
ISCA’22	– June	22nd 2022

HIVEMIND: A HARDWARE-SOFTWARE SYSTEM 
STACK FOR SERVERLESS EDGE SWARMS

Liam Patterson, David Pigorovsky, Brian Dempsey, 
Nikita Lazarev, Aditya Shah, Clara Steinhoff, 

Ariana Bruno, Justin Hu, and Christina Delimitrou

Cornell University

sail.ece.cornell.edu



2

¨ Edge swarms increasing in size & complexity: 
¤ Enable new IoT applications
¤ Require rethinking the cloud-edge system stack

¨ Challenges:
¤ Programming interface à abstract away system/app complexity
¤ Execution environment à fine-grained, event-driven tasks
¤ Hardware design à network communication, computation, etc. 

¨ HiveMind: end-to-end hardware-software stack for cloud-edge systems
¤ Declarative programming interface, automated task/data placement
¤ Serverless execution environment, reconfigurable hardware acceleration 
¤ Significant performance, efficiency, programmability gains vs. centralized and decentralized 

platforms

Executive Summary
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All Computing Involves the Cloud

From few large applications…
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All Computing Involves the Cloud

From few large applications to every service from every domain of human activity
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Many Apps Running on Low-Power Edge Swarms
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Many Apps Running on Low-Power Edge Swarms

Analytics

Wearables Navigation
Robotics

Space
IoT

Self-
driving carsVR

ML Interactive, latency-critical tasks
Must meet user-provided QoS
Minimize battery consumption

Address failures

Disaster recovery
Digital agriculture

ML analytics
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Cloud-Edge System Stack Requirements

Programming framework
Abstract the complexity of 

managing a cloud-edge system 
from the end user
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Cloud-Edge System Stack Requirements

Programming framework

Execution environment

Task & data placement
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Cloud-Edge System Stack Requirements

Programming framework

Execution environment

Task & data placement

Hardware design

Abstract the complexity of 
managing a cloud-edge system 

from the end user

Match the fine-grained, 
event-driven and intermittent 

nature of IoT tasks

Automatically determine where 
computation & data should be 

placed to meet QoS, handle failures

Identify resource bottlenecks, 
enable reconfiguration

to match IoT apps’ frequent updates
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¨ Hardware-software system stack for cloud-edge systems
¤ Focus on low-power edge devices
¤ Focus on multi-phase computation that requires data 

transfer across phases

¨ Methodology: 
¤ Focus on programmable drones: 

n ARM core on-board, 4GB of memory + 24GB of SSD
n Generalizes to other swarms

¤ 20-server backend cloud with 2-socket Intel servers
¤ Applications: 

n Single-tier tasks (face recognition, weather analytics, SLAM, 
obstacle avoidance, etc. )

n Multi-tier scenarios (treasure hunt, people search)

HiveMind Design

Parrot A.R. Drone 2.0
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HiveMind Programming Model

Declarative Programming Interface  (HiveMind DSL)
User expresses {task graph, i/o, task logic} in Python

End-to-end source, and inter-task APIs synthetized automatically

Task graph
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HiveMind Programming Model

Declarative Programming Interface  (HiveMind DSL)
User expresses {task graph, i/o, task logic} in Python

End-to-end source, and inter-task APIs synthetized automatically

Task description

Task graph

Collect
Image

Create
Route
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Recognition

Face
Deduplication

Properties & 
constraints

Output

end-to-end application code base, and inter-task APIs for 
different placement options (cloud, edge, hybrid)
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HiveMind Scheduler

Automated Task & Data Placement

Cloud execution is usually faster, not always
Performance variability is higher at the edge

Cloud offloading quickly
saturates network link
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HiveMind Scheduler

Automated Task & Data Placement
Explores division of tasks across cloud and edge resources to meet 

end-to-end QoS (performance and/or power) constraints
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HiveMind Scheduler

Automated Task & Data Placement
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HiveMind FaaS Environment

Serverless Execution Environment
Leverages FaaS to offload computation to the cloud

Much lower latency 
compared to cost-equivalent 

reserved resources

Adjusts much better
to load fluctuations

Handles failures 
more smoothly
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HiveMind FaaS Environment

Serverless Execution Environment
Leverages FaaS to offload computation to the cloud

Higher latency variability High instantiation & 
control plane overheads

High data transfer overheads
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HiveMind FaaS Environment

Serverless Execution Environment
Leverages FaaS to offload computation to the cloud

¨ Centralized cloud controller implemented in OpenWhisk: 
¤ Global visibility into cloud and edge resources
¤ Pre-warms containers and caches images with high reuse probability
¤ Places dependent functions physically close (same container or same node)
¤ Motivates need for hardware support for remote memory access
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HiveMind Hardware Design

Hardware design
Accelerates communication between cloud-edge and within cloud tasks

Network overheads

Often becomes the performance bottleneck
Worse for ML-heavy tasks

Worse for unreliable network connectivity
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HiveMind Hardware Design

Hardware design
Accelerates communication between cloud-edge and within cloud tasks

¨ Two reconfigurable acceleration fabrics: 
¤ Cloud-edge communication à RPC 

acceleration
¤ Cloud-cloud function communication à RDMA 

acceleration
¤ Implemented in a tightly-coupled cache 

coherent FPGA (NUMA interconnect, UPI bus)
¤ Spatially partitioned, supports multi-tenancy 

and resource isolation
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¨ Implementation: 
¤ ~28,000 LoC (C++, Python, node.js, 

Verilog, VivadoHLS)
¤ Centralized controller

n Hot stand-by copies
¤ End-to-end monitoring system (minimal perf 

overhead)

¨ Other features: 
¤ Fault tolerance à load rebalancing
¤ Straggler detection
¤ Online learning à per-device, swarm-wide

¨ Comparisons: 
¤ Fully centralized system
¤ Fully decentralized system
¤ With and without serverless

HiveMind System Stack
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¨ Task/Job latency: 
¤ Lower than both centralized and distributed

¤ More predictable (less variability)

¤ Mostly benefits multi-tier compute-/data-intensive jobs

Evaluation: Performance
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¨ Power consumption: 
¤ 73% lower power consumption than distributed

¤ 18% lower power consumption than centralized

Evaluation: Power Consumption & Net Bandwidth

¨ Network bandwidth: 
¤ 78% lower bandwidth utilization than centr.

¤ ~3x higher bandwidth utilization than distributed
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¨ Task/Job latency: 
¤ Modular design à performance & efficiency can benefit from subset of techniques
¤ But all techniques are needed to achieve best performance and efficiency

Evaluation: Modularity
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¨ Latency breakdown

¨ Fault tolerance

¨ Scalability with swarm size, resource requirements

¨ Portability to other swarms (robotic cars)

¨ Online learning

¨ Etc. 

Other Experiments (in the paper)
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¨ Edge swarms increasing in size & complexity: 
¤ Enable new IoT applications

¤ Require rethinking the cloud-edge system stack

¨ Challenges:
¤ Programming interface à abstract away system/app complexity

¤ Execution environment à fine-grained, event-driven tasks

¤ Hardware acceleration à network communication, computation, etc. 

¨ HiveMind: end-to-end hardware-software stack for cloud-edge systems
¤ Enables programmable cloud-edge platforms

¤ Automates task and data placement

¤ Leverages serverless compute and reconfigurable hardware acceleration 

¤ Offers significant performance and efficiency gains vs. centralized and decentralized platforms

Conclusions
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¨ Edge swarms increasing in size & complexity: 
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Questions? 


