
Appears in the Proceedings of the 47th Int’l Symp. on Microarchitecture (MICRO-47), December 2014

Accelerating Irregular Algorithms on GPGPUs Using
Fine-Grain Hardware Worklists

Ji Kim and Christopher Batten

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{jyk46,cbatten}@cornell.edu

Abstract—Although GPGPUs are traditionally used to accel-
erate workloads with regular control and memory-access struc-
ture, recent work has shown that GPGPUs can also achieve sig-
nificant speedups on more irregular algorithms. Data-driven
implementations of irregular algorithms are algorithmically
more efficient than topology-driven implementations, but issues
with memory contention and memory-access irregularity can
make the former perform worse in certain cases. In this paper,
we propose a novel fine-grain hardware worklist for GPGPUs
that addresses the weaknesses of data-driven implementations.
We detail multiple work redistribution schemes of varying com-
plexity that can be employed to improve load balancing. Fur-
thermore, a virtualization mechanism supports seamless work
spilling to memory. A convenient shared worklist software API
is provided to simplify using our proposed mechanisms when
implementing irregular algorithms. We evaluate challenging ir-
regular algorithms from the LonestarGPU benchmark suite on
a cycle-level simulator. Our findings show that data-driven im-
plementations running on a GPGPU using the hardware work-
list outperform highly optimized software-based implementa-
tions of these benchmarks running on a baseline GPGPU with
speedups ranging from 1.2–2.4× and marginal area overhead.

I. INTRODUCTION

General-purpose graphics-processing units (GPGPUs) ex-
ploit both data-level and thread-level parallelism to acceler-
ate workloads that operate on regular data structures such as
arrays and dense matrices. GPGPUs are less suited for op-
erating on irregular data structures such as graphs and trees,
due to the overhead of control and memory-access divergence
which can severely limit the amount of work amortized across
threads. However, recent efforts have shown that it is still
possible to obtain significant speedups over multicore imple-
mentations for these irregular workloads using clever soft-
ware optimizations [12, 13, 18–20, 22, 23].

A common class of irregular algorithms iteratively ap-
ply an operator to nodes in a graph which can modify the
graph and generate more work for the next iteration [22].
When mapping such algorithms to GPGPUs, two common
approaches are taken: topology-driven and data-driven. In
topology-driven implementations, the thread index is used
to determine which nodes to operate on and all nodes are
visited whether or not useful work is required at the node.
In data-driven implementations, only nodes at which useful
work is required are visited and a shared software worklist
(SWWL) is accessed to determine which nodes to operate
on. Data-driven implementations are algorithmically more
efficient and are better at maintaining high work efficiency
(i.e., less work required to complete the kernel) but can be
inferior to topology-driven implementations due to two key
weaknesses. Data-driven implementations require a SWWL

that needs to be accessed by thousands of threads resulting in
high memory contention, and are prone to increased memory-
access irregularity due to the random nature of dynamic work
distribution. By utilizing both existing and in-house software
optimizations, we were able to derive highly optimized ver-
sions of irregular algorithms mapped to GPGPUs. Although
aggressive software optimization can help mitigate some of
the weaknesses of data-driven implementations, we found
that this does not completely eliminate issues with memory
contention and can come at the cost of poor load balancing.
As such, it is not always clear which implementation will be
optimal on a GPGPU because the performance of either ap-
proach is dependent on many variables. We verify this unpre-
dictability in our evaluation of both the topology-driven and
data-driven implementations of several challenging irregular
algorithms in the LonestarGPU (LSG) benchmark suite [4]
on an NVIDIA Fermi-class Tesla C2075 GPGPU.

Dynamic parallelism in NVIDIA Kepler and Maxwell [24–
26] is one approach to addressing load balancing concerns on
GPGPUs by exposing nested parallelism at a coarse granu-
larity. Unfortunately, coarse-grain work distribution might
not be ideal when most of the work is dynamically gen-
erated as in the irregular algorithms described above. The
overhead of coarse-grain recursive kernel launches could out-
weigh the benefits from load balancing. In this paper, we pro-
pose augmenting GPGPUs with a fine-grain hardware work-
list (HWWL) to address the classic weaknesses of data-driven
implementations. The HWWL is exposed to software as a
shared worklist, but is implemented as distributed hardware
queues tightly coupled with the GPGPU lanes to avoid mem-
ory accesses when interacting with the worklist. A hardware
work redistribution unit is used to provide fine-grain, dy-
namic load balancing. To support cases when the total work
is greater than the capacity of the HWWL, a hardware-based
virtualization mechanism is used to allow seamlessly spilling
work to memory. We examine both a naive on-demand
scheme as well as a more sophisticated interval-based scheme
for refilling the HWWL from an overflow buffer in memory.

In order to evaluate our techniques, we first provide a
limit study of the maximum potential of our techniques us-
ing an idealized model of a fine-grain HWWL. We then
analyze a realistic HWWL implementation using sensitivity
studies to explore the effects of work redistribution schemes
and virtualization on the system. Our evaluation shows
that data-driven implementations running on a GPGPU with
a realistic HWWL out-perform both topology- and data-
driven software-based implementations running on a baseline

1 __global__ void
2 topo_driven(Node* nodes, bool* done_ptr) {
3 int tidx = blockIdx.x * blockDim.x + threadIdx.x;
4 Node my_node = nodes[tidx];
5 if (check(my_node)) {
6 compute(my_node)
7 *done_ptr = false;
8 }
9 }

10

11 int main() {
12 bool done = false;
13 while (!done) {
14 done = true;
15 topo_driven<<<N>>>(nodes, &done);
16 }
17 }

(a) Topology-Driven Example Kernel

1 __global__ void
2 data_driven(Node* nodes, WL* wl) {
3 while (widx = wl->pull()) {
4 Node my_node = nodes[widx];
5 compute(my_node);
6 for (i = 0; i < my_node.num_neighbors; i++) {
7 int neighbor_idx = my_node.neighbor_idx(i);
8 if (check(nodes[neighbor_idx]))
9 wl->push(neighbor_idx);

10 }
11 }
12 }
13

14 int main() {
15 init_wl<<<N>>>(nodes, wl);
16 data_driven<<<M>>>(nodes, wl);
17 }

(b) Single-Buffered Data-Driven Example Kernel

Figure 1. Topology- vs. Data-driven Implementations of Example Kernel – The check operator determines if nodes are active and the compute operator performs
work at these nodes. This can activate previously inactive nodes in the next super-step. Execution completes when all nodes are inactive. N = number of nodes,
M = max number of HW threads, WL = SWWL class. In the topology-driven example, there is an acceptable race condition when updating done_ptr. In the
data-driven example, M threads are spawned with the kernel since every thread will stay in the loop until no more work is in the worklist. An initialization
kernel populates the worklist with active nodes before the main kernel is called. In this example, we assume that a pull returns zero when the worklist is empty.

GPGPU, with speedups ranging from 1.2–2.4×. Further stud-
ies show that a HWWL scales favorably with the number of
cores and only introduces a marginal area overhead.

Section II discusses the tradeoffs between implementing
irregular algorithms using a topology-driven or data-driven
approach on GPGPUs. In Section III, we describe the de-
tails of our techniques, including a fine-grain HWWL base-
line, work redistribution, and virtualization. Section IV eval-
uates the performance of our techniques compared to tra-
ditional software-based implementations of irregular algo-
rithms mapped to GPGPUs. Section V provides first-order
analyses on scalability and area overheads. Finally, Sec-
tion VI discusses related work. The primary contributions
of this study are: (1) we explore both existing and in-house
optimizations to derive highly optimized software-based im-
plementations of challenging irregular algorithms mapped to
GPGPUs; (2) we propose a novel fine-grain hardware work-
list for GPGPUs that addresses the classic weaknesses of
data-driven implementations using a SWWL; (3) we propose
several work redistribution schemes for dynamic load balanc-
ing; (4) we propose two virtualization schemes for spilling
work to memory; and (5) we use a detailed cycle-level mi-
croarchitectural simulator to explore the design space and
demonstrate the promise of our techniques for accelerating
challenging irregular algorithms on GPGPUs.

II. MAPPING IRREGULAR ALGORITHMS TO GPGPUS

In this section, we begin by analyzing a simple example
kernel that captures some of the key characteristics of irregu-
lar algorithms. The goal is to develop insight into the trade-
offs associated with topology- and data-driven implementa-
tions. We then verify whether this insight holds for realistic
irregular algorithms and analyze how various data-driven op-
timizations interact with these tradeoffs. From this analysis,
we derive highly optimized topology- and data-driven imple-
mentations of the benchmarks in the LonestarGPU suite [4]
to use as baselines for comparing our hardware techniques.

A. Topology- vs. Data-Driven Implementations

The topology- and data-driven implementations of an ex-
ample kernel representative of irregular algorithms are shown
in Figure 1. The algorithm iteratively applies a compute op-
erator (i.e., compute()) on a subset of nodes at which useful
work is required, in an undirected, weighted graph. We re-
fer to such nodes as active nodes, whereas nodes at which no
useful work will be done are referred to as inactive nodes. We
call the node ID of an active node a work ID. A check oper-
ator (i.e., check()) determines whether a node is active or
inactive. The compute operator often accesses neighboring
nodes and can activate inactive nodes to be processed later.
Execution completes when all nodes are inactive and will not
be activated again.

Figure 1(a) shows the topology-driven implementation of
the example kernel. During each super-step, every thread
checks to see if the node corresponding to its thread index
is active. The compute operator is applied to active nodes
and threads with inactive nodes exit without doing any useful
work. Every kernel call represents a super-step and the kernel
is invoked as long as there are active nodes in the next super-
step. All nodes, both active and inactive, are visited every
super-step and the number of threads is the number of nodes.

Figure 1(b) shows the data-driven implementation of the
example kernel. In this case, an initialization kernel pre-
checks all the nodes and populates the worklist with only
active nodes. Although checking inactive nodes in the ini-
tialization is not useful, we only pay this overhead once, in-
stead of every super-step as in the topology-driven imple-
mentation. Every thread in the main kernel pulls a work ID
from the worklist with an atomic memory operation (AMO)
and applies the compute operator to the corresponding active
node. Newly activated nodes are pushed onto the worklist
with AMOs, so that only active nodes are ever visited. Even
though the check for determining new nodes to be activated is
shown separate from the compute in the example, the check

is usually combined with useful work in the compute phase.
Although this can be done on the topology-driven implemen-
tation as well, the difference is that threads operating on inac-
tive nodes in topology-driven implementations must pay this
overhead again at the beginning of every super-step. Notice
that the super-step loop seen in the topology-driven imple-
mentation is moved inside of the kernel in the data-driven
implementation so that operations at nodes across multiple
super-steps are overlapped. It is sufficient to only spawn a
number of threads equal to the maximum number of hardware
threads on the GPGPU since every thread stays in the loop un-
til there are no more active nodes. Special consideration must
be taken to prevent threads from prematurely dropping out of
the computation loop.

The data-driven implementation exposes more parallelism
by overlapping operations across multiple super-steps and in-
creases work efficiency by avoiding useless work. However,
the data-driven implementation is not without its weaknesses,
including: high memory contention from accessing a shared
worklist, and high memory-access irregularity from dynamic
load balancing.

B. Benchmark Descriptions

The example kernel above represents a rough template of
realistic, challenging irregular algorithms, such as those in
the LonestarGPU (LSG) benchmark suite [4]. In this section,
we describe the algorithm and some associated challenges for
each benchmark. All of these algorithms are irregular and
several of them are classified as morph algorithms, meaning
they modify the structure of the graph by adding or removing
nodes and/or edges throughout the execution of the algorithm.
More information on these algorithms and traditional GPGPU
mappings can be found in [18, 20, 22, 23, 27].

Breadth-first search (BFS) calculates the minimum num-
ber of edges between a source node and all other nodes in
an unweighted graph. Every node keeps track of its distance
from the source. The algorithm begins with one active node,
the source node, which updates its neighbors with the dis-
tance from itself. This activates the neighboring nodes and
this process repeats until all nodes have been updated with
the minimum distance from the source node. The compute
operator in BFS is relatively simple.

Barnes-Hut N-body simulation (BH) iteratively com-
putes the position of celestial bodies changed by the gravi-
tational force they induce on each other. Every super-step,
an octree is generated to hierarchically partition the bodies
into individual leaf nodes. The octree is used to approximate
groups of bodies as a single source of gravitational force.
Although the compute operator is relatively simple, bodies
deeper in the tree generally require more work. BH is unique
in that it is the only algorithm of the suite for which all nodes
are active, making it more natural to map to topology-driven
implementations. However, as we will see later, a data-driven
implementation can help improve load balancing.

Delaunay mesh refinement (DMR) takes a Delaunay
mesh and refines triangles that violate various constraints
(e.g., minimum angle, Delaunay constraint) by retriangulat-

ing the bad triangle around the center of its circumcircle. Re-
triangulation generates more triangles, some of which might
again violate the constraints. Refinement continues until
there are no more bad triangles in the mesh. DMR is a morph
algorithm which adds and removes triangles from the mesh.
This means that special care must be taken when multiple bad
triangles attempt to modify the same nodes and edges. Global
barriers are often employed to facilitate conflict detection, al-
lowing atomic execution of retriangulation [23]. The DMR
compute operator is among the more complex in LSG.

Minimum spanning tree (MST) uses Boruvka’s method
to compute a subset of a weighted graph that spans all nodes
with the minimum cost. All nodes are initialized as their own
component. The algorithm iterates through components and
first determines the minimum-cost path out of the component,
then groups components connected by minimum-cost paths
into a bigger component. This process continues until only
one component is left. The compute operator becomes in-
creasingly complex and the level of parallelism decreases as
more components are merged [23]. MST is another morph
algorithm that can dynamically add and remove nodes and
edges from the underlying graph structure.

Survey propagation (SP) is a heuristic SAT solver that
uses Bayesian inference to compute the probability of a
boolean formula being true. A SAT formula is represented
as a factor graph of literals and clauses with edges weighted
with the probability of being true or false. The algorithm se-
lects a literal and updates the probability of the edges. This
triggers the neighboring clauses to update their literals. This
process continues until probabilities converge, at which point
sufficiently fixed literals are removed from the graph. The re-
sulting graph is iterated upon again until all literals are fixed
or after a maximum number of super-steps. SP is yet an-
other morph algorithm, but one which only removes nodes
and edges from the graph. Synchronization is again required
to coordinate threads attempting to update the same edges.

Single-source shortest-path (SSSP) is similar to BFS ex-
cept that it calculates the minimum cost between a source
node and all other nodes in a weighted graph. One main dif-
ference with BFS is that SSSP might require more memory
bandwidth since threads need to read both nodes and edges.

C. Data-Driven Optimizations

Unfortunately, although data-driven implementations are
algorithmically more efficient, severe memory contention
renders them impractical compared to topology-driven imple-
mentations, and they are rarely used without aggressive soft-
ware optimizations [20, 22]. We can improve the viability of
data-driven implementations by utilizing distributed worklists
with per-thread or per-block partitions with software work re-
distribution, but even this technique is not enough to make
data-driven implementations competitive with their topology-
driven counterparts. On the other hand, topology-driven im-
plementations are practical even without aggressive optimiza-
tions. Because of this and since the topology-driven imple-
mentations in LSG are already more consistently optimized,
we focus on improving the data-driven counterparts.

The goal of this section is to identify highly optimized
topology- and data-driven implementations of the bench-
marks from the LSG suite [4] suitable as baseline software-
based implementations to compare with our techniques. This
task becomes quite difficult due to several factors: (1) the
highest performing implementations of each benchmark are
scattered across multiple versions of the suite, (2) only some
benchmarks have both topo- and data-driven implementa-
tions, and (3) different optimizations are applied to each
benchmark. The publicly released LSG1.02 only includes
the topology-driven implementations. The data-driven im-
plementations based on the same version of the suite were
provided by the suite developers. LSG2.0 contains only
topology-driven implementations of BH/MST/SP and only
a data-driven implementation of DMR. The data-driven op-
timizations utilized in the LSG benchmarks are primarily
from [22], but not all optimizations detailed in that study were
used. To verify if there was any room for improvement, we
added in-house implementations of some of these missing op-
timizations and measured their impact on performance. Fur-
thermore, we fixed several bugs in the LSG1.02 benchmarks
such as an issue with not all aborted bad triangles being re-
processed in DMR and a memory allocation bug in MST.

These data-driven optimizations can be grouped into four
categories based on the weakness they are trying to improve:
(1) reducing memory contention on pulls, (2) reducing mem-
ory contention on pushes, (3) improving load balancing, and
(4) further increasing work efficiency.

Double-buffering addresses memory contention by split-
ting the worklist into separate pull and push partitions. Past
work suggests that this is the minimum optimization required
to make data-driven implementations practical [22]. Figure 2
shows the data-driven implementation of the example kernel
with the double-buffering optimization. This implementation
is similar to its topology-driven counterpart in that the super-
step loop is external to the kernel. Every super-step, active
nodes in the pull worklist are statically distributed across the
threads based on the thread index. Newly activated nodes for
the next super-step are pushed onto the push worklist using
AMOs. Every kernel call visits all active nodes in the pull
worklist, after which the pull and push worklists are swapped.
The kernel is invoked as long as there are active nodes in the
pull worklist at the beginning of the super-step. The main
benefit of double-buffering is the elimination of AMOs on
pulls which reduces memory contention. The downside is
that we sacrifice parallelism due to moving the super-step
loop external to the kernel. Another consequence is the loss
of dynamic load balancing because threads applying compute
operators at active nodes that require less work cannot steal
work from other threads due to the static work distribution.

Work chunking and atomic-reduced updates target re-
ducing memory contention on pushes. Working chunking
amortizes AMOs by grouping multiple pushes together into a
single push once the number of pushes for a thread are known.
Atomic-reduced updates is a more aggressive technique that
uses a per-block prefix array of the number of pushes required
by each thread in a block to compute the push index, thus

1 __global__ void
2 data_driven_2b(Node* nodes, WL* pullwl, WL* pushwl) {
3 int tidx = blockIdx.x * blockDim.x + threadIdx.x;
4 int start = tidx * N/M;
5 int end = start + N/M;
6 for (widx = start; widx < end; widx++) {
7 Node my_node = nodes[widx];
8 compute(my_node);
9 for (i = 0; i < my_node.num_neighbors; i++) {

10 int neighbor_idx = my_node.neighbor_idx(i);
11 if (check(nodes[neighbor_idx]))
12 wl->push(neighbor_idx);
13 } } }
14

15 int main() {
16 init_wl<<<N>>>(nodes, pullwl);
17 while (pullwl->size() > 0) {
18 data_driven_2b<<<M>>>(nodes, pullwl, pushwl);
19 swap(pullwl, pushwl);
20 }
21 }

Figure 2. Double-Buffered Data-Driven Example Kernel – A modified data-
driven implementation of the example kernel with the double-buffering opti-
mization to eliminate atomic memory operations on pulls. For simplicity, a
naive work distribution calculation is used to determine each thread’s share
of work based on the thread index. Note that pushes still use AMOs. Execu-
tion of each kernel completes when the pull worklist is empty. The pointers
to the pull and push worklists are swapped after each kernel call. The kernel
is invoked until all nodes are inactive (i.e., both worklists are empty.)

reducing the number of AMOs to a single AMO per block.
Note that synchronization is required between steps of the
prefix sum calculation. Overhead from both the calculation
and synchronization can be non-trivial. The technique to use
should be based on balancing these overheads with the criti-
cality of memory contention on pushes.

Work donating seeks to improve load balancing, which
is only relevant when using double-buffering which sacrifices
dynamic load balancing. This technique allows threads to do-
nate excess work to other threads within the same block via
a special donation worklist residing in shared memory. Work
is donated before any computation occurs by estimating the
amount of work each thread has and pushing work onto the
donation worklist if this amount is greater than the block’s
average. The estimation operator can vary in complexity and
effectiveness depending on the benchmark. Threads that fin-
ish applying operators at their share of active nodes earlier
can pull more active nodes from the donation worklist.

Variable kernel configuration aims to increase work effi-
ciency by adjusting the number of threads spawned by each
kernel call based on how many active nodes are in the work-
list. This primarily helps when the number of active nodes for
the super-step is less than the number of HW threads by only
spawning the number of threads necessary and eliminating
the overhead of threads pulling from an empty worklist.

Table I shows the optimizations applied to the versions of
LSG examined in this section. As certain optimizations were
not available for some benchmarks, we added in-house imple-
mentations of atomic-reduced updates and work donating to
the benchmarks that were missing them in LSG1.02. The re-
sulting modified LSG suites are called LSG+A and LSG+W,
respectively.

TABLE I. DATA-DRIVEN OPTIMIZATIONS OF LSG BENCHMARKS

LSG1.02 LSG2.0 LSG+A LSG+W

Opts B
FS

B
H

D
M

R
M

ST
SP SS

SP

B
FS

D
M

R
SS

SP

B
FS

B
H

D
M

R
M

ST
SP SS

SP

B
H

D
M

R
M

ST
SP

DBF X X X X X X X X X X X X X X X X X X X
WCH X X X X X X X X
ARU X X X X X X X X X
WDO X X X X X X X X
VKC X X X X X X X X X X X X X X X

Data-driven optimizations for various versions of LSG. DBF = double-
buffering, WCH = work chunking, ARU = atomic-reduced up-
dates, WDO = work donating, VKC = variable kernel configuration.
LSG1.02+A = LSG1.02 benchmarks with in-house implementation of
ARU instead of WCH. LSG1.02+W = LSG1.02 benchmarks with in-
house implementation of WDO.

TABLE II. GPU PERFORMANCE AND STATISTICS OF LSG BENCHMARKS

Performance Statistics

Topo Data Dyn Insts L1C Miss Reqs/Load

Apps 1.02 2.0 1.02 2.0 +A +W topo data topo data topo data

BFS 1.0 0.2 2.6 4.9 2.3 1.7e9 8.0e7 58.6 73.6 2.0 23.4
BH 1.0 1.2 1.0 1.0 1.4 2.0e8 1.6e8 44.3 64.0 7.6 6.9
DMR 1.0 2.8 0.1 2.7 2.7 6.8e7 3.9e7 31.3 40.7 4.4 4.4
MST 1.0 2.2 0.1 0.1 0.1 1.4e9 1.5e9 23.3 65.7 1.3 14.1
SP 1.0 0.6 1.2 2.2 0.5 1.6e8 1.2e7 68.1 72.3 11.4 25.0
SSSP 1.0 0.2 1.2 0.3 1.2 7.5e9 7.4e9 63.1 77.9 1.8 19.0

Performance for different LSG versions are shown on the left. Results normalized
to corresponding topology-driven LSG1.02 implementations. Best version of each
implementation of each benchmark are shown in bold. Useful statistics are shown
on the right. Dyn Insts = number of dynamic instructions; L1C Miss = L1 data cache
miss rate (%); Reqs/Load = number of memory requests generated per load.

D. Performance Analysis

The performance comparison of topology-driven and data-
driven implementations of the various LSG suite versions (in-
cluding those with our in-house optimizations) running on an
NVIDIA Fermi-class Tesla C2075 GPGPU are shown in Ta-
ble II. The results are speedups normalized against the cor-
responding LSG1.02 topology-driven implementation of the
benchmark. Note that the topology-driven implementations
are also highly optimized and more consistently apply the
optimizations outlined in [22]. The best topology-driven and
data-driven implementations for each benchmark are bolded.
The highest performing implementations of the benchmarks
are concentrated in LSG1.02. Only the topology-driven BH
and MST, as well as the data-driven BFS are better in LSG2.0.
The only case where atomic-reduced updates significantly
improves performance is in SP, where the L1 data cache miss
rate is reduced by 15%. This suggests that SP is more affected
by decreased locality due to a more random work distribution
compared to other benchmarks. Work donating does not im-
prove performance in DMR, MST, or SP because it is difficult
to accurately estimate the work required per thread in these
benchmarks. However, this is less of an issue for BH, which
allows work donating to produce respectable speedups by im-
proving load balancing across a thread block. As an aside, it
is interesting to note that many of the optimized LSG bench-
marks running on GPGPUs have been shown to have roughly
2–3× speedups over traditional multicore systems [23].

With aggressive software optimizations, the data-driven
implementations are generally able to outperform topology-
driven implementations. However, even highly optimized
data-driven implementations are not optimal in every situa-
tion. MST does worse using a data-driven implementation
due to duplicate entries in the worklist [22]. Table II also
shows useful statistics collected using detailed performance
counters for the best topology- and data-driven implementa-
tions of the LSG benchmarks. Much of the intuition behind
the tradeoffs between topology- and data-driven implementa-
tions discussed in Section II-A are reflected in these statistics.
For instance, lower dynamic instruction counts illustrate the
higher work efficiency of data-driven implementations. The
potential impact on memory-access irregularity can be seen

in the increased memory requests per load in the data-driven
implementations of BFS, MST, SP, and SSSP. Similarly, the
increase in L1 data cache misses in data-driven implementa-
tions suggest that locality can suffer from random work dis-
tribution as well.

From these findings, we conclude that although topology-
driven implementations beat naive data-driven implementa-
tions in many cases, data-driven can outperform topology-
driven with extensive software optimizations. However,
even highly optimized data-driven implementations still suf-
fer from substantial weaknesses which can limit their effi-
ciency. Furthermore, significant effort is required to deter-
mine and implement the ideal combination of optimizations
for each data-driven implementation. In general, determining
the ideal approach can be difficult and is influenced by several
factors including dataset size, memory criticality, complexity
of the check operator relative to the compute operator, and the
software worklist implementation. Next, we propose a fine-
grain HWWL to address the weaknesses of highly optimized
data-driven implementations, which may simplify choosing
the optimal approach.

III. FINE-GRAIN HARDWARE WORKLISTS FOR
ACCELERATING IRREGULAR ALGORITHMS

The goal of our proposed techniques is to remedy the
weaknesses of SWWL-based data-driven implementations
while maintaining the algorithmic efficiency of data-driven
implementations. We target two primary weaknesses: (1)
memory contention on pushes, and (2) suboptimal load bal-
ancing. A fine-grain HWWL addresses memory contention
by utilizing distributed hardware worklists to reduce memory
accesses when interacting with the worklist. Our hardware
work redistribution mechanism addresses load balancing by
dynamically distributing work to threads before they become
idle. We also discuss potential mechanisms for addressing
memory-access irregularity in Section VII. For work that
does not fit in the HWWL, we provide a hardware-based vir-
tualization mechanism to seamlessly spill work to memory.

A. ISA Modifications
The HWWL is exposed to software as a shared worklist.

Table III outlines the ISA modifications added for interact-

Core 0
Fetch

Operand Collector

Decode

Issue

H
W

 W
o
rk

li
st

SP

SFU

L
D

S
T

U
n

it

Writeback ArbiterG
P

G
P

U
 R

eg
is

te
r

F
il

e

Mem

P
u

sh
 U

n
it

P
u

ll
 U

n
it

Figure 3. Modified GPGPU Pipeline Diagram – Simplified
pipeline diagram of a single GPGPU core with the modifi-
cations required to support accessing the hardware worklist.
Accesses to the GPGPU register file must still arbitrate for
ports through the operand collector.

Bank 0

SRAM
128 × 24b

1rw

Hardware Worklist

Lane 0

SIZE IDX

Work Redistribution Unit (WRU)

HVU
ADDRALU

to LDST Unit

Inter-Core Redistribution
Network (ICRN)

size

Bank 1

SRAM
128 × 24b

1rw

Lane 1

SIZE IDX

Bank 2

SRAM
128 × 24b

1rw

Lane 2

SIZE IDX

Bank 3

SRAM
128 × 24b

1rw

Lane 3

SIZE IDX

Sorting Network

data size data size data size data

empty

Figure 4. Hardware Worklist Microarchitecture Diagram – Interface between the GPGPU lanes
and the HWWL. The lanes access the distributed HWWL banks which are managed by the
work redistribution unit (WRU). The HWWL virtualization unit (HVU) handles reads/writes
with the overflow buffer. The inter-core redistribution network (ICRN) is a simple tree network
that facilitates work distribution between cores.

TABLE III. ISA MODIFICATIONS FOR HWWL SUPPORT

Instruction Description

wlinit r_d, r_s Initializes overflow buffer for virtualization.

wlcfg r_s Configure partition mode (0=single,1=double).

wlpull r_d, r_s Pulls work ID from HWWL, if local bank is
empty: return WAIT if there is more work in
system, or DONE otherwise.

wlpush r_s, r_t Pushes work ID to HWWL, throws exception if
overflow buffer is full.

ing with a HWWL. A SWWL-based data-driven implemen-
tation of a benchmark can be adapted to use a HWWL by
simply linking to a new worklist implementation that uses
appropriate instructions. In addition, the overflow buffer, a
set of per-core arrays of work IDs used during virtualization,
must be set up using the wlinit instruction with the address
and size of memory allocated by the user. This step is usu-
ally completed as part of the initialization kernel. The ISA
also supports both single-buffered and double-buffered data-
driven implementations which can be configured using the
wlcfg instruction. When in double-buffer mode, separate
pull and push worklists are automatically swapped after ev-
ery kernel call as long as the pull worklist is empty. Pulls
will return a special WAIT token if the local worklist for the
thread is empty but there is more work in the system. This
prevents threads from prematurely exiting the computation
loop due to suboptimal load balancing and missing a chance
to pull an active node in the future. Completed threads will
pull a special DONE token (i.e., no more work in the sys-
tem), allowing threads to exit the computation loop. When
in single-buffer mode, additional logic is required to prevent
threads exiting before more work is pushed into the unified
pull/push worklist. For this study, we focus on analyzing the
double-buffered variant. We classify the state of hardware
threads based on the response of the HWWL: threads which

pull a work ID are active, threads which pull WAIT are wait-
ing, and threads which pull DONE are complete. Pushes will
cause a hardware exception when both the HWWL and the
in-memory overflow buffer are full, implying that not enough
memory was allocated to hold the amount of work generated.

B. HWWL Baseline Microarchitecture
Figure 3 shows a simplified pipeline of a GPGPU core with

the modifications required for interacting with a HWWL.
Pulls move work IDs from the HWWL to the GPGPU reg-
ister file (GRF). Since the HWWL is banked by lane such
that each lane only accesses its own bank, pulls can bypass
the operand collector and be directly sent to the pull unit to
read work IDs. However, pulls must still arbitrate for a write
port when writing to the GRF. Conversely, pushes move work
IDs from the GRF to the HWWL. In this case, pushes must
be issued to the operand collector to read work IDs from the
GRF, after which they are issued to the push unit which writes
the work IDs to the HWWL. Pushes do not need to arbitrate
for a write port due to the per-lane HWWL banks.

Figure 4 shows a microarchitectural diagram of the inter-
face between a HWWL and the GPGPU lanes in a single
GPGPU core. In order to reduce memory accesses when in-
teracting with a worklist, we implement the HWWL as dis-
tributed per-lane 1rw SRAM banks that function as FIFO
queues. We only require one port since pulls and pushes can-
not happen on the same cycle. We explore the effect of vary-
ing bank sizes in Section IV-E. Each HWWL entry stores a
24b work ID, supporting up to 17M unique work IDs. Al-
though this is sufficient to run the benchmarks in our eval-
uation, we recognize that the entry size may have to be in-
creased at design time to support workloads with even more
unique work IDs. The HWWL can be used as a single work-
list at full capacity or two worklists at half capacity. Access
pointers for each partition are managed separately. In single-
buffer mode, both pulls and pushes access the same worklist,

whereas in double-buffer mode, pulls and pushes access their
corresponding partition. Note that since the baseline design
has no work redistribution, a pull from an empty bank will
always return DONE since the bank will not be refilled again.

C. HWWL Work Redistribution

The baseline design obviously suffers from poor load bal-
ancing since a few banks can hog a majority of the work and
leave other banks empty. This wastes resources since hard-
ware threads exit without doing any useful work. Hardware
work redistribution allows work to be transferred between
banks to avoid this case as much as possible.

With work redistribution, we want threads that pull from
an empty bank to wait if there is more work in other banks
that might be redistributed to its empty bank later, instead of
exiting. In such cases, the HWWL returns a WAIT token in-
stead of a DONE token; DONE is only returned when there
is no more work in the system and all threads are waiting. It
is up to software to define what a waiting thread does, but
usually this involves the thread accessing the worklist again
until it receives a work ID or DONE token. Waiting threads in
a warp diverge from active threads and reconverge when the
active threads pull again. A per-core empty bit keeps track of
whether or not all banks in the core are empty and is broad-
casted to other cores in the system. On a pull, the HWWL
returns a DONE token when all empty bits are set, otherwise
it returns a WAIT token. Note that waiting threads lower work
efficiency by doing useless work.

There are two policies in determining when redistribution
should occur. The first is interval-based, where work is re-
distributed every sampling interval, and the second is on-
demand, where the WRU only redistributes on a pull or push.
The former has better load balancing at the cost of energy,
whereas the latter is more energy-efficient but sacrifices some
load balancing. Another serious drawback of on-demand re-
distribution is that it requires more ports on the HWWL banks
since pushes and pulls need to happen simultaneously with
redistribution. On the other hand, interval-based schemes
can share a single port by delaying or skipping redistribu-
tion when pushes and pulls happen on the same cycle. In this
study, we focus on interval-based redistribution schemes to
maximize load balancing and reduce area overhead.

Hardware work redistribution is implemented with per-
core work redistribution units (WRU) connected by an inter-
core redistribution network (ICRN). The WRU aggregates the
empty bits as well as other scheme-specific information used
in determining how to redistribute work. The WRU will al-
ways try to redistribute work within its own core before re-
sorting to inter-core redistribution to minimize the overhead
of using the ICRN. The ICRN is implemented as a tree topol-
ogy with a hub at the root of the tree to connect all cores
in the GPGPU. As such, it takes two hops to transfer work
between any two cores in the ideal case (i.e., ignoring con-
tention). Each core has separate input and output ports to the
ICRN, and thus can inject one work ID and receive one work
ID per cycle.

The threshold-based redistribution scheme is the simplest
scheme in which the greedy banks, which have more work
than the threshold, donate work to the needy banks, which
have less work than the threshold. In this scheme, each
HWWL bank emits an additional local greedy bit to the WRU
which is set if it has more work than the threshold. Each core
also broadcasts a global greedy bit to other cores which is set
if the core has more greedy banks than needy banks. When
redistribution is triggered, the greedy banks donate work to
any needy banks within the same core first in a round-robin
manner. If there are more greedy banks than needy banks,
one of the greedy banks sends work to another core which
does not have the global greedy bit set.

The local sorting-based redistribution scheme increases
hardware complexity to achieve better load balancing. In this
scheme, each HWWL bank relays the amount of work it has
to the WRU. A sorting network in the WRU uses this infor-
mation to rank the banks in order of increasing amount of
work. When redistribution is triggered, the banks with the
most work donate work to any banks which have less work
than the threshold (i.e., needy banks). This means that even
needy banks are able to donate work to other needy banks
which helps load balancing when all banks are needy. In such
cases, the half of the banks with the most work donate work
to the half of the banks with the least work. Overall, this
scheme encourages more even work distribution and prevents
a few banks from accumulating more and more work. Similar
to before, this scheme uses global greedy bits to determine if
inter-core work redistribution is required.

The redistribution schemes discussed thus far mainly use
local, per-core information to determine how to redistribute
work. Minimal information is relayed between cores (i.e.,
single bits) to make work redistribution scalable with in-
creasing core count. The global sorting-based redistribu-
tion scheme uses a monolithic WRU to aggregate more de-
tailed global information across cores. Although unrealistic
due to scalability issues, we use this design to explore the im-
pact of providing the WRU with global information on inter-
core load balancing. In this scheme, a monolithic WRU ranks
banks across all cores instead of just within a core and marks
the half of the banks with the most work as greedy and the
half of the banks with the least work as needy. When redistri-
bution is triggered, greedy banks always donate to any needy
banks within the core and any excess greedy banks send work
to another core. This prevents banks which might have a lot
of work in the global sense from getting more work because
it has less work in the local sense. Banks below the work
threshold are still prioritized even if they are considered glob-
ally greedy. We explore the effects of different redistribution
schemes in Section IV-D.

D. HWWL Virtualization

For a practical HWWL design, it is necessary to provide
support for work virtualization. The HWWL virtualization
unit (HVU) for each core manages spilling and refilling work
IDs to an in-memory overflow buffer. Work in the overflow
buffer is considered as part of the HWWL for the purposes

of determining the return value for HWWL pulls. The ad-
dress and per-core size of the overflow buffer initialized by
the wlinit instruction are used to calculate the per-core off-
set into the overflow buffer. This offset is stored in a special
address register in the HVU. The HVU also has an integer
ALU and special index registers for generating addresses for
virtualization requests. The HVU tags and injects virtualiza-
tion requests into the load-store unit of the GPGPU lanes to
be issued just like any other memory access. As many virtu-
alization requests as there is space in the load-store unit can
be sent out, but normal memory requests are given priority.
The load-store unit is modified to tag pending virtualization
requests with an special bit that is used to route virtualization
responses to the HWWL instead of the GPGPU lanes. Pushes
to full banks within a core are aggregated by the HVU into
a single coalesced virtualization store to the core’s overflow
buffer. Up to a warp’s worth of pushes can be coalesced.

Virtualized pulls can also be handled using an interval-
based or on-demand scheme. With an interval-based
scheme, the HVU periodically checks to see if all banks in the
core have at least one free entry. If so, it generates a virtual-
ization load for a warp’s worth of data. These free entries are
marked as reserved, meaning they count as being occupied
for the purposes of work redistribution or worklist accesses.
As many virtualization requests can be injected as there are
free entries in the load-store unit’s internal queue. With an
on-demand scheme, the HVU only generates a virtualization
load on pulls to empty banks. Multiple virtualization loads
can be issued up to a limit as long as there is space in the load-
store unit. Up to a warp’s worth of data can be coalesced into
a single virtualization load. In this case, the HVU updates the
scoreboard so that the pull looks like a pending load, forcing
instructions dependent on the pull to wait to be issued until
the HWWL is refilled. In order to prevent the pull from cre-
ating control divergence, we conservatively force all threads
in a warp to wait even if only some of those threads pulled
from an empty bank. Note that warp multithreading greatly
helps with hiding this refill latency. In either case, the load-
store unit routes any load responses tagged as virtualization
loads directly to the HVU. Again, virtualization loads can be
coalesced into a single load request since the data accessed
in the overflow buffer is guaranteed to reside in contiguous
memory addresses. This data is written back to the HWWL
banks over cycles when there is no conflict with work redistri-
bution or pushes/pulls. We explore the effects of the different
virtualization schemes in Section IV-E.

An interesting observation is that work redistribution can
interact with virtualization to non-trivially impact perfor-
mance. An ineffective or non-existent work redistribution
scheme can actually degrade performance by unnecessarily
generating virtualizing requests when using on-demand virtu-
alization. For instance, with a suboptimal work distribution,
one bank in a core might be full even though another bank
in the same core might be empty. In this case, a push would
generate a virtualization store even though there is still space
in the HWWL and a pull would generate a virtualization load
even though there is still work in the HWWL. As such, it is

TABLE IV. GPGPU-SIM SIMULATION PARAMETERS

Front End 8KB L1 instruction cache, greedy-then-oldest warp
scheduling, 2 issue slots per cycle

Execution
Core

700 MHz, 48 HW warps, 32768 registers, 16 lanes, 2 SP
and 1 SFU per lane

Memory
System

4-way set-associative 8KB L1 data cache, 8-way
set-associative 786KB L2 data cache, 100 cycle DRAM
latency

important to fully utilize the HWWL storage by evenly dis-
tributing work in addition to preventing empty pulls.

IV. EVALUATION

In this section, we describe our evaluation methodology,
then explore the design space for work redistribution and vir-
tualization to help select reasonable parameters for a HWWL.
The performance of the final design and the impact of the
HWWL mechanisms are compared against highly optimized
software-based topology- and data-driven implementations of
irregular algorithms from LSG.

A. Methodology

We model a fine-grain HWWL on a modified version
of GPGPU-Sim 3.0 with a PTX front-end and realistic on-
chip and off-chip memory system with four cores each with
16 lanes. We chose a smaller number of cores to enable
better insight into the interaction between the HWWL and
GPGPU pipeline, as well as achieve reasonable simulation
times with realistic datasets. We believe the benefits of our
techniques extend to larger GPGPUs as discussed in Sec-
tion V-A. GPGPU-Sim is a cycle-level microarchitectural
simulator with a functional/timing split to enable rapid de-
sign space exploration [2]. The configuration settings used
in GPGPU-Sim are outlined in Table IV. We use highly op-
timized benchmarks from the LSG suite with in-house opti-
mizations based on our analysis in Section II-D. All results
in this section are normalized to the better of the software-
based topology- (topo) and data-driven (data) implementa-
tions of each benchmark selected in Table II. The HWWL-
based data-driven implementations are based on their SWWL
counterpart and configured to run in double-buffer mode, but
no other software optimizations are used.

We developed a simple software API for a shared work-
list suitable for use in the data-driven implementations of
our algorithms. There are two implementations of this API:
(1) a pure-software implementation that serves as our SWWL
baseline design, and (2) a software/hardware implementation
that uses inline assembly to interact with a HWWL. By using
a single software API, we are able to rapidly develop data-
driven implementations on a real GPGPU platform, then eas-
ily port these implementations to our cycle-level simulator.

B. HWWL Limit Study

We study the maximum potential of our techniques by us-
ing an idealized HWWL design that uses a single infinite-
capacity worklist with unlimited bandwidth to model near-
perfect load balancing. For this section and the following

BFS BH DMR MST SP SSSP

Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p

ee
d

u
p

topo data hwwl (FIFO) hwwl (sorted)

Figure 5. Comparison of Idealized HWWL Designs – Performance of a FIFO-
based and sorting-based ideal HWWL design compared to highly optimized
software-based implementations of LSG benchmarks to show the potential of
our techniqes. Results are normalized against the better of topo and data.

BFS BH DMR MST SP SSSP

Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p

ee
d

u
p

topo

data

none

threshold

lsorting

gsorting

magic

Figure 6. Comparison of Work Redistribution Schemes – Performance of an
infinite-capacity HWWL using various work redistribution schemes. none: no
work redistribution; threshold: local threshold-based; lsorting: local ranking-
based; gsorting: global ranking-based; magic: idealized redistribution.

sensitivity studies, we focus on identifying general trends to
guide our choices for architectural parameters of a HWWL.

Figure 5 shows the performance of a idealized HWWL de-
sign compared to topo and data. Although the absolute sim-
ulator performance between topo and data significantly dif-
fer from the GPGPU performance as expected, we can con-
firm that the relative trends between the two baselines are
similar to what we observed in Figure II. We explore two
HWWL configurations: a simple FIFO-based scheme and a
magic sorting-based scheme. The latter sorts the worklist by
work ID before every pull to reduce the impact of memory-
access irregularity usually associated with data-driven imple-
mentations. Our findings show that the FIFO-based scheme
is able to achieve speedups over the best software-based im-
plementation ranging from 1.2–2.8×. This performance gap
is attributed to improved load balancing and reduced mem-
ory requests when accessing the worklist. The sorting-based
scheme further increases speedups in most cases, suggest-
ing that memory-access irregularity contributes a respectable
amount to the performance bottleneck. We focus on the
FIFO-based scheme in this paper, and leave more realistic
sorting mechanisms to address memory-access irregularity to
future work. Overall, there is promising potential for a fine-
grain HWWL, but it remains to be seen how much of this
potential a realistic HWWL implementation can achieve.

C. HWWL Baseline Analysis
In this section, we evaluate the impact of using a more real-

istic HWWL with no work redistribution. The HWWL design
here models the microarchitecture described in Section III,
but each HWWL bank still has infinite capacity.

Figure 6 shows the performance of using a HWWL with
no work redistribution (i.e., none) normalized to the best
software-based implementation. Using a HWWL without
any work redistribution can still achieve substantial speedups
for benchmarks with inherently even load balancing like BH,
DMR, and SP. The load balancing in MST gets worse in later
super-steps, but with an infinite capacity, it is sufficient to
reap the benefits of a HWWL without any work redistribu-

tion. The speedups can be attributed to the elimination of
memory requests when accessing the worklist. Up to a 67%
reduction in memory stalls and a 16% reduction in dynamic
instruction count can be achieved by using a HWWL com-
pared to a SWWL in these benchmarks, reflecting the de-
creased memory accesses when interacting with the worklist
and the higher work efficiency from eliminating the SWWL
overhead, respectively. However, benchmarks with inher-
ently bad load balancing like BFS and SSSP get even worse
load balancing without any work redistribution, resulting in
lower work efficiency due to waiting threads unnecessarily
spinning to obtain more work. For example, dynamic in-
struction counts increase by an order of magnitude for BFS
and SSSP.

D. HWWL Work Redistribution Analysis
We evaluate the impact of various work redistribution

schemes on a more realistic HWWL by using infinite-
capacity banks to isolate the effects of work redistribution.
The goal is to determine a reasonable work redistribution
scheme that balances complexity and performance.

Figure 6 shows the performance of various work redistri-
bution schemes normalized to the best software-based im-
plementation. threshold and lsorting represent the local
(i.e., only using intra-core information) threshold-based and
sorting-based redistribution schemes. Both of these schemes
use a work threshold of five, which our experiments sug-
gested was a reasonable operating point. gsorting is the
global-variant of the sorting-based redistribution scheme with
a monolithic WRU that uses inter-core information. We
also evaluate an idealized redistribution scheme (magic) that
evenly distributes work across cores ignoring bandwidth con-
straints. Based on a preliminary study of various redistribu-
tion intervals, we selected an optimal interval of ten cycles.

Enabling any type of work redistribution generally helps
most on benchmarks with inherently poor load balancing. Us-
ing the number of pulls returning a WAIT token as a proxy for
the level of load balancing, BFS and SSSP displayed orders
of magnitude fewer pulls returning a WAIT token by utiliz-

BFS BH DMR MST SP SSSP

Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

S
p
ee

d
u
p

topo

data

16

32

64

128

256

infinite

(a) On-Demand Virtualization

BFS BH DMR MST SP SSSP

Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

S
p
ee

d
u
p

topo

data

16

32

64

128

256

infinite

(b) Interval-Based Virtualization

Figure 7. Comparison of HWWL Bank Capacity and Virtualization Schemes – Performance of HWWL using lsorting work redistribution with various HWWL
bank sizes using on-demand and interval-based virtualization. The corresponding infinite-capacity HWWL results are provided as a reference point. Results
are normalized against the better of the topo and data implementations.

ing lsorting work redistribution. However, even benchmarks
with inherently better load balancing can still benefit from the
dynamic load balancing from work redistribution as well as
improved work efficiency. Work efficiency is increased by
eliminating the useless work done by waiting threads as evi-
dent by reductions of over 70% in dynamic instruction counts.

In general, threshold does not perform as well as the other
redistribution schemes. Because this scheme allows any bank
with more work than the threshold to donate work, there
are often cases where a bank with work only slightly above
threshold will donate work to a needy bank even though there
is another bank with relatively more work. This can lead to a
situation where only a few banks have a majority of the work
but they are not able to donate work to all of the needy banks
because of bandwidth constraints. Again, this impact is much
more noticeable in benchmarks with inherently bad load bal-
ancing such as SP, where performance actually suffers due to
this unfavorable work distribution.

Both of the sorting-based redistribution schemes achieve
greater speedups compared to threshold by prioritizing the
greediest bank for work donation. There are only slight per-
formance gaps between the local and global variants for a
couple benchmarks which implies that using inter-core in-
formation for redistribution usually does not improve load
balancing enough to merit a monolithic WRU design. Us-
ing inter-core information might not always be beneficial as
seen in SP, since local load balancing is sacrificed for global
load balancing.

Overall, both lsorting and gsorting get closest to the per-
formance of magic, but the performance of gsorting does not
justify its complexity. As such, we use lsorting as the work
redistribution scheme for the rest of the evaluation.

E. HWWL Virtualization Analysis

Now that we have a realistic work redistribution scheme,
we examine the impact of HWWL virtualization on varying
HWWL bank sizes to determine an optimal bank size.

Figure 7(a) shows the performance of a realistic HWWL
design using lsorting work redistribution for a range of
HWWL bank sizes with on-demand virtualization. In most
cases, the performance of on-demand virtualization ap-
proaches the performance of the infinite-capacity configura-
tion even when all work does not fit in the HWWL. This is
mainly because multithreading effectively hides the refill la-
tency as long as the compute operator is sufficiently complex.
When the compute operator is relatively simple like in BH,
it becomes more difficult to hide the refill latency, making
the performance impact of virtualization and finite-capacity
banks more apparent. MST is similar in that the compute op-
erator starts simple and becomes more involved every super-
step. Coincidentally, the most parallelism is available at the
beginning and decreases every super-step, meaning the com-
pute operator applied to most of the work is relatively simple.

Figure 7(b) shows the performance of a realistic HWWL
design using lsorting work redistribution for a range of
HWWL bank sizes with interval-based virtualization. Al-
though in most cases interval-based virtualization is unnec-
essary, it is essential for benchmarks that cannot hide the
refill latency with only multithreading. As we see with BH
and MST, interval-based virtualization allows performance to
get much closer to the infinite-capacity configuration by pre-
emptively refilling the HWWL. This means that smaller ca-
pacities can be used to achieve the same or better speedups
compared to on-demand virtualization. The factor of five re-
duction in pulls returning a WAIT token by using interval-
based virtualization instead of on-demand virtualization for
BH and MST validates how limited these benchmarks are by
waiting on virtualization requests. BFS does not benefit from
interval-based virtualization even though the compute oper-
ator is relatively simple because the work IDs fit within the
HWWL as long as work redistribution is enabled.

In general, we see that 32 entries per bank achieves most of
the speedup possible with an infinite capacity, lsorting work
redistribution offers the best balance between performance

and complexity, and interval-based virtualization hides vir-
tualization latencies for simple compute operators. Using
a realistic HWWL design with this configuration, we were
able to achieve speedups ranging from 1.2–2.4× over the best
software-based implementation.

V. DISCUSSION

In this section, we provide first-order analyses of the scal-
ability and area overheads of a fine-grain HWWL, and we
revisit the performance of single-buffered data-driven imple-
mentations using a HWWL.

A. Scalability Analysis
We ran experiments using BFS with a very large (>1M

nodes) dataset running on 4, 8, and 16 cores to explore the
scalability of a realistic HWWL design. Each experiment
took over one day of simulation time. We found that speedups
actually increased with the core count. With 16 cores, a fine-
grain HWWL improved performance by 2.5× compared to
the best software-based implementation. Similar to the effect
of adding more total cache capacity to achieve super-linear
speedup on a CMP system, adding more cores also increases
the total HWWL capacity to further accelerate performance.
These results also suggest that the HWWL is largely latency
insensitive as the ICRN latency tends to increase with more
cores injecting work per cycle.

B. Area Analysis of HWWL
In this section, we provide a first-order analysis of the area

overhead of using our techniques. The primary overhead
of a HWWL is the additional area required by the HWWL
banks. Although energy is also a concern, it can be more
readily addressed by increasing the work redistribution sam-
pling period or energy-aware redistribution schemes to reduce
unnecessary data movement. Each bank can be modeled as
a 1rw SRAM bank with a couple extra registers for track-
ing queue indices and some logic for calculating the worklist
size. With 16 lanes per core, each with a 1rw SRAM with 32
entries of 24 bits, the additional state required per core is ap-
proximately 1.6 KB. In comparison, the register file of each
NVIDIA Maxwell-class GPGPU core, also implemented as
1rw SRAMs, has 16,384 entries of 32 bits each for a total ca-
pacity of 64 KB [26]. Given this, the area overhead of the
HWWL banks is 2.5% of the register file per core. The sort-
ing network in the WRU can be modeled as a binary sorting
network with 16 nodes and 4 stages per core which we esti-
mate adds an overhead of 162 µm2 based on first-order anal-
ysis using a 40 nm TSMC standard cell library.

C. Revisiting Single- vs. Double-Buffered Approaches
Although in Section II we deemed single-buffered data-

driven implementations as unviable due to memory con-
tention, we experimented with how a single-buffered ap-
proach would compare given that a HWWL eliminates much
of the memory contention. Figure 8 shows the percent of
active hardware threads over time for a single- and double-
buffered data-driven implementation of BFS. The single-
buffered approach is able to fully utilize all hardware threads

A
ct

iv
e

H
W

 T
hr

ea
d
s

(%
)

Cycles

Realistic Memory

Magic Memory

1.0

0.8

0.6

0.4

0.2

0.0
0 2000000 4000000 6000000 8000000

(a) Single-Buffered Implementation

A
ct

iv
e

H
W

 T
h
re

ad
s

(%
)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1.0
(b) Single-Buffered Implementation

(b) Double-Buffered Implementation

Cycles

0 2000000 4000000 6000000 8000000

Figure 8. Single- vs. Double-Buffer Activity of BFS – The percent of ac-
tive HW threads over time for single-buffered (a) and double-buffered (b)
data-driven implementations of BFS. Results for both a realistic and magic
memory system are only shown for the single-buffered variant as there is
negligible speedup with the double-buffered variant.

for a majority of the execution compared to the double-
buffered approach, which has a max utilization of 80%.
Unfortunately, with a realistic memory system, the single-
buffered approach has worse performance due to the decrease
in spatial locality caused by overlapping super-steps. By us-
ing a magic memory system to eliminate this impact, we
can see that the single-buffered approach does out-perform
the double-buffered approach by exposing more parallelism,
opening interesting avenues for future work.

VI. RELATED WORK

To our knowledge, this work is the first to apply fine-
grain hardware worklists to accelerate irregular algorithms on
GPGPUs. However, there exist several studies that evaluate
hardware worklists on more traditional CMP systems. Exam-
ples include work on fine-grain load balancing using special-
ized hardware task schedulers [16] and a hybrid hardware-
software alternative to this approach allowing flexibility in
choosing the scheduling policy [29]. Complementary coarse-
grained approaches to work distribution [1, 13, 24–26] tend
to tradeoff software complexity to ensure optimal warp con-
struction (i.e., control/memory-access regularity). In cases
where most of the work is dynamically generated on a single
chip, it might be preferable to simplify work scheduling and
redistribute work at a finer granularity.

There have been many comparative studies classifying ir-
regular algorithms [15, 27] and mapping them to topology-
and data-driven implementations [22], as well as software
optimizations for irregular algorithms [3, 4, 12, 13, 19] and
morph algorithms [23]. Topology-driven implementations

could also benefit from reducing control divergence by merg-
ing warp fragments [7–9,28] or more sophisticated reconver-
gence policies [5,6]. The increased memory-access irregular-
ity in data-driven implementations could be addressed with
prefetching [17], clever warp scheduling [14], or using warp
fragments to hide memory latencies [21, 30].

Hardware transactional memory in GPGPUs [10] could be
utilized orthogonally to help memory contention. Unified lo-
cal memories in GPGPUs [11] could also be used in a similar
manner to the HWWL to reduce memory accesses when in-
teracting with the worklist, albeit with much less bandwidth
and no work redistribution.

VII. CONCLUSIONS

Although data-driven implementations of irregular algo-
rithms are algorithmically more efficient than their topology-
driven counterparts, the weaknesses of using a SWWL can
be a significant performance barrier even with aggressive op-
timizations. In this paper, we proposed a fine-grain HWWL
with work redistribution and virtualization that addresses
these classic weaknesses while maintaining the high work ef-
ficiency of data-driven implementations. Our results showed
that even with a small area overhead, a fine-grain HWWL is
able to achieve scalable speedups of up to 2.4× over the best
software-based implementation by reducing the dependence
on memory requests when interacting with the worklist and
providing dynamic load balancing. Using a HWWL, we saw
promise for the previously impractical single-buffered data-
driven implementations for which the increased resource uti-
lization was overshadowed by the decrease in spatial locality.
Both higher memory-access irregularity and lower spatial lo-
cality remain challenges to overcome. The primary direction
for future work is exploring a more realistic HWWL that sorts
work IDs to mitigate these weaknesses. This could poten-
tially allow the single-buffered approach to further accelerate
data-driven implementations by exposing more parallelism to
the hardware. Overall, this paper opens up many exciting
possibilities in specialized hardware acceleration for a class
of algorithms especially challenging to map to GPGPUs.

ACKNOWLEDGMENTS

This work was supported in part by NSF CAREER Award
#1149464, an NDSEG Fellowship, and donations from In-
tel Corporation and NVIDIA Corporation. The authors ac-
knowledge and thank the Lonestar Benchmark Suite team for
their insightful advice, particularly Martin Burtscher, Rupesh
Nasre, and Sreepathi Pai for generously providing additional
code and their extensive help in understanding the various im-
plementations of LSG benchmarks.

REFERENCES

[1] Heterogeneous System Architecture: A Technical Review.
AMD White Paper, 2012.
http://amd-dev.wpengine.netdna-cdn.com/
wordpress/media/2012/10/hsa10.pdf.

[2] A. Bakhoda et al. Analyzing CUDA Workloads Using a
Detailed GPU Simulator. Int’l Symp. on Performance
Analysis of Systems and Software (ISPASS), Apr 2009.

[3] J. Barnat et al. Computing Strongly Connected Components
in Parallel on CUDA. Int’l Parallel and Distributed
Processing Symp. (IPDPS), Apr 2011.

[4] M. Burtscher, R. Nasre, and K. Pingali. A Quantitative Study
of Irregular Programs on GPUs. Int’l Symp. on Workload
Characterization (IISWC), Oct 2012.

[5] B. W. Coon and J. E. Lindholm. System and Method for
Managing Divergent Threads in a SIMD Architecture. US
Patent 7353369, Apr 2008.

[6] G. Diamos et al. SIMD Re-Convergence at Thread Frontiers.
Int’l Symp. on Microarchitecture (MICRO), Dec 2011.

[7] W. W. Fung and T. M. Aamodt. Thread Block Compaction
for Efficient SIMT Control Flow. Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb
2011.

[8] W. W. Fung et al. Dynamic Warp Formation and Scheduling
for Efficient GPU Control Flow. Int’l Symp. on
Microarchitecture (MICRO), Dec 2007.

[9] W. W. Fung et al. Dynamic Warp Formation: Efficient
MIMD Control Flow on SIMD Graphics Hardware. ACM
Trans. on Architecture and Code Optimization (TACO),
6(2):1–35, Jun 2009.

[10] W. W. L. Fung et al. Hardware Transactional Memory for
GPU Architectures. Int’l Symp. on Microarchitecture
(MICRO), Dec 2011.

[11] M. Gebhart et al. Unifying Primary Cache, Scratch, and
Register File Memories in a Throughput Processor. Int’l
Symp. on Microarchitecture (MICRO), Dec 2012.

[12] P. Harish and P. Narayanan. Accelerating Large Graph
Algorithms on the GPU Using CUDA. Int’l Conf. on
High-Performance Computing (HIPC), Dec 2007.

[13] S. Hong et al. Accelerating CUDA Graph Algorithms at
Maximum Warp. Symp. on Principles and practice of
Parallel Programming (PPoPP), Feb 2011.

[14] A. Jog et al. Orchestrated Scheduling and Prefetching for
GPGPUs. Int’l Symp. on Computer Architecture (ISCA), Jun
2013.

[15] A. Kerr, G. Diamos, and S. Yalamanchili. A Characterization
and Analysis of PTX Kernels. Int’l Symp. on Workload
Characterization (IISWC), Oct 2009.

[16] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon:
Architectural Support for Fine-Grained Parallelism on Chip
Multiprocessors. Int’l Symp. on Computer Architecture
(ISCA), Jun 2007.

[17] J. Lee et al. Many-Thread Aware Prefetching Mechanisms
for GPGPU Applications. Int’l Symp. on Microarchitecture
(MICRO), Dec 2010.

[18] L. Luo, M. Wong, and W. Hwu. An Effective GPU
Implementation of Breadth-First Search. Design Automation
Conf. (DAC), Jun 2010.

[19] M. Mendez-Loj et al. Structure-Driven Optimizations for
Amorphous Data-Parallel Programs. Symp. on Principles and
practice of Parallel Programming (PPoPP), Feb 2010.

[20] M. Mendez-Lojo, M. Burtscher, and K. Pingali. A GPU
Implementation of Inclusion-Based Points-to Analysis.
Symp. on Principles and practice of Parallel Programming
(PPoPP), Feb 2012.

[21] J. Meng, D. Tarjan, and K. Skadron. Dynamic Warp
Subdivision for Integrated Branch and Memory Divergence
Tolerance. Int’l Symp. on Computer Architecture (ISCA), Jun
2010.

[22] R. Nasre, M. Burtscher, and K. Pingali. Data-driven versus
Topology-driven Irregular Computations on GPUs. Int’l
Parallel and Distributed Processing Symp. (IPDPS), Apr
2013.

[23] R. Nasre, M. Burtscher, and K. Pingali. Morph Algorithms
on GPUs. Symp. on Principles and practice of Parallel
Programming (PPoPP), Feb 2013.

[24] Dynamic Parallelism in CUDA. NVIDIA White Paper, 2012.
http://developer.download.nvidia.com/assets/
cuda/files/CUDADownloads/TechBrief_Dynamic_
Parallelism_in_CUDA.pdf.

[25] NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110. NVIDIA White Paper, 2012.
http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.
pdf.

[26] NVIDIA GeForce GTX 750 Ti. NVIDIA White Paper, 2014.
http://international.download.nvidia.com/
geforce-com/international/pdfs/
GeForce-GTX-750-Ti-Whitepaper.pdf.

[27] K. Pingali et al. The Tao of Parallelism in Algorithms. ACM
SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), Jun 2011.

[28] M. Rhu and M. Erez. CAPRI: Prediction of
Compaction-Adequacy for Handling Control-Divergence in
GPGPU Architectures. Int’l Symp. on Computer Architecture
(ISCA), Jun 2012.

[29] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible
Architectural Support for Fine-Grain Scheduling. Int’l Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Mar 2010.

[30] D. Tarjan et al. Increasing Memory Miss Tolerance for SIMD
Cores. Int’l Conf. on High Performance Networking and
Computing (Supercomputing), Aug 2009.

