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Abstract—This paper proposes FlexCore, a hybrid processor
architecture where an on-chip reconfigurable fabric (FPGA)
is tightly coupled with the main processing core. FlexCore
provides an efficient platform that can support a broad range of
run-time monitoring and bookkeeping techniques. Unlike using
custom hardware, which is more efficient but often extremely
difficult and expensive to incorporate into a modern micropro-
cessor, the FlexCore architecture allows parallel monitoring
and bookkeeping functions to be dynamically added to the
processing core and adapt to application needs even after
the chip has been fabricated. At the same time, FlexCore is
far more efficient than software implementations because its
fine-grained reconfigurable architecture closely matches bit-
level operations of typical monitoring schemes and allows
monitoring schemes to operate in parallel to the monitored
core. In fact, our experimental results show that monitoring
on FlexCore can almost match the performance of full ASIC
implementations. To evaluate the FlexCore architecture, we
implemented an RTL prototype along with several extensions
including uninitialized memory read checking, dynamic infor-
mation flow tracking, array bound checking, and soft error
checking. The prototypes demonstrate that the architecture
can support a range of monitoring extensions with different
characteristics in an efficient manner. FlexCore takes moderate
silicon area and results in far better performance and energy
efficiency than software.

I. INTRODUCTION

As we expand the use of computing devices, capabili-
ties beyond raw performance such as support for security,
reliability, and programmability are becoming increasingly
important. Run-time monitoring of program execution at an
instruction granularity presents an effective way to ensure a
wide range of security and reliability properties and enhance
the programmability of a system. As an example, Dynamic
Information Flow Tracking (DIFT) is a recently proposed
security technique that tracks and restricts the use of un-
trusted I/O inputs by performing additional bookkeeping
and checking operations on each instruction. DIFT has been
shown to be quite effective in detecting a large class of
common software attacks [1], [2], [3]. Similarly, run-time
monitoring and bookkeeping can enable many types of new
capabilities such as fine-grained memory protection [4],
array bound checking [5], [6], software debugging support
[7], managed language support such as garbage collection
[8], hardware error detection [9], etc.

This paper presents an architectural framework, named
FlexCore, that is designed to enable a large class of run-

time monitoring and bookkeeping techniques to execute
efficiently in hardware in parallel to the main core. Even
though a custom hardware implementation of a particu-
lar runtime monitoring scheme would provide the high-
est efficiency, high development costs and inflexibility of
hardware make custom hardware impractical for most run-
time monitoring techniques, and especially for techniques
developed after the hardware has been fabricated. Modern
microprocessor development may take several years and
hundreds of engineers from an initial design to production.
To justify the costs of development and silicon resources,
processor vendors tend to implement a mechanism in custom
hardware only if it is already widely used. Moreover, custom
hardware mechanisms may become obsolete quickly due to
the emergence of new monitoring techniques or the finding
of post-production bugs.

Unfortunately, existing proposals for flexible run-time
monitoring suffer from either high overheads or limited
programmability. For example, one popular approach is
to leverage the programmability of an existing processing
core and implement a monitoring function in software by
instrumenting each dynamic instruction with several more
instructions for bookkeeping and checking. Software mon-
itoring approaches offer very high flexibility in allowing
monitoring algorithms to be finely tuned long after the chip
has been fabricated, however, this flexibility often comes
at the cost of drastically reduced application performance.
In addition to instruction overheads, a traditional processing
core is inherently a poor match for many run-time moni-
toring schemes that need to perform bit-level operations for
bookkeeping. For instance, DIFT needs to propagate and
check 1-bit tags on each instruction while a processing core
is optimized for sequential 32-bit (or 64-bit) operations. A
software implementation for DIFT monitoring on a single
core is reported to have an average slowdown of 3.6 times
even with aggressive optimizations [10]. Use of multiple
cores with specialized hardware support [11] is shown to
lower the performance overheads but still requires the use of
two large processing cores with specialized logic that will
consume more than twice the power. On the other hand,
specialized hardware modules [12], [13] are efficient but
only support a small subset of monitoring techniques.

In the FlexCore architecture, we propose to combine
a bit-level reconfigurable fabric such as an FPGA with



a processing core in order to provide a highly flexible
yet efficient parallel monitoring platform. We believe that
the FPGA-like fabric is much better suited for run-time
monitoring compared to traditional processing cores because
many monitoring techniques for security, reliability, and
programmability perform bit-level operations in parallel to
the main computation. The FPGA-like fabric is also quite
general and capable of implementing any computation that
fits within the fabric. The FlexCore architecture is a signifi-
cant deviation from traditional FPGA co-processing, which
has been studied as a way to accelerate computations on the
main processing core with an explicit control from an ap-
plication. The FlexCore architecture’s reconfigurable fabric
is decoupled from the main processing core and supports
operations that are parallel and transparent to computation
on the main processing core.

In order to minimize the overheads while maintaining the
flexibility to support a broad range of monitoring techniques,
the FlexCore architecture is carefully designed to match
common characteristics of run-time monitoring and hide
the inefficiency of reconfigurable fabric. For example, the
interface between the processing core and the reconfigurable
fabric transparently buffers and forwards dynamic instruc-
tion traces relevant to the monitoring technique running on
the reconfigurable fabric. The core-to-fabric interface also
hides the latencies of cross-clock-domain communications
and monitoring operations by decoupling the fabric from
the main core through FIFOs.

The FlexCore architecture removes unnecessary over-
heads for common operations by incorporating custom hard-
ware modules. For example, our architecture includes a
dedicated L1 cache for meta-data accesses and a simple
filter to selectively forward a subset of instructions. The
operations on the reconfigurable fabric are also optimized
by incorporating a small shadow register file in the fabric
and perform instruction decoding in custom hardware. These
architecture features enable efficient implementations of
memory arrays and complex decoders, which are particularly
inefficient in traditional LUT-based FPGA fabric.

To evaluate the proposed architecture, we implemented the
FlexCore architecture and four extensions in RTL (VHDL)
based on a simple in-order microprocessor (Leon3), and
studied the area, power consumption, and performance on
the 65nm process technology. The prototype extensions in-
clude uninitialized read checking, DIFT, array-bound check-
ing, and soft-error detection. Evaluation results of the proto-
type demonstrate that the FlexCore architecture can indeed
support a range of extensions with different requirements
and operations. Also, the synthesis study shows that the
reconfigurable fabric and its interfaces have only minimal
impact on the main computing core in terms of its operating
frequency and normal operations. In terms of the silicon
area, the FlexCore adds about 0.3mm2 for dedicated hard-
ware components and all evaluated extensions can fit in a

0.4mm2 FPGA fabric, which represent small area overheads
for modern processors that are tens of mm2.

The experimental results also suggest that run-time mon-
itoring on FlexCore is far more efficient than software
implementations in terms of both performance and power
consumption, and can almost match the performance of
ASIC implementations. For example, array-bound checks
can be performed by the reconfigurable fabric with a 18%
average slowdown and 22% additional power consumption
while an ASIC implementation results in a 8% slowdown
with 8% additional power consumption. Dynamic Informa-
tion Flow Tracking (DIFT) on the FlexCore design incurs
a 17% slowdown with a 21% power overhead compared
to the 5% and 6% overheads of an ASIC. These results are
particularly promising because we believe that the prototype
implementations can be further optimized. Overall, the pro-
totype implementation shows that the FlexCore architecture
is a viable platform at least for in-order processors to
provide an efficient and flexible solution for instruction-
grained monitoring and bookkeeping.

This paper makes the following main contributions:
• Computation model: The paper develops a general co-

processing model for instruction-grained monitoring
and bookkeeping extensions, and studies how a set of
extensions maps to the model. This model forms the
basis of the architecture design.

• FlexCore architecture: The paper presents the FPGA
co-processing architecture that can efficiently imple-
ment a broad range of run-time monitoring schemes.

• Prototype implementations and evaluations: The paper
implements and studies a prototype in RTL (VHDL)
and presents results from it.

The rest of the paper is organized as follows. Section II
describes the co-processing model for the parallel monitor-
ing and bookkeeping and shows how example extensions
can map to the model. Section III presents the FlexCore
architecture, and Section IV describes the details of our
prototype implementations for both FlexCore and example
extensions. Section V studies the performance, area, and
power consumption of our prototype extensions in both Flex-
Core and full ASIC implementations. Section VI discusses
the related work, and Section VII concludes the paper.

II. INSTRUCTION-GRAINED RUN-TIME MONITORING

This section presents the computation model for the
fine-grained run-time monitoring and bookkeeping that the
FlexCore architecture is designed to support and discusses
common characteristics of such co-processing operations. In
the following discussion, we use the term “co-processor” to
refer to a monitoring and bookkeeping extension.

A. Co-Processing Model
Figure 1 shows the high-level model of how fine-grained

monitoring and bookkeeping techniques typically work. In
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Figure 1. Computation model for parallel monitoring and bookkeeping.

the figure, dark (blue) blocks represent co-processing and
light (yellow) blocks represent the main computation. A
co-processor maintains its own meta-data, which are often
disjoint from the program state, to keep track of the history
of computation by the main core. At run-time, the co-
processor monitors the execution of the main core at an
instruction granularity, updates its meta-data for bookkeep-
ing, and checks certain properties of the main computation.
If a check fails, the co-processor may raise an exception.
Conceptually, the co-processor observes a trace of all or a
subset of instructions and performs its operations on each
forwarded instruction. The main core can also communicate
with the co-processor with explicit instructions to either
configure the co-processor or read information from it.

In general, the run-time monitoring and bookkeeping
extensions can be characterized by its meta-data, transparent
operations, and software visible operations. Here, we briefly
summarize the common characteristics and their implica-
tions for the architecture design.

• Meta-data: The extensions often need meta-data for
both registers and memory. Therefore, the co-processor
need to support a memory subsystem for meta-data.

• Operations: The monitoring or bookkeeping is often
fine-grained. For many applications, run-time checks
and meta-data updates happen quite frequently, possibly
for every instruction on the main core. Therefore,
pure software implementations often incur a significant
slowdown. At the same time, the operations are largely
decoupled from the main computation and can be
performed in parallel to the main core. The main com-
putation is typically independent from the monitoring
extension unless there is an exception. Finally, the
extension usually performs bit operations rather than
32-bit word operations. Therefore, the operations are a
poor match for a regular computing core.

• Software interfaces: The co-processor needs to be able
to raise an exception and communicate with the main
core with explicit instructions from the core. The in-
structions may read/write configuration registers on the
co-processor and/or perform custom operations for each
extension. The exception and the explicit instructions
are usually infrequent and do not have to be fast.

B. Example Monitoring Extensions
This subsection presents a set of monitoring and book-

keeping extensions as examples and show how those exten-
sions map to our co-processing model. Table I summarizes
the operations of four example extensions: UMC, DIFT,
BC, and SEC. Section IV describes more details of each
extension and its implementation.

Uninitialized Memory Check (UMC): Uninitialized
Memory Check (UMC) is a simple mechanism that is widely
used for software debugging to ensure that a memory loca-
tion is initialized (written) before a read. For each memory
location, the UMC mechanism maintains a one-bit tag that
represents whether the location is initialized or not. The tag
is set after a write to the corresponding memory location
and cleared with an instruction from the main core when the
corresponding memory is de-allocated. On a load operation,
the mechanism checks the tag and raises an exception if the
memory location is not initialized.

Dynamic Information Flow Tracking (DIFT): Dynamic
Information Flow Tracking (DIFT) detects software attacks
by tracking potentially malicious values from I/O and checks
their uses. DIFT can detect low-level exploits such as buffer
overflows and format string attacks [1], [16], [2], without any
modifications to executables, and detect high-level attacks
such as SQL injections and cross-site scripting with simple
application-level checks [3]. For DIFT, a co-processor needs
meta-data (called taint tags) to indicate the source of each
value in registers and memory, and explicit instructions so
that the OS on the main core can set or clear those taint
tags. For ALU, load, and store operations, the co-processor
propagates taint tags from the source operand(s) to the
destination; an OR operation of the source tag bits determine
the destination tag. On security critical operations such as
indirect jumps, the co-processor checks the tag and raises
an exception if tainted values are used.

Array Bound Check (BC): An array bound check (BC)
is a popular way to detect spatial memory errors such
as buffer overflows, which account for a large portion of
software errors and vulnerabilities in unsafe languages such
as C. For BC, a co-processor keeps meta-data that encode
the array bounds for a pointer and checks if each memory
access is within the bounds. The array bounds can be
expressed in various ways including an object table [17],
[18], base and bound addresses [19], [5], or color tags
[6], [20]. In our prototype, we encode bounds by assigning
a color tag to each pointer and memory location. On a
memory allocation, a program marks the resulting pointer
and the corresponding memory locations with an identical
tag using special instructions. For each memory access, the
co-processor checks whether the pointer tag matches the
memory location tag, and raises an exception if not.

Soft Error Check (SEC): Recently there have been
significant efforts to develop architectural techniques to
detect hardware errors such as a transient bit-flip. In a high-



Extension Meta-Data Transparent Operations SW Visible Operations

UMC [14] 1. 1-bit tag per word in memory. 1. Set the tag on a store. 1. Clear tags on a de-allocation.
2. Check the tag on a load. 2. Exception when a tag check fails.

DIFT [1]

1. 1-bit tag per register. 1. Propagate tags on ALU/load/store. 1. Set tags for values from I/O.
2. 1-bit tag per word in memory. 2. Check tags on a control transfer. 2. Clear tags on a declassification.

3. Set a security policy register.
4. Exception when a tag check fails.

BC [6]
1. 4-bit tag per register. 1. Propagate tags on ALU/load/store. 1. Set reg/mem tags on array allocation.
2. 8-bit tag per word in memory. 2. Check a pointer tag (register) with 2. Clear tags on a de-allocation.

a memory tag on a load/store. 3. Exception when a tag check fails.
SEC [15], [9] 1. Check an ALU operation. 1. Exception when a check fails.

Table I
EXAMPLE FLEXCORE CO-PROCESSING EXTENSIONS. UMC: UNINITIALIZED MEMORY CHECK. DIFT: DYNAMIC INFORMATION FLOW TRACKING,

BC: ARRAY BOUND CHECKING, SEC: SOFT ERROR CHECKING.

level, these techniques either re-execute each instruction in
parallel [15] or check simpler checksums on each operation
[9]. These soft-error checks can be easily mapped to the
FlexCore model. As an example, consider a simple checker
that verifies the result of each ALU operation by comput-
ing checksums as proposed by Argus [9]. A co-processor
performs the checksum operation on each ALU instruction
using the source and result values from the main core, and
raises an exception if the check fails.

Other Extensions: We believe that the FlexCore co-
processing model will be applicable to a large class of
hardware extensions that perform monitoring and/or book-
keeping operations in parallel to the main computation. As
an example, the co-processing model can support simple
profiling applications such as custom performance moni-
tors and detailed analysis of software characteristics. The
co-processing model also supports various techniques to
enhance software security and reliability, including fine-
grained memory protection [4], debugging support [7],
checkpointing [21], and others. Parallel bookkeeping can
also provide an efficient support for high-level language
features such as garbage collection [8]. Finally, the recon-
figurable co-processor may be used as an accelerator for the
main computation as in traditional proposals [22].

III. FLEXCORE ARCHITECTURE DESIGN

This section describes the FlexCore architecture. The
description focuses on how the FlexCore architecture is
designed to enable run-time monitoring and bookkeeping
techniques in an efficient manner exploiting the common
characteristics discussed in the previous section.

A. Scope and Design Goals
This paper illustrates the overall architecture in the context

of a single-issue processor without multi-threading. We note
that recent studies on run-time monitoring on multi-cores
also focus on a simple core as the first step [11]. While the
general architecture is also applicable to superscalar proces-
sors, further performance optimizations may be necessary
for high-performance processors. Multi-threading introduces
a coherence issue between program data and meta-data.
This paper does not discuss this issue in detail because it
is common for many run-time monitoring techniques with
meta-data and has been studied already [13], [23].

To be useful in practice, the FlexCore architecture needs
to be both flexible and efficient, and have minimal impacts
on the main processing core. The following list summarizes
our main design goals:

• Flexible: The FlexCore architecture should support a
broad range of run-time monitoring and bookkeeping
extensions so that even new techniques can be imple-
mented in the future. The architecture should also allow
extensions to be updated or added in the field.

• Efficient: Extensions on FlexCore should be much more
efficient than software implementations especially in
terms of performance and energy consumption.

• Non-Intrusive: The added programmability should not
degrade the performance of a processor when the
reconfigurable fabric is not in use. To minimize the im-
plementation costs, the architecture should only require
minimal changes to today’s microprocessor pipeline.

B. Architecture Overview
Figure 2(a) shows the high-level block diagram of the

FlexCore architecture. The yellow (light) rectangles rep-
resent components in traditional microprocessors and the
blue (dark) rectangles represent new components for Flex-
Core. In a high-level, the architecture closely resembles
the co-processing model that is described in the previous
section. The main processing core forwards its execution
trace to the reconfigurable fabric for parallel monitoring and
bookkeeping and receives signals from the fabric through
the interface module. The architecture provides a separate
memory subsystem for meta-data with its own L1 cache
and optionally a TLB if virtual memory is supported. The
meta-data shares a lower level memory hierarchy such as an
L2 cache and the main memory with program data.

The architecture is carefully designed to exploit the
common characteristics of run-time monitoring techniques
without restricting the specifics of the monitoring operations.
For example, unlike traditional FPGA co-processors, the
main core forwards its execution trace without explicit in-
tervention from software. The architecture is also optimized
for bit operations that are common in run-time monitoring.
The reconfigurable fabric operates at a bit granularity and
the meta-data cache supports bit-level writes.

While the fine-grained reconfigurable fabric is a good fit
for typical meta-data computations in run-time monitoring
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Figure 2. FlexCore architecture block diagrams.

schemes, the bit-level reconfigurability is a poor match
for coarse-grained structures such as memory arrays. The
FlexCore architecture handles inefficiencies in fine-grained
reconfigurable fabric with a set of optimizations.

• Specialized hardware modules: The architecture incor-
porates a set of dedicated hardware units for functions
that are common across many extensions. These mod-
ules include the core-fabric interface, TLB, cache, and
meta-data register file.

• Filtering and pre-processing: The core-fabric interface
reduces the workload of the reconfigurable fabric by
filtering out unnecessary types of instructions and per-
forming decoding of instructions.

• Decoupled executions: The reconfigurable fabric is
decoupled from the main core through FIFOs. The
processing core forwards its execution trace, but does
not need to wait for an acknowledgment from the fabric
in most cases. This decoupling hides latencies from
co-processing as well as communications across clock
domains. The clock domain of the reconfigurable fabric
is carefully selected to include the TLB and the cache
so that TLB and cache hits do not require cross-domain
communications.

C. Core-Fabric Interface
The reconfigurable fabric communicates with the main

core through a set of FIFO interfaces as shown in Fig-
ure 2(b). The FIFOs are connected to/from the commit stage
of the main core. The details of the core-to-fabric interface
are also listed in Table II. The core-to-fabric interface works
to enable fine-grained instruction communication between
the core and reconfigurable fabric. The processing core
sends its execution trace to the co-processor using the FIFO
interface, so that the fabric can perform monitoring or
bookkeeping operations on each forwarded instruction.

A forward FIFO sends a trace of instructions, which
are completed and ready to commit, in the program order.
A FIFO packet contains fairly comprehensive information,
including a program counter, source and destination register
values, ALU results, condition codes, and branch outcome.
The FIFO packet also includes decoded instruction fields
such as an opcode, source register numbers, and a destination

register number, in order to reduce the burden on the recon-
figurable fabric. For comparison, we found that our DIFT
prototype can run 30% faster by performing the instruction
decoding for operands and control signals on the core side.

A forwarding configuration register (CFGR) specifies
how a forward FIFO handles each instruction type1. For
example, the CFGR can be configured to forward load/store
instructions but ignore ALU or control instructions when
implementing uninitialized memory checking. The architec-
ture provides three choices regarding whether an instruction
should be forwarded or not. A FIFO can be configured to
(i) ignore an instruction, (ii) forward an instruction only if
a FIFO entry is available (ignore if the FIFO is full), or
(iii) always forward an instruction. The third choice implies
that an instruction commit is stalled if the FIFO is full. The
FIFO may also be configured to either allow an instruction
to commit as soon as it is enqueued or stall the commit until
there is an acknowledgment from the co-processor.

In many co-processor extensions, the main core does
not need to wait for the reconfigurable fabric because an
exception from the co-processor does not need to be precise.
For example, all four extensions in our prototype (UMC,
DIFT, BC, and SEC) terminate a program if a check fails.
There is no need to support a restart on these extensions.
If an instruction requires a value from the fabric as in the
“read from co-processor” instruction or if an exception from
the fabric must be precise, the main core needs to delay a
commit operation. For modern out-of-order processors, such
delays simply mean that instructions stay in an ROB (Re-
Order Buffer) longer without necessarily stalling the follow-
ing instructions. In-order cores can either stall an instruction
at the commit stage or add a simple roll-back mechanism
to provide a precise exception and allow instructions to
speculatively commit.

The reconfigurable fabric uses additional FIFOs to com-
municate back to the main core. A back FIFO (BFIFO) sends
a return value for the “read from co-processor” instruction.
In addition to data, the control module (CTRL) allows a set
of synchronization operations between main core and the
co-processor. The co-processor sends an acknowledgment

1There are 32 types in our prototype based on the SPARC architecture.



Function Module Field Description Bits
Config CFGR FFIFO Select a FIFO behavior for each instruction type: 1) ignore, 2) accept only if not full, 3) accept and proceed, 4) accept

and wait for an acknowledgement. Contains 2 bits for each of the main 32 instruction types (SPARC prototype).
64

CTRL PACK Acknowledgement for a trap signal from the co-processor. 1
PC Program counter. 32
INST Undecoded instruction. 32
ADDR Address for a load/store. 32
RES Result of an instruction. 32
SRCV1 Source operand 1 value. 32

Core SRCV2 Source operand 2 value. 32
To FFIFO COND Condition codes that affect instruction processing. 4

Fabric BRANCH Computed branch direction information. 1
OPCODE Decoded instruction opcode. 5
DECODE Miscellaneous decoded signals. 32
EXTRA Extra processor control signals. 32
SRC1 Decoded Source1 register number. 9
SRC2 Decoded Source2 register number. 9
DEST Decoded Destination register number. 9

Fabric CACK Acknowledgement for FFIFO. 1
To CTRL EMPTY A signal to indicate that there is no pending instruction in the co-processor. 1

Core TRAP Raise en exception. 1
BFIFO VAL A return value on a ’read from co-processor’ instruction. 32

Table II
THE FLEXCORE INTERFACE BETWEEN THE CORE AND THE FABRIC.

back (CACK) for an instruction when the commit stage in
the main core waits for a completion of the Flex fabric
processing. On an exception or a trap on the main core, the
core needs to wait for the co-processor to finish all pending
instructions before starting the handler. For this purpose,
the fabric provides a signal (EMPTY) to indicate whether
there are any pending instructions in the co-processor. The
reconfigurable fabric can also raise an exception using the
trap signal (TRAP). If the interrupt level of the processor
is sufficiently low, the main core acknowledges such an
exception (PACK) and invokes a proper handler.

Note that the proposed FIFO interface with the reconfig-
urable fabric can easily support custom instructions on the
main core for each extension. For example, in order to im-
plement an instruction to set a configuration register within
the reconfigurable fabric, the fabric can be programmed to
update the register on a particular instruction encoding.

D. Meta-Data Memory Hierarchy
For meta-data used by the reconfigurable fabric for

bookkeeping, the reconfigurable fabric uses its own cache
subsystem that is separate from the main core’s L1 caches.
This design minimizes changes to the main core’s cache
structures. Both the processing core and the reconfigurable
fabric share the lower-level memory hierarchy such as an
L2 cache and main memory. Currently, the architecture does
not maintain coherency between the main core’s L1 caches
and the meta-data L1 cache. For the extensions that we
studied, the co-processor only need to access meta-data in
memory regions disjoint from program instructions and data.
The architecture can be extended with a cache coherence
mechanism if necessary.

The meta-data cache is almost identical to regular data
caches except for the capability to write at a bit granularity.
Meta-data cache reads return 32-bit words as in regular
caches. For writes, the meta-data cache is given a 32-

bit write enable mask in addition to an address and a
data word, and only updates bits within the cache word
where the bit mask is set. We found that the bit-level write
capability is essential for efficient co-processing since many
co-processing techniques work on meta-data much smaller
than a word. Without this feature, a co-processor needs to
perform an explicit cache read and then an explicit cache
write in order to update meta-data.

E. Reconfigurable Fabric Architecture
The high-level FlexCore architecture is independent from

the micro-architecture of the reconfigurable fabric and is
applicable to various types of fabrics. In this paper, we
use a standard LUT-based FPGA architecture, specifically
the Xilinx Virtex-5, which includes standard Configurable
Logic Blocks (CLBs) with LUTs and flip-flops. The FPGA
fabric is chosen over other coarse-grained fabrics because
typical monitoring extensions perform bit-level operations.
Our reconfigurable fabric also includes an embedded meta-
data register file, which is implemented with custom hard-
ware and has an 8-bit shadow register for each general-
purpose architecture register in the main core. The register
file provides an efficient way to keep meta-data for registers
in a similar way that SRAM banks in commercial FPGAs
provide efficient memory blocks.

F. Programming Reconfigurable Fabric
The FlexCore architecture is designed for scenarios where

the co-processing extension is treated as a hardware exten-
sion that only need to change infrequently. For example,
we envision that the reconfigurable fabric is programmed
at the boot time and not reprogrammed until the next time
power is cycled. In this context, the programming of the
fabric does not need to be fast, and we can use the standard
programming methods in today’s commercial FPGAs where
a bitstream is serially shifted in to configuration memory.



The reconfigurable fabric can closely monitor virtually all
computations of the main core, therefore, its programming
must be restricted to only trusted parties for security and
privacy. A processor vendor can choose from two options
depending on how open the FlexCore feature is desired
to be. First, the FlexCore programming can be treated
similar to today’s microcode updates. Only the vendor can
create a valid update for the reconfigurable fabric and the
programming interface is invisible to the software layer
including an operating system. In this way, a vendor can
tightly control FlexCore extensions. Alternatively, the Flex-
Core programming interface can be exposed to an operating
system. In both cases, the operating system must properly
manage the meta-data memory space and ensure memory
isolation between the meta-data of each process.

IV. PROTOTYPE IMPLEMENTATIONS
To evaluate the FlexCore architecture, we built a prototype

system based on the Leon3 microprocessor [24]. Leon3 is a
synthesizable VHDL model of a 32-bit processor compliant
with the SPARC V8 architecture. The Leon3 architecture
provides a single-issue in-order pipeline with seven stages.
The core-fabric FIFO interfaces are added to the exception
stage of the pipeline. In the prototype, there is no L2
cache as the Leon3 processor does not include one. As this
paper focuses on the effectiveness of the high-level FlexCore
architecture, the current prototype does not support the meta-
data TLB for multi-programming.

The rest of the section describes the details of the four
monitoring and bookkeeping extensions that we presented in
Section II. The extensions range from simple ones such as
UMC to more sophisticated and area intensive ones such as
BC. While not discussed in detail due to the space constraint,
we note that extensions are moderately pipelined (3 to 6
stages) to improve the throughput.

A. Uninitialized Memory Check (UMC)
UMC uses a 1-bit meta-data tag for each memory word

to check if a word has been initialized. The tag is updated
on a store instruction and checked on a load instruction.
Software explicitly clears tags on memory de-allocation. Fig-
ure 3(a) shows the block diagram of the UMC extension. For
UMC, the core-to-fabric interface gets configured to forward
load or store instructions along with special communication
instructions. The rest is ignored. From each FIFO entry,
the extension takes an opcode and a memory address. The
address gets translated to the address of the 1-bit tag by
shifting and adding to a base, and is used to access the
meta-data cache. On a store, the tag is updated to 1. On a
load, the tag from the cache is checked. If the tag is not set,
an exception is raised through the control module.

B. Dynamic Information Flow Tracking (DIFT)
In FlexCore, DIFT can be implemented by having a co-

processor maintain taint bits and perform the taint propaga-
tion and checks. For meta-data, the co-processor needs to

keep a taint tag for each architecture register and word in
memory. For simplicity, our prototype uses a 1-bit tag per
word, which is enough to detect attacks2. The co-processor
needs to perform taint propagation and check operations on
each instruction from the main computation. For ALU, load,
and store operations, the taint tags get propagated from the
source operand(s) to the destination; an OR operation of the
source tag bits determine the destination tag. On security
critical operations such as indirect jumps, the co-processor
checks the tag and raises an exception if tainted values
are used. To interface with software, the DIFT co-processor
needs to support a few new instructions to explicitly set/clear
taint tags and set control registers, which specify the tag
propagation and check policies.

The block diagram for DIFT is shown in Figure 3(b).
Because our DIFT prototype maintains a 1-bit tag for each
word, the internal data-paths are 1-bit in width. DIFT keeps
a register file with 1-bit entries and uses the cache to
access the 1-bit meta-data in memory. In DIFT, the core-
to-fabric FIFO is configured to forward loads, stores, ALU
instructions, indirect jumps, and co-processor instructions.
For loads and stores, the DIFT extension uses the opcode,
the memory address, and decoded register numbers from
the FIFO to move a tag from memory to register or from
register to memory. The memory address gets translated in
the same way as UMC. For ALU operations, the extension
uses the opcode and the register numbers to read tags from
the internal registers and update the destination register. The
tag is checked on indirect jumps. The DIFT extension allows
software to set its control registers and tags through explicit
instructions.

C. Array Bound Check (BC)
In this study, we use a bound-checking technique based

on colors [6] as an example extension. The technique detects
an out-of-bound accesses by assigning a color tag to each
pointer and memory location. On a memory allocation such
as malloc() for the heap and a function prologue for
the stack, a program marks the resulting pointer and the
corresponding memory locations with an identical color
using special instructions. During the execution, the pointer
carries the color. For each memory access, the pointer color
is matched to the memory location color to ensure an in-
bound access. This approach can detect spatial memory
errors by assigning different colors to different objects.

The color-based bound checking can be implemented in
the FlexCore co-processing model in a way similar to UMC
and DIFT. In fact, the bound checking can be seen as a
combination of UMC and DIFT features. For meta-data,
the bound checking co-processor needs to maintain one tag
for each register and word in memory, which represents

2DIFT implementations may use multiple bits per tag, or have a tag per
each byte in memory. However, the basic operations are identical and this
discussion applies to those variants in the same way.
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Figure 3. Block diagrams for FlexCore extension prototypes. Dark blocks represent the FPGA fabric.

the color of a pointer value (pointer tag). For each word
in memory, the co-processor keeps an additional tag to
represent the location color (memory tag). The tags are set
by the main computation using co-processor instructions.
The co-processor propagates the pointer tag on an ALU,
load, or store operation by either copying the tag (load/store)
or adding two source tags (ALU ops). On a memory
operation, the co-processor checks if the pointer tag matches
the memory tag, and raises an exception for an out-of-bound
access if they do not match.

The high-level block diagram of BC is virtually identical
to DIFT as shown in Figure 3(c). Internally, however, BC
keeps two 4-bit meta-data tags for each word, one for the
pointer color and the other for the memory color. The BC
extension maintains a register file with 4-bit entries and 8-
bit tags for each word in memory. Conceptually, operations
for the pointer tags are similar to DIFT and operations for
the memory tags are similar to UMC. In BC, the core-to-
fabric FIFO is configured to send loads, stores, arithmetic
instructions (for pointers), and co-processor instructions.

For a load instruction from the main core, the BC exten-
sion loads an 8-bit tag from the meta-data cache after the
address translation. The lower 4 bits represent a memory
tag and are compared with the tag of the address to detect
an out-of-bound read. The upper 4 bits represent a pointer
tag and are copied into the tag register for the destination.
Similarly, on each store instruction, the BC extension checks
if the access matches the memory tag, and copies the pointer
tags of the source register to the memory. For arithmetic
instructions, the extension propagates the pointer tags from

the source registers to the destination register. The BC
extension raises an exception if the tags do not match on
a load or store instruction.

D. Soft Error Check (SEC)
For hardware error detection, we implemented a checker

that verifies the computation result from the main core’s
ALU. While verifying other aspects of the execution such
as instruction decoding will require more logic, we believe
that the ALU checker represents the general characteristics
of soft error checks where verification of each instruction
is independent. Figure 3(d) shows the block diagram of the
SEC extension. For SEC, the core-to-fabric FIFO sends all
ALU instructions along with their opcodes, source operand
values, and results. The reconfigurable fabric checks the
result from the main core by effectively re-executing the
computation as in Argus [9]. The checker verifies each bit
individually for addition/subtractions and logic operations.
For efficiency, we used modular arithmetic (mod M) to
verify multiplications and divisions, where M is a Mersenne
number of 3. For the computation checks, the extension
mainly uses the opcode, the source values, and the result
value from the core-to-fabric FIFO. If the checking engine
detects an error, the SEC extension raises an exception.

V. EVALUATION

This section evaluates the proposed FlexCore architecture
using silicon area, power consumption, and performance as
the metrics. To study the overheads of the reconfigurability,
FlexCore is compared to ASIC implementations of each
extension. We do not evaluate the functional effectiveness



of each extension, such as the attack detection capability of
DIFT, as that has already been demonstrated previously.

A. Methodology
To estimate the area, power consumption, and operating

frequency of the hardware modules for a typical ASIC
flow, we used Synopsys Design Compiler (DC) with a
65nm IBM technology library. To estimate the same metrics
for extensions implemented on the FPGA fabric, we used
Synplify Pro and Xilinx ISE. The tools were used to map
each extension to the Virtex-5 FPGA, which was also
manufactured in a 65nm technology. Virtex-5 was chosen
to match the technology node that we use in the ASIC
flow. Each extension on an FPGA was fully placed and
routed, without dedicated components such as the core-
fabric interfaces and caches. This synthesis provided the
estimates for the operating frequency and the number of
LUTs. To compute a rough estimate of the area, we used
an estimate of CLB tile area from the model by Kuon
and Rose [25]. The model reports that the area of a CLB
tile with 10 6-input LUTs in the 65nm technology node is
approximately 8,069µm2. We used this estimate of 807µm2

per LUT and multiplied it by the total number of LUTs used
in our design to generate an area estimate. To compute an
estimate of the power of the reconfigurable fabric, we used
the Virtex-5 Power Spreadsheet [26] using the frequency and
number of LUTs from FPGA synthesis. The area and power
consumption of the shadow register file are obtained from
a memory compiler and included in the estimates for the
dedicated FlexCore modules. The power estimates currently
use a fixed toggle rate of 0.1 and static probability of 0.5
for both ASIC and FPGA to provide rough comparisons.

To evaluate the impact of the reconfigurable extensions
on the overall performance, we performed RTL simulations
of the entire system including the processing core, caches,
a FlexCore extension, a memory controller, and off-chip
SDRAM. The default configuration includes a Leon3 core
with a single-issue 7-stage pipeline, 32-KB L1 instruction
and data caches with 32-B lines, a 4-KB meta-data cache
with 32-B lines, and a 64-entry core-to-fabric FIFO. The
Leon3 caches use a write-through with no allocate policy.
The simulations ran a set of benchmark programs from
MiBench [27] and small kernels.

B. Area, Power, and Frequency
Table III summarizes the estimated area, power consump-

tion, and operating frequency for the Leon3 processor with
and without various extensions. We found that the unmod-
ified Leon3 with 32-KB L1 caches can run up to 465MHz
and consume about 0.836mm2 and 364.2mW. The full ASIC
results, where the Leon3 processor with each extension is
synthesized using the ASIC flow, show that UMC, DIFT,
and BC consume 12 to 20% additional silicon area and 6
to 8% additional power. These overheads are dominated by

the meta-data cache and FIFOs for the core interface. For
SEC, the overheads are negligible because SEC does not
require a meta-data cache or a complex interface. The Leon3
processor with an extension in full ASIC implementations
results in a slightly lower operating frequency because the
extensions tap into internal pipeline signals.

For the FlexCore implementations, the table separately
shows the estimates for each extension on the Flex fabric
and the estimates for the dedicated (ASIC) modules common
for all FlexCore implementations including the FlexCore
interface and 4-KB meta-data cache. Similar to the ASIC
implementations, the synthesis results show that the addition
of the FlexCore interface that taps into the main core pipeline
slows down the frequency slightly by 1.5%. The dedicated
FlexCore modules (the interface and the meta-data cache)
add about 32.5% more silicon area and 14.6% more dynamic
power compared to the baseline Leon3 processor. These
overheads are higher than the ASIC implementations be-
cause the FlexCore interface is more general. In the FlexCore
implementations, the Flex fabric adds noticeable overheads
in addition to the meta-data cache and the interface. The
extensions require the Flex fabric to be 0.09 to 0.39mm2,
which represent 11 to 47% additional area overheads, and
consume 6 to 10% additional power.

While the relative area overheads are noticeable for the
Leon3 processor, which is a tiny embedded processor, the
results demonstrate that the FlexCore architecture is far
more energy-efficient than running a monitoring function on
another processing core. Also, we note that the absolute area
and the power consumption for the FlexCore modules are
quite small if compared to higher-end microprocessors. For
example, each processing core in UltraSPARC T2 occupies
12mm2 in the 65nm technology. MIPS R14000, which is
fabricated in the 0.13µ technology, occupies 204mm2 and
consumes 17W at 500MHz. For these modern processors,
the relative overheads of FlexCore will be insignificant.

C. Performance

Table IV presents the normalized execution time for each
extension. The execution time is normalized to the baseline
Leon3 without any extension. The ASIC implementations
with the same clock frequency for both an extension and
the core show at most 7% performance overheads. The
overheads come from two sources, stalls from a full forward
FIFO and contention for the shared memory bus. A cache
miss on a meta-data access forces the extension to stall
while meta-data is refilled from memory. During this time
the forward FIFO fills up with waiting instructions and may
stall the main core if it becomes full. Also, meta-data refills
from memory hog the memory bus shared by the meta-data
cache and the main core caches. Therefore, the main core
suffers from increased memory access latencies for its own
cache misses.



Extension Description Max Freq (MHz) Area Power
µm2 overhead mW overhead

Baseline - Unmodified Leon3 w/ 32KB L1 465 835,525 - 365 -

ASIC

UMC Leon3 w/ UMC 463 932,118 11.6% 388 6.3%
DIFT Leon3 w/ DIFT 456 960,558 15% 388 6.3%
BC Leon3 w/ BC 456 996,894 19.3% 393 7.7%

SEC Leon3 w/ SEC 463 836,786 0.15% 364 -

FlexCore

Common Leon3 w/ dedicated FlexCore modules 458 1,106,967 32.5% 418 14.6%
UMC UMC on Flex fabric (FPGA) 266 90,384 10.8% 21 5.8%
DIFT DIFT on Flex fabric (FPGA) 256 123,471 14.8% 23 6.3%
BC BC on Flex fabric (FPGA) 229 203,364 24.3% 27 7.4%

SEC SEC on Flex fabric (FPGA) 213 390,588 46.7% 36 9.9%

Table III
THE AREA, POWER, AND FREQUENCY OF THE FLEXCORE ARCHITECTURE. THE OVERHEADS IN SILICON AREA AND POWER CONSUMPTION ARE

SHOWN RELATIVE TO THE BASELINE LEON3.

Benchmark UMC DIFT BC SEC
(1X) (0.5X) (0.25X) (1X) (0.5X) (0.25X) (1X) (0.5X) (0.25X) (1X) (0.5X) (0.25X)

sha 1.01 1.01 1.01 1.01 1.06 1.16 1.03 1.07 1.15 1.00 1.33 1.50
gmac 1.01 1.01 1.09 1.01 1.15 1.34 1.02 1.17 1.37 1.00 1.20 1.47
stringsearch 1.03 1.05 1.12 1.16 1.46 1.89 1.22 1.45 1.84 1.00 1.00 1.11
fft 1.01 1.01 1.01 1.02 1.05 1.31 1.02 1.03 1.35 1.00 1.15 1.45
basicmath 1.01 1.01 1.01 1.03 1.08 1.34 1.04 1.07 1.37 1.00 1.14 1.43
bitcount 1.04 1.06 1.07 1.08 1.36 1.69 1.13 1.27 1.64 1.00 1.19 1.48
geomean 1.02 1.02 1.05 1.05 1.18 1.43 1.07 1.17 1.44 1.00 1.16 1.40

Table IV
THE PERFORMANCE OVERHEAD COMPARISONS BETWEEN ASICS AND FLEXCORE. THE PERFORMANCE IS SHOWN AS THE EXECUTION TIME THAT IS

NORMALIZED TO THE EXECUTION TIME OF THE BASELINE LEON3 PROCESSOR WITHOUT MODIFICATIONS. THE FLEX FABRIC RUNS AT HALF THE
CLOCK FREQUENCY AS THE MAIN CORE FOR DIFT, UMC, AND BC, AND RUNS AT ONE QUARTER OF THE MAIN CORE FREQUENCY FOR SEC.
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Figure 4. The percentage of instructions forwarded to the reconfigurable
fabric for each FlexCore extension prototype.

The performance overheads of the FlexCore implemen-
tations are estimated by running RTL simulations with two
separate clocks for the main core and the Flex fabric. The
clock frequency for the Flex fabric is set based on the
frequency estimates from the synthesis results. BC, UMC,
and DIFT run at half the frequency as the main core
(0.5X in the table) while SEC runs slower (0.25X). For
UMC, the performance of FlexCore is virtually identical
to the ASIC performance despite running at half of the
core frequency because only a small portion of instructions
are forwarded to the reconfigurable fabric to be processed
as shown in Figure 4. BC and DIFT have a slight higher
performance overheads of 18% for FlexCore because the
fabric needs to process a larger percentage of main core
instructions and access the memory for meta-data. However,
the FlexCore overheads are still quite low. SEC has the
highest performance overheads at 40% because it processes
a large number of instructions at a low clock frequency.

The experimental results demonstrate that the FlexCore
extensions are far more efficient than software implementa-
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Figure 5. Average FlexCore performance for various forward FIFO sizes.

tions with comparable capability. For DIFT, previous soft-
ware implementations have placed the performance over-
head as high as 37 times [2]. Even a highly optimized
implementation on high-end superscalar processors reported
an average slowdown of 3.6 times [10]. For UMC, Purify
[14] performs similar checks by adding state bits to each
byte in memory, and was reported to be up to 5.5 times
slower. The array bound check in software can also incur
a noticeable slowdown in memory intensive programs up
to 1.69 times even with extensive optimizations [18]. We
also note that these software implementations are tested on
high-performance processors where additional instructions
can be hidden by the superscalar and dynamic scheduling
techniques. We expect the software overheads to be even
higher for simple in-order processors.

Since the processor must stall when a forward FIFO
between the core and fabric is full, the FIFO must be sized
appropriately to accommodate the slowdowns on the recon-
figurable fabric for meta-data accesses. For this purpose, we
studied the impact of the FIFO size on the performance for
our extensions as shown in Figure 5. A 64-entry forward



FIFO was found to be sufficient for our implementation.
FIFO sizes smaller than 64 entries caused noticeably greater
performance overheads while larger forward FIFO sizes
offered marginal performance benefits. The silicon area for
the FIFO only increase by about 10% between the 16-
entry FIFO and the 64-entry FIFO because of the SRAM
peripheral circuits.

VI. RELATED WORK

This section summarizes the existing FPGA co-processor
architectures and other programmable run-time monitoring
architectures. To the best of our knowledge, this work is the
first that proposes to use the on-chip reconfigurable fabric
such as an FPGA as a general framework for run-time mon-
itoring and bookkeeping. The use of bit-level reconfigurable
fabric enables FlexCore to support a large class of extension
with low energy and performance overheads.

On-chip reconfigurable fabric for co-processing: The
integration of a reconfigurable fabric into a microprocessor
has been extensively studied in the context of speeding up
the main computation. For example, Chimaera [28] and oth-
ers [29], [30] propose to integrate reconfigurable functional
units in the processor pipeline. On the other hand, another set
of approaches such as Garp [22] and OneChip [31] propose
a reconfigurable unit as an on-chip accelerator. While we
also propose an on-chip co-processor, our goal is to enable
parallel monitoring functions that are largely decoupled from
the main computation and cannot be efficiently supported by
the traditional FPGA co-processors.

Run-time monitoring on multi-cores: Recently, re-
searchers have proposed to utilize idle cores on many-core
processor for run-time monitoring of security and reliability
properties. For example, INDRA [32] uses a checker core to
monitor coarse-grained events on a computation core such
as function call/return, code origin inspection, and control
flow inspection. Nagarajan et al. studied implementing DIFT
on multi-cores [33]. Unfortunately, because the checker core
needs to run multiple instructions to process each event from
the computation core, these early designs are either limited
to coarse-grained monitoring or incur significant slowdowns
(3 to 10x). To address such inefficiencies, Chen et al. pro-
posed a set of hardware acceleration techniques for run-time
monitoring on multi-cores [11]. However, their architecture
still resulted in non-trivial slowdowns for fine-grained ex-
tensions. Moreover, in these approaches, the checker core
consumes the same amount of power as the main core. While
the multi-core approaches aim to support similar run-time
monitoring schemes, FlexCore provides higher flexibility
and efficiency because its fabric can be programmed at a bit-
level granularity and perform multiple operations in parallel.

Programmable security and reliability extensions:
Rather than being general, some of the previous techniques
target to efficiently support a small set of run-time monitor-
ing techniques. MemTracker [12] uses a programmable finite

state machine and tags in memory to support extensions
that monitor memory accesses. For example, MemTracker
can perform the uninitialized memory check and a simple
array bound check by placing inaccessible guard words at
the end of an array. As another example, FlexiTaint [13]
supports DIFT operations with a fully programmable tag
propagation and check policies. While these techniques are
more efficient than FlexCore on extensions that they are
designed for, FlexCore is much more general and supports
a larger class of extensions.

3-D introspection: Recently, researchers have started to
investigate using the 3-D stacking technology to monitor
operations of a microprocessor [34]. In this approach, a new
hardware feature is implemented in its own die and gets
stacked on top of a microprocessor. In a high-level, both the
3-D introspection and FlexCore aim to realize similar run-
time monitoring functions. The main difference lies in where
the extensions are implemented: either on a separate die or
on the same die with the processor. The Flex architecture is
likely to be more efficient for fine-grained checks requiring
significant communications whereas the 3-D introspection is
likely to be better suited for compute-intensive monitoring
that is inefficient for the FPGA-like fabric.

Post-silicon validation and repair: Researchers have
proposed to add an on-chip reconfigurable processing engine
that monitors internal processor signals for the purpose of
facilitating post-silicon debugging [35], [36] or patching
hardware design flaws [37]. While these approaches also
perform transparent run-time monitoring in a high-level,
FlexCore resulted in a significantly different design because
of the difference in target applications.

VII. CONCLUSION

In this paper, we proposed FlexCore, a hybrid architecture
which combines a microprocessor with an on-chip reconfig-
urable fabric. FlexCore is designed to be a general platform
where hardware run-time monitoring features can be added
post-fabrication. Our case studies and prototypes of four
extensions show that FlexCore can support a range of mon-
itoring extensions from simple uninitialized memory checks
to more complex information flow and soft error checks. The
careful use of dedicated modules along with the fact that
these extensions often perform simple bit-level operations
enable the FlexCore architecture to efficiently support these
monitoring extensions. Our performance evaluation results
show that the architecture can almost match the performance
of full-custom ASIC implementations.

As future work, we plan to study more extensions, inves-
tigate how the FlexCore approach can be applied to high-
performance superscalar cores where multiple instructions
may execute in parallel, and investigate other reconfigurable
fabric architectures to further improve the performance. We
also plan to extend the architecture to support multi-threaded
programs on multi-cores.
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