
Toward Kilo-instruction Processors

ADRIÁN CRISTAL, OLIVERIO J. SANTANA, and MATEO VALERO
Universitat Politècnica de Catalunya
and
JOSÉ F. MARTÍNEZ
Cornell University

The continuously increasing gap between processor and memory speeds is a serious limitation to
the performance achievable by future microprocessors. Currently, processors tolerate long-latency
memory operations largely by maintaining a high number of in-flight instructions. In the future,
this may require supporting many hundreds, or even thousands, of in-flight instructions. Unfortu-
nately, the traditional approach of scaling up critical processor structures to provide such support
is impractical at these levels, due to area, power, and cycle time constraints.

In this paper we show that, in order to overcome this resource-scalability problem, the way in
which critical processor resources are managed must be changed. Instead of simply upsizing the
processor structures, we propose a smarter use of the available resources, supported by a selective
checkpointing mechanism. This mechanism allows instructions to commit out of order, and makes
a reorder buffer unnecessary. We present a set of techniques such as multilevel instruction queues,
late allocation and early release of registers, and early release of load/store queue entries. All
together, these techniques constitute what we call a kilo-instruction processor, an architecture that
can support thousands of in-flight instructions, and thus may achieve high performance even in
the presence of large memory access latencies.

Categories and Subject Descriptors: C.1.1 [Processor Architectures]: Single Data Stream
Architectures—RISC/CISC, VLIW architectures; C.4 [Performance of Systems]: Design Studies

General Terms: Design, Performance

Additional Key Words and Phrases: Memory wall, instruction-level parallelism, multicheckpoint-
ing, kilo-instruction processors

1. INTRODUCTION

Microprocessor speed improves at a much higher rate than memory access
latency. As a result each new processor generation requires a higher number
of processor cycles to access main memory. A plethora of techniques have been

Authors’ addresses: Adrián Cristal, Oliverio J. Santana, and Mateo Valero, Departament
d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Edifici D6, Campus Nord,
c/ Jordi Girona 1-3, 08034 Barcelona, Spain; email: {adrian,osantana,mateo}@ac.upc.edu; José F.
Martı́nez, Computer Systems Laboratory, Cornell University, Frank H.T. Rhodes Hall, Ithaca, NY
14853, USA; email: martinez@csl.cornell.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1544-3566/04/1200-0368 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004, Pages 368–396.



Toward Kilo-instruction Processors • 369

Fig. 1. Average performance of a four-issue out-of-order superscalar processor executing
SPEC2000 floating-point and integer programs, for different memory latencies and number of
supported in-flight instructions.

proposed to overcome this limitation, such as cache hierarchies [Smith 1982],
hardware and software prefetching [Baer and Chen 1991; Joseph and Grunwald
1997; Klaiber and Levi 1991; Mowry et al. 1992], or helper threads [Chapell
et al. 1999; Collins et al. 2001; Dubois and Song 1998; Roth and Sohi 2001;
Sohilin et al. 2002; Zilles and Sohi 2001]. However, they do not completely
solve the problem, which has become one of the most important limiting factors
for the performance of high-frequency microprocessors.

A different approach to tolerating very long memory latencies is to substan-
tially increase the number of in-flight instructions supported. A processor able
to maintain thousands of in-flight instructions can overcome the latency of
memory operations by overlapping memory accesses with the execution of in-
dependent instructions. Figure 1 shows the impact of increasing the number of
in-flight instructions supported. When using the maximum number of in-flight
instructions typical of today’s processors (in the order of 128 instructions), an
increase in memory latency from 100 to 1000 processor cycles causes a dra-
matic performance degradation for both integer and floating-point applications
45 and 65%, respectively. The main reason is that the reorder buffer is full
72% and 87% of the time, respectively, blocking the insertion of new instruc-
tions into the pipeline due to the in-order-commit nature of current out-of-
order superscalar processors. As a consequence, such a processor does not have
enough in-flight instructions to overlap the memory access latency with useful
work.

The obvious solution is to support more in-flight instructions. Increasing
the maximum number of in-flight instructions to 4096 provides a whopping
250% performance improvement for floating-point applications over the origi-
nal 128-instruction, 1000-cycle-latency configuration, coming close to the per-
formance of a perfect-memory configuration. For integer applications, hard-to-
predict branches and pointer chains limit gain; nevertheless, even in this case,
performance improves by 50%. With a great deal of research being devoted to
improving branch prediction, integer programs should benefit more from a high
number of in-flight instructions in the near future.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



370 • A. Cristal et al.

Unfortunately, supporting a high number of in-flight instructions typically
involves scaling-up critical processor structures, such as reorder buffer, instruc-
tion queues, physical register file, or load/store queues. Because of area, power,
and cycle time limitations, this is very difficult, if not impossible, to accomplish
in current processor designs. Thus, the challenge is to design an architecture
able to support a high number of in-flight instructions without depending as
much on resource enlargement.

In this paper, we present quantitative evidence that critical processor
structures are highly underutilized, and we exploit this fact to propose kilo-
instruction processors, where we make intelligent use of the available resources
instead of merely upsizing.

In particular, we discuss an out-of-order commit technique [Cristal et al.
2002a, 2002b, 2004a] that allows early release of reorder buffer (ROB) en-
tries, and in fact allows the possibility of eliminating the ROB entirely. We
also present mechanisms for smart use of the instruction queues [Cristal et al.
2004a] and aggressive management of the register file [Cristal et al. 2003c;
Martı́nez et al. 2003]. Kilo-instruction processors can also accommodate re-
cently proposed techniques to improve the management of load/store queues
[Akkary et al. 2003; Cristal et al. 2002b; Martı́nez et al. 2002; Park et al. 2003;
Sethumadhavan et al. 2003].

As a critical-enabling mechanism, kilo-instruction processors make use of se-
lective checkpointing of the architectural state. This allows aggressive resource
management at all levels, even at the expense of occasional corrupt processor
state, which is resolved by rolling back to a saved checkpoint. All together, these
techniques constitute an efficient way to deal with future memory latencies.

The remainder of this paper is organized as follows. Section 2 shows that
critical processor structures are underutilized. Section 3 describes out-of-order
instruction commit. Section 4 presents an efficient technique to manage the
instruction queues. Section 5 discusses aggressive management of the physi-
cal register file. Section 6 describes techniques for managing large load/store
queues. Section 7 evaluates the performance of kilo-instruction processors. We
discuss our current research lines in Section 8. Finally, we conclude in Section 9.

2. CRITICAL RESOURCES

Current superscalar processors rely on in-order instruction commit to preserve
original program semantics and support precise exceptions and interrupts. This
imposes severe constraints on the use of the critical processor resources:

—Every decoded instruction requires a ROB entry until the instruction com-
mits. Consequently, supporting thousands of in-flight instructions requires
a ROB with thousands of entries.

—Every decoded instruction requires an entry in its corresponding instruction
queue (IQ) until it is issued for execution. Consequently, in order to support
thousands of in-flight instructions, IQs would require a very large number of
entries, or else they could fill-up often with blocked instructions that depend
on long-latency operations.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 371

Fig. 2. Distribution function of in-flight instructions in SPEC FP and SPEC Int applications.

—Every renamed instruction that generates a result requires a physical reg-
ister, which is assigned at the rename stage, and it is not released until the
next instruction defining the same logical register commits. Consequently,
supporting thousands of in-flight instructions requires an elevated number
of physical registers.

—Every decoded memory instruction requires an entry in the load/store queues,
which is not released until commit. Consequently, to support thousands of
in-flight instructions, a large queue with complex disambiguation logic would
be needed.

Unfortunately, scaling-up these structures makes the processor design im-
practical, not only due to area and power consumption limitations, but also
because these structures will likely affect the processor cycle time [Palacharla
et al. 1997]. However, a close look reveals that all these structures are highly
underutilized, in part due to the in-order commit strategy. In this section, we
analyze the usage of each one of these critical processor structures, showing
that a significant fraction of such structures is indeed being wasted by blocked
or executed instructions.

2.1 Reorder Buffer

Figure 2 shows the average cumulative distribution of in-flight instructions
for SPEC FP and SPEC Int applications on a simulated four-issue out-of-order
processor that supports up to 2048 in-flight instructions and has 500 cycle mem-
ory latency [Cristal et al. 2003a]. It can be seen that floating-point applications
frequently exhibit a high amount of in-flight instructions: over 1800 instruc-
tions 75% of the time. On the other hand, integer applications show a relatively
lower number of in-flight instructions, in part because branches are mispre-
dicted more frequently, causing more instruction squashes. Nevertheless, the
number of in-flight instructions is still high: over 400 instructions 50% of the
time.

It becomes clear that, since each in-flight instruction needs a ROB entry
until it commits, the ROB must be rather large to support all these in-flight
instructions. This may pose a resource-scalability problem. In Section 3, we
describe a mechanism that we call out-of-order commit, based on selective pro-
cessor checkpointing, which preserves program semantics and supports precise
exceptions and interrupts, all without the need for a traditional ROB structure.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



372 • A. Cristal et al.

Fig. 3. Breakdown of allocated floating-point and integer instruction queue entries in SPEC FP
and SPEC Int applications, respectively. The horizontal axis is adjusted according to the distribu-
tion function of in-flight instructions in each case (Figure 2).

2.2 Instruction Queues

Figure 3 shows the average number of allocated entries in the floating-point
queue (for SPEC FP applications) and in the integer queue (for SPEC Int appli-
cations), plotted against the distribution of in-flight instructions from Figure 2.
Floating-point and integer queues require 500 and 300 entries, respectively, in
order to support in-flight instructions up to the 90th percentile. The complexity
associated with such queues is almost certain to impact the processor’s clock
cycle significantly.

Fortunately, not all instructions behave in the same way. In the figure, in-
structions are divided into two groups: blocked-short instructions, if they are
waiting for a functional unit or for results from short-latency operations, and
blocked-long instructions, when they are waiting for some long-latency instruc-
tion to complete, such as a load instruction that misses in the L2 cache. The
figure shows that this second group comprises by far the largest fraction of en-
tries allocated in the instruction queues. In Section 4, we describe a smart IQ
management technique that takes advantage of this fact.

2.3 Physical Register File

Figure 4 shows the average number of allocated floating-point and integer reg-
isters for SPEC FP and SPEC Int applications, respectively, against the distri-
bution of in-flight instructions in Figure 2. To provide support up to the 90th
percentile, nearly 1200 floating-point and 800 integer registers are required
by SPEC FP and SPEC Int applications, respectively. Such size is impractical
not only due to area and power limitations, but also because it requires a high
access time, which is bound to impact the processor’s cycle time.

However, a classification of allocated registers sheds new light. In the figure,
live registers contain values currently in use. Blocked-short and blocked-long
registers have been allocated during rename, but are blocked because the corre-
sponding instructions are waiting for the execution of predecessor instructions.
In particular, blocked-short registers are owned by instructions that will issue
shortly, while blocked-long registers are owned by instructions that are blocked

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 373

Fig. 4. Breakdown of allocated floating-point and integer registers in SPEC FP and SPEC Int
applications, respectively. The horizontal axis is adjusted according to the distribution function of
in-flight instructions in each case (Figure 2).

Fig. 5. Breakdown of allocated load queue entries in SPEC FP and SPEC Int applications. The
horizontal axis is adjusted according to the distribution function of in-flight instructions in each
case (Figure 2).

waiting for long-latency instructions. Finally, dead registers are no longer in
use, but they are still allocated because the superseding producer instructions
have not yet committed.

As it turns out, blocked-long and dead registers constitute the largest fraction
of allocated registers. Using the appropriate techniques, dead registers can be
released early, and blocked-long registers can be allocated late. In Section 5,
we describe an aggressive register management mechanism that improves the
efficiency of the physical register file by attacking both fronts simultaneously.

2.4 Load/Store Queue

Figure 5 shows the average number of allocated load queue entries, plotted
against the distribution of in-flight instructions from Figure 2. To cover all cases
up to the 90th percentile, more than 350 and 500 entries are required in the case
of SPEC Int and SPEC FP applications, respectively. These sizes would not only
increase the access time to the queues; they would also increase the complexity
of the memory disambiguation logic. As before, the figure breaks down the
allocated entries in different categories. Live entries correspond to loads that
are being executed. Replayable entries represent loads that have executed out

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



374 • A. Cristal et al.

Fig. 6. Breakdown of allocated store queue entries in SPEC FP and SPEC Int applications. The
horizontal axis is adjusted according to the distribution function of in-flight instructions in each
case (Figure 2).

of program order with respect to some store instructions whose address remains
unresolved. Blocked-short and blocked-long entries correspond to loads waiting
for its address to be produced by a short-latency or a long-latency operation.
Finally, dead entries correspond to loads that have been executed and are not
subject to store-load replay traps, that is, the addresses of all previous store
instructions have been resolved.

Integer applications have a significant fraction of blocked-long and dead-
allocated entries. In the case of blocked-long entries, they are due to the fact
that pointer chains are quite common in integer applications. These chains can
be attacked using a variety of techniques such as prefetching, pre-execution, or
value prediction. Dead entries are most abundant in floating-point applications.
Traditional out-of-order processors keep these dead entries until their load
retires, but aggressive implementations that recycle them earlier have been
proposed [Cristal et al. 2002b; Martı́nez et al. 2002].

Figure 6 shows the average number of allocated store queue entries. Almost
150 and 250 entries are needed to provide support up to the 90th percentile
in integer and floating-point applications, respectively. Once more, this high
number of entries will be taxing on the clock cycle due to queue access time and
complexity of the memory disambiguation logic. In the figure, store entries are
broken down into four categories: Ready entries represent store instructions
whose address and source operand are available, and are only waiting to reach
the ROB head to execute. Address-ready entries correspond to stores whose
address is ready, but are still waiting for the data. Blocked-long and blocked-
short entries represent store instructions whose address depends on a long-
latency or a short-latency instruction, respectively.

Under the right conditions, the ready and address-ready entries can be ex-
cluded from the memory disambiguation process before their store executes,
reducing the complexity of the memory disambiguation logic [Martı́nez et al.
2002]. Furthermore, as with load instructions, an adequate aggressive im-
plementation can solve the scalability problems caused by store instructions
[Akkary et al. 2003; Park et al. 2003; Sethumadhavan et al. 2003], which are
discussed in Section 6. Alternatively, stores can be temporarily buffered in the
cache hierarchy [Martı́nez et al. 2002].

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 375

3. MULTICHECKPOINTING AND OUT-OF-ORDER COMMIT

The ROB can be understood as a history window of all the in-flight instruc-
tions. Instructions are inserted in-order into the ROB after they are fetched
and decoded. Instructions are also removed in-order from the ROB when they
commit, that is, when they finish executing and update the architectural state
of the processor.

In-order commit ensures that program semantics is preserved, even as in-
struction execution may be speculative and takes place out of order. It also
provides support for precise exceptions and interrupts. However, in-order com-
mit is a serious problem in the presence of large memory access latencies. Let
us suppose that a processor has a 128-entry ROB, and that the memory access
latency is 500 cycles. If a load instruction accesses the main memory due to
a second-level cache miss, it cannot be committed until its execution finishes
500 cycles later. When the load becomes the older instruction in the ROB, it
blocks the in-order commit, and no later instruction can commit until the load
finishes. The processor can spend part of this time doing useful work, but once
the ROB becomes full, a processor stall soon follows.

To avoid this, the processor should be able to support a higher number of
in-flight instructions whose execution would overlap with the load access la-
tency. As shown in Section 2.1, several hundreds or even thousands of in-flight
instructions would be required to achieve this. However, scaling-up the number
of ROB entries to support this is impractical. A large ROB not only carries a
higher implementation cost, but also an increase in the size of the associated
control logic. As a result, accessing such a large hardware structure may impact
the processor cycle time.

A kilo-instruction processor attacks this problem by using a checkpointing
mechanism that enables out-of-order instruction commit [Cristal et al. 2002a,
2002b, 2004a]. The use of selective checkpointing allows kilo-instruction pro-
cessors to preserve program semantics and supports precise exceptions and
interrupts without requiring ROB support at all. This allows implementing
the functionality of a large ROB without requiring an impractical centralized
structure with thousands of entries.

3.1 Processor Checkpointing

Checkpointing is a well-established technique for restoring the correct architec-
tural state of the processor after misspeculations or exceptions [Hwu and Patt
1987; Smith and Pleszkun 1985]. A checkpoint can be thought of as a snapshot
of the state of the processor, which is taken at a specific instruction of the pro-
gram being executed. This checkpoint contains all the information required to
recover the architectural state and continues the execution from that point.

In order to describe a checkpointing mechanism, four design issues should be
taken into account. These four points are interdependent, and thus they should
be considered together as a whole.

—How many in-flight checkpoints should be maintained by the processor? A
large number of checkpoints reduce the penalty of the recovery process, since

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



376 • A. Cristal et al.

it is more likely that there is a checkpoint near an instruction that causes a
misprediction or an exception. Nevertheless, a large number of checkpoints
also increase the implementation cost.

—What kind of instructions should be checkpointed? It is possible to take a
checkpoint at any instruction. However, some instructions are better candi-
dates than others. For example, some current processors take checkpoints at
branch instructions in order to minimize the branch misprediction penalty.
Other mechanisms can take checkpoints at other types of instructions, ac-
cording to their needs.

—How often should the processor take a checkpoint? In general, the more
frequently a processor takes checkpoints, the higher the overhead and the
cost are. On the other hand, taking checkpoints more frequently reduces
the penalty associated with restoring a valid state. Several heuristics could
be used to overcome this trade-off. Numerical applications mainly require
taking into account the load instructions that miss in the second-level cache.
On the other hand, integer applications require more complex heuristics,
which combine checkpoints at load and branch instructions. Since taking a
checkpoint at all branches involves a higher implementation cost, they can
be taken only at hard-to-predict branches. With this approach, there may
be several pending branches between checkpoints, increasing the average
misprediction penalty. However, since only hard-to-predict branches are ex-
pected to be mispredicted, this heuristic should reduce the overhead of taking
checkpoints without much increasing the overall misprediction penalty.

—How much information should be kept by each checkpoint? In general, it is
only necessary to keep the information strictly required to recover the correct
processor state. However, it could be beneficial to store additional information
in order to improve the processor performance. For example, the approach
described in this paper [Cristal et al. 2004a] requires a few bits to recover the
state of the rename mappings. Other approaches require more information
to recover the rename mapping [Cristal et al. 2002b; 2003c; Martı́nez et al.
2003]. The drawback is that more information involves a higher cost for the
checkpoint storage and management.

3.2 Multicheckpointing in Kilo-instruction Processors

Figure 7 shows an example of a multicheckpointing process. In general, there
always exists at least one checkpoint in the processor (timeline A). The pro-
cessor fetches and issues instructions, taking new checkpoints as needed, for
example, when the risk of a rollback is high. The processor maintains a to-
tal order of the checkpoints. Every decoded instruction is associated with the
most recent checkpoint, and each checkpoint keeps a count of its instruction
group. If misspeculation occurs, for example, a branch misprediction (timeline
B), the processor flushes all instructions from the associated checkpoint on
and resumes instruction fetch and processing. The in-flight instructions be-
fore that checkpoint are not affected (timeline C). On the other hand, when
an instruction finishes, its checkpoint’s instruction counter is decremented. If

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 377

Fig. 7. An example of our multicheckpointing process.

the count reaches zero, all instructions associated with the checkpoint have
executed (timeline C). At that point, the checkpoint is released (timeline D),
and its instruction group is effectively merged with the preceding instruction
group. (Since the instructions are all executed, the preceding checkpoint need
not update its count.) If it is the oldest checkpoint’s count that reaches zero,
all instructions associated with it commit at once. This we call gang-commit
[Martı́nez et al. 2003]. Finally, in the case of an exception, after restoring the
associated checkpoint, our mechanism forces a checkpoint at the excepting in-
struction. This checkpoint reduces the execution penalty in the case exception
appears again.

The use of selective checkpointing makes the traditional ROB unnecessary.
In spite of this, the kilo-instruction processor keeps a small ROB-like structure.
This structure, which we call pseudo-ROB [Cristal at al. 2004a], has the same
functionality of a ROB. Decoded instructions are inserted in the pseudo-ROB
in order. However, the instructions that reach the head of the pseudo-ROB
are removed at a fixed rate, independent of their state. Since the processor
state can be recovered from the pseudo-ROB, generating a checkpoint is only
necessary when the instructions leave the pseudo-ROB. Delaying checkpoint
generation is beneficial to alleviate the impact of branch mispredictions. Most
branches are resolved while they are still in the pseudo-ROB [Cristal et al.
2002b], reducing the amount of pending branches between checkpoints. Indeed,
over 90% of mispredictions are caused by branches that are still inside the
pseudo-ROB. This means that most branch mispredictions do not need to roll
back to the previous checkpoint for recovering the correct state, minimizing the
misprediction penalty.

3.2.1 Register Mapping. Our register mapping uses a register alias table
(RAT), which is implemented as a CAM memory having one entry per physical
register. Figure 8 shows the traditional CAM structure of such a renaming
mechanism, which is composed of a physical-logical register pair and a valid
bit. There is also a register free list from where free registers are taken. For
the sake of simplicity, we assume in this example that there are only seven

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



378 • A. Cristal et al.

Fig. 8. Example of the proposed CAM register mapping.

physical registers and that the free list is implemented with a bit per physical
register. For example, at instant t0, only four physical registers are mapped (the
ones with the valid bit set to 1), while the other three registers are in the free
list.

In a traditional renaming mechanism, physical registers are released when
the instruction that redefines the logical register commits. Our proposal can-
not use this technique because instructions are allowed to commit out-of-order.
Therefore, we release physical registers when the processor removes the first
checkpoint taken after the instruction that redefines the logical register. In or-
der to achieve this, our register mapping contains an additional bit per physical
register, which we call the future free bit. Future free bits are used to record
which registers need to be freed between checkpoints. When a particular check-
point commits, the future free bits are used to free the registers corresponding
to the instructions associated with the previous checkpoint. This mechanism in-
creases the pressure over the physical register file, delaying the register release,
but this problem can be overcome with the techniques discussed in Section 5.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 379

Let us suppose that the processor takes a checkpoint at instant t1. The pro-
cessor does not need to keep the physical-logical mapping in the checkpoint. It
is enough to keep the valid bits because the mapping is not going to change until
the registers are freed after the commit of a later checkpoint. The multicheck-
pointing mechanism also needs to keep the current values of the future free
bits, which are reset to compute the new values for the following checkpoint.
Therefore, the cost of a checkpoint in our mechanism is the number of physical
registers times 2 bits per register, which is very simple indeed.

Figure 8 also shows the state of the register mapping after a simple add
instruction is renamed at instant t2. The physical register required by the add
instruction is taken from the free list, that is, physical register 5 is assigned
to logical register R1. The corresponding valid bit is set to 1 and the free list
is updated accordingly. In addition, the processor also sets to 1 the future free
bit associated with physical register 4, which was previously mapped to logical
register R1, and thus it should be freed when the subsequent checkpoint com-
mits. Figure 8 shows, at instant t3, the state of the register mapping after the
next instruction with logical destination register R1 is renamed. It is important
to note that there are two physical registers mapped with logical register R1,
which will subsequently be freed at the same time.

Let us now suppose that a new checkpoint is taken at instant t4 by keeping
the valid and the future free bits. After the checkpoint is taken, all the future
free bits are cleared, for them to be reused by the following checkpoint. The
processor continues executing instructions, and at instant t5, a new instruction
is renamed. The logical register R4 is mapped to the physical register 7. The
valid bit associated with physical register 2 (the previous mapping of R4) is
reset to 0 and the corresponding future bit is set to 1.

At instant t6, when all the instructions associated with the first checkpoint
have finished (the instructions renamed at instants t2 and t3), the checkpoint is
removed, freeing all the corresponding physical registers. This is done using the
future free bits. In this case, all future free bits are 0, so no physical registers
are freed. When all instructions associated with the second checkpoint have
finished, at instant t7, the processor also removes the second checkpoint. Now,
the future free bits indicate that physical registers 4 and 5 should be freed.
The corresponding logical registers were redefined by instructions executed
between the first and the second checkpoints, and thus their contents will not
be used again after the checkpoint is removed.

In the event of returning to a previous checkpoint, the fact that using CAMs
in the renaming mechanism simplifies the computation of the free register list.
To determine the registers in use, the processor performs a logical or between
the valid vector bits and the future free vector bits of all active checkpoint maps
and the current rename map.

3.2.2 Taking Checkpoints. Our mechanism systematically takes a new
checkpoint if one of three thresholds is exceeded [Cristal et al. 2003b; 2004a].
(1) At the first branch after 64 instructions: Branches are good candidates for
taking checkpoints because this allows minimizing the impact of branch mispre-
dictions. (2) After 64 store instructions: Associating too many store instructions

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



380 • A. Cristal et al.

with a particular checkpoint could degrade performance because they cannot
release their resources until the corresponding checkpoint commits. (3) Finally,
as a fallback case, after 512 instructions.

3.2.3 Store Instruction Commit. Store instructions should not send their
data to memory until they commit. This is necessary to allow correct recovery
of the architectural state in the case of a misprediction or an exception. Tra-
ditional processors keep the data in the store queue until the store instruction
commits, at which point it is sent to memory. Our multicheckpointing mech-
anism also keeps the data in the store queue. However, the data belonging to
all the store instructions associated with a checkpoint are not sent to memory
until the checkpoint commits. The drawback of this technique is that it in-
creases the pressure over the store queue. Nevertheless, several techniques for
overcoming this problem have been proposed in the literature, as described in
Section 6.

3.3 Related Work

To the best of our knowledge, the first multicheckpointing mechanism for over-
coming the problems caused by maintaining thousands of in-flight instructions
was proposed in January 2002 [Cristal et al. 2002a] and later developed by
Cristal et al. [2002b]. The main novelty of this technique is that checkpointing
enables an efficient way to control and manage the use of the critical processor
structures. In this work, checkpoints are taken at load instructions. In par-
ticular, a checkpoint is taken when the ROB head is reached by a load that
missed in the second-level cache. These checkpoints are useful to early, release
instructions in the ROB, to release physical registers early, and to remove load
instructions early from the load/store queue. The architecture presented in this
paper is an evolution of this first approach to the multicheckpointing.

Cherry [Martı́nez et al. 2002] is another checkpointing scheme that was
developed in parallel with Cristal et al. [2002b]. Instead of using a multicheck-
pointing mechanism, Cherry is based on a single checkpoint outside the ROB.
This checkpoint uses a backup register file to keep all the architectural regis-
ters pointed to by the retirement mapping. The ROB is divided in two regions:
the region occupied by speculative instructions and the region occupied by non-
speculative instructions. Cherry is able to release registers and load/store queue
entries early in the ROB area not subject to misspeculation, using the check-
point to provide precise exception handling. On the other hand, the instructions
belonging to the region subject to misspeculation (such as speculative instruc-
tions after a nonresolved branch prediction) still depend on the ROB to recover
the correct state in the case of misspeculation, and thus they are not able to
release their corresponding resources.

Runahead execution uses checkpointing as well. Runahead processing was
first proposed by Dundas and Mudge [1997] for in-order processors. This work
generates highly accurate data prefetches by pre-executing future instructions
under a cache miss. Mutlu et al. [2003] extend this proposal for out-of-order
processors. They create a checkpoint of the architectural state when the head
of the ROB is reached by a load that has missed in the second-level cache.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 381

In addition, the processor starts executing instructions in a special mode that
invalidates the result of the load and all the dependent instructions. When
the load instruction actually completes, the processor returns to the normal
mode, restoring the checkpoint. The results obtained during the first execution
are not reused. However, this first execution provides useful knowledge, such
as accurate data and instruction prefetches, which improves the performance
during the second execution.

Finally, the checkpoint processing and recovery (CPR) architecture [Akkary
et al. 2003] propose similar mechanisms to those described by Cristal et al.
[2002b]. The main objective of the CPR architecture is to implement large in-
struction window processors. The CPR architecture uses a multicheckpointing
mechanism, similar to ours, in order to checkpoint hard-to-predict branches. A
checkpoint is taken when a hard-to-predict branch reaches the decode stage,
enabling an early release of instructions and physical registers.

4. INSTRUCTION QUEUE MANAGEMENT

At the same time that instructions are inserted in the ROB, they are also in-
serted in their corresponding instruction queues (IQs). The instructions should
wait in the IQs until they are issued for execution. However, as shown in
Section 2.2, most instructions are blocked in the IQs, taking a long time to
get issued for execution because they should wait for the results produced by
long-latency instructions. Maintaining those blocked-long instructions in the
IQs just takes away issue slots from other instructions that would be executed
more quickly. This fact not only restricts the exploitable instruction-level par-
allelism, but also greatly increases the probability of stalling the processor due
to a full IQ, which severely limits the achievable performance.

In the context of a processor able to support thousands of in-flight instruc-
tions, blocked-long instructions cause a serious scalability problem, since the
IQs should have enough entries to keep all the instructions that are waiting
for issue. The IQs are critical processor structures, and thus such a large in-
crease in their size will definitely affect the processor cycle time [Palacharla
et al. 1997]. This problem can be overcome by using multilevel IQs for taking
advantage of the different waiting times of the instructions in the IQs. First,
blocked-long instructions should be detected. Then, they are removed from the
IQs, delegating their handling to slower, but larger and less complex structures.
Later, when the blocked-long instructions become ready, they are moved back
to the IQs.

4.1 Slow-Lane Instruction Queue

Kilo-instruction processors rely on a unified mechanism that combines multi-
checkpointing with techniques to efficiently manage the IQs and the physical
register file. In particular, our multicheckpointing mechanism enables a smart
multilevel IQ management technique [Cristal et al. 2004a], which is shown
in Figure 9. Renamed instructions are inserted in both the ROB and the con-
ventional IQs (step 1). Our mechanism detects the instructions that will take
a long time to get issued for execution because they depend on a long-latency

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



382 • A. Cristal et al.

Fig. 9. The Slow-lane instruction queue.

memory operation. The long-latency memory operation detection is done by the
hardware devoted to check the second-level cache tags, that is, there is no need
to wait until the cache access is fully resolved.

The detected long-latency instructions are moved to a secondary buffer when
they reach the head of the pseudo-ROB. We call this simple FIFO-like secondary
buffer slow-lane instruction queue (SLIQ). Instructions stay in SLIQ until the
corresponding long-latency memory operation is resolved. In order to simplify
the implementation, this instruction movement is actually done invalidating
the instructions in the IQs and inserting them in the SLIQ from the pseudo-ROB
(step 2). Finally, when the long-latency operation that blocked the instructions
in the SLIQ is resolved, the dependent instructions are moved from the SLIQ
to the IQs (step 3). All physical registers have a bit associated with that states
when the corresponding value will be ready in a short period of time. In order
to detect which instructions should be moved from the SLIQ to the IQ, we just
need to check these bits.

Since the SLIQ itself is a simple FIFO-like structure, it can be implemented
as a bank-interleaved buffer. Moreover, the SLIQ is not on the critical path,
and thus it can have thousands of entries without harming the processor cycle
time. Therefore, our SLIQ mechanism allows us to effectively implementing
the functionality of large IQs, making it possible to support a high number of
in-flight instructions without scaling-up the IQs.

The presence of the pseudo-ROB is beneficial for detecting whether an in-
struction will be executed shortly or will consume resources for a long time.
Our technique delays the decision of which instructions will wait during a long
time until instructions are extracted from the pseudo-ROB. If a particular load
instruction arrives at the end of the pseudo-ROB without hitting in the first- or
second-level caches, we consider it a long-latency instruction. Thus, the decision
is delayed until the waiting time of the instruction can be effectively known,
increasing the detection accuracy.

Figure 10 shows an example of our SLIQ mechanism. The primary source
of long-latency instructions is loads that miss in the second-level cache. Let us
suppose that the load instruction at instant t0 is a long-latency instruction.
Any instruction that depends on it will also be considered a long-latency in-
struction. Once taken out of the pseudo-ROB, a simple mechanism computes
the dependencies on this load. Our mechanism uses a bit mask where each bit

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 383

Fig. 10. Example of the SLIQ mechanism.

is associated with a logical register. This bit mask starts all cleared except for
the bit corresponding to the long-latency load destination register. When an
instruction is extracted from the pseudo-ROB, it incorporates its destination
register into the bit mask if it consumes any register from it, since this instruc-
tion is dependent on the load and so will be any instruction that depends on it.
On the other hand, a bit is cleared if a nondependent instruction redefines the
corresponding register.

The dependent instructions computed in this way are invalidated in the
general-purpose IQs and stored in order in the SLIQ. Although instructions
are actually inserted in the SLIQ from the pseudo-ROB, we assume here that
they are moved from the IQs to the SLIQ in order to simplify the example. This
can be seen in Figure 10 at instants t1 and t2, when instructions a and b, which
depend on the long-latency load, are moved into the SLIQ. As a consequence,
the entries associated with the long-latency instructions are freed, and thus
can be used by short-latency instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



384 • A. Cristal et al.

The instructions in the SLIQ wait for the resolution of the long-latency load
miss. In order to simplify the wakening of these instructions, the destination
register of the long-latency load is associated with the corresponding entry of
the SLIQ. When this register gets its value, the load has been resolved, and thus
the dependent instructions should be moved back to the IQs. These instructions
are invalidated in the SLIQ and inserted into the corresponding IQs.

At instant t3 in Figure 10 we can see that the long-latency load is resolved.
The SLIQ is scanned in order from the entry corresponding to the load and the
dependent instructions are inserted back into the window. However, it could
happen that a second long-latency load is resolved while the instructions de-
pendent on the first one are still being processed. On one hand, if the new
load is younger than the instructions being processed, it will be found by the
awakening mechanism. After that, the mechanism could continue, placing the
instructions dependent on any of the two loads in the IQs. On the other hand, if
the new load is older than the instructions being processed, it will not be found
by the awakening mechanism. Thus, the awakening process is canceled and a
new awakening process is started from the second load.

4.2 Related Work

Some previous studies have proposed multilevel IQs. The hierarchical schedul-
ing window proposed by Brekelbaum et al. [2002] divides the IQ into a large
but slow IQ and a small but fast IQ. Each one is independent and has its own
wake-up and select logic. All the fetched and decoded instructions are inserted
in the slow IQ. This slow IQ keeps all instructions whose operands become
ready soon, which are considered latency tolerant. However, when the oldest
instructions in the IQ are determined not to have nonready operands, they are
supposed to be in the critical path and moved into the fast IQ. This heuristic
ensures that the instructions in the fast IQ are highly interdependent and la-
tency critical. On the other hand, the slow window contains latency-tolerant
instructions, facilitating the implementation of a very large IQ and allowing
the extraction of far-flung instruction-level parallelism. Unlike our SLIQ, this
technique is not associated with any checkpoint mechanism. In addition, all
the critical instructions are penalized, since they are introduced in the slow IQ
before being detected. Both SLIQ and the WIB does not suffer from this prob-
lem, since the instructions are first inserted in the fast structure instead of in
the slow one.

Lebeck et al. [2002] add a wait bit to each physical register. This bit indicates
when the corresponding register is waiting for a long-latency memory operation
to generate its contents. The bit is initially set by a cache miss, and is later prop-
agated to the physical registers associated with the dependent instructions. The
wake-up and select logic work as usual, but the instructions having at least one
of their wait bits set are also considered to get issued. However, instead of being
sent to a functional unit, they are placed in a waiting instruction buffer (WIB),
freeing the IQ entry. Therefore, the WIB contains all the instructions directly
or indirectly dependent on a cache miss, where they reside until the miss is
resolved. A set of bit vectors are used to indicate which WIB entries depend

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 385

Fig. 11. Life cycle of a physical register.

on a specific cache miss. Each vector in this matrix is allocated when a load
misses, and thus each load should keep an index to the corresponding vector.
When a long-latency load finishes execution, the dependent instructions are
reinserted in the IQs, sharing the same bandwidth with those new instructions
that are decoded and dispatched. The dispatch logic prioritizes the instructions
reinserted from the WIB in order to assure forward progress.

This mechanism is similar in spirit to our SLIQ. However, since the WIB only
deals with the scalability of the general-purpose IQs, a direct performance com-
parison against our proposal is impossible. While the WIB requires very large
and unfeasible ROB, physical register file, and load/store queue, our SLIQ is a
component of a whole design focused on dealing with the scalability problems
of all the critical processor structures. Recently, the continual flow pipelines
(CFP) architecture [Srinivasan et al. 2004] has presented an efficient imple-
mentation, oriented to the Pentium 4 pipeline, of a two-level instruction queue
called slice data buffer (SDB), which is similar to the WIB and the SLIQ. Like
our work, the CFP architecture is not just focused on the scalability of the IQs,
but on the scalability of all the processor structures.

5. EPHEMERAL REGISTERS

In order to reduce the number of physical registers needed, the kilo-instruction
processor relies on the different behaviors observed during the life cycle of a
physical register, which is shown in Figure 11. As we described in Section 2.3, a
large portion of the allocated physical registers are blocked because the corre-
sponding instructions are waiting for the execution of long-latency operations.
This is due to the fact that physical registers are assigned early in the pipeline
for keeping track of the register dependencies during the rename phase. An-
other high percentage of the allocated physical registers is dead, that is, they are
no longer in use. They are still allocated because an instruction redefining the
corresponding logical register has not yet committed, and thus, the processor
cannot assure that the register contents will not be read again.

5.1 Improving Physical Register Utilization

Wasting physical registers due to long-time blocked instructions can be avoided
by using techniques for late register allocation. Monreal et al. [1999] describe
a technique that allows for a late allocation of physical registers. Instead of as-
signing a physical register to each renamed instruction, this technique assigns
a virtual tag. These virtual registers are used to keep track of the rename de-
pendencies, making unnecessary to assign a physical register to an instruction

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



386 • A. Cristal et al.

until it starts execution. Therefore, this technique does not allocate a physical
register until it is strictly necessary for storing the produced value. A similar
technique has been included in the CFP architecture [Srinivasan et al. 2004].
CFP allows the release of destination registers of instructions dependent upon
a miss, prior to these instructions entering the SDB. These instructions will
subsequently re-acquire registers when they re-enter the pipeline. In addition,
this technique is enhanced by making it possible to release completed source
registers.

Dead registers can also be avoided by using techniques for early register
release. Moudgill et al. [1993] propose to use a counter associated with each
register for keeping track of the unexecuted instructions that read the regis-
ter contents. An instruction that should read the value increments the counter
when it is fetched and decrements the counter when it effectively reads the reg-
ister. If there is an instruction that redefines the corresponding logical register,
the processor does not need to wait until the instruction commits to releasing
the physical register. It can be released as soon as the counter arrives to zero.

5.2 Implementing Ephemeral Registers

Kilo-instruction processors go one step further. They combine both techniques
for early register release and late register allocation with our multicheckpoint-
ing mechanism, leading to an aggressive register recycling technique that we
call ephemeral registers [Cristal et al. 2003c; Martı́nez et al. 2003]. As far as
we know, this is the first proposal that simultaneously and in a coordinated
manner supports the three techniques. This combination allows the processor
to manage registers aggressively, effectively dissociating register release from
instruction retirement, and register allocation from instruction renaming. As
a result, our technique shrinks the lifetime of a physical register to its use-
ful period in the pipeline, making it possible to support thousands of in-flight
instructions without requiring an unfeasible large physical register file.

The implementation of ephemeral registers in kilo-instruction processors
replaces the future free bits mechanism described in Section 3.2. Instead of
assigning a physical register to each renamed instruction, our mechanism as-
signs a virtual tag. This technique implements late register allocation, since a
physical register is only assigned when the instruction is issued for execution.
In order to combine late register allocation with early register release, each vir-
tual tag has an associated counter, along the lines of Moudgill et al. [1993]. This
counter indicates how many instructions will read the contents of the virtual
register. The counter is incremented by each renamed instruction that reads
the virtual register and decremented when the reader instruction is issued for
execution. After the corresponding logical register is redefined, the virtual reg-
ister and its associated physical register (if there is one) can be released if the
counter reaches zero and the contents of the register have already been written.

In the case of an exception or a misspeculation, the state of the counters
should be recovered. The instructions already executed have no influence on
the state of the counters because they have incremented the corresponding
counters during rename and they have decremented them again after issue.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 387

Therefore, it is only necessary to take into account the instructions in the IQs,
since they have incremented the corresponding counters but they have not
already decremented them.

Our architecture cannot use the pseudo-ROB to obtain the required infor-
mation, since it is possible that an instruction is in the IQs but it has already
been retired from the pseudo-ROB. In order to overcome this problem, we use a
straightforward technique. After an exception or a misspeculation, the proces-
sor pipeline is flushed. However, the instructions in the IQs are not invalidated,
but marked as no-operations. The instructions will be issued as usual, but they
will not be executed, since their only purpose is to decrement the corresponding
counters. This process is not time-critical because it can be performed just after
the pipeline flush.

The instructions in the SLIQ cause the same problem, and we solve it in
a similar way. An FIFO structure like the SLIQ has two pointers: the head
pointer (HP), which points to the older instruction in the SLIQ, and the tail
pointer (TP), which indicates where the long-latency instructions retired from
the pseudo-ROB should be inserted. In the case of an exception or a misspecula-
tion, the correct processor state is recovered using a checkpoint and the wrong
instructions are flushed from the pipeline. In particular, the SLIQ is flushed by
moving back the TP up to the point where the checkpoint was taken.

Now, the instructions between the old and the new positions of the TP should
be reinserted as no-operations in the IQs. In order to do this, our technique uses
two additional pointers: the old tail pointer (OTP), which points to the position
of the TP just before the SLIQ flush, and the recovery pointer (RP), which points
to the first instruction that should be recovered, that is, the current position of
the TP. The RP is advanced each cycle, reinserting the no-operation instructions
in the IQs. During the recovery, the TP cannot move forward the RP, since the
new long-latency instructions inserted in the SLIQ must not reuse the entries
assigned to old instructions that have not been already recovered. However,
once again, this process is not time critical, since RP frees entries during the
cycles in which the SLIQ cannot be filled because there are no instructions to
be inserted after the pipeline flush. The recovery process ends when the RP
reaches the OTP.

Finally, there are two possible sources of deadlock. The first is related to
the concept of virtual-physical registers [Monreal et al. 1999]. We avoid this
deadlock reserving a number of physical registers equal to the number of logical
registers plus one to be used by the older instructions in the SLIQ. The other
deadlock situation can happen if the instruction queue gets filled and therefore
blocks reinsertion from the SLIQ. In order to avoid this, we make sure that at
least one entry is always available for instructions to be reinserted from the
SLIQ.

6. IMPLEMENTING LARGE LOAD/STORE QUEUES

Load and store instructions are inserted in the load/store queues at the same
time they are inserted in the ROB. The main objective of these queues is to guar-
antee that all load and store instructions perform in agreement with program

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



388 • A. Cristal et al.

order. This requires a complex memory disambiguation logic that compares the
effective address of each memory operation with the addresses of all the pre-
vious in-flight memory operations. We model a memory disambiguation mech-
anism similar to the one implemented in the Power4 processor [Tendler et al.
2001]. This model calculates the effective address of a store instruction when
the corresponding register is ready, that is, it does not wait for the data register.
If a load instruction is issued and there is an older instruction that will write
to the same memory location, the store result is forwarded to the load. If the
result is still not ready, the load is rejected and reissued again, waiting for the
result. Using this model, the amount of replay traps caused is relatively low for
numerical applications (less than one per million of executed instructions).

However, as shown in Section 2.4, maintaining a high number of in-flight
instructions involves an increase in the number of loads and stores that should
be taken into account, which can make the load/store queue a true bottleneck
both in latency and power. Several techniques have been proposed to overcome
this problem. Although we do not propose to choose one or another, any of the
mechanisms described in this section can be implemented in a kilo-instruction
processor. The scalability problem of the load queue can be solved using tech-
niques for early release of load instructions. These techniques were first pro-
posed by Cristal et al. [2002b] and by Martı́nez et al. [2002]. In addition, several
solutions have recently been proposed for dealing with the scalability problem
of the store queue.

Akkary et al. [2003] propose a hierarchical store queue organization able to
buffer a large number of store instructions and perform critical disambigua-
tion processes without degrading cycle time. A fast and small first-level store
queue (L1), similar to the store queues in current microprocessors, holds the
last executed stores. When a new store appears, it is inserted in the L1. If it is
full, the older store is removed, making space for the new store. The removed
store is inserted into a backing second-level store queue (L2), where it remains
until commit. As can be expected, the L2 is larger and slower than the L1. In
addition, the L2 has a membership test buffer (MTB) associated with it. This
MTB is an untagged table used to predict if a store instruction is buffered in
the L2. When a load instruction is issued, the L1 and the MTB are accessed
in parallel. If the load misses both the L1 and the MTB, the data is forwarded
to the load from memory. If the load hits the L1, the data is forwarded to the
load from the L1. Finally, if the load misses the L1, but hits the MTB, the L2 is
accessed. If there is a hit, the data is forwarded to the load. However, if there
is a miss, the load has been penalized unnecessarily, since the data should be
forwarded from memory. Overall, this mechanism provides a performance close
to a store queue with thousands of entries, while requiring a few hundreds.

Park et al. [2003] describe three techniques to scale the load/store queue.
First, a store-set predictor [Chrysos and Emer 1998] is used to predict the
matches between loads and stores. A load will search the store queue only when
the predictor states that there is a potentially dependent store in the queue. This
technique achieves an important reduction in the search bandwidth demand
on the store queue. Second, in the context of shared-memory multiprocessors, a
small load buffer is used to keep only the out-of-order issued load instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 389

When a load executes, it should search for out-of-order issued loads to assure
memory consistency. However, instead of searching the load queue, it searches
the load buffer, which is much smaller, achieving an important reduction in the
search bandwidth demand on the load queue. Third, the load/store queue is
segmented into multiple smaller queues, which are connected in a chain. These
segments are treated as a pipeline, turning the load/store queue into a variable
latency structure whose capacity can be increased without causing a negative
impact on the access latency.

Sethumadhavan et al. [2003] improve the load/store queue scalability by
applying approximate hardware hashing. This technique implements a hash
table with Bloom filters [Bloom 1970] where the address of load and store in-
structions is hashed to a particular bit inside a table. If the bit is set, there
is a likely address match with a previous load or store instruction and the
load/store queue should be searched. In contrast, if the bit is not set, there can-
not be an address match and the load/store queue does not need to be searched.
In addition, multiple Bloom filters can be used to separate load/store queue
partitions, reducing the number of partitions that should be looked up when
a queue search is necessary. These techniques significantly reduce the access
latency and power consumption required by the load/store queue, alleviating
this scalability bottleneck.

Finally, Cain and Lipasti [2004] solve the load queue scalability problem
by completely eliminating it. Data dependencies and memory consistency are
enforced by re-executing load instructions in program order before commit,
following a value-based memory-ordering approach. The set of loads that must
be re-executed is filtered using several heuristics, which makes it possible to
sacrifice only a negligible amount of performance due to the re-execution of
loads.

7. PERFORMANCE EVALUATION

In this section, we evaluate the performance achievable by kilo-instruction pro-
cessors. We focus on numerical applications. As shown in Section 1, increasing
the number of in-flight instructions provides high performance improvement
for these applications even in the presence of large memory access latencies.

Our data is obtained using a custom execution-driven simulator. Table I
shows the setup of our simulated baseline architectures. Our baseline is an
out-of-order superscalar processor able to maintain 128 in-flight instructions.
We also present data for a limit baseline, an unfeasible processor able to main-
tain up to 4096 in-flight instructions. The benchmark suite used for all the
experiments is the SPEC2000fp, which were compiled to take advantage of
software prefetching. All benchmarks have been simulated 300 million repre-
sentative instructions. To find the most representative execution segment, we
have analyzed the distribution of basic blocks as described by Sherwood et al.
[2001].

Figure 12 shows the performance of a processor using our out-of-order com-
mit and SLIQ techniques. In order to analyze the behavior of these two tech-
niques, we assume unbounded physical register file and load/store queue. The

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



390 • A. Cristal et al.

Table I. Experimental Setup

Element Baseline 128 Baseline 4096
Simulation Strategy Execution-driven Execution-driven
Issue policy Out-of-order Out-of-order
Fetch/commit width 4/4 4/4
Branch predictor 16 K-entry GShare 16 K-entry GShare
Branch penalty 10 cycles 10 cycles
I-L1 size 32 Kb 4-way, 32 byte line 32 Kb 4-way, 32 byte line
I-L1 latency 2 cycles 2 cycles
D-L1 size 32 Kb 4-way, 32 bytes line 32 Kb 4-way, 32 bytes line
D-L1 latency 2 cycles 2 cycles
L2 size 512 Kb 4-way, 64 bytes line 512 Kb 4-way, 64 bytes line
L2 latency 10 cycles 10 cycles
TLB 64 entries, 4 way, 8 KB page 64 entries, 4 way, 8KB page

30 cycles 30 cycles
Memory latency 1000 cycles 1000 cycles
Memory ports 2 2
Reorder buffer 128 entries 4096 entries
Load/store queue 128 entries 4096 entries
Integer queue 128 entries 4096 entries
FP queue 128 entries 4096 entries
Integer register 128 4096
FP registers 128 4096

Fig. 12. Performance achieved when our out-of-order commit is combined with the SLIQ.

figure presents three groups of three bars each, as well as four reference lines
across the figure. The bars COoO 32, 64, and 128 correspond to our processor or-
ganization having a pseudo-ROB and IQs of 32, 64, and 128 entries respectively.
The reference lines correspond to our baseline processor, which has 128-entry
ROB and IQs, and to our unrealistic limit baseline processor, which has 4096-
entry ROB and IQs. Both baselines are presented not using and using hardware
stride prefetch (labeled HW Prefetch in the figures). We have implemented an

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 391

Fig. 13. Sensitivity of commit mechanism to the amount of available checkpoints (2048 entry IQ
and 2048 physical registers).

aggressive prefetcher, placed between the second-level cache and main mem-
ory. It supports up to 16 streams containing 16 lines each. Every stream is able
to take into account up to four different strides during the learning period. In
contrast, our kilo-instruction processor does not use any hardware prefetching
mechanism.

Each set of bars groups simulations according to the amount of SLIQ entries.
Through simulation, we have found that the percentage of executed instruc-
tions that depend on long-latency memory operations ranges from 20% to 30%.
Therefore, only this percentage of executed instructions needs to be moved
to the SLIQ and back. As a result, even the simplest setup, having 32-entry
pseudo-ROB and IQs, as well as 512-entry SLIQ, outperforms by more than
50% the lower-line baseline processor using prefetch, which has larger critical
structures (128-entry ROB and IQs). If we consider more complex setups, the
difference in performance grows up to more than 100%.

Note that our mechanism always suffers a penalty with respect to the limit
baseline. Nevertheless, our proposal is significantly close to this unrealistic
baseline with a fraction of the cost. Although having IQs with thousands of
entries is impossible due to the current technology, having a 2048-entry SLIQ
is possible because it does not need complex wake-up logic and its selection
logic is very simple. Instructions are reinserted in the IQs at a pace of four
instructions per cycle (the processor width). The instructions provided by the
SLIQ are prioritized over the new instructions coming from renaming. More-
over, the SLIQ is not on the critical path and its access latency can be tolerated.
We have analyzed the sensitivity of the SLIQ with respect to this latency and we
have found that even 12-cycle latency only produces a negligible performance
slowdown.

In all the evaluated cases, the processor is able to maintain a maximum of
eight in-flight checkpoints. We have found that eight checkpoints are enough to
achieve almost all the potential performance. Figure 13 shows the performance
obtained varying the total number of checkpoints. The limit bar represents the
performance obtained when considering a 4096-entry ROB, which is microar-
chitecturally unfeasible. As can be seen, having eight checkpoints produces just

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



392 • A. Cristal et al.

Fig. 14. Average number of in-flight instructions.

Fig. 15. Kilo-instruction processor performance.

a 9% performance slowdown against the unrealistic limit machine. A higher
number of checkpoints does not provide significant benefit.

Figure 14 shows the average number of in-flight instructions for both our
proposal and the limit baseline. The bars and the reference line correspond to
the same setup as Figure 12. It becomes clear that our mechanism is effectively
allowing for a very big amount of in-flight instructions. The more aggressive
setups are close to the unfeasible limit machine, which is able to support up to
4096 in-flight instructions.

Finally, Figure 15 shows the performance of our out-of-order commit and
SLIQ mechanisms when combined with the ephemeral registers technique.
This data provides insight about the performance achievable by kilo-instruction
processors. The figure is divided into three zones, each of them comprising the
results for 100, 500, and 1000 cycles of main memory access latency. Each zone
is composed of three groups of two bars, corresponding to 512, 1024, and 2048

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 393

virtual registers or tags [Monreal et al. 1999]. The two bars of each group rep-
resent the performance using 256 or 512 physical registers. In addition, each
zone of the figure has three lines that represent the performance of the lower-
line and upper-line baseline setups (we have not included the limit line using
prefetching because it is very close to the limit line not using it).

The main observation is that kilo-instruction processors provide important
performance improvements over the lower-line baseline processor, even when
it uses an aggressive hardware stride prefetcher. Using 2048 virtual tags, the
kilo-instruction processor is almost twice faster than the lower-line baseline
using prefetch when the memory access latency is 500 cycles or higher. The
performance variation ranges from no improvement in 172.mgrid or just 18%
speedup in 177.mesa to 4× improvement in 188.ammp, 5× improvement in
173.applu, or even 10× improvement in 189.lucas.

In addition, our results show that the kilo-instruction processor is an effective
way of approaching the unimplementable upper-line baseline processor in an
affordable way. However, there is still room for improvement. The distance
between the kilo-instruction processor performance and the upper-line baseline
is higher for larger memory access latencies. This fact causes that, although the
performance results of the more aggressive setups nearly saturate for a memory
access latency of 100 or 500 cycles, the growing trend is far from saturating
when the memory access latency is 1000 cycles. This trend suggests that a more
aggressive machine, able to support a higher number of in-flight instructions,
will provide even a better performance.

8. CONCLUSIONS

Maintaining a high amount of in-flight instructions is an effective mean for
overcoming the memory wall problem. However, increasing the number of in-
flight instructions requires upsizing the critical processor structures, which is
impractical due to area, power consumption, and cycle time limitations.

Kilo-instruction processors overcome these limitations by smartly using the
available resources. In this paper, we have provided quantitative evidence that
the critical processor structures are severely underutilized. We propose a set
of efficient techniques that allow changing the way current processors use the
critical structures. Although these techniques increase the complexity of the
processor design, they make it possible to scale up the total number of in-
flight instructions. Having thousands of in-flight instructions, a kilo-instruction
processor is able to provide high performance improvements in the presence of
large memory access latencies, which compensates the added complexity.

Therefore, we strongly believe that kilo-instruction processors are an effi-
cient mechanism for dealing with future memory latencies. In this paper, we
have shown that the design of a kilo-instruction processor is feasible. We are
currently refining the design in order to reduce the complexity and the power
consumption required by our approach. Moreover, we are analyzing the syn-
ergy between kilo-instruction processors and other architectures, such as mul-
tithreaded processors. We are also working on kilo-instruction multiprocessors
[Galluzzi et al. 2004]. Kilo-instruction processors constitute a flexible paradigm

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



394 • A. Cristal et al.

that can be combined with other architectures to improve their capabilities and
boost the processor performance, creating a great amount of new and appealing
ideas for future research.

ACKNOWLEDGMENTS

This research has been supported in part by CICYT grant TIN-2004-07739-
C02-01 (Valero), NSF grant CCF-0429922 (Martı́nez), the European Network
of Excellence on High-Performance Embedded Architecture and Compilation
(HIPEAC), and CEPBA. We would like to thank Srikanth Srinivasan, Ravi
Rajwar, and Haitham Akkary for their worthwhile comments to this work.
Thanks also go to Francisco Cazorla, Ayose Falcón, Marco Galluzzi, Robén
González, Josep Llosa, Daniel Ortega, Alex Pajuelo, Miquel Pericas, and
Tanausú Ramı́rez for their contribution to the kilo-instruction processors.

REFERENCES

AKKARY, H., RAJWAR, R., AND SRINIVASAN, S. T. 2003a. Checkpoint processing and recovery: Towards
scalable large instruction window processors. In Proceedings of the 36th International Symposium
on Microarchitecture (San Diego, CA). 423–434.

AKKARY, H., RAJWAR, R., AND SRINIVASAN, S. T. 2003b. Checkpoint processing and recovery: An
efficient, scalable alternative to reorder buffers. IEEE Micro 23, 6, 11–19.

BAER, J.-L. AND CHEN, T.-F. 1991. An effective on-chip preloading scheme to reduce data access
penalty. In Proceedings of Supercomputing’91 (Albuquerque, NM). 176–186.

BREKELBAUM, E., RUPLEY, J., WILKERSON, C., AND BLACK, B. 2002. Hierarchical scheduling windows.
In Proceedings of the 35th International Symposium on Microarchitecture (Istanbul, Turkey).
27–36.

BLOOM, B. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13,
7, 422–426.

CAIN, H. W. AND LIPASTI, M. H. 2004. Memory ordering: A value-based approach. In Proceedings
of the 31st International Symposium on Computer Architecture (Munich, Germany). 90–101.

COLLINS, J. D., TULLSEN, D. M., WANG, H., AND SHEN, J. P. 2001. Dynamic speculative precompu-
tation. In Proceedings of the 34th International Symposium on Microarchitecture (Austin, TX).
306–317.

CHAPELL, R., STARK, J., KIM, S., REINHARDT, S., AND PATT, Y. N. 1999. Simultaneous subordinate
microthreading (SSMT). In Proceedings of the 26th International Symposium on Computer Ar-
chitecture (Atlanta, GA). 186–195.

CHRYSOS, G. Z. AND EMER, J. S. 1998. Memory dependence prediction using store sets. In Proceed-
ings of the 25th International Symposium on Computer Architecture (Barcelona, Spain). 142–
153.

CRISTAL, A., VALERO, M., GONZALEZ, A., AND LLOSA, J. 2002a. White paper: Grant proposal to Intel-
MRL in January 2002. Universitat Politècnica de Catalunya, Barcelona, Spain.

CRISTAL, A., VALERO, M., GONZALEZ, A., AND LLOSA, J. 2002b. Large Virtual ROBs by Processor
Checkpointing. Technical Report UPC-DAC-2002-39, Departament d’Arquitectura de Computa-
dors, Universitat Politècnica de Catalunya, Barcelona, Spain. Also submitted to the 35th Inter-
national Symposium on Microarchitecture, in 2002.

CRISTAL, A., MARTÍNEZ, J. F., LLOSA, J., AND VALERO, M. 2003a. A case for resource-conscious out-
of-order processors. IEEE TCCA Computer Architecture Letters 2.

CRISTAL, A., ORTEGA, D., LLOSA, J., AND VALERO, M. 2003b. Kilo-instruction processors. In Proceed-
ings of the 5th International Symposium on High-Performance Computing (Tokyo, Japan). 10–25.
Keynote paper.

CRISTAL, A., MARTÍNEZ, J. F., LLOSA, J., AND VALERO, M. 2003c. Ephemeral Registers with Multi-
checkpointing. Technical Report UPC-DAC-2003-51, Departament d’Arquitectura de Computa-
dors, Universitat Politècnica de Catalunya, Barcelona, Spain.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



Toward Kilo-instruction Processors • 395

CRISTAL, A., ORTEGA, D., LLOSA, J., AND VALERO, M. 2004a. Out-of-order commit processors. In
Proceedings of the 10th International Symposium on High-Performance Computer Architecture
(Madrid, Spain). 48–59.

CRISTAL, A., SANTANA, O. J., AND VALERO, M. 2004b. Maintaining thousands of in-flight instructions.
In Proceedings of the Euro-Par Conference (Pisa, Italy). Keynote paper.

DUBOIS, M. AND SONG, Y. 1998. Assisted Execution. Technical Report CENG 98–25, Department
of EE-Systems, University of Southern California, Los Angeles, CA.

DUNDAS, J. AND MUDGE, T. 1997. Improving data cache performance by pre-executing instruc-
tions under a cache miss. In Proceedings of the 9th International Conference on Supercomputing
(Vienna, Austria). 68–75.

GALLUZZI, M., PUENTE, V., CRISTAL, A., BEIVIDE, R., GREGORIO, J. A., AND VALERO, M. 2004. A first
glance at kilo-instruction based multiprocessors. In Proceedings of the 1st Conference on Com-
puter Frontiers (Ischia, Italy).

HWU, W. M. AND PATT, Y. N. 1987. Checkpoint repair for out-of-order execution machines. In
Proceedings of the 14th International Symposium on Computer Architecture (Pittsburgh, PA).
18–26.

JOSEPH, D. AND GRUNWALD, D. 1997. Prefetching using Markov predictors. In Proceedings of the
24th International Symposium on Computer Architecture (Denver, CO). 252–263.

KLAIBER, A. AND LEVI, H. 1991. An architecture for software-controlled data prefetching. In Pro-
ceedings of the 18th International Symposium on Computer Architecture (Toronto, Canada). 53–
53.

LEBECK, A., KOPPANALIL, T., LI, T., PATWARDHAN, J., AND ROTENBERG, E. 2002. A large, fast instruction
window for tolerating cache misses. In Proceedings of the 29th International Symposium on
Computer Architecture (Anchorage, AK). 59–70.

MARTÍNEZ, J. F., RENAU, J., HUANG, M., PRVULOVIC, M., AND TORRELLAS, J. 2002. Checkpointed early
resource recycling in out-of-order microprocessors. In Proceedings of the 35th International Sym-
posium on Microarchitecture (Istanbul, Turkey). 3–14.

MARTÍNEZ, J. F., CRISTAL, A., VALERO, M., AND LLOSA, J. 2003. Ephemeral Registers. Technical Report
CSL-TR-2003-1035, Cornell Computer Systems Lab, Ithaca, NY.

MONREAL, T., GONZALEZ, A., VALERO, M., GONZALEZ, J., AND VIÑALS, V. 1999. Delaying physical regis-
ter allocation through virtual-physical registers. In Proceedings of the 32nd International Sym-
posium on Microarchitecture (Haifa, Israel). 186–192.

MOWRY, T., LAM, M., AND GUPTA, A. 1992. Design and evaluation of a compiler algorithm for
prefetching. In Proceedings of the 5th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Boston, MA). 62–73.

MOUDGILL, M., PINGALI, K., AND VASSILIADIS, S. 1993. Register renaming and dynamic speculation:
An alternative approach. In Proceedings of the 26th International Symposium on Microarchitec-
ture (Austin, TX). 202–213.

MUTLU, O., STARK, J., WILKERSON, C., AND PATT, Y. N. 2003a. Runahead execution: An alterna-
tive to very large instruction windows for out-of-order processors. In Proceedings of the 9th
International Symposium on High-Performance Computer Architecture (Anaheim, CA). 129–
140.

MUTLU, O., STARK, J., WILKERSON, C., AND PATT, Y. N. 2003b. Runahead execution: An effective
alternative to large instruction windows. IEEE Micro 23, 6, 20–25.

PALACHARLA, S., JOUPPI, N., AND SMITH, J. 1997. Complexity-effective superscalar processors. In
Proceedings of the 24th International Symposium on Computer Architecture (Denver, CO). 206–
218.

PARK, I., OOI, C., AND VIJAYKUMAR, T. 2003. Reducing design complexity of the load/store queue.
In Proceedings of the 36th International Symposium on Microarchitecture (San Diego, CA). 411–
422.

ROTH, A. AND SOHI, G. S. 2001. Speculative data-driven multithreading. In Proceedings of the 7th
International Symposium on High-Performance Computer Architecture (Nuevo Leone, Mexico).
37–48.

SETHUMADHAVAN, S., DESIKAN, R., BURGER, D., MOORE, C., AND KECKLER, S. 2003. Scalable hard-
ware memory disambiguation for high ILP processors. In Proceedings of the 36th International
Symposium on Microarchitecture (San Diego, CA). 399–410.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.



396 • A. Cristal et al.

SHERWOOD, T., PERELMAN, E., AND CALDER, B. 2001. Basic block distribution analysis to find periodic
behavior and simulation points in applications. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (Barcelona, Spain). 3–14.

SMITH, A. 1982. Cache memories. Computing Surveys 14, 3, 473–530.
SMITH, J. E. AND PLESZKUN, A. R. 1985. Implementation of precise interrupts in pipelined pro-

cessors. In Proceedings of the 12th International Symposium on Computer Architecture (Boston,
MA). 36–44.

SOHILIN, Y., LEE, J., AND TORRELLAS, J. 2002. Using a user-level memory thread for correlation
prefetching. In Proceedings of the 29th International Symposium on Computer Architecture
(Anchorage, AK). 171–182.

SRINIVASAN, S. T., RAJWAR, R., AKKARY, H., GANDHI, A., AND UPTON, M. 2004. Continual flow pipelines.
In Proceedings of the 11st International Conference on Architectural Support for Programming
Languages and Operating Systems (Boston, MA). 107–119.

TENDLER, J. M., DODSON, S., FIELDS, S., LE, H., AND SINHAROY, B. 2001. IBM @server POWER4
System Microarchitecture. IBM Technical White Paper. IBM Server Group.

ZILLES, C. AND SOHI, G. S. 2001. Execution-based prediction using speculative slices. In Proceed-
ings of the 28th International Symposium on Computer Architecture (Göteborg, Sweden). 2–13.

Received September 2004; revised November 2004; accepted November 2004

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.


