
ISCA’22	– June	22nd 2022

HIVEMIND: A HARDWARE-SOFTWARE SYSTEM
STACK FOR SERVERLESS EDGE SWARMS

Liam Patterson, David Pigorovsky, Brian Dempsey,
Nikita Lazarev, Aditya Shah, Clara Steinhoff,

Ariana Bruno, Justin Hu, and Christina Delimitrou

Cornell University

sail.ece.cornell.edu

2

¨ Edge swarms increasing in size & complexity:
¤ Enable new IoT applications
¤ Require rethinking the cloud-edge system stack

¨ Challenges:
¤ Programming interface à abstract away system/app complexity
¤ Execution environment à fine-grained, event-driven tasks
¤ Hardware design à network communication, computation, etc.

¨ HiveMind: end-to-end hardware-software stack for cloud-edge systems
¤ Declarative programming interface, automated task/data placement
¤ Serverless execution environment, reconfigurable hardware acceleration
¤ Significant performance, efficiency, programmability gains vs. centralized and decentralized

platforms

Executive Summary

3

All Computing Involves the Cloud

From few large applications…

Analytics

Websearch

Email

Databases

4

All Computing Involves the Cloud

From few large applications to every service from every domain of human activity

Analytics

Websearch

Email

Databases

Mobile

Video

Wearables

Security
Navigation

Serverless

Robotics

Social
Networks

Gaming
Messaging

SpaceScientific
appsIoTMusic

Self-
driving carsVR

Telephones

ML
Ecommerce

Photos

5

Many Apps Running on Low-Power Edge Swarms

Analytics

Wearables Navigation
Robotics

Space
IoT

Self-
driving carsVR

ML

6

Many Apps Running on Low-Power Edge Swarms

Analytics

Wearables Navigation
Robotics

Space
IoT

Self-
driving carsVR

ML Interactive, latency-critical tasks
Must meet user-provided QoS
Minimize battery consumption

Address failures

Disaster recovery
Digital agriculture

ML analytics
Navigation, etc.

7

Cloud-Edge System Stack Requirements

Programming framework
Abstract the complexity of

managing a cloud-edge system
from the end user

8

Cloud-Edge System Stack Requirements

Programming framework
Abstract the complexity of

managing a cloud-edge system
from the end user

Task & data placement
Automatically determine where
computation & data should be

placed to meet QoS, handle failures

9

Cloud-Edge System Stack Requirements

Programming framework

Execution environment

Task & data placement

Abstract the complexity of
managing a cloud-edge system

from the end user

Match the fine-grained,
event-driven and intermittent

nature of IoT tasks

Automatically determine where
computation & data should be

placed to meet QoS, handle failures

10

Cloud-Edge System Stack Requirements

Programming framework

Execution environment

Task & data placement

Hardware design

Abstract the complexity of
managing a cloud-edge system

from the end user

Match the fine-grained,
event-driven and intermittent

nature of IoT tasks

Automatically determine where
computation & data should be

placed to meet QoS, handle failures

Identify resource bottlenecks,
enable reconfiguration

to match IoT apps’ frequent updates

11

¨ Hardware-software system stack for cloud-edge systems
¤ Focus on low-power edge devices
¤ Focus on multi-phase computation that requires data

transfer across phases

¨ Methodology:
¤ Focus on programmable drones:

n ARM core on-board, 4GB of memory + 24GB of SSD
n Generalizes to other swarms

¤ 20-server backend cloud with 2-socket Intel servers
¤ Applications:

n Single-tier tasks (face recognition, weather analytics, SLAM,
obstacle avoidance, etc.)

n Multi-tier scenarios (treasure hunt, people search)

HiveMind Design

Parrot A.R. Drone 2.0

12

HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)
User expresses {task graph, i/o, task logic} in Python

End-to-end source, and inter-task APIs synthetized automatically

Task graph

13

HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)
User expresses {task graph, i/o, task logic} in Python

End-to-end source, and inter-task APIs synthetized automatically

Task description

Task graph

Collect
Image

Create
Route

Obstacle
Avoidance

Face
Recognition

14

HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)
User expresses {task graph, i/o, task logic} in Python

End-to-end source, and inter-task APIs synthetized automatically

Task description

Task graph

Collect
Image

Create
Route

Obstacle
Avoidance

Face
Recognition

Face
Deduplication

15

HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)
User expresses {task graph, i/o, task logic} in Python

End-to-end source, and inter-task APIs synthetized automatically

Task description

Task graph

Collect
Image

Create
Route

Obstacle
Avoidance

Face
Recognition

Face
Deduplication

16

HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)
User expresses {task graph, i/o, task logic} in Python

End-to-end source, and inter-task APIs synthetized automatically

Task description

Task graph

Collect
Image

Create
Route

Obstacle
Avoidance

Face
Recognition

Face
Deduplication

Properties &
constraints

17

HiveMind Programming Model

Declarative Programming Interface (HiveMind DSL)
User expresses {task graph, i/o, task logic} in Python

End-to-end source, and inter-task APIs synthetized automatically

Task description

Task graph

Collect
Image

Create
Route

Obstacle
Avoidance

Face
Recognition

Face
Deduplication

Properties &
constraints

Output

end-to-end application code base, and inter-task APIs for
different placement options (cloud, edge, hybrid)

18

HiveMind Scheduler

Automated Task & Data Placement

Cloud execution is usually faster, not always
Performance variability is higher at the edge

Cloud offloading quickly
saturates network link

19

HiveMind Scheduler

Automated Task & Data Placement
Explores division of tasks across cloud and edge resources to meet

end-to-end QoS (performance and/or power) constraints

Collect
Image

Create
Route

Obstacle
Avoidance

Face
Recognition

Face
Deduplication

Obstacle
Avoidance

Face
Recognition

Face
Deduplication

20

HiveMind Scheduler

Automated Task & Data Placement
Explores division of tasks across cloud and edge resources to meet

end-to-end QoS (performance and/or power) constraints

Collect
Image

Create
Route

Obstacle
Avoidance

Face
Recognition

Face
Deduplication

Obstacle
Avoidance

Face
Recognition

Face
Deduplication

Latency & Power Measurement

Latency & Power Measurement

Latency & Power
Measurement

Latency
& Power
Measure-

ment

21

HiveMind FaaS Environment

Serverless Execution Environment
Leverages FaaS to offload computation to the cloud

Much lower latency
compared to cost-equivalent

reserved resources

Adjusts much better
to load fluctuations

Handles failures
more smoothly

22

HiveMind FaaS Environment

Serverless Execution Environment
Leverages FaaS to offload computation to the cloud

Higher latency variability High instantiation &
control plane overheads

High data transfer overheads

23

HiveMind FaaS Environment

Serverless Execution Environment
Leverages FaaS to offload computation to the cloud

¨ Centralized cloud controller implemented in OpenWhisk:
¤ Global visibility into cloud and edge resources
¤ Pre-warms containers and caches images with high reuse probability
¤ Places dependent functions physically close (same container or same node)
¤ Motivates need for hardware support for remote memory access

24

HiveMind Hardware Design

Hardware design
Accelerates communication between cloud-edge and within cloud tasks

Network overheads

Often becomes the performance bottleneck
Worse for ML-heavy tasks

Worse for unreliable network connectivity

25

HiveMind Hardware Design

Hardware design
Accelerates communication between cloud-edge and within cloud tasks

¨ Two reconfigurable acceleration fabrics:
¤ Cloud-edge communication à RPC

acceleration
¤ Cloud-cloud function communication à RDMA

acceleration
¤ Implemented in a tightly-coupled cache

coherent FPGA (NUMA interconnect, UPI bus)
¤ Spatially partitioned, supports multi-tenancy

and resource isolation

26

¨ Implementation:
¤ ~28,000 LoC (C++, Python, node.js,

Verilog, VivadoHLS)
¤ Centralized controller

n Hot stand-by copies
¤ End-to-end monitoring system (minimal perf

overhead)

¨ Other features:
¤ Fault tolerance à load rebalancing
¤ Straggler detection
¤ Online learning à per-device, swarm-wide

¨ Comparisons:
¤ Fully centralized system
¤ Fully decentralized system
¤ With and without serverless

HiveMind System Stack

…CPU CPU

Worker	monitor
! !! !

Memory
UPICPU

!
CPU

!!
CPU CPU

Worker	monitor
! !

Memory

UPICPU CPU
!!

CPU CPU

Worker	monitor
!! !

Memory

CPU
!

CPU
!

ToR

Remote	
mem
access

HiveMind Controller

Serverless Scheduler

HiveMind Compiler	&	Synthesis
Task	Graph

CPU

Edge	monitor

Memory

Flash	SSD

Task

Net	
acceleration

27

¨ Task/Job latency:
¤ Lower than both centralized and distributed

¤ More predictable (less variability)

¤ Mostly benefits multi-tier compute-/data-intensive jobs

Evaluation: Performance

28

¨ Power consumption:
¤ 73% lower power consumption than distributed

¤ 18% lower power consumption than centralized

Evaluation: Power Consumption & Net Bandwidth

¨ Network bandwidth:
¤ 78% lower bandwidth utilization than centr.

¤ ~3x higher bandwidth utilization than distributed

29

¨ Task/Job latency:
¤ Modular design à performance & efficiency can benefit from subset of techniques
¤ But all techniques are needed to achieve best performance and efficiency

Evaluation: Modularity

30

¨ Latency breakdown

¨ Fault tolerance

¨ Scalability with swarm size, resource requirements

¨ Portability to other swarms (robotic cars)

¨ Online learning

¨ Etc.

Other Experiments (in the paper)

31

¨ Edge swarms increasing in size & complexity:
¤ Enable new IoT applications

¤ Require rethinking the cloud-edge system stack

¨ Challenges:
¤ Programming interface à abstract away system/app complexity

¤ Execution environment à fine-grained, event-driven tasks

¤ Hardware acceleration à network communication, computation, etc.

¨ HiveMind: end-to-end hardware-software stack for cloud-edge systems
¤ Enables programmable cloud-edge platforms

¤ Automates task and data placement

¤ Leverages serverless compute and reconfigurable hardware acceleration

¤ Offers significant performance and efficiency gains vs. centralized and decentralized platforms

Conclusions

32

¨ Edge swarms increasing in size & complexity:
¤ Enable new IoT applications

¤ Require rethinking the cloud-edge system stack

¨ Challenges:
¤ Programming interface à abstract away system/app complexity

¤ Execution environment à fine-grained, event-driven tasks

¤ Hardware acceleration à network communication, computation, etc.

¨ HiveMind: end-to-end hardware-software stack for cloud-edge systems
¤ Enables programmable cloud-edge platforms

¤ Automates task and data placement

¤ Leverages serverless compute and reconfigurable hardware acceleration

¤ Offers significant performance and efficiency gains vs. centralized and decentralized platforms

Questions?

