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FPGA High-Level Synthesis (HLS)
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Delay Prediction in HLS

» Accurate delay prediction in earlier stages is crucial [1]
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Learning Operation Mapping in HLS

> Introduce mapping-awareness in HLS [1]
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Learning Operation Mapping in HLS: Motivating Example
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Learning Operation Mapping in HLS: Motivating Example
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Our Approach
» Learn mapping of HLS operations onto FPGA device resources
using graph neural networks

» Characterize delay in HLS based on learned mapping patterns
- 72% improvement in HLS operation delay prediction



DSP Mapping

» DSPs are widely used for high-performance complex functions

» Matching HLS subgraphs with DSP blocks

— Commercial HLS tools follow hard-coded rules to infer DSP mapping
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Adder Clusters

» HLS tools fail to identify many adder clusters
> We propose to learn adder clusters automatically
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Learning Operation Mapping Using Graph Learning

> Models for learning representations from complex data, k\
e.g., CNN, RNN, etc. —

— Apply to regular patterns or sequences of data

> Graphs are highly irregular

— Inconvenient for feature engineering
> Graph Learning [1?2] [
— Apply ML models to graph-structured data \‘/
- Node embedding: learn low-dimensional representations /
— Neighborhood aggregation methods [1-3] 1
0
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[1] Franco Scarselli, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009.
[2] Will Hamilton, et al. Inductive representation learning on large graphs. NeurlPS, 2017.
[3] Petar Velickovic, et al. Graph attention networks. arXiv:1710.10903, 2017.



Learning Operation Mapping — Our Approach

» Formulate graph learning on dataflow graphs to learn mapping patterns
> Automatically extract correlation between HLS operations and netlist objects
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Data Collection — Microbenchmark Generation

» Each microbenchmark
— 20 operations in total, 4—8 multiplication operations
-~ 8-12 input arguments

—

a0 al a2
e void DUT(int a®@, int al, int a2,

all int& out){
int alil;
int al2;

al = all = a0 + al;

al2 = all * a2;
out[@] = all + al2;

+ }

out[0]



Data Collection — Features and Labels

. {Technology}
Mappin
{ R J ppIng
ELUT—

D daaton st ] | ]
\‘/ E graph j ﬁ_
-

node & edge labels

1 . as vectors
operation type _ ~

1 bitwidth 0 0

0 1

i

graph structure node features
as an adjacency as a vector
matrix per node

- O O
- O O

|

1

12




Our GNN Model: D-SAGE

» Extended GraphSAGE [1] to support directed graphs
> Our model D-SAGE can distinguish between pre-adder and post-adder
A

GraphSAGE: |B AGG MLP
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[1] Will Hamilton, et al. Inductive representation learning on large graphs. NeurlPS, 2017. 13



Our GNN Model: D-SAGE

Step 1. Generate node embedding Step 2: Learn node embeddings
functions through supervised learning
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Learning Operation Mapping — DSP Blocks
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Learning Operation Mapping — DSP Blocks

> Train on combinational microbenchmarks, test on realistic designs targeting 250 MHz
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Learning Operation Mapping — Carry Chains

> Binary node classification

— Classification of operations with respect to carry chains

node label = | 1 if maps to a carry chain
0, otherwise
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Delay Characterization

> Are node labels sufficient to infer delay?
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Learning Operation Clustering — DSP Blocks

» Binary edge classification
— Classification of “abstract edges” between operations with respect to DSP clustering

1,if its nodes are clustered

edge label = {O, otherwise
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Learning Operation Clustering — DSP Blocks

> Train on combinational microbenchmarks, test on realistic designs

— fir, fft, gemm, md, spmv, stencil
— Targeting 250 MHz
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Learning Operation Clustering — Carry Chains

» Binary edge classification
— Classification of “abstract edges” between operations with respect to carry chains

1,if its nodes are clustered

edge label = {O, otherwise
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Extension to Pipelined Operations
> Incorporate scheduling information
pbenchmarks | MachSuite DSP pbenchmarks | MachSuite
Mapplng F1 Score F1 Score Clusterlng F1 Score F1 Score

0.72 0.55 0.71 0.45
D-SAGE 0.89 0.65 D-SAGE 0.84 0.51

Carry Chain | ppbenchmarks Carry Chain | ppenchmarks
Mapplng F1 Score Clusterlng F1 Score
0.43 0.28

e '|' D-SAGE 0.73 D-SAGE 0.59
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Accurate Delay Prediction for HLS
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