k|’rc| Laiqrey, Adfl’ryq
Alcma Brunq, ps’rm Hu,




Executive Summary e,
=

1 Edge swarms increasing in size & complexity:

Enable new loT applications

Require rethinking the cloud-edge system stack

0 Challenges:

Programming interface - abstract away sys’rem/app complexity

Execution environment = fine-grained, event-driven tasks

Hardware design = network communication, computation, etc.

0 HiveMind: end-to-end hardware-software stack for cloud-edge systems
Declarative programming interface, automated task /data placement
Serverless execution environment, reconfigurable hardware acceleration

Significant performance, efficiency, programmability gains vs. centralized and decentralized
platforms



All Computing Involves the Cloud
—

AVaNE Databases
Analytics Email

Websearch

From few large applications...




All Computing Involves the Cloud

Navigation
@Roboﬁcs
oy - 7‘! )

Wearables

Servgrless CaoMm

s Social
Networks

apps Telephones
From few large applications to every service from every domain of human activify



Many Apps Running on Low-Power Edge Swarms

Wearables Navigation

, Space
loT



Many Apps Running on Low-Power Edge Swarms

Wearables Navigation

Interactive, latency-critical tasks

Must meet user-provided QoS
Minimize battery consumption

Address failures

loT



Cloud-Edge System Stack Requirements
N

Abstract the complexity of
Programming framework Lamd

managing a cloud-edge system
from the end user




Cloud-Edge System Stack Requirements
N

Abstract the complexity of
Prog rdmming frq mework - managing a cloud-edge system
from the end user
Automatically determine where
- computation & data should be
placed to meet QoS, handle failures

Task & data placement




Cloud-Edge System Stack Requirements

-\ 00O
Abstract the complexity of

managing a cloud-edge system
from the end user

Programming framework

Automatically determine where
- computation & data should be

placed to meet QoS, handle failures

Task & data placement

Match the fine-grained,
- event-driven and intermittent
nature of loT tasks

Execution environment




Cloud-Edge System Stack Requirements

I
Abstract the complexity of

managing a cloud-edge system
from the end user

Programming framework

Automatically determine where
- computation & data should be

placed to meet QoS, handle failures

Task & data placement

Match the fine-grained,
- event-driven and intermittent
nature of loT tasks

Execution environment

|dentify resource bottlenecks,

- enable reconfiguration

to match loT apps’ frequent updates
10

Hardware design




HiveMind Design
I
0 Hardware-software system stack for cloud-edge systems o B o

Focus on low-power edge devices

Focus on multi-phase computation that requires data
transfer across phases

1 Methodology:

Focus on programmable drones: Parrot A.R. Drone 2.0
® ARM core on-board, 4GB of memory + 24GB of SSD

m Generalizes to other swarms

20-server backend cloud with 2-socket Intel servers

Applications:

m Single-tier tasks (face recognition, weather analytics, SLAM,

obstacle avoidance, etc. )

W Multi-tier scenarios (treasure hunt, people search)



HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)

Task graph

TaskGragthist-['createRoute' ‘collectImage’,
‘obstacleAvoid’, g -
'deduplication'i constraint=[execTime="'10s"])

12



HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)

Create

Task graph

Route

Task description

Image

Task(collectImage,None‘sensorData,

'filepath/to/task/code

s"‘{edg"" ’{esolgtion_. 1624, Obstacle Face
colorFormat='color' . ore
arentTask=['createRoute'],childTask= Avoidance Recognl’rlon

'obstacleAvoidance','faceﬁecognition'])

13



HiveMind Programming Model

_
Declarative Programming Interface (HiveMind DSL)

Create

Task graph

Route

Task description

Image

Ta;k(faceRecognition.sensorData,recognitionStats,
‘filepath/to/task/code’, Obstacle Face
trainingData='zoo'

algorithm="tensorflow_zoo’ . oae
pagentTask=[ ‘collectImage’ ] ; , Avoidance Recognl’rlon

childTask=[ 'deduplication’
Face

Deduplication




HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)

Create
Task graph Route
Collect
Task description
Image
Task(deduplication, recognitionStats,deduplist,
'filepaﬂ\{to/task/code' ' Obstacle Face
sync='all", . e
ggﬁgggﬁhﬂ)faceRecognition 11, Avoidance Recognl’rlon

Face

Deduplication



HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)

Create

Task graph

Route

Collect

Task description |
mage

gargl{e¥(ob;taclee¥gida3cg,f?geRggog?ition)
: erial(faceRecognition,deduplication
Proper’rles & Learn( aceRecoggition, 'Globgl') Obstacle Face

. Place(obstacleAvoidance, 'Edge:all’) : 1+

Persist(deduplication)

Face
16

Deduplication




HiveMind Programming Model

User expresses {task graph, i/o, task logic} in Python
End-to-end source, and inter-task APls synthetized automatically

\/

\_

Output

end-to-end application code base, and inter-task APls for
different placement options (cloud, edge, hybrid)

4"

/




HiveMind Scheduler

Automated Task & Data Placement

1 Centralized Cloud Distributed Edge

e e B “[Scenario A:Static lter
F - VIR nition
~ S3:Drone Rec. ‘ : T

1Scenario B:Moving

paliPeople Recognition

<]/\0

o
=
=

S6:Maze
r BYRVEEWUED
S8:Soil Analytics
B S9:Text Rec.

A

Job Latency (s)

Scenario A Scenario

Cloud execution is usually faster, not always Cloud offloading quickly
Performance variability is higher at the edge saturates network link 18



HiveMind Scheduler

T,
Automated Task & Data Placement

Create
Route

Collect

Obstacle Obstacle

Avoidance Avoidance Recognition ‘ Recognition
- T V-

ace Face

19

Deduplication Deduplication



HiveMind Scheduler

T,
Automated Task & Data Placement

Create
Latency & Power Measurement
Route

Collect Latency & Power Measurement

Image

- \r

Obstacle Obstacle Face

' Face ‘ Latency

Recognition ‘ Recognition & Power

T F Measure-

Face Face
men’r20

Avoidance Avoidance

Latency & Power
Measurement

Deduplication Deduplication



HiveMind FaaS Environment
—

Serverless Execution Environment

1200 - ) «ss | pad
= 1000} § ) ——No Faults
O 9 & N | 5%
e ; } faol 3L Y T
5 i‘ s 60 4 o
& 400! :
%10 i 2 :
ﬂ [ ; !i ! ! 200} :
102k % 50 100 150 200
o BT K T WX Time (s)
Much lower latency Adjusts much better Handles failures
compared to cost-equivalent to load fluctuations more smoothly

reserved resources
21



HiveMind FaaS Environment
—

Serverless Execution Environment

[ Reserved [ Serverless
, oo ——nstatiation BEData VOE—Execution
Azm. R @ :
£ |} g ®
E 0 -
> (=]
) T &0
C 13004 o
b2 X -
8 100 @ 40
) e
m.
B o
°§15253$4S_“SGS_"88 0'S1 52 53 54 S5 S6 S7 S8 S9 S10

High instantiation &

Higher latency variability
control plane overheads

High data transfer overheads 22



HiveMind FaaS Environment
S
Serverless Execution Environment

1 Centralized cloud controller implemented in OpenWhisk:
1 Global visibility into cloud and edge resources
o1 Pre-warms containers and caches images with high reuse probability
o1 Places dependent functions physically close (same container or same node)

o1 Motivates need for hardware support for remote memory access

23



HiveMind Hardware Design

Hardware design

8fps 512KB =~ 8fps IMB === 8fps2MB === 8fps 4MB === 8fps 8MB

T Network M anagement__"ICloud Execution

.

3 el KR ELELRLECE (R
80 o of| } ol| b o
% X :o r»: 1l | X | ||| Often becomes the performance bottleneck
% 6 AIRYIREINS Worse for ML-heavy tasks
5 40 Worse for unreliable network connectivity
)
c
g % Network overheads
-
0

53 S4 6 S7 S8 S9S10  ScAScB

24



HiveMind Hardware Design
—

Hardware design

0 Two reconfigurable acceleration fabrics: ciovs oy
EEEm
o1 Cloud-edge communication 2 RPC "l .
. mEEC e iyl
acceleration * T oam AT Remote Memory |
Nl |
o1 Cloud-cloud function communication 2 RDMA \’ﬁapc ROMA = I ]
acceleration 1P acruE fre e | [t 15 o
, . N e IS B H M
o Implemented in a tightly-coupled cache lll T | EID[ R | O g
. ‘{ ce || ¢ | O ||| Trnspont [ §
coherent FPGA (NUMA interconnect, UPl bus) 228~ P\ i i | NiC |
o Spatially partitioned, supports multi-tenancy [ I blue bitsream s RPC flow
and resource isolation [ green bistream networking stream

25



HiveMind System Stack

Implementation:

~28,000 LoC (C++, Python, node.js,
Verilog, VivadoHLS)

Centralized controller
Hot stand-by copies

End-to-end monitoring system (minimal perf
overhead)

Other features:
Fault tolerance =2 load rebalancing

Straggler detection

access

Online learning = per-device, swarm-wide

Comparisons:
Fully centralized system
Fully decentralized system
With and without serverless 26



Evaluation: Performance
—

[ Centralized Cloud [—) Distributed Edge (] HiveMind

5918 77.653 5544

N

ScA:Static tem Rec.

e
x =

NS o
N =
o~

é‘nm

@ 2000

' =

&
¢

Job Latency (s)

=

i
it
5 (3

0 Task/Job latency:
o Lower than both centralized and distributed
o1 More predictable (less variability)

01 Mostly benefits multi-tier compute-/data-intensive jobs
27



Evaluation: Power Consumption & Net Bandwidth
N

EENCentralized CloudEEDistributed EdgeC"HiveMind | __ EENCentralized CloudEEEDistributed Edge_HiveMind
10— 2 200~ L S L L L
< 0
< 80+ é
- c 150}
£ S
@ 60+ =
- 2 100
@ 40 5
= c 1 -
e 20 ?‘§3 >
O B>
© 0 : % l I
S1 S2 S3 S4 S5 S6 S7 S8 S9S10  ScAScB &  S1 S2 S3 S4 S5 SG S7 S8 S9 S10 ScAScB
0 Power consumption: 0 Network bandwidth:

o 73% lower power consumption than distributed o 78% lower bandwidth utilization than centr.

o 18% lower power consumption than centralized o ~3x higher bandwidth utilization than distributed

28



Evaluation: Modularity

6588
5560 2989 5013

B HiveMind 100 )
2500 HEEE Centr-Net Accel — |
‘é’ 0 +Remote Mem -
= 2000 o | >, | L B 300
> 0 Distributed > L >
o -
§ 1500{ 1 Distr-Net Accel 5 -
§ BB HiveMind-No Accel > ©
— 1000 . - - s _ N >
3 - f © 100
- 500+ > : =

0 Task/Job latency:
o1 Modular design = performance & efficiency can benefit from subset of techniques

o1 But all techniques are needed to achieve best performance and efficiency

29



Other Experiments (in the paper)

Latency breakdown

Fault tolerance

Scalability with swarm size, resource requirements
Portability to other swarms (robotic cars)

Online learning

Etc.

30



o @y
Conclusions “Telal
—

0 Edge swarms increasing in size & complexity:

Enable new loT applications

Require rethinking the cloud-edge system stack

0 Challenges:

Programming interface = abstract away system/app complexity

Execution environment = fine-grained, event-driven tasks

Hardware acceleration 2 network communication, computation, etc.

0 HiveMind: end-to-end hardware-software stack for cloud-edge systems
Enables programmable cloud-edge platforms
Automates task and data placement
Leverages serverless compute and reconfigurable hardware acceleration

Offers significant performance and efficiency gains vs. centralized and decentralized platforms 31



Questions? Sear
—

Enable new

Require ret

0 HiveMind: end-to-end hardware-software stack for cloud-edge systems
Enables programmable cloud-edge platforms
Automates task and data placement
Leverages serverless compute and reconfigurable hardware acceleration

Offers significant performance and efficiency gains vs. centralized and decentralized platforms 32



