Accurate Operation Delay Prediction for FPGA HLS
Using Graph Neural Networks

Ecenur Ustun*, Chenhui Deng*, Debijit Pal, Zhijing Li, Zhiru Zhang

Electrical and Computer Engineering, Cornell University

November 3, 2020

:;f Cornell University *Equal contributions CSI_-E
[1}

FPGA High-Level Synthesis (HLS)

» Higher productivity in specialized hardware design | High-level specification,)
. L J
— - ++ ==
Specify hardware behavior in high-level languages (e.g., C/C++) [Compilation]
» Commercial HLS tools .
_ Vivado HLS (Xilinx) |_Transformation |
_ j++ (Intel) T *t_ |
— Catapult-C (Mentor Graphics) HLS — O(ia on
» Academic HLS tools [Scheduling]
and Binding
- LegUp [1] T
- Bambu [2] [RTL Generation]
B v

| RTL;

[1]1A. Canis et al. LegUp: High-Level Synthesis for FPGA-based Processor/Accelerator Systems. FPGA, 2011.
[2] C. Pilato et al. Bambu: A Modular Framework for the High Level Synthesis of Memory-intensive Applications. FPL, 2013.

Delay Prediction in HLS

» Accurate delay prediction in earlier stages is crucial [1]

High-level specification/

fast but Features from
y Inaccurate (Estimated) HLS reports
[HLS - = \=—) === -- resource usage — - - -~ - - - ----
1' timing
Prediction Error
[Logic Synthesis] LUT: Z4
\L accurate - hean = ax
max =40x
but slow
[Placement] FF: mean = 3x
\]r max =21x
(Actual)
[Routing === resource usage - - -) A ———
) timing

final implementation

[1] R. Nane et al. A Survey and Evaluation of FPGA High-Level Synthesis Tools. TCAD, 2015.
[2] S. Dai et al. Fast and Accurate Estimation of Quality of Results in High-Level Synthesis with Machine Learning. FCCM, 2018. 2

Learning Operation Mapping in HLS

> Introduce mapping-awareness in HLS [1]

a b
N

0/1
0/1
0/1
0/1 DI[7:0]

S[7:0]

. S Dataflow
+ Graph H FPGA resources
| (DFG) Can mapping patterns

out be learned?

[1] M. Tan et al. Mapping-Aware Constrained Scheduling for LUT-Based FPGAs. FPGA, 2015. 3

Learning Operation Mapping in HLS: Motivating Example

a b

CARRY

Cl CO[7:0]
CI_TOP O[7:0]
DI[7:0]

S[7:0]

out

Learning Operation Mapping in HLS: Motivating Example

0/1

0/1

0/1

0/1

0/1

0/1

Mapping pattern

0/1

directly impacts

0/1

0/1
0/1
0/1
0/1

timing

of

out

Our Approach
» Learn mapping of HLS operations onto FPGA device resources
using graph neural networks

» Characterize delay in HLS based on learned mapping patterns
- 72% improvement in HLS operation delay prediction

DSP Mapping

» DSPs are widely used for high-performance complex functions

» Matching HLS subgraphs with DSP blocks

— Commercial HLS tools follow hard-coded rules to infer DSP mapping

\ / | BCOUT* acout?

18

AB

I
I
[
:
I
1
|
Goal: Automatically "2
:
t
|
I

30

Ve Dual B Register
i
learn mapping patterns | ant e
using machine learning - |
+ techniques o] | 5 &F
\ e
S u bg ra p h CA:RR::,T:: —‘ ACIN

CARRYCASCOUT*

0 I~ MULTSIGNOUT4 A ApcouT |
|

RND —]
Wi XOR OUT |
~\ B’|
— |
0— - 48 |
X[\ | |
v [— !
o\ b |
v _ CARRYOUT 4 |
o—Y] 48 P I
1 — — P e o
i p | |
0— PATTERNDETECT !
- >
17-Bit Shift Z 1" pATTERNBDETECT|
- |
17-Bit Shift | CREG/C Bypass/Mas |
- MULTSIGNIN* |
» D CARRYCASCIN* :
|
|

R. Bajaj. Exploiting DSP block capabilities in FPGA high level design flows. PhD Dissertation, NTU, 2017.

IR

Adder Clusters

» HLS tools fail to identify many adder clusters
> We propose to learn adder clusters automatically

actual
cluster

+ —> sext

HLS-predicted "\

N\
> sext > =+

CARRY

Cl CO[7:0]
CI_TOP O[7:0]
DI[7:0]

S[7:0]

CARRY

cl CO[7:0]
CI_TOP o[7:0]
DI[7:0]
S[7:0]

CARRY

cl CO[7:0]
CI_TOP o[7:0]
DI[7:0]
S[7:0]

|
carry chain

Learning Operation Mapping Using Graph Learning

> Models for learning representations from complex data, k\
e.g., CNN, RNN, etc. —

— Apply to regular patterns or sequences of data

> Graphs are highly irregular

— Inconvenient for feature engineering
> Graph Learning [1?2] [
— Apply ML models to graph-structured data \‘/
- Node embedding: learn low-dimensional representations /
— Neighborhood aggregation methods [1-3] 1
0
27

[1] Franco Scarselli, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009.
[2] Will Hamilton, et al. Inductive representation learning on large graphs. NeurlPS, 2017.
[3] Petar Velickovic, et al. Graph attention networks. arXiv:1710.10903, 2017.

Learning Operation Mapping — Our Approach

» Formulate graph learning on dataflow graphs to learn mapping patterns
> Automatically extract correlation between HLS operations and netlist objects

Scheduling, Technolo
benchmark HLS IR Binding, RTL 109y
. Mapping
Generation

Conversion to

: LUT —|j LUT
directed graph EDSP_

node /[
features

Graph
Learning

10

Data Collection — Microbenchmark Generation

» Each microbenchmark
— 20 operations in total, 4—8 multiplication operations
-~ 8-12 input arguments

—

a0 al a2
e void DUT(int a®@, int al, int a2,

all int& out){
int alil;
int al2;

al = all = a0 + al;

al2 = all * a2;
out[@] = all + al2;

+ }

out[0]

Data Collection — Features and Labels

. {Technology}
Mappin
{ R J ppIng
ELUT—

D daaton st] |]
\‘/ E graph j ﬁ_
-

node & edge labels

1 . as vectors
operation type _ ~

1 bitwidth 0 0

0 1

i

graph structure node features
as an adjacency as a vector
matrix per node

- O O
- O O

|

1

12

Our GNN Model: D-SAGE

» Extended GraphSAGE [1] to support directed graphs
> Our model D-SAGE can distinguish between pre-adder and post-adder
A

GraphSAGE: |B AGG MLP

+
A D D-SAGE achieves

)_ = + 17.3% better accuracy
D
« 1.7x faster convergence

> C

+
B

dataflow graph

D-SAGE:

[1] Will Hamilton, et al. Inductive representation learning on large graphs. NeurlPS, 2017. 13

Our GNN Model: D-SAGE

Step 1. Generate node embedding Step 2: Learn node embeddings
functions through supervised learning

DSP

14

Learning Operation Mapping — DSP Blocks

> Virtex UltraScale+ xcvu11p 3 o TN FP
» Binary node classification © 0.71 | 0.06 1 o.8s
— Classification of arithmetic operations with S o
respect to DSP mapping S 1
node label = {1’) maps to D5P 0 1
0, otherwise HLS-estimated label
0/1
8” TN FP
©
= s % 077 | 0.02
= F1: 0.95
-
0) 1

D-SAGE-estimated label

15

Learning Operation Mapping — DSP Blocks

> Train on combinational microbenchmarks, test on realistic designs targeting 250 MHz

— fir

— fft]

- gemm

- md — MachSuite m
- Spmv

— stencil _ HLS 0.43

D-SAGE 0.63

0/1
0/1
0/1
0/1

Improvement: 47%

16

Learning Operation Mapping — Carry Chains

> Binary node classification

— Classification of operations with respect to carry chains

node label = | 1 if maps to a carry chain
0, otherwise

Cl CARRY CO[7:0] Cl CARRY CO[7:0]

CI_TOP O[7:0] CI_TOP
DI[7:0]
S[7:0]

0O[7:0]
DI[7:0]
S[7:0]

HLS 0.23
D-SAGE 0.72

Improvement: 213%

17

Delay Characterization

> Are node labels sufficient to infer delay?

18

Learning Operation Clustering — DSP Blocks

» Binary edge classification
— Classification of “abstract edges” between operations with respect to DSP clustering

1,if its nodes are clustered

edge label = {O, otherwise

HLS 0.69
D-SAGE 0.88

0/1
0/

0/1
0/1

Improvement: 28%

19

Learning Operation Clustering — DSP Blocks

> Train on combinational microbenchmarks, test on realistic designs

— fir, fft, gemm, md, spmv, stencil
— Targeting 250 MHz

HLS 0.35
D-SAGE 0.59

0/1
0/

0/1
0/1

Improvement: 69%

20

Learning Operation Clustering — Carry Chains

» Binary edge classification
— Classification of “abstract edges” between operations with respect to carry chains

1,if its nodes are clustered

edge label = {O, otherwise

HLS 0.17
Cl CARRY CO[7:0] Cl CARRYCO[7:0]

CI_TOP O[7:0] CI_TOP O[7:0] D - S AG E O . 8 2

DI[7:0] DI[7:0]

S[7:0] S[7:0]

Improvement: 382%

CI_TOP O[7:0] CI_TOP o[7:0]
DI[7:0] DI[7:0]
S[7:0] S[7:0]

21

P . Cl CARRY CO[7:0] ¢]] CARRYCO[?:O]

Extension to Pipelined Operations
> Incorporate scheduling information
pbenchmarks | MachSuite DSP pbenchmarks | MachSuite
Mapplng F1 Score F1 Score Clusterlng F1 Score F1 Score

0.72 0.55 0.71 0.45
D-SAGE 0.89 0.65 D-SAGE 0.84 0.51

Carry Chain | ppbenchmarks Carry Chain | ppenchmarks
Mapplng F1 Score Clusterlng F1 Score
0.43 0.28

e '|' D-SAGE 0.73 D-SAGE 0.59

22

Accurate Delay Prediction for HLS

C 150] HLS £, 150 HLS + D-SAGE
@ 1251 @125, Logic Datapath
B 100; B 100 Delay Delay
5 5 3.32 2.56
8 50 8 50
S 2l E 2 QuickEst 0.34 0.41
= =

05 50 100 150 7 50 100 150 HLS + D-SAGE 0.83 0.35

Percentage Error of Percentage Error of _
Logic Delay Prediction Logic Delay Prediction QuickEst + D-SAGE 0.28 0.28

200 20,0
>
3 0 Realistic designs Logic Datapath
e 12.5 Delay Delay
2100 = 2.19 2.22
—
5 75 = QuickEst 192 244
e >0 RMSE = 3.97 é RMSE =1.12 HLS + D-SAGE 0.82 0.83
= 2.57 ‘S 2.5
= HLS g HLS + D-SAGE | QuickEst + D-SAGE 0.89 1.20

0-05 5 10 15 20 0-0 5 10 15 20

23

Actual Logic Delay (ns) Actual Logic Delay (ns)

Accurate Operation Delay Prediction for FPGA HLS
Using Graph Neural Networks

Ecenur Ustun*, Chenhui Deng*, Debijit Pal, Zhijing Li, Zhiru Zhang

Electrical and Computer Engineering, Cornell University

Thank you!

" @Nl[y@@
9 Cornell University C S I-E
) ..-

