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▸ Higher productivity in specialized hardware design

– Specify hardware behavior in high-level languages (e.g., C/C++)

▸ Commercial HLS tools

– Vivado HLS (Xilinx)

– i++ (Intel)

– Catapult-C (Mentor Graphics)

▸ Academic HLS tools

– LegUp [1]

– Bambu [2]

1

FPGA High-Level Synthesis (HLS)

Compilation

Allocation

Scheduling 

and Binding

RTL Generation

High-level specification

Transformation

RTL

HLS

[1] A. Canis et al. LegUp: High-Level Synthesis for FPGA-based Processor/Accelerator Systems. FPGA, 2011.

[2] C. Pilato et al. Bambu: A Modular Framework for the High Level Synthesis of Memory-intensive Applications. FPL, 2013.



▸ Accurate delay prediction in earlier stages is crucial [1]
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▸ Introduce mapping-awareness in HLS [1]
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Learning Operation Mapping in HLS
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[1] M. Tan et al. Mapping-Aware Constrained Scheduling for LUT-Based FPGAs. FPGA, 2015.
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Learning Operation Mapping in HLS: Motivating Example
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Learning Operation Mapping in HLS: Motivating Example

+

×

a b

e

+

out

×

c d

+

+

f g

DSP

DSP

LUT

0/1

0/1

0/1

0/1

LUT

0/1

0/1

0/1

0/1

LUT

0/1

0/1

0/1

0/1

Mapping pattern 

directly impacts 

timing



▸Learn mapping of HLS operations onto FPGA device resources 

using graph neural networks

▸Characterize delay in HLS based on learned mapping patterns

– 72% improvement in HLS operation delay prediction
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Our Approach



▸ DSPs are widely used for high-performance complex functions

▸ Matching HLS subgraphs with DSP blocks

– Commercial HLS tools follow hard-coded rules to infer DSP mapping
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▸ HLS tools fail to identify many adder clusters

▸ We propose to learn adder clusters automatically
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▸ Models for learning representations from complex data, 

e.g., CNN, RNN, etc.

– Apply to regular patterns or sequences of data

▸ Graphs are highly irregular

– Inconvenient for feature engineering

▸ Graph Learning

– Apply ML models to graph-structured data

– Node embedding: learn low-dimensional representations

– Neighborhood aggregation methods [1-3]
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Learning Operation Mapping Using Graph Learning

[1] Franco Scarselli, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009.

[2] Will Hamilton, et al. Inductive representation learning on large graphs. NeurIPS, 2017.

[3] Petar Velickovic, et al. Graph attention networks. arXiv:1710.10903, 2017.
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▸ Formulate graph learning on dataflow graphs to learn mapping patterns

▸ Automatically extract correlation between HLS operations and netlist objects
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Learning Operation Mapping – Our Approach
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▸ Each microbenchmark

– 20 operations in total, 4–8 multiplication operations

– 8–12 input arguments

Data Collection – Microbenchmark Generation
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void DUT(int a0, int a1, int a2,
int& out){

int a11;
int a12;
a11 = a0 + a1;
a12 = a11 * a2;
out[0] = a11 + a12;

}
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Data Collection – Features and Labels
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▸ Extended GraphSAGE [1] to support directed graphs

▸ Our model D-SAGE can distinguish between pre-adder and post-adder
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Our GNN Model: D-SAGE
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• 17.3% better accuracy

• 1.7x faster convergence

[1] Will Hamilton, et al. Inductive representation learning on large graphs. NeurIPS, 2017.
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Our GNN Model: D-SAGE
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Learning Operation Mapping – DSP Blocks

▸ Virtex UltraScale+ xcvu11p

▸ Binary node classification
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▸ Train on combinational microbenchmarks, test on realistic designs targeting 250 MHz

– fir

– fft

– gemm

– md

– spmv

– stencil
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Learning Operation Mapping – Carry Chains

▸ Binary node classification

– Classification of operations with respect to carry chains
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DSP

DSP

▸Are node labels sufficient to infer delay?
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Learning Operation Clustering – DSP Blocks
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▸ Binary edge classification
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▸ Train on combinational microbenchmarks, test on realistic designs

– fir, fft, gemm, md, spmv, stencil

– Targeting 250 MHz

20

Learning Operation Clustering – DSP Blocks
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Learning Operation Clustering – Carry Chains

▸ Binary edge classification

– Classification of “abstract edges” between operations with respect to carry chains
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▸ Incorporate scheduling information
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Extension to Pipelined Operations

DSP 

Mapping

µbenchmarks

F1 Score

MachSuite

F1 Score

HLS 0.72 0.55

D-SAGE 0.89 0.65

DSP 

Clustering

µbenchmarks

F1 Score

MachSuite

F1 Score

HLS 0.71 0.45

D-SAGE 0.84 0.51

Carry Chain 

Mapping

µbenchmarks

F1 Score

HLS 0.43

D-SAGE 0.73

Carry Chain 

Clustering

µbenchmarks

F1 Score

HLS 0.28

D-SAGE 0.59

𝑖

𝑖 + 1

𝑖 + 2
×

𝑖 + 3

+

+

𝑖

𝑖 + 1

𝑖 + 2

𝑖 + 3



23

Accurate Delay Prediction for HLS
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