.14 31 0.19 1.3 0.13 31 0.17 1.4
dct8x8m C 782 8x8 blocks F X 55 55 99% 50K 1096 4% 64% 30% 58.6 3.9 3.8 0.03 31 0.09 26.6 0.13 32 0.15 18.6 0.13 32 0.09 27.8
nbody P 3DinCube_1000 F R X 92 93 99% 1000 31K 18% 43% 33% 224.2 3.7 3.7 0.04 30 0.16 0.3 0.14 31 0.20 0.4 0.13 30 0.16 0.8
radix-2 P exptSeq_500K_int F X X 57 69 81% 46 92K 59% 0% 33% 84.0 1.2 1.0 0.04 30 0.06 37.8 0.14 30 0.09 37.4 0.13 30 0.06 37.6
rgb2cmyk C 1380×1080 image F X 43 43 99% 1380 31K 47% 0% 39% 52.4 3.4 2.6 0.04 29 0.13 8.4 0.15 30 0.19 8.8 0.13 30 0.11 16.4
radix-1 P randomSeq_1M_int F X X 93 104 94% 229 74K 57% 0% 33% 140.4 2.3 2.1 0.05 26 0.07 33.3 0.18 28 0.11 32.4 0.15 27 0.06 33.1
maxmatch P randLocG_E5_400K W X X X 23 49 94% 1.7M 19 58% 0% 19% 184.4 4.3 1.6 0.05 25 0.06 9.6 0.18 27 0.10 12.0 0.15 27 0.05 12.0
dict P exptSeq_1M_int W X X X 39 51 99% 451K 25 66% 0% 19% 90.9 3.5 1.8 0.06 20 0.13 6.6 0.19 26 0.13 13.7 0.16 26 0.08 10.5
bfs-nd P randLocG_J5_150K F X X X 23 55 81% 36K 99 56% 0% 26% 115.8 1.8 1.4 0.07 17 0.05 13.9 0.23 21 0.09 11.8 0.19 21 0.05 13.5
rdups P trigrSeq_300K_int W X X X 36 56 99% 508K 23 56% 0% 21% 66.4 2.8 1.9 0.12 12 0.07 17.5 0.32 17 0.10 19.3 0.25 16 0.06 19.4
sarray P trigrString_200K F X X 68 75 86% 76K 50 56% 0% 29% 205.0 3.6 2.2 0.09 12 0.07 45.7 0.24 19 0.10 41.3 0.21 19 0.07 45.4
bfs-d P randLocG_J5_150K F X X X 23 35 95% 50K 75 56% 0% 26% 115.8 2.4 1.6 0.11 11 0.04 12.5 0.32 15 0.06 10.9 0.25 17 0.03 12.8
strsearch C 210 strs, 210 docs W X X 20 20 99% 210 49K 57% 0% 19% 29.9 3.3 3.4 0.20 6 0.08 0.7 0.55 10 0.10 0.7 0.27 15 0.13 0.7
mis P randLocG_J5_400K W X X X 14 32 99% 400K 27 52% 0% 25% 56.0 2.2 1.1 0.25 5 0.03 20.1 0.58 9 0.05 18.5 0.48 8 0.03 11.8
knn P 2DinCube_10K F R X X 35 43 33% 9867 716 17% 32% 37% 57.0 1.5 1.3 0.21 5 0.03 9.3 0.42 11 0.06 9.5 0.43 9 0.05 11.8

Table 2: Application Kernels – Apps roughly organized from more regular to more irregular. Suite: P = PBBS [65], C = custom; Loop-task
contains: inner loops (F = for loop in addition to loop due to line-5 in Figure 2(b), W = while loop), func = function calls (R = recursive),
cond = data-dependent conditionals, ind = indirect memory accesses, amos = atomic memory operations; DynInsts = dyn. insts in millions (S
for serial impl, P for parallel impl); T% = percent of total dyn. insts in tasks; Avg Loop Size = avg num of iterations/loop; Avg Iter Size = avg
num of dyn. insts/iteration; { slfu, llfu, mem } Intensity = percent of total dyn. insts that are {short-latency arith, long-latency arith, mem
operation}; IO = num of cycles (in millions) of optimized single-threaded impl on in-order core; CMP-IO = speedup of multi-threaded impl on
4 in-order cores over single in-order core; -O3 = speedup of multi-threaded implementation on 4 out-of-order cores over single O3 core; IF =
ratio of total inst fetches to total dyn. insts; A = avg active µthreads in LTA per dyn. inst; IU = effective issue slot utilization; M = misses in
L1 D$ per thousand dyn. insts; LTA-8/1x4/1: fully coupled in space and time; LTA-8/4x4/1: decoupled in space; LTA-8/1x4/4: decoupled in time.

ARBARB ARB ARB ARBARB ARB

SEQ

L x4

ARB ARB

L x2

ARB

L x1L x4

ARB

L x2

ARB

L x1

ARB

L x1

ARB

L x1

ARB

(a) (b) (c) (d)

(e) (f) (g) (h)

M M M M M M M M

Figure 8: Connecting the LTA to Memory Ports and LLFUs
Illustrates how eight lanes are connected to two memory ports and
four long-latency functional units (LLFUs) for entire range of
spatial decoupling. ARB = Arbiter; SEQ = Sequencer; M = data
cache port; L xN = N -wide LLFU.

the four lanes within each group dynamically arbitrate for one of
the two memory ports (see Figure 8(a–d)). For the LLFUs, the fully
coupled configuration uses a sequencer to serialize an eight-wide
chime across a four-wide LLFU (see Figure 8(e)). The decoupled
configurations use limited dynamic arbitration for an LLFU where
the width of the LLFU matches the number of lanes per lane group
(see Figure 8(f–h)). We use grant-and-hold arbitration for memory
ports and LLFUs to ensure an entire task group is processed to-
gether. The DMU includes pending data buffers (PDBs) that can
store a task-group-worth of 4B words to facilitate access/execute
decoupling.

5 EXPERIMENTAL METHODOLOGY
In this section, we describe the details of our vertically integrated
research methodology spanning applications, runtime, architecture,
and VLSI. The 24 LTA configurations primarily used in this study
are shown in Figure 6(c–d).

5.1 Application Kernels
We ported 16 C++ application kernels to a MIPS-like architecture.
We used a cross-compiler based on GCC-4.4.1, Newlib-1.17.0, and
the GNU standard C++ library. Application kernels were either
ported from PBBS [65] or developed in-house to create a suite with
diverse task-level and instruction-level characteristics (see Table 2).
We include two datasets for radix, since it exhibits strong data-
dependent variability. See [65] for more detailed descriptions of
the PBBS kernels. bilateral performs a bilateral image filter with
a lookup table for the distance function and an optimized Taylor
series expansion for calculating the intensity weight; we parallelize
across output pixels. dct8x8m calculates the 8x8 discrete cosine
transform on an image using the LLM algorithm [46]; we paral-
lelize across 8x8 blocks. mriq is an image reconstruction algorithm
for MRI scanning; we parallelize across the output magnetic field
gradient vector. rgb2cmyk performs color space conversion on an
image and is parallelized across the rows. strsearch implements the
Knuth-Morris-Pratt algorithm with a deterministic finite automata
to search a collection of byte streams for a set of substrings. The
search is parallelized by having all threads search for the same
substrings in different streams. The deterministic finite automata
are also generated in parallel. sgemm performs a single-precision
matrix multiplication for square matrices using a standard blocking
algorithm; we parallelize across blocks.

MICRO’17, October 14-18, 2017, Boston, MA, USA J. Kim et al.

sgemm dct8x8m mriq bfs-nd maxmatch strsearch

Cilk+ 10.42 3.32 7.53 2.29 1.61 11.18
TBB 11.76 3.33 8.83 1.77 1.73 9.97
LTA 10.32 3.38 9.54 1.77 2.05 11.22

Table 3: Comparison of Various Runtimes on x86 – Speedup
over optimized single-thread implementation using 12 threads on
Linux server with 2 Intel Xeon E5-2620 v3 processors. Cilk+ = uses
Cilk Plus’s cilk_for; TBB = uses TBB’s parallel_for; LTA = x86
port of our runtime. All apps compiled with Intel ICC 15.0.3.

5.2 Validating the LTA Runtime
To show that our runtime is competitive with other popular task-
based work-stealing runtimes, Table 3 compares the x86 port of our
runtime to Intel Cilk Plus and Intel TBB using the same setup as in
Section 2. The results verify that the LTA runtime has comparable
performance to Intel TBB and is slightly faster in some cases because
it is lighter weight (e.g., no C++ exceptions or task cancellation).

5.3 Cycle-Level Methodology
Weutilize a co-simulation frameworkwith gem5 [6] and PyMTL [45],
a Python-based hardware modeling framework. Table 4 lists the
corresponding gem5 configurations. IO describes the baseline scalar
in-order processor, and O3 describes the baseline four-way super-
scalar out-of-order processor. Multi-core configurations have four
cores. The cycle-level models for LTAswere implemented in PyMTL.
Each core and its LTA share the L1 caches and all cores share the L2
cache. We simulate a bare-metal system with system call emulation.
In Table 2, we supplement our evaluation with detailed information
from our cycle-level simulation regarding fetch, µthread activity, is-
sue slot utilization, and memory system sensitivity for three specific
LTA configurations.

5.4 Area/Energy Modeling
Area/energy are estimated using component/event-based model-
ing based on Verilog RTL implementations of previously devel-
oped designs with structures comparable to those used in LTAs,
FG-SIMT [33] and XLOOPS [67], which we synthesize and place-
and-route using Synopsys DesignCompiler and IC Compiler with
a TSMC 40 nm LP standard-cell library characterized at 1 V. We
identify the dominant contributors to inform our component- and
event-based models. We model SRAMs with CACTI [53].

We use FG-SIMT to model the area of a lane-group, DMU, and
D$ crossbar network; and we use XLOOPS to model the area of the
IMU and TMU. The dominant contributors are the L1 caches (33%),
regfiles (26%), LLFUs (20%), SLFUs (10%), and assorted queues (7%).
We model the D$ crossbar network area by scaling quadratically
with the number of ports. We do not have RTL for the rename
table, reorder buffer, and arbitration logic, so we model them us-
ing flop-based 1r1w regfiles, integer ALUs, and muxes. Lacking O3
RTL, we determine a reasonable scaling factor for O3 vs. IO with-
out L1 caches (≈5×) based on McPAT [42] and publicly available
VLSI comparisons from ARM (A15 vs. A7 [13]), RISC-V (BOOM vs.
Rocket [4]), and Alpha (21064 vs. 21164 vs. 21264 [35]). After includ-
ing the same L1 memory system for both IO and O3, we estimate
that O3 increases area by roughly 50% which is likely conservative.
Detailed estimates are shown in Table 5.

Tech TSMC 40nm LP, 500MHz nominal frequency

ALU 4/10-cyc int mul/div, 6/6-cyc FP mul/div, 4/4-cyc FP add/sub

IO 1-way, 5-stage in-order, 32 phys regs

O3 4-way, out-of-order, 128 phys regs, 32-entry IQ and LSQ,
96-entry ROB, tournament branch pred

Caches 1-cycle, 2-way, 32KB L1I, 1-cycle 4-way 32KB L1D per core
with 16-entry MSHRs; 20-cycle, 8-way, shared 1MB L2;
MESI protocol

OCN crossbar topology, 2-cycle fixed latency

DRAM 200ns fixed lat, 12.8GB/s bandwidth SimpleMemory model

Table 4: Cycle-Level System Configuration

Area LTA Area LTA Area LTA Area LTA Area

IO 0.61 4/1x8/1 1.29 4/1x8/2 1.31 4/1x8/4 1.33 4/1x8/8 1.37
O3 0.91 4/2x8/1 1.32 4/2x8/2 1.33 4/2x8/4 1.35 4/2x8/8 1.40

4/4x8/1 1.32 4/4x8/2 1.33 4/4x8/4 1.35 4/4x8/8 1.40
8/1x4/1 1.39 8/2x4/1 1.41 8/4x4/1 1.41 8/8x4/1 1.42
8/1x4/2 1.40 8/2x4/2 1.42 8/4x4/2 1.42 8/8x4/2 1.43
8/1x4/4 1.42 8/2x4/4 1.44 8/4x4/4 1.45 8/8x4/4 1.45

Table 5: LTA Single-Core Area Estimates All area numbers are
in mm2 and include the L1 I$ and D$. See Section 5.4 for details.

We developed 70+ energy microbenchmarks to measure per-
access energies for the dominant contributors (e.g., caches, regfiles,
SLFUs/LLFUs) using gate-level simulation. Net activity factors are
combined with post-PAR layout using Synopsys PrimeTime PX for
power estimates.We built an event/component-basedmodeling tool
that parses event traces from cycle-level simulations to estimate
energy. Events in the LTA and O3 with no corresponding RTL were
estimated using carefully tuned McPAT component-level models.

6 EVALUATION
In this section, we first explore the effect of spatial/temporal task
decoupling on LTA performance under gradually reduced hardware
resources within the context of a single core. We then evaluate the
performance, area, and energy of realistic 32-µthread single-core
LTA configurations, and we use the most promising single-core
LTAs to show the potential for multiplicative speedup in CMP+LTA.

6.1 General Trends for Performance vs.
Hardware Resources

Each subplot in Figure 9 shows the speedup of a single core aug-
mented with various LTA configurations over the serial version
of the benchmark executing on IO. The first row is for a regular
benchmark (mriq), the second row is for an irregular benchmark
(sarray), and the third row is the geometric mean speedup across
all benchmarks. Each column makes a different assumption about
the available hardware resources (left has more resources, right is
more resource constrained). The x-axis in each subplot indicates the
number of task groups. Different LTA configurations can provide
the same number of task groups in different ways (e.g., LTA-8/4x4/1
has four task groups via spatial decoupling, while LTA-8/1x4/4 has
four task groups via temporal decoupling). The black line (circles)
indicates the general trend for spatial decoupling in isolation, the

Intra-Core Loop-Task Accelerators for Task-Based Parallel Programs MICRO’17, October 14-18, 2017, Boston, MA, USA

1 2 4 8 16 32 64 128

4
8

12
16
20
24

m
ri

q
S

p
ee

d
u
p

(a) aggressive

1 2 4 8 16 32 64 128

4
8

12
16
20
24

(b) w/ single-dispatch

1 2 4 8 16 32

4
8

12
16
20
24

(c) w/ 32 uthread

1 2 4 8 16 32

4
8

12
16
20
24

(d) w/ 2 port

1 2 4 8 16 32

4
8

12
16
20
24

(e) w/ 4 LLFU

1 2 4 8 16 32 64 128

1

2

3

4

5

6

sa
rr

ay
S

p
ee

d
u
p

1 2 4 8 16 32 64 128

1

2

3

4

5

6

1 2 4 8 16 32

1

2

3

4

5

6

1 2 4 8 16 32

1

2

3

4

5

6

1 2 4 8 16 32

1

2

3

4

5

6

1 2 4 8 16 32 64 128
Num. Task Groups

2

4

6

8

G
eo

.
M

ea
n

S
p
ee

d
u
p

1 2 4 8 16 32 64 128
Num. Task Groups

2

4

6

8

1 2 4 8 16 32
Num. Task Groups

2

4

6

8

1 2 4 8 16 32
Num. Task Groups

2

4

6

8

1 2 4 8 16 32
Num. Task Groups

2

4

6

8

io

o3

8/*xC/1

8/1xC/*

8/2xC/2

8/2xC/4

8/2xC/8

8/2xC/16

8/4xC/2

8/4xC/4

8/4xC/8

8/4xC/16

8/8xC/2

8/8xC/4

8/8xC/8

8/8xC/16

Figure 9: Performance vs. Available Hardware Resources – mriq (regular) and sarray (irregular) are shown along with the geometric
mean of speedup across all apps. (a) has 128 µthreads, with an unrealistic eight memory ports, eight LLFUs, and aggressive multi-dispatch
task group scheduler; (b) is the same as (a) except with a conservative single-dispatch frontend; (c) is the same as (b) except with 32 µthreads;
(d) is the same as (c) except with two memory ports; (e) is the same as (d) except with four LLFUs; C = 16 for (a–b); C = 4 for (c–e).

red line (squares) indicates the general trend for temporal decou-
pling in isolation, and the remaining lines indicate the trends for
combining both spatial and temporal decoupling.

128-µthread LTA with Aggressive Front-End – The results
in Figure 9(a) assume a configuration with heavily over-provisioned
resources. The LTA includes 128 µthreads across eight lanes, eight
L1 data cache ports, eight LLFUs, and an aggressive front-end mean-
ing each task group has its own 1KB PIB (very unrealistic) and each
lane-group pipeline supports: fetching from three PIBs per cycle,
decoding three instructions per cycle, dispatching three instruc-
tions from different task groups per cycle, and increased writeback
and commit bandwidth. The fully coupled LTA-8/1x16/1 is able to
achieve 18× speedup on mriq and 3.5× speedup on sarray over IO
for several reasons. LTA-8/1x16/1 has 8× more memory ports and
LLFUs enabling LTA-8/1x16/1 to exploit DLP in space (i.e. executing
the same instruction across all eight lanes on different data). Criti-
cally, LTA-8/1x16/1 is able to keep those resources busy even with a
single task group. A single instruction can keep an issue unit busy
for 16 cycles, giving the dispatch unit ample opportunity to issue
an independent instruction to a different issue unit.

For very regular benchmarks like mriq, increased spatial decou-
pling has little impact on performance compared to LTA-8/1x16/1.
The dispatch unit chooses the same schedule regardless of how
the lanes are grouped spatially. Interestingly, increased temporal
decoupling does improve performance compared to LTA-8/1x16/1.
The aggressive front-end exploits ILP and TLP across task groups
to better utilize the three issue units, and scheduling flexibility is
enhanced because fewer chimes per task group means issues units
are occupied less avoiding structural hazards. For more irregular
benchmarks like sarray with both control and memory divergence,
spatial and/or temporal decoupling can increase performance sig-
nificantly since each task group can slip relative to the other task
groups. Structural hazards due to the large chime in spatially de-
coupled configurations has less of an impact owing to fewer LLFU
operations in irregular benchmarks. The overall results suggest

that in a resource unconstrained environment, designers should
favor temporal over spatial decoupling, especially if a workload is
dominated by regular applications.

128-µthread LTA with Realistic Front-End – The results in
Figure 9(b) assume the same configuration as in Figure 9(a) except
with a more realistic front-end. Each task group has a single-cache-
line PIB (32B) and each lane-group pipeline only supports fetching,
decoding, and dispatching one instruction per cycle. Again, LTA-
8/1x16/1 can keep multiple issue units busy even with a single-
instruction dispatch unit because it exploits DLP in time and ILP.

For very regular benchmarks like mriq, increased spatial decou-
pling has a slight negative impact on performance due to increased
L1 instruction cache bandwidth pressure. A modest increase in tem-
poral decoupling marginally improves performance; we can exploit
TLP across task groups, but we also have 4–8 chimes per task group
to exploit DLP in time. More extreme temporal decoupling actually
reduces performance; while we can still exploit TLP across task
groups to interleave independent instructions, this comes at the
expense of decreasing issue-unit utilization. The results for sar-
ray clearly demonstrates the benefit of decoupling to improve the
performance on irregular benchmarks even with a more realistic
front-end. The overall results suggest that with a more realistic
front-end, designers should favor spatial decoupling or a moderate
amount of temporal decoupling.

32-µthread LTA with Realistic Front-End – The results in
Figure 9(c) assume the same configuration as in Figure 9(b) except
with 32 µthreads instead of 128 µthreads across eight lanes. While
the speedups for the 128-µthread configurations are impressive, the
area overhead due to a large register file, rename table, and other
data structures means the area normalized performance would
likely be more modest. For the fully coupled configuration, fewer
µthreads reduce the performance on mriq from 18× to 14×, but the
performance on sarray is largely unchanged. While 128 µthreads
can effectively exploit DLP on regular benchmarks, many of these
µthreads are actually inactive on irregular benchmarks.

MICRO’17, October 14-18, 2017, Boston, MA, USA J. Kim et al.

1 2 4 8 16 32
1
3

6

9
mriq

1 2 4 8 16 32
1
3
6
9

12
sgemm

1 2 4 8 16 32
1
3

6

9

12
bilateral

1 2 4 8 16 32

1
2
3
4
5

dct8x8m

1 2 4 8 16 32
1
3

6

9

nbody

1 2 4 8 16 32

1

2

3
radix-2

1 2 4 8 16 32

1
2

4

6
rgb2cmyk

1 2 4 8 16 32

1

2

3

4
radix-1

1 2 4 8 16 32

1
2

4

6

8
maxmatch

1 2 4 8 16 32

1
2

4

6

8
dict

1 2 4 8 16 32

1

2

3

4
bfs-nd

1 2 4 8 16 32

1

2

3

4
rdups

1 2 4 8 16 32

1
2
3
4
5

sarray

1 2 4 8 16 32

1
2

4

6

bfs-d

1 2 4 8 16 32

1
2

4

6
strsearch

1 2 4 8 16 32

1
2
3
4
5

mis

1 2 4 8 16 32

1

2

3
knn

1 2 4 8 16 32

1
2
3
4
5

Geo. Mean

1 2 4 8 16 32

1

2

3
Area. Norm. io

o3

8/*x4/1

8/1x4/*

8/2x4/2

8/2x4/4

8/4x4/2

8/4x4/4

8/8x4/2

8/8x4/4

Figure 10: Performance of Single 8-lane 32-µthreads LTA –
All results are normalized against scalar in-order core. Apps roughly
organized from regular to irregular.

1 2 4 8 16 32

1
2

4

6

8
mriq

1 2 4 8 16 32
1
3

6

9
sgemm

1 2 4 8 16 32
1
3

6

9

12
bilateral

1 2 4 8 16 32

1

2

3

4
dct8x8m

1 2 4 8 16 32
1
3

6

9
nbody

1 2 4 8 16 32

1

2

3
radix-2

1 2 4 8 16 32

1
2
3
4
5

rgb2cmyk

1 2 4 8 16 32

1

2

3
radix-1

1 2 4 8 16 32

1
2

4

6

maxmatch

1 2 4 8 16 32

1
2

4

6
dict

1 2 4 8 16 32

1

2

3
bfs-nd

1 2 4 8 16 32

1

2

3
rdups

1 2 4 8 16 32

1

2

3

4
sarray

1 2 4 8 16 32

1
2
3
4
5

bfs-d

1 2 4 8 16 32

1
2
3
4
5

strsearch

1 2 4 8 16 32

1

2

3
mis

1 2 4 8 16 32

1

2

3
knn

1 2 4 8 16 32

1

2

3

4
Geo. Mean

1 2 4 8 16 32

1

2
Area. Norm. io

o3

4/*x8/1

4/1x8/*

4/2x8/2

4/2x8/4

4/2x8/8

4/4x8/2

4/4x8/4

4/4x8/8

Figure 11: Performance of Single 4-lane 32-µthreads LTA –
All results are normalized against scalar in-order core. Apps roughly
organized from regular to irregular.

With fewer µthreads, moderate temporal decoupling no longer
has any benefit because the chimes per task group quickly becomes
too short to effectively utilize the issue units. The results for sar-
ray show that moderate temporal decoupling can no longer even
improve the performance of irregular benchmarks. The overall re-
sults suggest that with a more realistic front-end and number of
µthreads, designers should favor spatial over temporal decoupling.

32-µthread LTA with Fewer Memory Ports and LLFUs –
The results in Figure 9(d) assume the same configuration as in Fig-
ure 9(c) except with two instead of eight L1 data cache ports, and
the results in Figure 9(e) further assume only four LLFUs. Figure 8
illustrates how the memory ports and LLFUs are shared across the
eight lanes. An eight-ported L1 data cache would add significant
area and energy overhead, and LLFUs are one of the larger sub-
systems in the LTA, so these final two configurations are more
realistic. For LTA-8/1x4/1 fewer memory ports and LLFUs reduce
the performance on mriq from 14× to 8×, but the performance on
sarray is only reduced from 4× to 3×. The data memory ports and
LLFUs are usually less utilized in the more irregular benchmarks.

Increased spatial decoupling now improves performance even on
regular benchmarks likemriq because all lanes arbitrate for memory
ports causing latency divergence. In LTA-8/1x4/1, the LSU or LLFU
interface must wait for the entire task group to finish to preserve
lock-step execution. Spatial decoupling can better tolerate these
dynamic latencies. Temporal decoupling continues to produce no
meaningful performance improvement. Any improved tolerance to
control or memory divergence is mitigated by the inability to keep
multiple issue units busywith just 1–2 chimes per task group. Notice
that the results in Figure 9(d) and (e) are similar. With a realistic
number of memory ports we can no longer keep eight LLFUs busy,
motivating our final hardware configuration. The overall results
continue to suggest that with more realistic hardware resources,
designers should favor spatial over temporal decoupling.

6.2 Detailed Per-Benchmark Performance
Figure 10 shows the performance of all 16 benchmarks across all 12
configurations in Figure 6(c) assuming a single-instruction dispatch
unit, 32 µthreads, two memory ports, and four LLFUs. The bench-
marks are sorted from more regular to less regular based on the
average number of active µthreads in the fully coupled LTA-8/1x4/1
configuration (see Table 2). For regular applications and two task
groups (e.g., LTA-8/2x4/1, LTA-8/1x4/2) temporal and spatial decou-
pling can have similar performance (e.g., mriq, sgemm, bilateral,
nbody, radix). However, once we increase the number of task groups
to four or more, spatial decoupling almost always provides simi-
lar or better performance compared to temporal decoupling alone.
The effective issue unit utilization data in Table 2 (see IU columns)
helps explain one of the primary benefits of spatial vs. temporal
decoupling. Across most of the benchmarks, LTA-8/4x4/1 is able to
achieve higher issue unit utilization compared to LTA-8/1x4/4. More
generally, one of the key costs of decoupling in either space or time
is an increase in the number of instruction fetches. Table 2 shows
the number of instruction fetches is approximately 3× for LTA-
8/4x4/1 and LTA-8/1x4/4 compared to LTA-8/1x4/1. This motivates
the need for PIBs in the IMU to provide instruction fetch band-
width amplification; simply having each lane group fetch scalar
instructions from the L1 instruction cache would not be effective.
Configurations which combine both spatial and temporal decou-
pling achieve intermediate performance, and only rarely exceed
spatial decoupling alone (e.g., strsearch, mis).

Figure 11 shows the performance across all 12 configurations
in Figure 6(d) with four lanes. These configurations still have two
memory ports and four LLFUs. While reducing the number of lanes
does decrease performance in some benchmarks, the impact is
not as great as one might expect owing to the already reduced
number of memory ports and LLFUs. The overall trends are similar,
although there are occasions where combining a fully spatially

Intra-Core Loop-Task Accelerators for Task-Based Parallel Programs MICRO’17, October 14-18, 2017, Boston, MA, USA

decoupled configuration with moderate temporal decoupling (e.g.,
LTA-4/4x8/2) can further improve performance on some irregular
benchmarks. It is interesting to note that eight task groups (i.e.,
four µthreads per task group) achieves the peak average speedup
in both the eight- and four-lane configurations.

Based on these results, it seems clear that designers should favor
spatial over temporal decoupling assuming limited resources. Our
conclusions might vary if we assumed support for superscalar exe-
cution, high-throughput data caches, and plenty of area for LLFUs.
However, LTA is as an intra-core accelerator that can augment tra-
ditional CMPs which must prioritize many different workloads and
usage scenarios. This motivates our focus on complexity-effective
designs which can achieve high performance with limited resources.

6.3 Area and Energy Analysis
Figure 10 and Figure 11 also show the geometric mean of the per-
formance across all benchmarks normalized by the area of each
configuration. The highest performing LTA configurations are able
to achieve approximately a 2× improvement in area-normalized per-
formance compared to IO and 1.3× improvement in area-normalized
performance compared to O3. Note that this is a conservative anal-
ysis, since these results are relative to the serial version of the
benchmarks running on IO and O3. As we shall see in the next
section, we would need to use the parallel versions to scale across
multiple IO and O3 cores.

Figure 12 shows the absolute energy breakdowns for the IO and
O3 baselines and the most promising LTA configurations for mriq
and sarray. The fully coupled LTA-8/1x4/1 configuration is able to
amortize front-end energy across many µthreads onmriq but at the
cost of increased register file energy. Spatial decoupling reduces
some of this amortization by increasing the number of instruction
cache accesses and adding additional energy overhead for PIBs. The
LTA energy for sarray is higher than IO since control divergence
results inmore instruction fetch accesses and PIBmanagement over-
head across all configurations. The LTA data cache energy is higher
since the parallel runtime (used even on single-core LTA) results
in an increased number of memory accesses. Figure 13 shows the
energy efficiency vs. performance for all benchmarks normalized to
both IO and O3. LTA is less energy efficient compared to a single IO
partly because the serial version simple does less work compared to
the parallel version used with the LTA configurations. Regardless,
even in the single-core context, LTA is able to achieve higher raw
performance and area-normalized performance compared to IO,
and is able to achieve higher raw performance, area-normalized
performance, and energy efficiency compared to O3.

6.4 CMP vs. CMP+LTA
Figure 14 shows performance of a quad-core system with an LTA
per core. The results confirm that CMP+LTA achieves multiplicative
speedups by exploiting loop-task parallelism both across and within
cores. Referring back to Figure 10 and Figure 11, the geometric
mean speedup of the most promising LTAs is 4.0–5.0× over IO,
and using the runtime on CMP-IO yields an average speedup of
2.85× (see Table 2). We see that all LTAs are able to achieve close to
multiplicative speedups of 10–12×. Compared toCMP-IO,CMP+LTA
improves average raw performance by up to 4.2×, performance per
area by 1.8× (excluding the L2), and energy efficiency by 1.1×.

io o
3

4
/1

x
8

/1

4
/2

x
8

/1

4
/4

x
8

/1

4
/4

x
8

/2

8
/1

x
4

/1

8
/2

x
4

/1

8
/4

x
4

/1

8
/8

x
4

/1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) mriq (regular)

io o
3

4
/1

x
8

/1

4
/2

x
8

/1

4
/4

x
8

/1

4
/4

x
8

/2

8
/1

x
4

/1

8
/2

x
4

/1

8
/4

x
4

/1

8
/8

x
4

/1

0
1
2
3
4
5
6
7
8

(b) sarray (irregular)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
n

er
g

y
 (

m
J)

icache

pib

tmu

front

rf

rt/rob

slfu

llfu

lsu

dcache

Figure 12: Energy Breakdown

0 1 2 3 4 5 6 7 8 9 10 11
Performance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

E
n

er
g

y
 E

ff
ic

ie
n

cy

(a) Normalized to IO

0 1 2 3 4 5 6
Performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
(b) Normalized to O3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

io o3 4/4x8/1 4/4x8/2 8/4x4/1 8/8x4/1

Figure 13: Energy Efficiency vs. Performance – Each point
represents an application executing on a certain LTA configuration
normalized to the serial version.

Compared to a more aggressive CMP-O3, CMP+LTA improves raw
performance by 2.3×, performance per area by 1.5× (excluding the
L2), and energy efficiency by 3.2×. Note that theseCMP-IO andCMP-
O3 energy results are based on the parallel benchmarks running
on the multicore configurations as opposed to the serial versions
discussed in the previous section. In terms of productivity, using
the jalr.lta instruction closes the intra-core parallel abstraction
gap, and allows porting the kernels from TBB implementations
with minimal changes. A single implementation of the kernel can
be written and compiled once, then executed on a system with any
combination of GPPs and homogeneous or heterogeneous LTAs.

7 RELATEDWORK
In this section, we first compare GPGPUs and CMP+LTAs before
discussing recent research proposals that have attempted to address
the two key challenges discussed throughout this paper. To our
knowledge, LTA is one of the first proposals to address both of
these challenges for CMPs through a combination of instruction
set and microarchitectural design.

7.1 GPGPUs versus CMP+LTAs
Our approach is partly inspired by GPGPUs. GPGPUs use threads
as a unifying abstraction in the programming model, instruction
set, and microarchitecture. Recently, persistent threads (PT) has
been proposed to map task-based frameworks to GPGPUs. In this
scheme, the number of GPGPU threads is configured to equal the
number of hardware threads, eachwarp is treated as a single worker,

MICRO’17, October 14-18, 2017, Boston, MA, USA J. Kim et al.

mriq
sgemm

bilateral

dct8x8m
nbody

radix-2

rgb2cmyk
radix-1

maxmatch dict
bfs-n

d
rdups

sarray
bfs-d

strs
earch mis knn

Geo. M
ean

0

4

8

12

16

20

24

28

32

S
p

ee
d

u
p

3436 39 42 40 41 36 37 40
IO

CMP-IO

CMP-O3

CMP+LTA-4/4x8/1

CMP+LTA-4/4x8/2

CMP+LTA-8/4x4/1

CMP+LTA-8/8x4/1

Figure 14: Performance of CMP+LTA – Results are shown for baseline cores without/with LTAs on a 4-core system. All results are
normalized against the performance of a single in-order core for each kernel.

and workers implement a software runtime instead of using the
GPGPU’s hardware scheduler [25, 68]. However, PT re-introduces
the intra-core parallel abstraction gap since the programmer ex-
plicitly manages tasks between warps as well as data-parallelism
within a warp, and PT still struggles to efficiently execute irregular
tasks using SIMD resources. It is simply challenging to use GPGPUs
to accelerate irregular task-based parallel programs.

System Architecture – GPGPUs are designed from the ground
up to prioritize high-throughput execution of massively parallel
applications with tens of thousands of very similar threads. Both
discrete and integrated GPGPUs use an offload model, which in-
creases the minimum reasonable problem size. GPGPUs use hard-
ware scheduling of thread blocks between cores and a memory
system tuned for high-throughput rendering (e.g., tiny L1 caches,
potentially no shared last-level cache or chip-wide cache coherence,
large specialized scratchpad and texture memories). CMP+LTA
is fundamentally a CMP. It supports: hosted execution, intermin-
gling general-purpose serial code with parallel execution, diverse
multiprogramming, and different software schedulers/runtimes. A
CMP+LTA memory system is tuned for general-purpose software
with deeper, coherent cache hierarchies. CMP+LTA offers a balance
between low-latency and high-throughput execution.

Intra-Core ParallelAbstraction –GPGPUs use threadswithin
a core, while LTAs use loop tasks. This is a subtle, yet important dif-
ference. The jalr.lta instruction enables “serial execution,” mean-
ing a microarchitecture without an LTA can execute a jalr.lta
as a standard indirect function call. GPGPU’s thread model has
no such equivalent serial execution (at least at the instruction-set
level) since thread state is exposed in the architecture. GPGPU
just-in-time compilation can help, but also serves to reinforce the
differences between these approaches. An LTA supports a subset
of the GPP instruction set; a function can be compiled once and
called from either the GPP or the LTA. In addition, using loop tasks
enables the hardware to manage partitioning core tasks into µtasks
and to control the mapping of the iteration space.

Intra-Core Microarchitecture – GPGPUs include support for
managing thread divergence/reconvergence. LTAs also include such
support, but there are important microarchitectural differences.
GPGPUs are optimized for high-throughput and regular workloads;
each SM includes a large number of lanes with tens of warps with
1–2 chimes/warp, huge SRAM-based minimally ported register files,
dynamic operand collection [44], very deep execution pipelines,
and stack-based reconvergence [17]. LTAs are explicitly designed to

be tightly integrated with a GPP and include just a few task groups
to ensure small area overhead. This results in a very different mi-
croarchitecture with a small highly ported register file, shallow
execution pipelines, vector chaining, and PC-based reconvergence
via a PFB. LTA uses spatial decoupling, which has no equivalent
in commercial GPGPUs (although there have been research pro-
posals [64]), and LTAs use more temporal coupling than GPGPUs,
which enables hiding execution latencies with chimes instead of
interleaving warps.

In summary, while GPGPUs and CMP+LTAs have some high-
level similarities, each platform targets a very different application
domain. GPGPUs target massively parallel, regular applications
while CMP+LTAs target more general-purpose computing work-
loads. To reinforce this point, we ported the applications in Table 1
to CUDA, and we evaluated their performance on a NVIDIA Tesla
C2075 GPGPU. This required non-trivial programmer effort to man-
ually optimize control and memory divergence. The speedup rela-
tive to the CMP baseline from Figure 1 was: sgemm = 477×, dct8x8 =
59×, mriq = 132×, rgb2cmyk = 32×, bfs-nd = 4×, maxmatch = 1×,
strsearch = 5×. While we saw impressive results for regular kernels
(sgemm), irregular kernels saw very little speedup even with sig-
nificant manual optimization (strsearch). This is not too surprising
given a GPGPUs primary focus on exploiting massively regular
data parallelism.

7.2 Intra-Core Parallel Abstraction Gap
Most of the priorwork on the first challenge has focused on software-
only techniques. There has, of course, been significant work on
generally improving work-stealing runtimes [1, 2, 16, 20, 37], but
much of the work on leveraging packed-SIMD extensions in work-
stealing runtimes has required the programmer to use a task-based
abstraction across cores and then use explicit intra-core vectoriza-
tion. Intel Cilk Plus provides explicit array notation [29] and Intel
ISPC supports a SPMD programming model [15]. Both can be com-
piled to packed-SIMD extensions but require the programmer to
explicitly manage two separate parallel abstractions. One can also
view work on frameworks that attempt to unify CPU and GPGPU
execution (e.g, OpenCL [55], OpenMP [5], C++AMP [66]) asmaking
progress in closing the abstraction gap, but these frameworks use
offload models more suitable to GPGPUs and their ability to lever-
age packed-SIMD extensions is somewhat limited (especially for
irregular tasks). Indeed, case studies using OpenMP and OpenCL
illustrate the need to focus on regular loops and/or use explicit

Intra-Core Loop-Task Accelerators for Task-Based Parallel Programs MICRO’17, October 14-18, 2017, Boston, MA, USA

vectorization [49, 51]. Recent work by Ren et al. uses a separate
specification language to enable Cilk programs to take advantage
of packed-SIMD extensions in both the base case and recursive
steps in some limited instances [60, 61], but this work still requires
explicit vectorization to deal with the irregularity inherent in these
programs. Unlike LTA, binaries with packed-SIMD extensions can-
not be transparently executed serially, nor can they be executed on
architectures with a different packed-SIMD width. While we have
no doubt that the ingenuity of software researchers will continue
to close this abstraction gap using software-only solutions, in this
work we are essentially answering a different question: Can light-
weight changes to the instruction set and microarchitecture enable
a fundamental change in how we write loop-task parallel programs
such that they can seamlessly exploit both inter- and intra-core
parallel execution resources?

7.3 Inefficient Execution of Irregular Tasks
Figure 15 illustrates how we might generally position other ap-
proaches in our task-coupling taxonomy. There has been a tremen-
dous amount of work on enabling GPGPUs to better tolerate control
and memory divergence [14, 18, 22, 23, 52, 62]. Variable warp sizing
(VWS) explores spatial task decoupling by splitting a 32-thread
warp into 4-lane slices that can gang together [64]. Essentially,
VWS supports dynamically moving in our task-coupling taxonomy
at runtime. VWS does not explore the trade-offs involved with tem-
poral task coupling. While VWS provides further evidence for the
benefit of spatial task decoupling when executing irregular applica-
tions, it is still fundamentally a GPGPU technique. LTA is focused
on integration with CMPs, which leads to a very different system
architecture, parallel abstraction, and microarchitecture. Temporal
SIMT proposes single-lane lane groups with tight temporal cou-
pling in the context of a GPGPU, although this proposal has yet
to be fully evaluated [32]. There is less related work in efficiently
executing irregular tasks in the context of task-parallel runtimes
and packed-SIMD extensions. Other decoupled lane approaches do
not explore temporal task coupling nor how to integrate such accel-
erators into a standard work stealing runtime [67]. Other coupled
lane approaches [21, 33] struggle to achieve high performance on ir-
regular tasks, and do not address how to integrate such accelerators
into a work stealing runtime.

Although vector-threading (VT) looks to seamlessly intermingle
the vector and multithreaded architectural design patterns [34, 39],
VT still struggles with the intra-core parallel abstraction gap. High-
performance VT codes require significant use of vector memory
operations interleaved with vector-fetched blocks. [39] uses two
very different abstractions for inter-core (very simplistic thread
library) and intra-core (explicit vector memory operations and
vector-fetched blocks). Unlike jalr.lta which is just a hint, the
vfetch instruction requires an accelerator complicating application
porting. [39] shows VT performs quite poorly for “SIMT-like” pro-
grams because each vector-fetched block is for a single iteration,
while LTA focuses on hardware support for loop-tasks where each
µthread processes many iterations (and thus address computation,
shared constant loads are refactored out of the inner task loop).
[34] is decoupled in space and time (owing to its very different AIB
execution model), does not include any support for reconvergence
or memory coalescing, and requires a brand new compiler owing to
a completely new “AIB-with-clusters” ISA in vector-fetched blocks.

A

Spatial Decoupling
Less MoreTe

m
po

ra
l D

ec
ou

pl
in

g

B/F

C

LTA

Le
ss

M
or

e

D

E/H

G

Figure 15: Positioning Related Work
in Taxonomy – A = GPGPU/MICs use
spatial coupling w/ temporal decoupled
warps or control threads; B = traditional
vector (e.g., Tarantula [21]); C =
VWS [64]; D = temporal SIMT [32];
E = VT [34]; F = VT [39]; G = VLT [63];
H = XLOOPS [67].

Prior work on vector-lane threading (VLT) explores spatial de-
coupling (although not temporal decoupling) in traditional vector
architectures [63]. VLT also observes the trade-off between tight
coupling for regular codes vs. loose coupling for irregular codes. For
a fully spatially decoupled configuration, VLT is able to use each
lane to execute a scalar thread, but requires a relatively large 4KB
per-lane instruction cache. While LTA draws upon VLT’s insights,
the actual LTA microarchitecture is different in order to support the
new jalr.lta instruction which is a key contribution. VLT is fun-
damentally a multithreaded vector architecture, and suffers from
the intra-core parallel abstraction gap. [63] uses the Cray vectoriz-
ing compiler, but our experiences with Intel ICC auto-vectorizion
have been disappointing, probably due to our more “task-like” ap-
plications with many nested for/while loops, (recursive) function
calls, data-dependent conditionals, unstructured memory accesses,
and AMOs (see Table 2).

The LTA microarchitectural template leverages the best of prior
work on vector, SIMT, VT, and VLT to support a novel instruction
set with minimal software changes and enables broader design-
space exploration than prior work.

8 CONCLUSIONS
Augmenting a CMP with LTAs is a promising direction for improv-
ing the productivity (i.e., minimal software changes) and perfor-
mance (i.e., multiplicative speedup) of loop-task parallel programs.
The novel jalr.lta instruction illustrates the potential for directly
encoding task execution in the software/hardware interface to en-
able both traditional execution on GPPs and specialized execution
on LTAs. Our task-coupling taxonomy provides a simple way to
conceptualize the various approaches for decoupling task execu-
tion to improve performance on irregular programs. One of the key
conclusions of the work is that designers should consider favor-
ing spatial decoupling over temporal decoupling within resource
constrained contexts (e.g., limited number of µthreads, memory
ports, and LLFUs). We see LTAs as a first step towards accelerating
even more general parallel patterns in task-based frameworks (e.g.,
nested, recursive, and dynamic tasks).

ACKNOWLEDGMENTS
This work was supported in part by NSF CAREER Award #1149464,
NSF XPS Award #1337240, NSF CRI Award #1512937, NSF SHF
Award #1527065, AFOSR YIP Award #FA9550-15-1-0194, and dona-
tions from Intel, NVIDIA, and Synopsys. The authors acknowledge
and thank Scott McKenzie and Alvin Wijaya for their early work
on LTA RTL modeling, Jason Setter and Wei Geng for their work
on scalar processor PyMTL modeling, and David Bindel for access
to an Intel Xeon Phi 5110P coprocessor. We thank Dave Albonesi
and Adrian Sampson for their valuable feedback.

MICRO’17, October 14-18, 2017, Boston, MA, USA J. Kim et al.

REFERENCES
[1] Umut A. Acar, Arthur Chargeéraud, and Mike Rainey. 2013. Scheduling Parallel

Programs by Work Stealing with Private Deques. Symp. on Principles and practice
of Parallel Programming (PPoPP) (Feb 2013).

[2] Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. 2008.
Adaptive Work-stealing with Parallelism Feedback. ACM Trans. on Computer
Systems (TOCS) 26, 3 (Sep 2008), 7.

[3] Randy Allen and Steve Johnson. 1988. Compiling C for Vectorization, Paral-
lelization, and Inline Expansion. ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI) (Jun 1988).

[4] Krste Asanovic, David A. Patterson, and Christopher Celio. 2015. The Berkeley
Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parame-
terized RISC-V Processor. Technical Report. UCB/EECS-2015-167.

[5] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Fed-
erico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. 2009.
The Design of OpenMP Tasks. IEEE Trans. on Parallel and Distributed Systems
(TPDS) 20, 3 (Mar 2009), 404–418.

[6] Nathan Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 Simulator. SIGARCH Computer
Architecture News (CAN) 39, 2 (Aug 2011), 1–7.

[7] J. Bolaria. 2012. Xeon Phi Targets Supercomputers. Microprocessor Report (Sep
2012).

[8] Alexandar Branover, Denis Foley, and Maurice Steinman. 2012. AMD Fusion
APU: Llano. IEEE Micro 32, 2 (Mar/Apr 2012), 28–37.

[9] M. Burtscher, R. Nasre, and K. Pingali. 2012. A Quantitative Study of Irregular
Programs on GPUs. Int’l Symp. on Workload Characterization (IISWC) (Oct 2012).

[10] Colin Campbell, Ralph Johnson, Ade Miller, and Stephen Toub. 2010. Parallel
Programming with Microsoft .NET: Design Patterns for Decomposition and Coordi-
nation on Multicore Architectures (Patterns & Practices). Microsoft Press.

[11] Loyd Case. 2015. MIPS Broadens Reach with New Cores. Microprocessor Report
(Dec 2015).

[12] David Chase and Yossi Lev. 2005. Dynamic Circular Work-stealing Deque. Symp.
on Parallel Algorithms and Architectures (SPAA) (Jun 2005).

[13] Peter Clarke. 2013. How ARM’s Cortex-A7 Beats the A15. EE Times (Jul 2013).
http://www.eetimes.com/author.asp?section_id=36&doc_id=1318968.

[14] Sylvian Collange. 2011. Stack-less SIMT Reconvergence at Low Cost. Technical
Report HAL-00622654. ARENAIRE.

[15] Intel SPMD Program Compiler. 2015. DesignWare ARC Processor Cores. Online
Webpage. (2015). https://ispc.github.io.

[16] Gilberto Contreras and Margaret Martonosi. 2008. Characterizing and Improving
the Performance of Intel Threading Building Blocks. Int’l Symp. on Workload
Characterization (IISWC) (Sep 2008).

[17] Brett W. Coon and John Erik Lindholm. 2008. System and Method for Managing
Divergent Threads in a SIMD Architecture. US Patent 7353369. (Apr 2008).

[18] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Keer,
HaichengWu, and Sudhakar Yalamanchili. 2011. SIMDRe-Convergence at Thread
Frontiers. Int’l Symp. on Microarchitecture (MICRO) (Dec 2011).

[19] Neil Dickson, Kamran Karimi, and Firas Hamze. 2011. Importance of Explicit
Vectorization for CPU and GPU Software Performance. Journal of Computational
Physics (JCP) 230 (Jun 2011), 5383–5398. Issue 13.

[20] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and
Jarek Nieplocha. 2009. Scalable Work Stealing. Int’l Conf. on High Performance
Networking and Computing (Supercomputing) (Nov 2009).

[21] Roger Espasa, Federico Ardanaz, Joel Emer, Stephen Felix, Julio Gago, Roger
Gramunt, Isaac Hernandez, Toni Juan, Geoff Lowney, Matthew Mattina, and
André Seznec. 2002. Tarantula: A Vector Extension to the Alpha Architecture.
Int’l Symp. on Computer Architecture (ISCA) (Jun 2002).

[22] Wilson W.L. Fung and Tor M. Aamodt. 2011. Thread Block Compaction for Effi-
cient SIMT Control Flow. Int’l Symp. on High-Performance Computer Architecture
(HPCA) (Feb 2011).

[23] Wilson W.L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2009. Dynamic
Warp Formation: Efficient MIMD Control Flow on SIMD Graphics Hardware.
ACM Trans. on Architecture and Code Optimization (TACO) 6, 2 (Jun 2009), 1–35.

[24] Vekatraman Govindaraju, Tony Nowatzki, and Karthikeyan Sankaralingam. 2013.
Breaking SIMD Shackles with an Exposed Flexible Microarchitecture and the Ac-
cess Execute PDG. Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT) (Sep 2013).

[25] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A Study of Persistent
Threads Style GPU Programming for GPGPU Workloads. Innovative Parallel
Computing (InPar) (2012).

[26] Linley Gwennap. 2015. Cortex-A35 Extends Low End. Microprocessor Report
(Nov 2015).

[27] Linley Gwennap. 2015. Cortex-A57 is Most Efficient CPU. Microprocessor Report
(Feb 2015).

[28] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. 2011. Accelerating CUDA
Graph Algorithms at MaximumWarp. Symp. on Principles and practice of Parallel
Programming (PPoPP) (Feb 2011).

[29] Intel. 2013. Intel Cilk Plus Language Extension Specification, Version 1.2. Intel
Reference Manual. (Sep 2013). https://www.cilkplus.org/sites/default/
files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm.

[30] Intel. 2015. Intel Threading Building Blocks. Online Webpage. (2015). https:
//software.intel.com/en-us/intel-tbb.

[31] David Kanter. 2015. Knights Landing Reshapes HPC. (Sep 2015).
[32] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and

David Glasco. 2011. GPUs and the Future of Parallel Computing. IEEE Micro 31,
5 (Sep/Oct 2011), 7–17.

[33] Ji Kim, Christopher Torng, Shreesha Srinath, Derek Lockhart, and Christopher
Batten. 2013. Microarchitectural Mechanisms to Exploit Value Structure in Fine-
Grain SIMT Architectures. Int’l Symp. on Computer Architecture (ISCA) (Jun
2013).

[34] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian
Pharris, Jared Casper, and Krste Asanović. 2004. The Vector-Thread Architecture.
Int’l Symp. on Computer Architecture (ISCA) (Jun 2004).

[35] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen. 2003. Single-
ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power
Reduction. Int’l Symp. on Microarchitecture (MICRO) (Dec 2003).

[36] Doug Lea. 2000. A Java Fork/Join Framework. Java Grade Conference (Jun 2000).
[37] I-Ting Angelina Lee, Aamir Shafi, and Charles E. Leiserson. 2012. Memory-

Mapping Support for Reducer Hyperobjects. Symp. on Parallel Algorithms and
Architectures (SPAA) (Jun 2012).

[38] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. 2010. Debunking the 100X
GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU.
Int’l Symp. on Computer Architecture (ISCA) (Jun 2010).

[39] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christo-
pher Batten, and Krste Asanović. 2011. Exploring the Tradeoffs between Pro-
grammability and Efficiency in Data-Parallel Accelerator Cores. Int’l Symp. on
Computer Architecture (ISCA) (Jun 2011).

[40] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The Design of a
Task Parallel Library. Conf. on Object-Oriented Programming Systems Languages
and Applications (OOPSLA) (Oct 2009).

[41] Charles E. Leiserson. 2009. The Cilk++ Concurrency Platform. Design Automation
Conf. (DAC) (Jul 2009).

[42] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. Int’l Symp. on
Microarchitecture (MICRO) (Dec 2009).

[43] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. 2008. NVIDIA
Tesla: A Unified Graphics and Computer Architecture. IEEE Micro 28, 2 (Mar/Apr
2008), 39–55.

[44] Samuel Liu, John Erik Lindholm, Ming Y Siu, Brett W. Coon, and Stuart F. Ober-
man. 2010. Operand Collector Architecture. US Patent US7834881 B2. (Nov
2010).

[45] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A Unified
Framework for Vertically Integrated Computer Architecture Research. Int’l Symp.
on Microarchitecture (MICRO) (Dec 2014).

[46] C. Loeffler, A. Ligtenberg, and G. S. Moschytz. 1989. Practical Fast 1-D DCT
Algorithms with 11 Multiplications. Int’l Conf. on Acoustics Speech and Signal
Processing (May 1989).

[47] L. Luo, M. Wong, and W. Hwu. 2010. An Effective GPU Implementation of
Breadth-First Search. Design Automation Conf. (DAC) (Jun 2010).

[48] Saeed Maleki, Yaoqing Gao, Maria Garzaran, Tommy Wong, and David Padua.
2011. An Evaluation of Vectorizing Compilers. Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT) (Oct 2011).

[49] Matt Martineau, James Price, Simon McIntosh-Smith, and Wayne Gaudin. 2016.
Pragmatic Performance Portability with OpenMP 4.x. Int’l Workshop on OpenMP
(Sep 2016).

[50] Alberto J. Martinez, Atiq A. Bajwa, David L. Hill, Erik Hallnor, Hong Jiang, Martin
Dixon, Michael Derr, Mikal Hunsaker, Rajesh Kumar, Randy B. Osborne, Ravi
Rajwar, Ronak Singhal, Reynold D’Sa, Robert Chappell, Shiv Kaushik, Srinivas
Chennupaty, Stephan Jourdan, Steve Gunther, Tom Piazza, and Ted D. Kanter
Burton. 2014. Haswell: The Fourth-Generation Intel Core Processor. IEEE Micro
34, 2 (Mar/Apr 2014), 6–20.

[51] Simon McIntosh-Smith, Michael Boulton, Dan Curran, and James Price. 2014. On
the Performance Portability of Structured Grid Codes on Many-Core Computer
Architectures. Int’l Symp. on Supercomputing (ICS) (Jun 2014).

[52] Jiayuan Meng, David Tarjan, and Kevin Skadron. 2010. Dynamic Warp Subdivi-
sion for Integrated Branch and Memory Divergence Tolerance. Int’l Symp. on
Computer Architecture (ISCA) (Jun 2010).

[53] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. 2009.
CACTI 6.0: A Tool to Model Large Caches. (2009).

[54] R. Nasre, M. Burtscher, and K. Pingali. 2013. Morph Algorithms on GPUs. Symp.
on Principles and practice of Parallel Programming (PPoPP) (Feb 2013).

[55] OpenCL. 2011. OpenCL Specification, v1.2. Khronos Working Group. (2011).
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf.

Intra-Core Loop-Task Accelerators for Task-Based Parallel Programs MICRO’17, October 14-18, 2017, Boston, MA, USA

[56] OpenMP. 2013. OpenMP Application Program Interface, Version 4.0. OpenMP Ar-
chitecture Review Board. (Jul 2013). http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf.

[57] Oracle. 2015. Java API: ForkJoinPool. Online API Documenta-
tion. (2015). http://docs.oracle.com/javase/7/docs/api/java/util/
concurrent/ForkJoinPool.html.

[58] James Reinders. 2007. Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. O’Reilly.

[59] James Reinders. 2012. An Overview of Programming for Intel Xeon
Processors and Intel Xeon Phi Coprocessors. Intel White Paper. (2012).
https://software.intel.com/sites/default/files/article/330164/
an-overview-of-programming-for-intel-xeon-processors-and-intel-
xeon-phi-coprocessors_1.pdf.

[60] Bin Ren, Youngjoon Jo, Sriram Krishnamoorthy, Kunal Agrawal, and Milind
Kulkarni. 2015. Efficient Execution of Recursive Programs on Commodity Vector
Hardware. ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation (PLDI) (Jun 2015).

[61] Bin Ren, Sriaram Krishnamoorthy, Kunal Agrawal, and Milind Kulkarni. 2017.
Exploiting Vector andMulticore Parallelism for Recursive, Data- and Task-Parallel
Programs. Symp. on Principles and practice of Parallel Programming (PPoPP) (Feb
2017).

[62] Minsoo Rhu and Mattan Erez. 2012. CAPRI: Prediction of Compaction-Adequacy
for Handling Control-Divergence in GPGPU Architectures. Int’l Symp. on Com-
puter Architecture (ISCA) (Jun 2012).

[63] Suzanne Rivoire, Rebecca Schultz, Tomofumi Okuda, and Christos Kozyrakis.
2006. Vector Lane Threading. Int’l Conf. on Parallel Processing (ICPP) (Aug 2006).

[64] Timothy G. Rogers, Daniel R. Johnson, Mike O’Connor, and Stephen W. Keckler.
2015. A Variable Warp Size Architecture. Int’l Symp. on Computer Architecture
(ISCA) (2015).

[65] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola,
and Harsha Vardhan Simhadri. 2012. Brief Announcement: The Problem Based
Benchmark Suite. Symp. on Parallel Algorithms and Architectures (SPAA) (Jun
2012).

[66] S. Somasegar. 2011. Targeting Heterogeneity with C++ AMP and PPL. MSDN
Blog. (Jun 2011). http://blogs.msdn.com/b/somasegar/archive/2011/06/
15/targeting-heterogeneity-with- c-amp-and-ppl.aspx.

[67] Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, and Christo-
pher Batten. 2014. Architectural Specialization for Inter-Iteration Loop Depen-
dence Patterns. Int’l Symp. on Microarchitecture (MICRO) (Dec 2014).

[68] Stanley Tzeng, Brandon Lloyd, and John D. Owens. 2012. A GPU Task-Parallel
Model with Dependency Resolution. IEEE Computer 45, 8 (Aug 2012), 34–41.

