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ABSTRACT

Speculative parallelization aggressively executes in parallel codes
that cannot be fully parallelized by the compiler. Past proposals
of hardware schemes have mostly focused on single-chip multipro-
cessors (CMPs), whose effectiveness is necessarily limited by their
small size. Very few schemes have attempted this technique in the
context of scalable shared-memory systems.

In this paper, we present and evaluate a new hardware scheme
for scalable speculative parallelization. This design needs relatively
simple hardware and is efficiently integrated into a cache-coherent
NUMA system. We have designed the scheme in a hierarchical
manner that largely abstracts away the internals of the node. We
ef{]ectively utilize a speculative CMP as the building block for our
scheme.

Simulations show that the architecture proposed delivers good
speedups at a modest hardware cost. For a set of important non-
analyzable scientific loops, we report average speedups of 4.2 for 16
processors. We show that support for per-word speculative state is
required by our applications, or else the performance suffers greatly.

1 INTRODUCTION

Despite advances in compiler technology [2, 6], there is still a large
set of codes that compilers fail to parallelize to an acceptable de-
gree. Complex data dependence structures caused by non-linear sub-
scripts, double indirections, pointers, or function calls within code
sections often lead the compiler to conservatively abstain from par-
allelizing the code. Many of these codes, particularly in the scientific
domain, may still turn out to have a large amount of parallelism.

Software transformations are a possible way of extracting some
parallelism from these codes. Some software schemes analyze the
dependence structure of the code at run time and try to run parts of it
in parallel protected by synchronization (for example [13]). Other
software schemes speculatively run the code in parallel and later
recover if a dependence violation is detected [5, 15]. While these
techniques are certainly promising, they all have various amounts of
software overhead, which may limit their scalability.

On the hardware side, there have been several proposals for
single-chip speculative multithreaded or multiprocessor architec-
tures [4, 7, 11, 14, 16, 17, 20]. In these systems, the hardware de-
tects dependence violations across threads at run time. The code
is speculatively run in parallel and, when a violation is detected, a
corrective action is taken that involves thread squash and parallel
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execution resumption. Already companies like Intel and Sun are se-
riously involved in on-chip speculative parallelization [1, 19]; the
latter has even announced a chip multiprocessor (CMP) with such
support (MAJC). Most of these small-scale designs are conceived
for standalone operation, and are thus not tailored at being integrated
into large system configurations. Only [17] is designed for multichip
configurations.

One possible way to address this limitation is to extend a scal-
able cache coherence protocol to support speculative parallelization.
There have been two proposals in this direction [17, 18, 22, 23, 24].
Both schemes extend an invalidation-based cache coherence proto-
col. They both yield a flat view of their speculation threads. Neither
of these proposals is fleshed out enough to show how, if speculative
CMPs were used as building blocks, it would reconcile its single
layer protocol with many of the self-contained speculation protocols
of these CMPs.

The main contribution of our paper is the design and evaluation
of a new scheme for scalable speculative parallelization that requires
relatively simple hardware and is efficiently integrated next to the
cache coherence protocol of a conventional NUMA multiprocessor.
We have taken a hierarchical approach that largely abstracts away
the internals of the node architecture. In particular, we are able
to utilize a self-contained speculative CMP as building block, with
minimal additions to interface with the rest of the system. The in-
tegration of speculative CMPs into scalable systems seems to offer
great potential.

Simulations show that the architecture that we propose delivers
good speedups at a modest hardware cost. For a set of important
non-analyzable scientific loops, we report average speedups of 4.2
for 16 processors. We also show that support for per-word specu-
lative state is required by our applications, or otherwise the perfor-
mance suffers greatly.

This paper is organized as follows: Section 2 introduces specu-
lative parallelization and the base speculative CMP that we use as
building block; Section 3 describes our scalable scheme built out of
speculative CMPs; Sections 4 and 5 present the experimental setup
and the evaluation of the scheme, respectively; Section 6 analyzes
related work; finally, Section 7 concludes the paper.

2 SPECULATIVE PARALLELIZATION

2.1 Basic Concepts

Speculative parallelization extracts threads from sequential code and
runs them in parallel, hoping not to violate any sequential seman-
tics. The control flow of the sequential code imposes an order on
the threads and, therefore, we can use the terms predecessor and
successor to qualify the relation between any given pair of threads.
The control flow also yields a data dependence relation on the mem-
ory operations. In loop-level speculative parallelization, threads are
typically formed every some number of consecutive iterations, and
the thread order is total. In general, loop-level speculative paral-
lelization is mostly concerned with not violating cross-thread data
dependences. Of course, in loops whose upper limit is not known,
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Figure 1. Example of speculative parallel execution with a
RAW dependence violation.

speculative parallelization should also be concerned about not vi-
olating control flow. This is because the exact number of threads
needed to cover the actual number of iterations must be produced.
In what follows, we will focus on the aspects of speculative paral-
lelization related to cross-thread data dependences.

A memory operation issued by a thread is speculativewhen it may
have data dependences with others issued, or to be issued, by pre-
decessor threads; otherwise it is non-speculative. Likewise, a thread
is speculative when it has issued, or may issue, speculative memory
operations. If all operations issued or to be issued by a thread are
known to be non-speculative, the thread itself is non-speculative.

A thread is said to retire or commit when it has finished its ex-
ecution and it is non-speculative. In general, a speculative thread
will become non-speculative only when all its predecessors have
committed, which guarantees that all its memory operations are non-
speculative. If a thread reaches its end and is still speculative, it must
wait to acquire non-speculative status in order to commit. Hence, the
thread sequence can be split into two consecutive segments of com-
mitted and uncommitted threads. Among the uncommitted threads,
only the earliest one is non-speculative.

Speculative stores generate speculative versions, and speculative
loads that do not find a local version try to get it from the closest
predecessor that holds one. If no speculative version exists, the load
fetches the non-speculative one.

As speculative threads execute in parallel, the system must track
memory references to identify any cross-thread data dependence vi-
olation. WAR and WAW dependence violations do not induce er-
rors in systems that support multiple versions for the same data.
RAW dependence violations, however, typically cause problems. A
RAW dependence violation occurs whenever a speculative thread
has loaded a version of data that is subsequently modified by a pre-
decessor. We then say that the load was premature, since it tried to
consume a value that had not yet been produced. Figure 1 shows
an example of such a violation. When a RAW dependence viola-
tion is detected, the thread that performed the premature load must
be squashed. Ordinarily, all its successors are also squashed at this
time because they may have consumed versions generated by the
squashed thread. While it is possible to resolve reference chains and
selectively squash only threads at fault, it involves extra complexity.
In any case, when a thread is squashed, all the data produced spec-
ulatively must be purged. Then, the thread restarts execution from
the beginning.

The approach that we use for speculative parallelization within a
chip is that of the Memory Disambiguation Table (MDT) scheme.
In the following sections, we give an overview of the speculation
prcEtO(on used in a MDT-based CMP. Further details can be found
in [11].

2.2 Speculative CMP and the MDT

In a MDT-based CMP, each processor has a private L1 cache that
can hold speculative versions of data. The memory beyond the chip
is accessible by all processors and does not see any such speculative
versions. All updates that a speculative thread makes must remain
in its L1 cache until the thread becomes non-speculative.

When a thread reaches the end of its execution, the processor on
which it runs stalls until the thread becomes non-speculative. Then,
the thread commits by writing back all the dirty data in its L1, there-
fore leaving the L1 cache consistent with memory for a future thread.
At this point, a new, speculative thread can start. The decisions to
stall the processor until the thread becomes non-speculative, and not
to keep dirty data in L1 when a speculative thread is spawn, were
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Figure 2: Organization of the MDT. In this example, mem-
ory lines have 2 words, there are 4 processors, and processors
2 and 1 have performed a load and a store respectively on
word 0 of line 0x2234.

made to simplify the hardware and general complexity of the spec-
ulation protocol in the chip. With this design, if the threads have
load imbalance, a thread may finish some cycles before its predeces-
sor has finished and committed. During this time, the processor that
was running the thread remains idle. We call this time intrinsic chip
imbalance.

This scheme includes a multi-ported table called MDT that
records speculative accesses to data. Specifically, as memory lines
are being accessed, the MDT allocates a Load and a Sore bit per
word in the line and per processor. The Store bit is set whenever a
processor writes to a word, while the Load bit is set only if the pro-
cessor reads a word without first writing to it. Later, when another
processor loads a word, the Store bits are used to identify the most
up-to-date version among the predecessors. On the other hand, when
a store operation is performed, both bits are used to detect premature
loads by successor threads.

The MDT is placed between the L1 and memory. It is organized
as an 8-way set-associative structure that maintains state correspond-
ing to a number of memory lines (Figure 2). In a naive design, the
table would be searched every time that a memory operation occurs
to data that can be speculatively accessed. If an entry matching the
line requested is found, the corresponding bit is updated; otherwise
a new entry is created.

The MDT is of limited size and cannot evict entries while in use.
A speculative thread stalls if it finds the MDT full upon trying to
allocate a new entry. When a thread commits, all its MDT bits are
cleared. If, as a result, all the bits in one MDT entry become zero,
the entry is deallocated.

As said before, to simplify the protocol, the scheme does not al-
low dirty data to remain in L1 across speculative thread initiations.
This restriction, which could be eliminated with further support, im-
plies that a thread has to write back all its L1 dirty data when it
commits. This is accomplished gradually in two steps. First, when
the thread becomes non-speculative, its L1 is switched to work in a
write-through mode. This support additionally implies that the non-
speculative thread does not need to set any MDT bits and, as a result,
cannot stall due to lack of free MDT entries — which means that the
code is guaranteed to make progress. Second, when the thread fin-
ishes, it writes back all the remaining dirty words.

The actual load and store operations proceed as follows. When
a thread issues a load, whether it hits or misses in L1, the MDT is
informed. If the access resulted in a L1 miss, the line is fetched
from memory in parallel. Meanwhile, the MDT Store bits of its
predecessors are checked in reverse order to search for the closest
version. If a non-zero Store bit is found in the MDT, the word is read
from the predecessor (Figure 3a) and merged with the rest of the line
in the requestor’s L1. Note that we must check the Store and not the
Load bits. A set Load bit does not guarantee that the corresponding
L1 has the word: lines that have only been speculatively loaded can
be displaced.

When a thread issues a store, the MDT Load and Store bits of
its successors are scanned, starting from the immediate successor.
The search terminates when a successor is found with either bit set.
If the Load bit is set, a RAW dependence has been violated: the
consumer and its successors are squashed, their speculatively up-
dated words invalidated, and their MDT state cleared. If, instead,
the Load bit is not set but the Store bit is, a WAW dependence has
been violated. However, this is harmless because the system cor-
rectly supports multiple versions, thus no squashing occurs. In all
cases, however, we send an invalidation message to the caches of
the threads between the one issuing the store and the first succes-
sor with the Load or Store bits set (non-inclusive), as well as to the
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Figure 3: Handling reads and writes in a single CMP ((a)
and (b)) and in a hierarchical scalable system ((c) and (d)). In
a read, the shaded node is the closest predecessor that wrote
the word while, in a write, it is the closest successor that re-
defined the word before reading it.

caches of any squashed threads. This invalidation ensures that the
obsolete word is not used in successor caches. Furthermore, in all
cases, we also send a delayed-invalidation message (dyinv) to the
caches of all the predecessor threads. This message marks the data
as stale for any new thread that is later started on those processors.
Such new threads will necessarily be successors to the writing one
(Figure 3b).

In addition to MDT state, this scheme also needs, for each L1
line, one Dirty, Sale, and Forwarded bit, plus per-word Invalid, Safe
Load, and Safe Store bits®. The Dirty bit is set when a processor
writes to any one of the words in the line, while the Invalid bit is set
when the word is invalidated. The Safe Load and Safe Store bits are
used to avoid having to access the MDT on every load and store. If
all loads and stores had to be made visible to the MDT, we would in
practice render the L1 caches read- and write-through, causing much
traffic on the bus. Consequently, we use the Safe Load and Safe
Store bits to indicate whether it is possible to perform the operation
in the L1 cache without checking the MDT. The Safe Load bit is set
by the thread’s first load to the word, so that subsequent loads to the
word by the same thread do not need to inform the MDT. Similarly,
both the Safe Load and Safe Store bits are set by the thread’s first
store to the word, so that subsequent loads or stores to the word
by the same thread do not need to check the MDT. However, the
Safe Store bit in a thread is reset when a successor reads the thread’s
version of the word. This way, when the thread later performs a store
to the word again, it will correctly check the MDT and squash the
successor. A load that finds the Safe Load bit unset and a store that
finds the Safe Store bit unset are said to be exposed.

The Stale bit is set for a L1 line when the cache receives a
delayed-invalidation message for one of the words in the line: al-
though still usable by the current thread, the word has become ob-
solete for future threads and, therefore, must be invalidated before a
new thread starts. Consequently, at commit time, after the thread has
written back to memory all the valid words in dirty L1 lines, we set
the Invalid bit of all the words in lines with the Stale bit set. Then,
we reset the Stale bit.

Finally, the Forwarded bit identifies L1 lines with words for-
warded from a predecessor, as opposed to loaded from memory. The
Forwarded bit is used when a thread is squashed. In this case, all the
words in L1 lines with the Forwarded bit set are invalidated to pre-
vent keeping erroneous versions in the cache. The Forwarded bit is
cleared at commit time.

1In the paper that introduced the MDT [11], we called the Stale, Safe
Load, and Safe Store bits the Flush, Safe Read, and Safe Write bits, respec-
tively. We feel that the new names are better. That paper also used the Stale
and Forwarded bits on a per-word basis. Subsequent performance evalua-
tion has shown that these bits can be kept on a per-line basis without any
noticeable performance degradation.

‘ Dep. ‘ Order ‘ ‘ First Access ‘ ‘ Second Access ‘
SUC generates version Vs;
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Order PRE generatesversion Vp. || \yhen PRE commits, write Vp back
to memory and self-invalidate it.
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Outof || gyc generates version Vs. mark it tale.

Order When PRE commits, write Vp back
to memory and self-invalidate it.
SUC generates version Vs;
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WAR
Out of . PRE reads most recent version Vp;
Order || SUC generates version Vs. || mark it stale. When PRE commits,
self-invalidate Vp.
O:ger PRE generates version Vp. || SUC reads most recent version Vp.
RAW

Out of || SUC reads most up-to-date
Order || versionVs.

PRE generates version Vp;
invalidate Vs and squash SUC.

Table 1: Handling all types of data dependences due to ac-
cesses to a single word. In the table, PRE and SUC stand for
predecessor and successor thread respectively, and V,, and V;
refer to two versions of the same word created by the prede-
cessor and successor thread respectively.

2.3 Multiple Versions and Per-Word State

The protocol described allows different versions of the same da-
tum to reside in different caches simultaneously, and keeps per-word
Load and Store bits in the MDT. Both features are targeted at toler-
ating situations that would otherwise cause unnecessary squashes.
As a result, in our protocol, only out-of-order RAW dependences
involving the same word create squashes. Table 1 shows the opera-
tions performed by our speculation protocol in the presence of every
possible data dependence. To gain further insight, let us now con-
sider other protocols where one of the two supports is missing and
see what additional dependences cause squashes.

In a protocol where per-word speculative state is supported but
multiple versions are not, out-of-order WAR and WAW dependences
also cause thread squashes. Indeed, in these cases, a thread creates
a version of a datum and, later, a predecessor tries to use (WAR) or
create (WAW) an older version of the same datum. If only one spec-
ulative version were supported by the system, the youngest of the
two threads would have to be squashed to accommodate the older
version that its predecessor is trying to access. If, however, the sys-
tem can host both versions simultaneously in such a way that each
thread manipulates its own copy of the datum, the squash operation
becomes unnecessary. Needless to say, the system must be able to
reconcile these multiple versions into a meaningful final state at the
end of the execution.

Consider now a protocol where multiple versions are supported
but per-word speculative state is not. In this case, the system can-
not determine whether two accesses to the same cache line target
the same or different words. Specifically, all out-of-order RAW and
WAW accesses to a cache line must now trigger squashes. For exam-
ple, consider that a thread reads a datum and, later on, a predecessor
writes to the same memory line. The system regards it as a RAW
dependence violation and squashes the successor. Consider, instead,
that the first thread writes a datum and, later on, the predecessor
writes to that line (WAW). Since the system cannot eventually com-
bine the line versions, it squashes the successor.

To see that both types of support are indeed useful, Table 2 shows
whether they are necessary in five important data access patterns.
Each pattern is illustrated with an example in which several con-
tiguous 4-word memory lines are accessed by three loop iterations
(i0,i1, and i2). Accesses are represented by arrows: straight arrows
indicate that we can foresee what accesses the iterations will be per-
forming with some accuracy; curved arrows mean that the locations
being accessed cannot be predicted in general. Each pattern lists the
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Table 2: Access patterns and the protocol support required.

applications from Section 4.1 in which we found instances of it.

From the table, we see that the most general case, namely 1, in
which nothing is known about the accesses, requires both types of
support. Case 2, a very important subcase of 1, corresponds to loops
that can be fully (or to a large degree) parallelized through privati-
zation — although the compiler is unable to determine this. This case
also needs both types of support.

When accesses are very sparse (case 3), the system can probably
do without these two types of support, since access collisions are
occasional. Case 4 can also do without them provided that the itera-
tions access different cache lines, which would typically be achieved
through smart data alignment and loop unrolling. However, if dif-
ferent iterations do access the same cache lines, then both types of
support may be needed.

Finally, case 5 does not need to hold per-word state if the com-
piler guarantees that no more than one word in the line is touched.
It does need support for multiple versions. This corresponds to a
shared variable, or a variable that looks privatizable except that some
accesses are inside an i f statement. Overall, based on all this dis-
cussion, we see that the two supports are very useful for many types
of patterns.

3 SCALABLE SPECULATION

Supporting speculative parallelization in a scalable multiprocessor
is more challenging than in a CMP. The speculative state is nec-
essarily distributed across the nodes. We need a distributed spec-
ulative protocol that works over a general interconnect and does
not adversely affect conventional cache-coherence support. To this
end, our scheme for speculative parallelization is designed to oper-
ate largely in parallel with a conventional invalidation-based cache-
coherence protocol and directory structure of a CC-NUMA sys-
tem. Furthermore, we choose simplicity over all-out performance
in many aspects of the design. Finally, we want the resulting system
to be flexible enough to use a speculative CMP as building block.
Speculative CMPs are specially attractive since such chips already
provide some support for speculation and using them at each node
may leverage costs.

This section describes the following aspects of our scheme: the
hierarchical approach that we take (Section 3.1), different aspects

PE Processing Element
L1,2 Level 1,2 Caches
MEM Main Memory
DIR Directory
NC Network Controller

L,GMDT Local,Global Memory
; Disambiguation Table

SCALABLE INTERCONNECT

Figure 4: Hierarchical organization for speculative paral-
lelization.

of the protocol operation (Section 3.2), the interaction with the CC-
NUMA directory (Section 3.3), the support for multiprogramming
(Section 3.4), the overall benefits of the approach (Section 3.5) and,
briefly, the compiler support (Section 3.6).

3.1 Hierarchical Organization

To build a flexible scheme, we design our speculative paralleliza-
tion protocol in a hierarchical manner. Specifically, we add one new
MDT in the machine, for which each speculative CMP node is ab-
stracted away as a single entity. This new MDT relates to the L2
caches in the nodes in a similar way as, within a CMP, the on-chip
MDT relates to the L1 caches. Internally, each speculative CMP
continues to function largely like before. The on-chip MDTs are
now called Local MDTs (LMDTs), while the external MDT is called
Global MDT (GMDT). The GMDT is coupled with the directory of
the CC-NUMA machine and, like such, it is physically distributed
across the different nodes of the machine based on address ranges.
Consequently, we will use the term home GMDT to refer to the sec-
tion of the GMDT in the home node of the data. Overall, this or-
ganization stores speculative state like a clustered CC-NUMA holds
coherence state: per-processor state within the node, and per-node
state across the system. Figure 4 shows a block diagram of the envi-
sioned organization.

A hierarchical approach allows us to abstract away the internals of
the speculative CMP and construct a system-wide speculative pro-
tocol that can work with different classes of nodes. Although the
system can easily adapt to many different types of nodes including
single processors, CMPs, or SMP clusters, in this work we focus
on using speculative CMPs as building blocks. With this approach,
we hope to leverage emerging speculative CMP technology like the
one commercialized by Sun Microsystems in the MAJC chip [19].
Consequently, in our design, we try to minimize the modifications
required to a speculative CMP like the one presented in Section 2.2
to Incorporate it into a scalable system.

If we use CMPs as nodes and want the GMDT to keep state on
a per-node basis, it is simplest if the threads are assigned to chips
in batches, where a batch or chunk contains a set of consecutive
threads. This way, the threads running on a speculative CMP can
be made to look to the external system as a single execution thread.
Off-chip predecessors and successors of a given thread will also be
predecessors and successors of the thread’s on-chip peers. This ap-
proach allows each chip to operate as a largely independent specu-
lative system and reduces to a minimum the modifications required
to an existing speculative CMP.

Overall, at any time, there is an ordering of the threads and also
an ordering of the chips. At the chip level, chips relate to other
chips through predecessor and successor ordering. The chip host-
ing the non-speculative thread, which we call the non-speculative
chip, is the earliest in the sequence. Within each chip, the least
speculative thread is regarded, for all internal operations, as being
non-speculative. This means that such a thread writes through its
L1 cache and does not create LMDT entries. Such a thread can be-
have as non-speculative within its CMP but be speculative across the
system.



The per-node L2 caches across the system play the same role that
per-processor L1 caches play in the CMP. In the speculative nodes,
they keep speculative data from being written back to memory until
it is safe to do so. The only L2 cache that does not need to hold any
speculative state and, therefore, could be write-through, is the one
at the non-speculative node. For performance reasons, however, we
keep all these large L2 caches in write-back mode.

3.2 Protocol Operation

To understand the workings of our scheme, we examine several as-
pects of the protocol, including handling loads and stores, cache line
replacements, thread mapping, L2 and GMDT support, and commits
and squashes. We mention the modifications required to the CMP as
we describe the operations. As indicated before, we have preferred
simplicity over higher performance in many aspects of the design.

3.2.1 Loads and Stores

Loads and stores proceed much as in the CMP (Section 2.2), except
that we now have another level in the memory hierarchy. Upon a
load by a processor, the CMP first tries to resolve the access locally,
by seeking versions in its L1 and in predecessors through the LMDT.
If it fails, the system repeats the search in L2 and in predecessor
nodes via the GMDT module at the home of the memory line. Like
in the CMP protocol, the most recent version is located at the closest
predecessor whose Store bit is set (possibly the requestor itself). If
the version is to be fetched from a predecessor, since all threads in
that node are predecessors of the requestor, all we need is for its
LMDT to locate the latest version in the chip and to return it. For
this scheme to work, of course, the LMDT of the speculative CMP
must be enhanced to allow external requests of versions.

A store by a thread proceeds like in the CMP protocol: copies
in the successor threads up until, but not including, the first redefini-
tion are invalidated, while predecessors are sent delayed-invalidation
messages. These two actions involve, in the general case, threads in-
side and also outside the chip (Figure 3d). While the LMDT takes
care of the threads within the chip, the GMDT is responsible for
sending point-to-point messages to the appropriate predecessor and
successor chips. Again the LMDT must be augmented to support
such external messages.

We use the existing directory and GMDT states to reduce the
number of delayed-invalidations and invalidations that we send.
How the directory helps is discussed in Section 3.3. As for the
GMDT, note that, if another chip already has its Store bit set in the
GMDT, it means that it has already sent delayed-invalidations and
invalidations to its predecessors and successors respectively. There-
fore, upon a store operation, we need to send invalidations only if no
predecessor Store bit is set, and then only up to the first successor

whose Store bit is set, non-inclusive?. Symmetrically, we need to
send delayed-invalidations only if no successor Store bit is set, and
then only down to the first predecessor whose Store bit set.

L2 caches contain a Stale and a Forwarded bit per line. These
bits are used in a similar way as the Stale and Forwarded bits in L1
(Section 2.2). However, unlike L1 caches, L2 caches do not contain
Safe Load or Safe Store bits. Recall that these bits are used to save
a trip to the LMDT on an L1 hit: if a load finds the Safe Load or
a store finds the Safe Store bit set, the LMDT is guaranteed to be
up-to-date and, in addition, the store is guaranteed not to generate
squash, invalidation, or delayed-invalidation messages. We do not
include these bits in L2 because there are few scenarios in which
they would actually save trips to the GMDT on an L2 hit. More
specifically, the sole presence of the Load bits in the LMDT makes
the Safe Load bit in L2 redundant. As for sparing the Safe Store bits
in L2, it can be easily shown that most of the unnecessary GMDT
aCCﬁsses in stores are filtered out by the Safe Store bits in the L1
caches.

One change that we make to the speculative CMP is related to ex-
posed loads, namely loads that hit in L1 but find that the Safe Load
bit is zero. These loads require performing a check for dependences
in the LMDT and, potentially, in the GMDT as well. Since such

2Recall that if the Load bit of that successor is also set, we trigger a squash
operation and, as part of it, invalidate its copy of the word.

a check may be time-consuming in scalable machines, our change
consists of returning the data to the processor immediately. In the
background, a protocol message checks the MDTs. If the check con-
cludes that the load has used a stale version, a squash is generated.
We expect, however, that the data in the cache will be usually up-
to-date. Such is the case when data that is not modified by any pro-
cessor remains in the caches across thread executions. Note that this
optimization introduces the possibility of loads generating squashes.
However, this technique, which we call aggressive exposed loads, is
attractive due to its latency-hiding ability.

Finally, because all L2 caches are write-back, even actions from
the non-speculative thread in the system must generate and update
GMDT entries like any other thread in any chip. As a result, we
could run the risk of stalling the non-speculative thread due to lack
of GMDT space. To avoid this problem, we organize the GMDT as a
cache, backing up its data in main memory in a manner very similar
to a directory cache.

3.2.2 Cache Line Replacements

Similarly to the CMP case, our scheme maintains versions in the
caches and imposes restrictions as to which levels of the memory
hierarchy these versions can propagate to. Following the speculative
CMP protocol of Section 2.2, only the least speculative thread in a
chip is allowed to modify the L2 state. Any other thread in the chip
stalls if it tries to displace an updated line from its L1. Likewise,
only the non-speculative thread in the system is allowed to displace
updated lines from the local L2 into memory. Any other thread in
any chip stalls if it tries to displace an updated line from its local L2.
Stalled threads resume execution when they reach non-speculative
status.

Lines that have been speculatively loaded but not modified can
always be displaced from any cache. The reason is that no informa-
tion is lost: MDTSs record what words are being speculatively loaded
by what threads or chips.

3.2.3 Mapping of Threads

The requirement to minimize the modifications to a speculative
CMP like the one of Section 2.2 introduces some constraints to
thread mapping. As indicated in Section 3.1, to maintain the hi-
erarchical abstraction, it is simplest if we assign threads to chips in
chunks of consecutive threads. Each chunk contains as many threads
as there are processors in the CMP. Furthermore, since the CMP
protocol tightly couples the on-chip threads, allowing different pro-
cessors within the chip to execute threads from different chunks at
the same time would require significant CMP changes. As a result,
we only assign a new chunk to a CMP when all its processors have
completed the execution of (although not necessarily committed) the
previous chunk.

This restriction of waiting until all the threads in a chunk have fin-
ished before starting a new chunk may lead to some idle time if the
different threads in a chunk have load imbalance. Recall from Sec-
tion 2.2 that the speculative CMP design that we adopted requires
that a processor stall when the thread that it is running finishes and is
still speculative. The resulting idle time we called intrinsic chip im-
balance. Now, in addition to this, assigning threads in whole chunks
implies that each processor must also wait for its successor proces-
sors in the chip to finish their threads before starting to work on a
new chunk. We call this second source of idle time induced chip im-
balance. The combination of intrinsic and induced chip imbalance
we call chip imbalance.

The equivalent to intrinsic chip imbalance in a scalable system
would be not to start a new chunk on a chip until all the predecessor
chunks had finished and committed. This approach, which effec-
tively implies assigning thread chunks to chips statically, would lead
to poor performance in the presence of load imbalance. Further, its
impact would increase with the number of chips in the system. Con-
sequently, we do not impose this restriction.

Instead, when a chip finishes a chunk of threads, it asks for
another chunk and starts executing it, irrespective of whether the
predecessor chunks have finished. With this approach, chunks of
threads are dynamically assigned to chips, therefore reducing idle
time due to load imbalance. The set of contiguous uncommitted



thread chunks that have been assigned to chips to execute, we call
the active window. The active window always starts with the non-
speculative chunk. The active window size changes dynamically
and, at any given time, is likely to be larger than the number of chips
in the machine. Its maximum size is set to a hardware-predefined
limit. In general, the only situation in which load imbalance would
become apparent at the system level would be when the active win-
dow has reached its maximum size and we are unable to assign new
chunks. This effect we call system imbalance.

Overall, our dynamic chunk scheduling approach is supported
with practically no modification to the speculative CMP hardware.
Most of the modifications are performed on the node’s L2 and lo-
cal GMDT module. Of course, not modifying the CMP hardware
means that the system may potentially suffer from chip imbalance.
Fortunately, however, the magnitude of chip imbalance depends on
the number of processors per chip, and not on the total number of
nodes in the machine. Therefore, its impact stays largely constant
instead of increasing as we scale up the machine to more nodes.

3.2.4 L2 Support

The speculative protocol within the CMP keeps working as de-
scribed in Section 2.2: threads in a chunk commit within the chip
in order and, when they do, they write back all the updated lines in
their L1 to L2. These updates must remain in L2 until the chunk
commits at the system level.

Before the chunk commits, however, the chip may be given an-
other chunk to execute. As chunks execute and complete, L2 will
accumulate speculatively updated lines from several chunks. The
state of each chunk must be carefully buffered and kept separated
from that of the others. When one chunk finally commits at the sys-
tem level, only its updated lines must be written back from L2 to
main memory.

The problem of buffering data from several threads in the context
of speculative parallelization has been addressed in two ways in the
literature: using separate write buffers to hold versions from differ-
ent threads [7] or extending the cache tags to identify the thread that
owns the version in each cache line [17]. Our scheme uses an ap-
proach similar to the second one, adding chunk IDs to the L2 cache
tags. We will see later that chunk IDs are encoded with numbers
going from 0 to w — 1, therefore using log, w bits, where w is the
hardware-defined maximum active window size. These bits are on
a per-line as opposed to a per-word basis to reduce the overhead.
Consequently, when two different chunks update the same line, they
create two line versions even if they update different words.

Since the L2 cache may potentially hold much state from different
chunks, it may suffer conflicts. As indicated in Section 3.2.2, the
processor is stalled when a cache conflict is about to displace a line
modified by a speculative chunk. To reduce the chances of stalls, we
extend L2 by adding a set-associative buffer that acts somewhat like
a victim cache [8]. This buffer stores speculatively-modified lines
as they are displaced from L2. However, the buffer does not need to
store speculatively-loaded yet clean lines that are evicted from L2.
The reason is that the GMDT already has a record of them.

3.2.5 GMDT Support

Since there can be more thread chunks currently assigned to nodes
than nodes in the machine, the GMDT really keeps the Load and
Store bits on a per-assigned-chunk basis as opposed to a per-node
basis. In addition, to locate the nodes to which the chunks have been
assigned, the GMDT keeps a data structure with the mapping from
the chunks in the active window to the nodes. Both the number of
Load and Store bits per word in the table and the number of entries
in the chunk-to-node mapping structure are equal to w, which is a
limit set in hardware for the number of chunks that can be assigned
at a time.

Figure 5 shows the chunk-to-node mapping structure. Each entry
in the structure keeps the ID of the node to which a chunk has been
assigned. The structure is a circular queue. Two pointers point to
the non-speculative chunk and to the most-speculative one, marking
the boundaries of the current active window. The first pointer moves
as the GMDT s informed that a chunk has committed, while the
second one moves as the GMDT assigns new chunks for execution
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Figure 5: Chunk-to-node mapping structure in the GMDT.
The figure corresponds to a 4-node machine where the non-
speculative chunk (chunk 1D 3) has been assigned to node 2,
the next one (chunk ID 4) to node 0, and so forth. Node 1 is
currently assigned 3 chunks.
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Figure 6: Messages involved in a commit (a) and a squash
(b) operation. In the commit, a thread chunk in node 22
passes non-speculative status to one in node 8. In the squash,
the triggering violation occurs in node 3.

or as chunks get squashed. All transactions between the GMDT
and the nodes are logged with the corresponding chunk ID, which
uniquely identifies the chunk at that moment. In the figure, the chunk
ID can go from 0 to 15. The application must be able to figure out
what work to do once it is given a chunk ID. This information can be
computed locally by each node or through a shared data structure,
depending on the nature of the application.

Since the GMDT s distributed, this chunk-to-node mapping
structure is replicated in all the GMDT modules. All modifications
take place in a chunk commit, squash, or assignment. They are ini-
tially recorded in one GMDT module, namely the one in node 0
(GMDTQ). The updates are then propagated to the other GMDT
modules in the background. We now consider these situations.

3.2.6 Commits

Our protocol attempts to speed up the critical path in commit and
squash operations. In a commit, the committing thread passes the
non-speculative status to its successor thread as fast as possible; in
a squash, the threads to be squashed are detected, squashed, and
restarted in parallel.

We consider the commit of a chunk first. Within a chunk, thread
commit is always in order. A thread commits exactly like in the
single CMP protocol of Section 2.2. The effects of the operation do
not go past the L2 cache in the node, where all the updates of the
on-chip threads committed so far are accumulated.

When the last thread of the chunk has committed, the chip signals
a chunk completion event locally. If the chunk is non-speculative,
the node proceeds with a chunk commit. Following the simplified
protocol of Section 2.2, which does not allow dirty data to remain in
a cache across speculative thread initiation, chunk commit involves
writing back the dirty L2 lines to memory. It also involves updating
the Stale, Forwarded, Invalid, and Dirty bits in the L2 tags. We
expect these L2 write back and tag manipulation operations to be
performed efficiently in hardware by the L2 cache controller. The
CMP is oblivious to the whole chunk commit operation.

When all these operations complete or (if the chunk is specula-
tive) as soon as the chunk finishes, the node sends a message to
GMDTO asking for a new chunk to execute. In addition, if the com-
pleted chunk committed, the message also informs of the commit.
In the latter case, GMDTO immediately sends a message to the node
with the next chunk ID in the sequence, passing the non-speculative
status. We can see, therefore, that passing the non-speculative status
from a chunk in one node to a second chunk in another node can be
implemented very efficiently with two hardware messages. This is
shown with messages 1 and 2 in Figure 6a.



After this, GMDTO assigns the next available chunk to execute
to the node that just finished the chunk, and sends all these changes
to all nodes. This is done through messages 3 in Figure 6a. These
messages occur in the background, are not in any critical path, and
do not use up any processor cycles. In each node, on reception of
message 3, the GMDT module records the assignment of the new
chunk and, if applicable, the commit. In addition, the node that has
just finished the chunk can now start running the new chunk. The
messages labeled 4 are acknowledgments of 3.

Consider now the node that receives message 2 from GMDTO in-
dicating that one of its chunks is now non-speculative. Two cases
are possible, neither of which requires any involvement of the local
CMP. If, at message arrival, the node is still executing the chunk, no
action is taken beyond recording the new status of the chunk. Later,
when the chunk completes, the node will proceed with a chunk com-
mit as explained before.

A second case occurs when, at message arrival, the chip has al-
ready finished executing that chunk. In fact, the chip may have even
executed and completed several successor chunks since then. In this
case, the node immediately starts a chunk commit. As usual, the lo-
cal CMP is not involved. The operation includes writing back dirty
L2 data and manipulating the L2 tag bits. However, this operation
applies only to the L2 lines that are tagged as belonging to the non-
speculative chunk. The other L2 lines are left untouched. At the
end, the node informs GMDTO of the completion of the commit op-
eration but does not ask for a new chunk.

The fact that GMDT modules are updated with some delay may
cause minor races that our protocol handles gracefully. For exam-
ple, a newly-assigned chunk may send a request to a GMDT mod-
ule before the latter knows of its existence. In this case, the re-
quest is bounced back to the sender for retry. Similarly, a new non-
speculative chunk may send a request to a GMDT module before
the latter knows of its non-speculative status. In this case, loads and
stores are processed as usual. Write backs, however, are bounced
because speculative chunks are not allowed to write back.

3.2.7 Squashes

The violation that triggers a squash may be detected at a GMDT
module or at a LMDT. If the latter, the local GMDT module is in-
formed. In any case, this GMDT module, which we call the initiat-
ing one, decides which chunks must be squashed: the one that read
prematurely and its successors. In general, the GMDT does not have
enough information to distinguish between the different threads in a
chunk. Hence, squashing is done at the chunk level. It involves
clearing the corresponding Load and Store GMDT bits, invalidating
the dirty and forwarded L2 lines and, if the chunk is still running,
clea}ring the whole LMDT and invalidating the dirty and forwarded
L1 lines.

The exception is when the violation is detected at the LMDT of
the chip running the non-speculative chunk. In such a case, in this
chunk, only the violating thread and its successors are squashed.
For the squashed threads, we clear their LMDT bits and invalidate
their dirty and forwarded L1 lines. The L2 and GMDT bits are left

unmodified®.

The actual squash proceeds as follows. When the violation is de-
tected, the initiating GMDT module sends a message to all the other
nodes (message 1 in Figure 6b) specifying which chunks to squash.
Those nodes with chunks to squash do so. Note that, for a chunk
to be squashed, all its pending memory accesses have to necessarily
complete or be aborted. In addition, all nodes update their GMDT
modules by clearing the state corresponding to the squashed chunks.

Finally, all the GMDT modules synchronize in a barrier: they
send a message to GMDTO and receive an acknowledgment when
all have done so (messages 2 and 3, respectively, in Figure 6b).
The acknowledgment from GMDTO specifies the new assignment of
chunks to nodes or, possibly, that the assignment of chunks is as be-

3Although the GMDT may temporarily keep some outdated Store bits set
for the non-speculative chunk, correctness is still guaranteed: if a read from
a successor is directed to the chip running the non-speculative chunk due to
one of these outdated Store bits, the request will be bounced back to memory
as if the requested line had just been displaced from the caches. At that point
or when the non-speculative chunk commits, the outdated Store bit is cleared.

fore. With this information, the GMDT modules are updated and the
chunks restarted in parallel. Note that the barrier is needed to ensure
that requests before and after the squash are clearly separated. In-
deed, all requests arriving at a GMDT module from squashed chunks
between messages 1 and 3 in Figure 6b should be bounced.

Overall, squashing does not affect the processors running non-
squashed threads. Furthermore, our protocol uses the GMDT to
identify, squash, and restart potentially many threads in parallel. The
operation requires a synchronization of the GMDT modules only,
not of the processors.

3.3 Interaction with the Directory

The GMDT is distributed across the nodes like the directory and is
connected to it. For the ordinary data, the GMDT is unused. For the
data marked in the code as speculatively accessed, in principle, the
GMDT replaces the directory functionality. In practice, the GMDT
does all the work but it can also use the directory for optimization
purposes. In this case, the directory needs only small modifications
because the baseline coherence protocol largely runs unaffected by
the speculative protocol.

It is easy to see why the GMDT replaces the directory for data
marked as speculatively accessed: on a read transaction, the GMDT
identifies the correct version of the variable to supply; on a write
transaction, the GMDT identifies the versions to squash. These two
operations cannot be performed by a conventional directory because
th‘é latter does not support the notions of multiple versions or thread
order.

However, under certain conditions, the GMDT may not be so
efficient when it has to send invalidation and delayed-invalidation
messages to remove outdated versions from caches after a write.
The reason is that the GMDT only keeps correct sharer informa-
tion for the data accessed by the currently-active chunks. For that
data, we can use the GMDT state to reduce the messages, as dis-
cussed in Section 3.2.1. However, no record of sharers is kept for
the other data because, when a chunk commits, its Load and Store
bits in the GMDT are reset. The result is that, for that data, the
GMDT may have to conservative send unnecessary invalidation and
delayed-invalidation messages.

To send fewer such messages, the GMDT can use sharer infor-
mation kept by the directory. This requires that the GMDT keep the
directory largely up-to-date on processor reads and writes to data
marked as speculatively accessed.

Specifically, when one such read or write reaches the GMDT, the
directory marks the requesting node as a sharer of the line. Irre-
spective of the type of access, the dirty bit is not set. The reason
is that there may be several different modified versions of the same
variable in different caches, and the directory has only one dirty bit.
Still, pretending that the nodes are read-only sharers is safe because
the directory is never queried to distinguish between versions. Fur-
thermore, as a chunk commits, it writes back its updated version of
the variable to memory, keeping the cache in clean state. At that time
also, if the version in the cache was marked with the Stale bit, it is
automatically invalidated. Overall, cache entries eventually become
consistent with memory or invalid.

In reality, for a given memory line, the directory must conserva-
tively keep a superset of all the nodes that currently cache it. This is
because invalidations cannot remove directory entries: the directory
keeps information only at a memory-line grain size, whereas invali-
dations are sent to single words. Furthermore, delayed-invalidations
cannot remove directory entries either: they take effect with some
delay. Despite these considerations, however, the directory informa-
tion is still useful to reduce the number of invalidations and delayed-
invalidations sent on a write.

Finally, there is another reason why the directory should keep at
least a superset of all the nodes that currently cache the line: specu-
lative data may be accessed in conventional coherent mode after the
speculative section completes. As a result, remembering the sharers
smoothens the transition out of the speculative section.

Overall, ordinary shared data and potentially speculative data can
remain in L1 and L2 as we enter and exit a speculative section of
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Figure 7: Support required in a GMDT module to run mul-
tiprogrammed loads. In the example, two jobs can locally
allocate potentially speculative data. The machine has four
nodes and a maximum active window size of 16. Job 0 runs
on nodes 2 and 3, while job 1 runs on nodes 0 and 1.

code. Before we start a speculative section, our simple protocol re-
quires that we write back the dirty data from all the caches to make
them consistent with memory. Before leaving the speculative sec-
tion, memory and caches are consistent again: cache write-backs
at commit points have updated memory, and invalidations and self-
invalidations have purged outdated versions from caches. The di-
rectory may be left with a superset of the sharers for each line with
speculative data. The final operation that we perform before leaving
the section is to invalidate from the caches any (necessarily clean)
line that has some valid and some invalid words, so that the con-
ventional, per-line coherence protocol can take over correctly. This
can be done with a hardware signal that invalidates all such lines in
parallel.

3.4 Support for Multiprogramming

With simple extensions, our scheme supports multiprogrammed
loads where jobs may or may not use speculative parallelization.
Recall that, in our design, we want to use the unmodified specula-
tive CMP of Section 2.2. This necessarily implies that, once a thread
chunk that uses speculative parallelization starts running on a CMP,
it has to run to completion before releasing it. Completion implies
that the speculative state is moved to L2, not that the chunk commits.
If the chunk is preempted before completing, it has to be squashed,
since the speculative state in the L1 caches will be lost.

All hardware changes needed are limited to the GMDT and, op-
tionally, the L2 caches. In each GMDT module, we now keep a
chunk-to-node mapping structure for each job that has locally allo-
cated pages of potentially speculative data (Figure 7). In addition,
we allow all these jobs to insert entries in the GMDT table that keeps
the Load and Store bits. To identify the entries belonging to each
job, the table is extended with an extra field. This field, called Job
ID, keeps the ID of the job that owns the entry. Note that there is
no overlap between the address tags of entries belonging to different
jobs. Furthermore, since this table is backed up in memory (Sec-
tion 3.2.1), letting several jobs use the same table can at most cause
more overflows into memory. Finally, associated with each chunk-
to-node mapping structure, we have a software structure with the
list of nodes that are currently running chunks belonging to this job
(Node List).

Two approaches to multiprogramming the machine are possible.
In the most aggressive one, a free node can be assigned a chunk from
any job. In a second, more conservative approach, a free node, if it
still has uncommitted chunks from a job in its L2 cache, can only be
assigned a chunk from that same job. Since the GMDT knows the
current assignment of chunks and their status for all the jobs, it can
enforce the second policy if required. Note that, in the conservative
scheme, the Node List for a given job may change with time but
the Node Lists for two jobs may not overlap at any time. For the
aggressive scheme, the Node List for a job may change with time
and the Node Lists for two jobs may overlap at any time.

The two schemes differ in the support required and the perfor-

mance expected. The aggressive scheme needs more support be-
cause a L2 cache may end up keeping speculative state belonging to
different jobs. As a result, to identify which lines belong to which
job, we need to extend the chunk ID field in the L2 cache tags. The
ID must include, in its most-significant bit positions, the job ID.
Such longer tags are not needed in the conservative scheme.

The performance is likely to be higher in the aggressive scheme
because of its higher flexibility: an idle node will always get a chunk
if one is available in any job. This is not true in the conservative
scheme. However, recall that when a chunk running on a node is
about to displace from L2 an uncommitted updated line from another
chunk, the processor stalls. Consequently, a job running under the
aggressive scheme may stall due to another job. In the conservative
scheme, instead, a job in a node can only be stalled due to itself.
In neither case, however, deadlock is possible because at least one
non-speculative chunk is making progress, and chunk commit does
not involve the local CMP.

3.5 Overall GMDT Benefits

The previous discussions have uncovered the pros and cons of the
GMDT. The main attraction of the GMDT scheme is that it effi-
ciently implements a protocol that supports multiple versions of the
data. Such a protocol uses few messages and is fast. For example, a
load finds the correct version in the machine with a fast, one-lookup
transaction of a single message. In addition, squash signals are sent
in parallel to all the threads that need it and, after the squash, the
threads are restarted in parallel. Finally, by exploiting the state in
the directory (Section 3.3) and GMDT (Section 3.2.1), the protocol
ends up sending only few unnecessary invalidations and delayed-
invalidations.

A second attraction of the scheme is that, by keeping a Load bit in
the GMDT for each speculatively-loaded datum, it allows processors
to displace speculatively-loaded, unmodified data from their caches
without causing stalls.

The main disadvantage of the GMDT scheme is that we need
to keep its distributed state consistent. Fortunately, although keep-
ing the state consistent involves extra messages at chunk commit,
squash, and assignment points, this activity occurs in the background
without using processor cycles.

3.6 Compiler and ISA Support

We expect that the code is annotated, typically by the compiler, to
mark the sections where speculative parallelization should be en-
abled. Within these sections, it is more efficient if we mark the data
that will be accessed speculatively. Note that it is perfectly possible
to access all data speculatively. However, it is probably inefficient
due to the extra overheads involved in dealing with speculative data
and may also hurt performance if there are cache or LMDT over-
flows. In any case, our system allows data to change roles across
sections. The ability for data to be accessed speculatively in one
section and non-speculatively in another allows better use of the re-
sources.

A good way to differentiate speculative from plain accesses is to
extend the ISA to have speculative memory instructions. Of course,
a given memory line cannot have both kinds of data. An alternative
approach is to mark virtual memory pages to be dealt with as specu-
lative or as plain shared data. However, this approach needs careful
data placement to make sure that speculative and plain data do not
share the same page.

4 EXPERIMENTAL SETUP
4.1 Applications

To evaluate our scheme, we choose two Perfect Club applications,
namely Track and BDNA, one SPECfp95 application, APSI, and
two HPF-2 applications, namely Euler and DSMC3D. The input sets
used for these applications are the standard ones provided with the
suites. The exception is APSI which uses a 512x1x64 grid size.
These applications are representative of sequential scientific work-
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Track nfilt_300 41 502 240
APS run_20 21 64 40
DSMC3D || move3 200 33 758972 24767
Euler dflux_100 90 2494 686
BDNA actfor_240 32 1499 7

Table 3. Characteristics of the applications studied. The
fraction of time spent in the loop to parallelize speculatively
is given as a percentage of the total sequential time of the
application on a SGI server.

Application | avanag s T S S
(Average) Word False Word False Word False
Number 0.1 4869 0.1 47 0 4880
Track -
Distance 1.0 1.6 1.0 31 0 1.6
APS Number 0 0| 95232| 333312| 95232| 333312
Distance 0 0 1.0 1.0 10 10
DaMC3D Number 147390 | 9350766| 102912| 509315| 85343| 8939798
Distance 2640.3 224.9|260050.8228047.3| 2608.2 89.2
Euler N.umber 0| 104066 0 0 0| 104066
Distance 0 415.0 0 0 0 415.0
BDNA Number 0 0 32422 48518 | 998500 | 1492510
Distance 0 0 1.0 1.0 1.0 1.0

Table 4: Static cross-iteration data dependences exhibited
by the loops that we parallelize speculatively.

loads. We choose them because they all spend a large fraction of
their sequential execution time on loops that cannot be parallelized
by state-of-the-art compilers. These loops have dependence struc-
tures that are either too complicated to be analyzed at compile time,
or unknown because they depend on input data. For example, many
of them have doubly-subscripted accesses to arrays. As a result, the
Polaris compiler [2] is unable to parallelize them. In our evaluation,
we perform speculative parallelization on these loops and analyze
how they are sped up.

Table 3 shows, for each application, the loop that we attempt
to parallelize speculatively, the fraction of the sequential execution
time taken by this loop on a SGI server, the average number of it-
erations executed in the loop per loop invocation, and the size of
the data accessed through speculative references (speculative data).
From the table, we see that these loops account for 21-90% of the
total execution time. In a parallel system, their weight will likely be
even higher if a parallelizing compiler is used to reduce the execu-
tion time of the other parts of the code. Note that speculative threads
must buffer in their caches not just the speculatively modified data
but all the data that they modify.

Table 4 shows the static cross-iteration dependence structure of
the loops that we parallelize speculatively. RAW, WAR, and WAW
dependences are classified based on whether the two dependent
references access the same word (Same Word) or different words
(False) of a memory line. The memory line size used is 16 words.
For each type of dependence, the table shows the average number of
dependences found for each invocation of the loop, and the average
dependence distance in number of iterations.

From the table, we see that same-word RAW dependences are
relatively scarce, except for DSMC3D. This is unlike same-word
WAR and WAW, of which there is plenty. As for false dependences,
all three kinds manifest themselves more abundantly. We observe
that, many times, all these dependences have very short average dis-
tances, which means that they can easily occur out of order. Even
large average distances like in DSMC3D hide short instances. Re-
call that our protocol handles all types of in-order and out-of-order
dependences without triggering a thread squash except for out-of-
order, same-word RAW dependences.

In our experiments, we proceed as follows. The Polaris compiler
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[ Processor Param._|Value|| |[L1L2vCsize 32KB,IMB, 64KB

L1L2VC assoc. 2-way,4-way, 8-way

Issue width 41| |[L1L2VClinesize 64B,64B,64B
. R L1,L2,VC lat 1,12,12 cycles
Instruction window 64 ency cyz 32

size L1,L.2,VC banks 13,
- L ocal memory latency 75 cycles

No. functional

units (Int,FP,Ld/St) 322 2-hop memory latency 290 cycles
. 3-hop memory latency 360 cycles
oot |3232|| | [LMDT,GMDT size 512,2K entries
No din LMDT,GMDT assoc. 8-way,8-way
memory ops (Ld,sy | 816|| | [LMDT.GMDT lookup 4,20 cycles
L1-to-LMDT latency 3cycles
LMDT-to-L 2 latency 8cycles
Max. active window 8 chunks

Table 5. Parameters of the processor and memory system
models.

identifies and instruments the loops in Table 3. The instrumentation
consists of classifying each variable into one of three classes: vari-
able allocated in a writable memory line that is possibly accessed in
two or more iterations; variable allocated in a memory line that is
at most accessed in one iteration or is read only; and private or pri-
vatizable variable. We mark the first class as speculative, so that
they trigger our protocol in our simulations. This class includes
the data with potential cross-iteration dependences. In addition, it
also includes situations where the compiler is sure that no two iter-
ations access the same word of a line. In this case, however, since
different words of the line may end up being buffered in different
L1 caches by speculative threads, we cannot use the ordinary, line-
based cache coherence protocol. Variables are privatized whenever
the compiler finds it safe and convenient, so that the loop runs more
efficiently in parallel. Once the loop is instrumented, we perform de-
tailed execution-driven simulations. In our base experiments, each
thread is composed of a single loop iteration.

4.2 Simulation Environment

Our execution-driven simulation environment is based on an ex-
tension to MINT [21] that includes a superscalar processor model
with non-blocking memory operations [10], and supports dynamic
spawn, squash, restart, and retire of light-weight threads. We use
these threads to attempt speculative parallelization on the loops in
Table 3.

The processor model is that of a 4-issue dynamic superscalar with
register renaming, branch prediction, and non-blocking memory op-
erations. The left section of Table 5 shows some of the parame-
ters used in the processor model. Processors are grouped into 4-
processor chips.

The memory system models the organization in Figure 4: a CC-
NUMA multiprocessor whose nodes include speculative CMPs. The
architecture of the speculative CMP is as described in Section 2.2.
Each CMP includes 4 processors with their private L1 caches and a
LMDT. Each node in the machine has a CMP, an L2 cache shared
by all the local processors, a portion of the global memory and di-
rectory, a network controller, and a GMDT module. The machine
is equipped with a directory-based cache coherence protocol in the
lines of DASH [12]. In addition, our memory system implements the
speculation protocol outlined in Section 3.2. The system simulated
has 4 CMPs, for a total of 16 processors.

The right section of Table 5 lists the main parameters of the mem-
ory system model. In the table, L1, L2, VC, and memory laten-
cies are round-trip times from the processor. VVC stands for Victim
Cache. All latencies are in processor cycles and do not include con-
tention effects. We accurately model contention everywhere except
ihn the scalable interconnect, where a fixed time is assumed for each

op.

In our evaluation, we apply speculative parallelization only to the
loops of Table 3. To assess the impact of our scheme on the whole
application, our resulting speedup numbers should be weighted us-
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Figure 8: Execution time breakdown and speedups. The
numbers on top of the bars are the speedups of the loops over
the sequential execution.

ing the fraction of the execution time taken by the loops as shown in
Table 3.

Since we want to measure loop speedups in a scenario in which
other parts of the code have been parallelized by the compiler, the
data must be necessarily distributed across the nodes even in the ex-
periments that run the loop sequentially. In order to keep the same
data distribution for all experiments, we use a static round-robin
page allocation policy across the nodes.

5 EVALUATION

5.1 Overall Performance

We start by quantifying the speedups delivered by our speculative
parallelization scheme. Figure 8 compares the execution times of
the loops under sequential execution (Seq) and under our specula-
tive parallelization for 16 processors (Spec). On top of each bar we
quantify the speedups of the loops over the sequential execution.

For each application, the bars are normalized to sequential execu-
tion and broken down into the following components of the execu-
tion time: execution of instructions (Busy); stall due to memory ac-
cesses (Memory); overhead associated with speculative paralleliza-
tion, including thread commit time, thread squash time, and stalls
caused by L1, L2, VC, and LMDT overflows (Overhead); idle time
waiting for other threads to complete (Imbalance); and conventional
pipeline hazards (Other). The contribution of each category is mea-
sured at the grain size of issue slots [10].

From the figure, we see that our scheme delivers speedups that
range from 1.5 to 5.6. Over the five applications, the average
speedup is 2.8. Interestingly, the results show that, in all applica-
tions but one (BDNA), the main obstacle to better speedups is not
related to the speculative aspect of the parallelization, but simply to
the stall time due to memory accesses (Memory).

The overheads associated with speculative parallelization (Over-
head) account for a quarter of the time in BDNA and, less impor-
tantly, for about 10% in APS] and DSMC3D. In BDNA, practically
all this overhead is caused by stall due to overflows in L1. The dirty
working set of this application is too large for the 32KB L1. Recall
that our protocol does not allow displacements of dirty data and any
attempt to do so causes a processor stall. L1 overflow also causes
most of the overhead in APSI. Our experimental results reveal that
no application suffers from LMDT overflows. Also, the victim cache
in L2 successfully absorbs most L2 overflows.

In DSMC3D, practically all overhead is caused by thread
squashes. This includes the time required to drain all the pending
transactions in squashed threads, synchronize all the GMDT mod-
ules, and restart the threads. As shown in Table 4, DSMC3D has
same-word RAW dependences, the only ones that cause squashes in
our protocol if they happen out of order. Despite the long average
distance that these dependences have for DSMC3D (Table 4), some

of them have short distances and actually occur out of order, result-
ing in squashes. Fortunately, no other application wastes much time
due to squashes.

Commit time, which is also part of Overhead, has a very mi-
nor role across all the applications. The reason is two-fold. On the
one hand, these loops have relatively large iterations, which result
in threads spending much more time executing than committing. On
the other hand, only the on-chip commit of threads has a significant
effect on processor time; chunk commit is done in the background,
except in the case when the CMP has not already started working on
a new speculative chunk (Section 3.2.6).

Overall, among the different components of Overhead, the only
significant ones are L1 overflow and, if the application has short-
distance, same-word RAW dependences, thread squashes. The sim-
plest improvement toward diminishing overhead would be to pro-
vide storage mechanisms to capture L1 overflows. However, this
would require changing the architecture of the speculative CMP,
which is not an option in our approach.

Finally, we consider load imbalance. Imbalance accounts for a
significant 10-30% of the execution time in the parallelized loops.
Practically all of this time is due to what we called chip imbalance
in Section 3.2.3, which comes from the way threads are scheduled
within CMPs. As pointed out before, the only way to reduce the
impact of chip imbalance is to significantly change the architecture
of the speculative CMP. Nevertheless, as indicated in Section 3.2.3,
we expect the impact of chip imbalance to remain roughly constant
as we scale up the machine to large numbers of nodes.

A second source of imbalance is related to idle time while the
node, although finished, cannot start working on a new speculative
chunk. This system imbalance can only be caused by the overflow
of the active window, which happens very rarely in our case.

5.2 Effect of Loop Unrolling

In the previous section, speculative parallelization was performed
using single-iteration threads. Unrolling the loops and giving one of
these bigger iterations to each thread may improve the performance
of our architecture. Specifically, loop unrolling may enable a higher
reuse of the cached data if consecutive iterations access similar sets
of memory lines. Loop unrolling may also reduce cross-thread data
dependences and even reduce chip imbalance. Finally, observe that
loop bodies smaller than ours could also benefit from exposing more
ILP.

On the other hand, loop unrolling may also degrade perfor-
mance. For example, having fewer threads reduces the amount of
parallelism that can be exploited. Also, the resulting bigger itera-
tions may be more imbalanced and cause a higher chip imbalance.
Squashes, too, may have a more severe impact on performance, as
the average work to be redone is greater. Finally, loop unrolling in-
creases the amount of dirty state that must be buffered in the caches,
which increases the probability of overflow-induced stalls.

In this section we evaluate the impact of loop unrolling in our
loops. Figure 9 compares the result from the previous section (Spec
is now relabeled BIk1) to configurations where threads are composed
of blocks of 2 or 4 base iterations (Blk2 and Blk4, respectively). For
each application, the bars are normalized to Blk1 and broken down
as in Figure 8. As before, the numbers on top of the bars are the
speedups of the loops over the sequential execution. Note that we
do not attempt Blk4 for APSI because, as shown in Table 3, its loop
has only 64 iterations.

The results show that loop unrolling improves the performance
of our architecture. The speedups improve significantly: if we use
2 and 4 base iterations per thread, speculative parallelization deliv-
ers average speedups over the sequential execution of 3.4 and 4.2,
respectively. Furthermore, some applications perform very well. In
particular, Track reaches a speedup of 8.7.

The reasons for the improvement are a reduction in the memory
time and, to a lesser extent, a reduction in chip imbalance. The mem-
ory time decreases to various degrees in all applications, sometimes
significantly as in, for example, APSI. Indeed, cached data is be-
ing reused more effectively. Chip imbalance also decreases in most
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Figure9: Effect of using multiple loop iterations per thread.
The numbers on top of the bars are the speedups of the loops
over the sequential execution.

applications thanks to the load averaging effect of performing loop
unrolling. The exception is APSI, where Imbalance increases. The
reason is that the loop has so few iterations after blocking that, at the
end of the loop, some nodes have to wait a long time for the others
to finish. For example, in BIk2, each node only executes 2 chunks.

The only category that increases with loop unrolling is Over-
head. This effect, which takes place in practically all applications,
is largely due to an increase in the stall time due to L1 overflows.
Loop unrolling has increased too much the amount of dirty state that
must be buffered in the caches. This effect is specially noticeable in
BDNA.

Overall, the data shows that loop unrolling can be a very useful
technique. However, care must be taken to estimate the increase of
the dirty working set and its corresponding pressure on the caches.

5.3 Granularity of Speculative State

Our protocol keeps speculative state on a per-word basis in the
MDTs and, to some extent, in the caches. It is interesting, however,
to consider what happens if, in the whole machine, we only kept
state at the grain size of a memory line. The protocol is otherwise
mostly unchanged and, in particular, still has support for multiple
versions of a given memory line.

In general, if the state is kept per line, we need to perform
squashes on every out-of-order RAW and WAW dependence, both
false and due to same-word accesses. This is in contrast to our
scheme which, by keeping the state per word, only suffers squashes
in case of same-word out-of-order RAW dependences. The per-line
protocol needs to set both the Load and the Store bits upon creat-
ing a version, so that the two cases mentioned are handled correctly.
Also, Safe Store bits in L1 need to be turned off.

As for in-order RAW and WAW dependences in the line-based
protocol, the thread performing the second access is forwarded the
entire line from the predecessor writer. This way we can reconcile
versions correctly.

If we look at Table 4, we see that the number of WAW and RAW
dependences, both same-word and false, is much higher than the
number of same-word RAW dependences in all loops. Again, de-
pendence distances are often short, which implies that these depen-
dences can easily occur out of order. Consequently, the data suggests
that the protocol with the per-line state will suffer more squashes
than the one with per-word state and, therefore, have lower perfor-
mance.

Figure 10 compares the execution times of our loops using our
protocol (Word) and a variation with per-line state only (Line). Re-
call that the line size is 16 words. For each application, we use
the best degree of unrolling observed in Section 5.2: 4 base itera-
tions per thread in Track, DSMC3D, and Euler, and 2 base iterations
per thread in APSI and BDNA. The bars are normalized and bro-
ken down as usual. Again, the number on top of the bars shows the
speedup of the loops over sequential execution.

Figure 10 shows that maintaining the speculative state on a per-

Track APS| DSMC3D Euler BDNA
o] E -
§ % 04 B imbalance
g 800 = g Overhead
= b o 7 [ ] Memory
7
:  R— %
i~ [
P . =
0 8 % 28 34 l
SR Bl Al Al BE

Figure 10: Effect of keeping the speculative state on a per-
line basis as opposed to on a per-word basis. The numbers on
top of the bars are the speedups over the sequential execution.

_ ) Squashes by
Application | Grain Sguashes Loads (%)

Word 0.04 0

Track Line 1279 28

Word 0 0

APS Line 4737 0

Word 13164 2.2

DSMC3D Line 650473 7.3

Word 0 0

Euler Line 4429 24

Word 0 0

BONA Line 118410 0

Table 6: Number of squash events per loop invocation.

line basis results in poor performance. The numbers on top of
the bars show that the loops now run even slower than the se-
quential case. The main reason for the slowdown is the many
squashes suffered by the Line protocol. They are responsible for
the large increase in Busy, Memory, and Overhead time relative to
the Word protocol. The Busy and Memory time increase because
of the instructions and memory accesses repeatedly performed by
the squashed threads. The Overhead time increase is mostly due
to thread squash overhead, including draining pending transactions
in squashed threads, synchronizing GMDT modules, and restarting
threads. Even if squashes did not increase Overhead, the repeated
work would render the Line protocol much slower than the Word
one.

To gain further insight, we can compare the number of squash
events recorded in the two protocols. The column labeled Squashes
in Table 6 shows the average number of squash events per loop invo-
cation for each application in the Line and Word protocols. In Word,
only DSMC3D and, to a much lower degree Track suffer squashes.
These were the only two applications with same-word RAW depen-
dences in Table 4. In Line, however, all applications suffer many
squashes. This was expected from the many false RAW and both
same-word and false WAW dependences in Table 4. Note that, in
all but one loop, the number of squashes is higher than the number
of iterations in Table 3. We conclude, therefore, that maintaining
per-line speculative state is undesirable for these applications.

Finally, the last column of Table 6 shows what fraction of the
squashes are triggered by loads. Recall from Section 3.2.1 that the
loads in our protocol, if they hit in L1, return the data to the pro-
cessor immediately, even if the Safe Load bit is zero. In the latter
case, to hide latency, the MDTs are checked in the background. If
the check shows that a stale version was used, a squash is generated.
While the latency hiding effect of this approach can be beneficial, if
it is to help, it should not cause too many squashes. Fortunately, we



can see from Table 6 that only a small fraction of the squashes in our
protocol (Word) are due to loads. The fraction is higher in Line.

6 RELATED WORK

An early proposal for hardware support for a form of speculative par-
allelization was made in [9] in the context of functional languages.
More recently, the Multiscalar processor [16] was the first major
work to use speculation within a single-chip multithreaded architec-
ture, initially with the Address Resolution Buffer [3] and later with
the Speculative Versioning Cache [4]. Other related designs have
also been proposed [11, 14, 17, 20]. In most cases, the systems
are designed with a tightly-coupled architecture in mind and do not
scale beyond a small number of processors. Only [17] is designed
purposedly for scalability. More recently, speculative CMPs have
caught the attention of chip designers [1, 19].

The MDT-based CMP [11] is one example of such a speculative
CMP. We borrow the MDT concept in our study and use this specu-
lative CMP as the building block. Our scalable scheme, however, is
not dependent on the MDT-based CMP and could easily accommo-
date the other speculative CMP proposals mentioned above.

The work in [17, 18] and in [22, 23, 24] presents extensions to
a cache coherence protocol to accommodate speculation in scalable
systems. Both designs yield a flat view of their speculation threads.
Neither of these proposals is fleshed out enough to show how, if
speculative CMPs were used as building blocks, it would reconcile
its single layer protocol with many of the self-contained specula-
tion protocols of these CMPs. Our work, instead, takes a hierar-
chical approach that largely abstracts away the internals of the node
architecture. We have worked out a complete system that uses a
self-contained speculative CMP as building block with minimal ad-
ditions to interface with the rest of the system.

One difference with [17, 18] is that their work has taken the path
of extending an existing cache-coherence protocol to handle spec-
ulation, while we have opted for the approach of adding a specu-
lation protocol with minimal overlap over the existing cache coher-
ence protocol. Finally, our protocol supports multiple versions and
full per-word speculative state, which makes it less susceptible to
squashing. In particular, out-of-order false dependences, whether
RAW, WAR, or WAW, never cause a squash in our system. Their
applications do not appear to require similar support.

Compared to the other scalable schemes, the work in [22, 23, 24]
takes a slightly different approach. It has been specially designed to
effectively handle workloads of threads that have much load imbal-
ance and large working sets that overflow caches. In addition, it also
provides support for parallel reduction operations. All this is done
at the expense of utilizing more complex hardware than the other
systems.

7 CONCLUSIONS

In this paper, we addressed the problem of extending speculative par-
allelization to scalable shared-memory systems. We presented a new
scheme that requires relatively simple hardware and is efficiently
integrated next to the cache coherence protocol of a conventional
NUMA multiprocessor. We used a hierarchical approach to largely
abstract away the internals of the node architecture. We were able to
utilize a speculative CMP as building block with minimal additions
to its interface with the rest of the system.

Detailed simulations of our scheme showed good overall perfor-
mance. For a set of important non-analyzable scientific loops, we
obtained average speedups of 4.2 for 16 processors. We found that
assigning groups of iterations to each thread can improve perfor-
mance. Finally, we showed that support for per-word speculative
state is required, at least by our applications, to avoid excessive
squashes. Overall, we feel that our design lies at a good complexity-
performance design point.
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