/58 ﬁ’; Cornell University
/g Computer Systems Laboratory

HQSIM: ENABLING ACCURATE AND SCALABLE SIMULATION
FOR INTERACTIVE MICROSERVICES

Yanqi Zhang, Yu Gan, Christina Delimitrou
Cornell University

Session: Datacenters and Cloud Computing, March 26™

MARCHING TO MICROSERVICES C s |_.a

Monolith Application

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MARCHING TO MICROSERVICES C s |_.a

L B

—JIIIJ

JJJJ

000 .
2000 /1

Monolith Application

Microservices

4\“ . -
A Cornell University

k) Computer Systems Laboratory

MARCHING TO MICROSERVICES C s |_.a

L B

— JJJJ

JJJJ

SOOI,
0000 /N

Monolith Application
* Easier development & update Microservices

’J‘ . -
A Cornell University

5/ Computer Systems Laboratory

MARCHING TO MICROSERVICES C s |_.a

L B

— JJJJ

JJJJ

SOOI,
0000 /N

Monolith Application
* Easier development & update Microservices
* Debugging & error isolation

’J‘ . -
A Cornell University

5/ Computer Systems Laboratory

MARCHING TO MICROSERVICES C s |_.a

L B

— JJJJ

JJJJ

SOOI,
0000 /N

Monolith Application
* Easier development & update Microservices
* Debugging & error isolation
* Elasticity

’J‘ . -
A Cornell University

5/ Computer Systems Laboratory

MARCHING TO MICROSERVICES C s |_.a

L B

— JJJJ

JJJJ

SOOI,
0000 /N

Monolith Application
* Easier development & update Microservices
* Debugging & error isolation
* Elasticity
* PL/framework heterogeneity

’J‘ . -
A Cornell University

5/ Computer Systems Laboratory

MARCHING TO MICROSERVICES

Service Traffic Map / us-east-1

= o
Amazon

Real time traffic of Social Network Microservices

Visualization tool: https://github.com/netflix/vizceral.git
Cornell University

Computer Systems Laboratory

MARCHING TO MICROSERVICES

Service Traffic Map / us-east-1

=
Amazon

Real time traffic of Social Network Microservices

* Complicate cluster management due to microservice dependencies

Visualization tool: https://github.com/netflix/vizceral.git
Cornell University

Computer Systems Laboratory

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES C s |_.a

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES C s |_.a

= Performance unpredictability usually occurs at large scale

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES C s |_.a

= Performance unpredictability usually occurs at large scale

= Leverage simulation

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES C s |_.a

= Performance unpredictability usually occurs at large scale

= Leverage simulation
* Architecture simulator: Gemb, Zsim (ISCA’13)
* Cluster level queueing simulator: BigHouse (ISPASS5'12)

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES C s |_.a

= Performance unpredictability usually occurs at large scale

= Leverage simulation
* Architecture simulator: Gemb, Zsim (ISCA’13)
* Cluster level queueing simulator: BigHouse (ISPASS5'12)

= Microservices introduce new simulation requirements

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES C s |_.a

= Performance unpredictability usually occurs at large scale

= Leverage simulation
* Architecture simulator: Gemb, Zsim (ISCA’13)
* Cluster level queueing simulator: BigHouse (ISPASS5'12)

= Microservices introduce new simulation requirements
* Scalability to study cluster management

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES C s |_.a

= Performance unpredictability usually occurs at large scale

= Leverage simulation
* Architecture simulator: Gemb, Zsim (ISCA’13)
* Cluster level queueing simulator: BigHouse (ISPASS5'12)

= Microservices introduce new simulation requirements
* Scalability to study cluster management
* Accurate multi-stage models for individual service/microservice

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES C s |_.a

= Performance unpredictability usually occurs at large scale

= Leverage simulation
* Architecture simulator: Gemb, Zsim (ISCA’13)
* Cluster level queueing simulator: BigHouse (ISPASS5'12)

= Microservices introduce new simulation requirements
* Scalability to study cluster management
* Accurate multi-stage models for individual service/microservice
* Modeling arbitrary dependency graphs and dataflow paths

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES C s |_.a

= Performance unpredictability usually occurs at large scale

= Leverage simulation
* Architecture simulator: Gemb, Zsim (ISCA’13)
* Cluster level queueing simulator: BigHouse (ISPASS5'12)

= Microservices introduce new simulation requirements
* Scalability to study cluster management
* Accurate multi-stage models for individual service/microservice
* Modeling arbitrary dependency graphs and dataflow paths
* Modeling blocking and synchronization behavior

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

JMQSM DESIGN CSI|E:

3\ Cornell University

Computer Systems Laboratory

JLQSIM DESIGN CS|=:

= Accurate yet scalable service models
* Event-driven queueing simulator

7
A Cornell University

5/ Computer Systems Laboratory

JLQSIM DESIGN CS|=:

= Accurate yet scalable service models

* Event-driven queueing simulator
* Simple microservice: single stage

7
A Cornell University

5/ Computer Systems Laboratory

JLQSIM DESIGN

= Accurate yet scalable service models
* Event-driven queueing simulator

* Simple microservice: single stage
» Complex service: decomposed to multiple stages

7
A Cornell University

5/ Computer Systerﬁs Laboratory

JAQSIM DESIGN

= Accurate yet scalable service models
* Event-driven queueing simulator
* Simple microservice: single stage

» Complex service: decomposed to multiple stages

* Modeling dependency graph & dataflow path [Service AH Service BHService A]
* Specity dependency graph & dataflow paths client server client

7
[B.8]Y) Cornell University

5/ Computer Systerﬁs Laboratory

JLQSIM DESIGN

= Accurate yet scalable service models
* Event-driven queueing simulator
* Simple microservice: single stage

» Complex service: decomposed to multiple stages

* Modeling dependency graph & dataflow path [Service AH Service BHService A]
* Specity dependency graph & dataflow paths client server client

= Modeling blocking/synchronization

* Encode blocking/synchronization behavior in
dataflow path

7
[B.8]Y) Cornell University

5/ Computer Systerﬁs Laboratory

JLQSIM DESIGN

= Accurate yet scalable service models
* Event-driven queueing simulator

* Simple microservice: single stage
» Complex service: decomposed to multiple stages

* Modeling dependency graph & dataflow path [Service AH Service BHService A]
* Specity dependency graph & dataflow paths client server client

= Modeling blocking/synchronization

* Encode blocking/synchronization behavior in
dataflow path

* Model sources of blocking: network connections,
threads blocked by I/O accesses

7
[B.8]Y) Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES CS|E:

" uqSim microservice model

= Memcached

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

MODELING INDIVIDUAL MICROSERVICES CS|E:

= uqSim microservice model
* Multiple stages per microservice

= Memcached

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

MODELING INDIVIDUAL MICROSERVICES C S L.E

= uqSim microservice model
* Multiple stages per microservice

= Memcached

7,
5/ [E8]Y) Cornell University
5/ Computer Systems Laboratory

MODELING INDIVIDUAL MICROSERVICES C S L.E

= uqSim microservice model
* Multiple stages per microservice
* Provided models for common OS queueing utilities (e.g., epoll & socket read)

= Memcached

ey,

\----,

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S L.E

= uqSim microservice model
* Multiple stages per microservice
* Provided models for common OS queueing utilities (e.g., epoll & socket read)

= Memcached

ey,

\----,

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S L.E

= uqSim microservice model
* Multiple stages per microservice
* Provided models for common OS queueing utilities (e.g., epoll & socket read)

= Memcached

ey,

\----,

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S L.E

= uqSim microservice model
* Multiple stages per microservice
* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

= Memcached

ey,

\----,

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iii=

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

= Memcached

\----,

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iii=

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

\----,

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iiﬁ!

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue
* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

7,
B\ Cornell University
5/ Computer Systems Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iiﬁ!

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

- —— —y
2]
®
>
o
- - — --,

4
~

——————————————————————————————————————

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iii=

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

\-- --,

——————————————————————————————————————

Connection A[®] @@ @

Connection BL® ©

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iii=

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

\-- --,

——————————————————————————————————————

Connection A ® (1X2]

Connection BL® 9

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iii=

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

\-- --,

——————————————————————————————————————

Connection A& (1 X 2]

Connection BL® 9

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iii=

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

\-- --,

——————————————————————————————————————

Connection A @ (2] (1)

Connection BL® 9

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iii=

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

\-- --,

——————————————————————————————————————

Connection A © (1 2]

Connection BL® 9

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iii=

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

\-- --,

——————————————————————————————————————

Connection A © (1 2]

Connection BL® 9

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING INDIVIDUAL MICROSERVICES C S Iii=

= uqSim microservice model
* Multiple stages per microservice

* Provided models for common OS queueing utilities (e.g., epoll & socket read)
» Each stage optionally coupled with a queue

* Multiple execution paths (e.g., Memcached read/write) per microservice

= Memcached

\-- --,

——————————————————————————————————————

Connection A © (1 2]

Connection BL® 9

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CSI|=:

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CSI|=:

= Microservice dependency graph

Memcached]

[NGINX

MongoDB]

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CSI|=:

= Microservice dependency graph

Memcached]
= Dataflow [NGINX
 Sequence of microservices to execute MongoDB]
* Differ across request types

 Dataflow node encodes blocking/synchronization operation

,J‘ . -
SIV\ Cornell University

5/ Computer Systems Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CSI|=:

= Microservice dependency graph

Memcached]
= Dataflow [NGINX
 Sequence of microservices to execute MongoDB]
* Differ across request types

 Dataflow node encodes blocking/synchronization operation

* Deployment
» Available servers and hardware resources
* Service to server mapping
» Services on the same server share network stack & disk I/O

,J‘ . -
SIV\ Cornell University

5/ Computer Systems Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CSI|=:

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CSI|=:

= Example: 2-tier application & http 1/1.1 protocol

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CSI|=:

= Example: 2-tier application & http 1/1.1 protocol

* Dependency graph NGINX -

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CSI|=:

= Example: 2-tier application & http 1/1.1 protocol

* Dependency graph NGINX -
e Dataflow [NGINX HMemcachedH NGINX]

Block recv Unblock recv
connection connection

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CS L.

= Example: 2-tier application & http 1/1.1 protocol

* Dependency graph NGINX -
e Dataflow [NGINX]—[Memcached]—[NGINX]

Block recv Unblock recv
connection connection

Connection A|®] @ @

Connection BL® (3]

,J‘ . -
S\ Cornell University

&/ Computer Systerﬁs Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CS L.

= Example: 2-tier application & http 1/1.1 protocol

* Dependency graph NGINX -
e Dataflow [NGINX]—[Memcached]—[NGINX]

Block recv Unblock recv
connection connection

Con@onal@l © O
NGINX mesded
®

,J‘ . -
o/ I8 8]\ Cornell University

&/ Computer Systerﬁs Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CS L.

= Example: 2-tier application & http 1/1.1 protocol

* Dependency graph NGINX -
e Dataflow [NGINX]—[Memcached]—[NGINX]

Block recv Unblock recv
connection connection

Com@on A :?L (2] (1)
NGINK -
(3

,J‘ . -
o/ I8 8]\ Cornell University

&/ Computer Systerﬁs Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CS L.

= Example: 2-tier application & http 1/1.1 protocol

* Dependency graph NGINX -
e Dataflow [NGINX]—[Memcached]—[NGINX]

Block recv Unblock recv
connection connection
Com@on Al® (2]
NGINX
Com@on BL®

,J‘ . -
o/ I8 8]\ Cornell University

&/ Computer Systerﬁs Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CS L.

= Example: 2-tier application & http 1/1.1 protocol

* Dependency graph NGINX -
e Dataflow [NGINX]—[Memcached]—[NGINX]

Block recv Unblock recv
connection connection

Con@onal@l © @
NGINX mesded
®

,J‘ . -
o/ I8 8]\ Cornell University

&/ Computer Systerﬁs Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CS L.

= Example: 2-tier application & http 1/1.1 protocol

* Dependency graph NGINX -
e Dataflow [NGINX]—[Memcached]—[NGINX]

Block recv Unblock recv
connection connection

Connection Al®] @ @

- e NGINX -

Connection BL®

,J‘ . -
S\ Cornell University

&/ Computer Systerﬁs Laboratory

MODELING DEPENDENCY GRAPH & DATAFLOW CS L.

= Example: 2-tier application & http 1/1.1 protocol

* Dependency graph NGINX -
e Dataflow [NGINX]—[Memcached]—[NGINX]

Block recv Unblock recv
connection connection

Con@on ALT] @ (2
NGINK -
(3

Connection BL®

,J‘ . -
o/ I8 8]\ Cornell University

&/ Computer Systerﬁs Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
Timeline
Compose /— " Memcached
Image Post Write
Graph MongoDB
NGINX —> Text
Read
UserTag b Memcached
MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
Timeline
Compose /— " Memcached
Image Post Write
Q Graph MongoDB
NGINX —> Text
Read
UserTag b Memcached
MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

r URL
Shorten Memcached
: nique Posts
ID Storage MongoDB
Video Write
Timeline
Compose —— Memcached
JImage Post Write
Graph MongoDB
NGINX & —{? Text
Read
serTag b Memcached
MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
Timeline
g-ompose ./ — T Memcached
Image Post Write
Graph MongoDB
NGINX — Text
Read Memcached
UserTag Post
MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
imeline
Compose /— " Memcached
Image Post Write
Graph MongoDB
NGINX —> Text
Read
UserTag b Memcached
MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
Timeline
Compose /— " Memcached
Image Post Write
Graph MongoDB
NGINX —> Text
Read
UserTag b Memcached
MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
Timeline
Compose /— " Memcached
Image Post Write
Graph MongoDB
NGINX —> Text
Read
UserTag b Memcached
MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
Timeline
Compose /— " Memcached
Image Post Write
Graph MongoDB
NGINX —> Text
Read
UserTag b Memcached
\ MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
Timeline
Compose /,— " Nemcached
Image Post Write
Graph MongoDB
NGINX —> Text
Read
UserTag b Memcached
MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
Timeline
Compose /— " Memcached
Image Post Write
Graph MongoDB
NGINX —> Text
Read
UserTag b Memcached
\ MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES CS L.;

= Social network application

URL
Shorten Memcached
Unique Posts
ID Storage MongoDB
Video Write
Timeline
Compose /— " Memcached
Image Post Write
Graph MongoDB
NGINX —> Text
Read
UserTag b Memcached
MongoDB
Read
Timeline

Follow _ User Memcached
User Info
MongoDB

Source: http://lwww.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Cornell University
Computer Systems Laboratory

SIMULATOR INPUTS CSI|E:

3\ Cornell University

Computer Systems Laboratory

SIMULATOR INPUTS C S|

= Microservice queueing model
* Identifying sources of queueing
 Typical queues: network, epoll/kqueue, socket read, disk I/O...
* Microservice models reusable (open source community)

7
A Cornell University

5/ Computer Systems Laboratory

SIMULATOR INPUTS C S|

= Microservice queueing model
* Identifying sources of queueing
 Typical queues: network, epoll/kqueue, socket read, disk I/O...
* Microservice models reusable (open source community)

= Processing time distribution

* Instrumenting applications and profiling on real servers
* Instrumentations reusable

7
A Cornell University

5/ Computer Systems Laboratory

SIMULATOR INPUTS C S|

= Microservice queueing model
* Identifying sources of queueing
 Typical queues: network, epoll/kqueue, socket read, disk I/O...
* Microservice models reusable (open source community)

= Processing time distribution

* Instrumenting applications and profiling on real servers
* Instrumentations reusable

= Microservice dependencies & dataflow paths
* Obtained from app developers

7
A Cornell University

5/ Computer Systems Laboratory

SIMULATOR INPUTS C S|

= Microservice queueing model
* Identifying sources of queueing
 Typical queues: network, epoll/kqueue, socket read, disk I/O...
* Microservice models reusable (open source community)

= Processing time distribution

* Instrumenting applications and profiling on real servers
* Instrumentations reusable

= Microservice dependencies & dataflow paths
* Obtained from app developers

= Server & system resources

7
A Cornell University

5/ Computer Systems Laboratory

VALIDATION CS|=:

= Validation experiments
 Multi-tier microservices: 2/3-tier application
* Load balancing & fanout effects
* Microservices based on RPC
« Comparison with BigHouse

= Server platform for trace collection
* 10-server cluster

Intel(R) Xeon(R) CPU E5-2660 v3

2 sockets, 10 cores/socket, 2 threads/core

Min/max DVEFS frequency: 1.2GHz/2.6GHz

Network bandwidth: 1Gbps

7
A Cornell University

&/ Computer Systerﬁs Laboratory

2/3-TIER APPLICATION CS|m:

= 2-tier application

[NGINX]—{Memcached]

,J‘ . -
SIV\ Cornell University

5/ Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:
= 2-tier application

R

[NGINX]—{Memcached]

,J‘ . -
SIV\ Cornell University

5/ Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:
= 2-tier application

R

[NGINX]—{Memcached]

,J‘ . -
SIV\ Cornell University

5/ Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:
= 2-tier application

R

[NGINX]—{Memcached]

,J‘ . -
SIV\ Cornell University

5/ Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
'U10° —e— Simulated . —e— Simulated
w0 Q
R E @ 10
> 102 £
NGINX Memcached g T 102
& g
() 10! 3
(@)] 1
© = 10
S =
< 10
10°
10 20 30 40 50 60 70 80 90 10 20 30 40 50 o0 70 80 90
Load (kQPS) Load (kQPS)

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
}3‘103 —e— Simulated . —e— Simulated
R ‘é’
— (7]
> 102 E
NGINX Memcached g G 102
Z"';lo1 %
& 5 10
(% [
> 1n0
< 10 109
[| - 1 1 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
3 tier appllcatlon Load (kQPS) Load (kQPS)
4 N
Memcached
_ J
NGINX (.
MongoDB
_ J

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
}3‘103 —e— Simulated . —e— Simulated
R ‘é’
— (7]
> 102 E
NGINX Memcached g G 102
Z"';lo1 %
& 5 10
(% [
> 1n0
< 10 109
[| - 1 1 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
3 tier appllcatlon Load (kQPS) Load (kQPS)
4 N
Memcached
_ J
NGINX (.
MongoDB
_ J

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
}3‘103 —e— Simulated . —e— Simulated
R ‘é’
— (7]
> 102 E
NGINX Memcached g G 102
Z"';lo1 %
& 5 10
(% [
> 1n0
< 10 109
[| - 1 1 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
3 tier appllcatlon Load (kQPS) Load (kQPS)
4 N
Memcached
_ J
NGINX (.
MongoDB
_ J

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
}3‘103 —e— Simulated . —e— Simulated
R ‘é’
— (7]
> 102 E
NGINX Memcached g G 102
Z"';lo1 %
& 5 10
(% [
> 1n0
< 10 109
[| - 1 1 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
3 tier appllcatlon Load (kQPS) Load (kQPS)
4 N
Memcached
_ J
NGINX (.
MongoDB
_ J

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
'U10° —e— Simulated . —e— Simulated
wn Q
@ E % 103
> 102 £
NGINX Memcached g G 102
5101 %
& 5 10
[0] =
>
<E100 100
m A_H 1 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
3 tler appllcatlon Load (kQPS) Load (kQPS)
7 N
Y Memcached
_ J
NGINX (.
MongoDB
\ J

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
}3‘103 —e— Simulated . —e— Simulated
R ‘é’
— (7]
> 102 E
NGINX Memcached g G 102
Z"';lo1 %
& 5 10
(% [
> 1n0
< 10 109
[| - 1 1 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
3 tier appllcatlon Load (kQPS) Load (kQPS)
4 N
Memcached
_ J
NGINX (.
MongoDB
_ J

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
'U10° —e— Simulated . —e— Simulated
wn Q
@ E % 103
> 102 £
NGINX Memcached g G 102
5101 %
& 5 10
[0] =
>
<E100 100
m A_H 1 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
3 tler appllcatlon Load (kQPS) Load (kQPS)
7 N
Y Memcached
_ J
NGINX (.
MongoDB
\ J

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
}3‘103 —e— Simulated . —e— Simulated
R ‘é’
— (7]
> 102 E
NGINX Memcached g G 102
Z"';lo1 %
& 5 10
(% [
> 1n0
< 10 109
[| - 1 1 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
3 tier appllcatlon Load (kQPS) Load (kQPS)
4 N
Memcached
_ J
NGINX (.
MongoDB
_ J

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 —* Real
'U10° —e— Simulated . —e— Simulated
wn Q
@ E % 103
> 102 £
NGINX Memcached g G 102
5101 %
& 5 10
[0] =
>
<E100 100
m A_H 1 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
3 tler appllcatlon Load (kQPS) Load (kQPS)
7 N
Y Memcached
_ J
NGINX (.
MongoDB
\ J

Cornell University

Computer Systems Laboratory

2/3-TIER APPLICATION CS|m:

Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application

—e— Real 104 ® Real
'U10° —e— Simulated . —e— Simulated
w0 Q
R = @ 103
> 102 £
NGINX Memcached g 3 102
& g
o 10? 8
& 5 10
S =
< 10 109
[) [) [)
| - 1 r 11 1 n 10 20 30 40 50 60 70 80 90 10 20 30 40 50 o0 70 80 90
3 t e app Cat 0 Load (kQPS) Load (kQPS)
Load-Latency Curve for 3-Tier Application
103
- ~\ 40 —*— Real —e— Real
o —e— Simulated —e— Simulated
Y Memcached i o
\ J §30 g
> ~—
NGINX 3 =
e)) 2 102
= 20 s 10
MongoDB — o
\ J qé’ :_I
= 10 G
g =
0 101
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Load (kQPS) Load (kQPS)

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

®

[Load Balancer]

Y L |

NGINX NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

®

[Load Balancer]

Y L |

NGINX NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

®

[Load Balancer]

|

Y L |

NGINX NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

®

[Load Balancer]

Y L |

NGINX NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

®

[Load Balancer]

Y L |

NGINX NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

R,

[Load Balancer]

Y L |

NGINX NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

[Load Balancer]

L

NGINX NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

R,

[Load Balancer]

Y L |

NGINX NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

®

[Load Balancer]

Y L |

NGINX NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

LOAD BALANCING C S L.E

= Linear throughput increase from cluster size of 4 to 8
= Sub-linear increase from cluster size of 8 to 16

Load-Latency Curve for NGINX Load Balancer

Fanout of 4 Fanout of 8 Fanout of 16
104 104
—e— Real —o— Real —e— Real 'r
—eo— Simulated s —e— Simulated —e— Simulated
® g : |
(@]
(]
)]
E
>‘102 102 102
Q
[Load Balancer] S
5
T 10 10° 10*
\ 4 \ 4 =
NGINX NGINX NGINX
10° 10° 10°
Web Server| |Web Server Web Server
10 20 30 40 10 20 30 40 50 60 70 80 20 40 60 80 100 120
Load (kQPS) Load (kQPS) Load (kQPS)

Cornell University

Computer Systems Laboratory

REQUEST FANOUT C Sl

[NGINX Root Aggregator]

NGINX
Web Server

NGINX NGINX
Web Server| |Web Server

Cornell University

Computer Systems Laboratory

REQUEST FANOUT C Sl

[NGINX Root Aggregator]

NGINX
Web Server

NGINX NGINX
Web Server| |Web Server

Cornell University

Computer Systems Laboratory

REQUEST FANOUT C Sl

NGINX NGINX
Web Server| |Web Server Web Server

Cornell University

Computer Systems Laboratory

REQUEST FANOUT C Sl

NGINX
Web Server

NGINX NGINX
Web Server| |Web Server

Cornell University

Computer Systems Laboratory

REQUEST FANOUT C Sl

[NGINX Root Aggregator]

NGINX
Web Server

NGINX NGINX
Web Server| |Web Server

Cornell University

Computer Systems Laboratory

REQUEST FANOUT C Sl

© [©]

[NGINX Root Aggregator]

NGINX
Web Server

NGINX NGINX
Web Server| |Web Server

Cornell University

Computer Systems Laboratory

REQUEST FANOUT C Sl

* Throughput decreases with request fanout

Load-Latency Curve for NGINX Fanout
Fanout of 4 Fanout of 8 Fanout of 16
10 10 104

® —e— Real —e— Real —e— Real
—e— Simulated —e— Simulated —e— Simulated

[
o
w

3
10 103

[NGINX Root Aggregator] 102

102

10?

Tail Latency (msec)

10t

NGINX 10°

Web Server

10!

NGINX NGINX
Web Server| |Web Server

2 4 6 8 1012 14 16 18 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14
Load (kQPS) Load (kQPS) Load (kQPS)

Cornell University

Computer Systems Laboratory

RPC & LARGE-SCALE MICROSERVICES CS|m:

= Simplified social network

[Frontend]

RPC

y
Media
Service

User
Service

Post
Service

7
A Cornell University

/ Computer Systems Laboratory

RPC & LARGE-SCALE MICROSERVICES CS|m:

= Simplified social network

[Frontend]

RPC

y
Media
Service

User
Service

Post
Service

7
A Cornell University

/ Computer Systems Laboratory

RPC & LARGE-SCALE MICROSERVICES CS|m:

= Simplified social network

Frontend

RPC

y
Media
Service

Post
Service

7
A Cornell University

/ Computer Systems Laboratory

RPC & LARGE-SCALE MICROSERVICES CS|m:

= Simplified social network

Frontend

RPC

y
Media
Service

Post
Service

7
A Cornell University

/ Computer Systems Laboratory

RPC & LARGE-SCALE MICROSERVICES CS|m:

= Simplified social network

[Frontend]

RPC

y
Media
Service

User
Service

Post
Service

7
A Cornell University

/ Computer Systems Laboratory

RPC & LARGE-SCALE MICROSERVICES CS|m:

= Simplified social network

O[]

[Frontend]

RPC

y
Media
Service

User
Service

Post
Service

7
A Cornell University

/ Computer Systems Laboratory

RPC & LARGE-SCALE MICROSERVICES

= Simplified social network

O[]

[Frontend]

RPC

User
Service

y
Media
Service

Post
Service

Cornell University
Computer Systems Laboratory

Load-Latency Curve For Social Network Application
—e— Real

—e— Simulated
104

®x10°

Average Latency (usec)

T ———

250 500 750 1000 1250 1500 1750
Load (QPS)

2x 107

CSi=

COMPARISON WITH BIGHOUSE CSI|E:

Load-Latency Curve for Memcached (4-Thread)

= Memcached

. 450
180 ! —e— Real —e— Real
L ———— - 400
9 —e— BigHouse _ —e— BigHouse
§160 —e— ugSim §350 —e— ugSim
> 3
R L R g o'140 < 300
17 2
© 120 g 250
o) 3
2100 =200
= ()
o =
é 80 150
100
60
100 200 300 400 500 100 200 300 400 500
Load (kQPS) Load (kQPS)
Load-Latency Curve for Nginx (1-Process)
m G 35
N INX 30 T —e— Real —e— Real
—e— BigHouse 30 —e— BigHouse
25 Y

—e— ugSim

—e— ugSim

N
o

-

=
o O

Average Latency (msec)
=
(Oa]

0 5 10 15 20 0 5 10 15 20
Load (kQPS) Load (kQPS)

Cornell University

Computer Systerﬁs Laboratory

COMPARISON WITH BIGHOUSE

= Memcached

iy
[o4]
o

=
*)]
o

-
s
o

 BigHouse saturates at 50kQPS
* ugSim & real server saturates at 450kQPS

—
o
o

Average Latency (usec)
o
o

(0]
o

)]
o

N W
v O

N
o

=
o

Average Latency (msec)
=
(Oa]

(9]

Cornell University

Computer Systerﬁs Laboratory

CSI=

Load-Latency Curve for Memcached (4-Thread)

) 450
' —e— Real —e— Real
—e— BigHouse 400 —e— BigHouse
—e— ugSim @ 350 —e— ugSim
3
=, 300
g
8 250
8
— 200
()
F 150
100
100 200 300 400 500 100 200 300 400 500
Load (kQPS) Load (kQPS)

Load-Latency Curve for Nginx (1-Process)

T —e— Real

—e— BigHouse
—e— ugSim

5 10 15 20
Load (kQPS)

35
—e— Real

30 —e— BigHouse
(9] q
055 —e— ugSim
.20
(@]
=
815
©
-
=10
o

5

0

0 5 10 15 20

Load (kQPS)

COMPARISON WITH BIGHOUSE

= Memcached

CSI=

Load-Latency Curve for Memcached (4-Thread)

. 450
180 | —* Real —e— Real
9 —e— BigHouse ’_‘400 —e— BigHouse
g 100 —*— ugSim @ 350 —e— uqgSim
g 140 §3oo
. © 120 T 250
* BigHouse saturates at 50kQPS 5 L
* uqSim & real server saturates at 450kQPS 2 80 " 130
100
60
100 200 300 400 500 200 300 400 500
Load (kQPS) Load (kQPS)
Load-Latency Curve for Nginx (1-Process)
30 T —e— Real 3> —e— Real
'g —e— BigHouse 30 —e— BigHouse
g 25 —e— ugSim §25 —e— ugSim
= =
gzo ‘U;,zo
: % 15 g 15
» BigHouse saturates at 2.5kQPS %10 s
* uqSim & real server saturates at 15kQPS Z s s
0 o2 0
0 5 10 15 20 10 15 20
Load (kQPS) Load (kQPS)

Cornell University

Computer Systerﬁs Laboratory

SIMULATION SPEED CS|&:

= Simulation speed relevant factors
 Simulated input load
* Processing time distribution
* Microservice model complexity & network complexity

7
A Cornell University

5/ Computer Systems Laboratory

SIMULATION SPEED CS|&:

= Simulation speed relevant factors
 Simulated input load
* Processing time distribution
* Microservice model complexity & network complexity

* Performance compared to real system

* Tail@Scale experiment: 26.5x slow down for cluster of 500 servers
* 4-thread Memcached at 50kQPS: 2.5x speed up
* 1-process Nginx at 10kQPS: 4x speed up

7
A Cornell University

5/ Computer Systems Laboratory

SIMULATION SPEED CS|&:

= Simulation speed relevant factors
 Simulated input load
* Processing time distribution
* Microservice model complexity & network complexity

* Performance compared to real system

* Tail@Scale experiment: 26.5x slow down for cluster of 500 servers
* 4-thread Memcached at 50kQPS: 2.5x speed up
* 1-process Nginx at 10kQPS: 4x speed up

= Future work

* Parallelizing simulation
« Each thread simulates a partition of the network

7
A Cornell University

&/ Computer Systerﬁs Laboratory

CONCLUSION CS|E:

= Microservices introduce new system challenges
* Need scalable simulation techniques to study large scale effects

= uqSim: validated microservice simulator
* Modeling the internal queueing structure of individual microservices

* Modeling dataflow behavior across the microservices

 Validated against simple & complex microservices and accurately capturing
throughput/latency

 Planning to open source @ microservices.ece.cornell.edu

7
A Cornell University

&/ Computer Systerﬁs Laboratory

THANKS & QUESTIONS CS|E:

= Microservices introduce new system challenges
* Need scalable simulation techniques to study large scale effects

= uqSim: validated microservice simulator
* Modeling the internal queueing structure of individual microservices

* Modeling dataflow behavior across the microservices

 Validated against simple & complex microservices and accurately capturing
throughput/latency

 Planning to open source @ microservices.ece.cornell.edu

7
A Cornell University

&/ Computer Systerﬁs Laboratory

SPEED COMPARISON WITH BIGHOUSE (BACKUP) CS L.

HqSim simulated
real time

pqSim simulation 12 8 51 25 154 1
time

BigHouse warmup
samples

BigHouse simulation
time

4-thread Memcached at 50k

8.2s 28.7s 154s

HqSim simulated
real time

pqSim simulation 0.7s
time

BigHouse warmup
samples

BigHouse simulation
time

1-process NGINX at 2k

Cornell University

Computer Systerﬁs Laboratory

USE CASES — TAIL@SCALE (BACKUP) Cstﬁa

= For simple single-tier single stage

Tail@Scale effect of fanout

= Different Cluster Sizes

35
30
= Different Fraction of Slow Servers o
(@)
3
E
< 20
&)
=
Q
o 15
-
%
10
—8— 2% slow servers
5 1% slow servers
—o— 0.5% slow servers
—— 0.2% slow servers
g % 0.1% slow servers
0
%) <,)Q '\,QQ q,QQ ‘)QQ QQO

y

7
A Cornell University

/ Computer Systems Laboratory

USE CASES — POWER MANAGEMENT (BACKUP) CSii:

* End-to-End QoS Target

Real Power Management For 2 Tier Application (NGINX_8_MEMC_2)

] 5ms 0.1s Interval 0.5s Interval 1.0s Interval
_1a Real Tail Latency 14 Real Tail Latency 14 Real Tail Latency
§ 12 Target Tail Latency 12 Target Tail Latency 12 Target Tail Latency
* Input Load £ : | :
> 8 8 [8
: ‘
. L5 6 6
* Diurnal pattern s, . .
= | L T
© i | / f y
= 2 m _\ﬁ | A 2 " AN Ll W 2
% NEL -'l! i s el V '
0 0 0
£0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
70
@
e Simulated Power Management For 2 Tier Application (NGINX_8_MEMC_2)
%50
E 40 0.1s Interval 0.5s Interval 1.0s Interval
= 30 14 Simulated Tail Latency 14 Simulated Tail Latency 14 | S\mulalLd Tail Latency
20 § 12 : —— Target Tail Latency 12 —— Target Tail Latency 12 —— |[Target Tail Latency
10 £ | 10 [10
0 50 100 150 200 250 300 > 8 | | 8 8
time (sec) 2
Le ‘ 6 6
o |
,_:' 4 w Am‘ ‘ J 4 ‘ 4 I
T I . | URLY
A Y .-.-JMNMJ.WMW. ? o, il : AL M
0 0 0
. e Su tS 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

26 nginx 2.6 L nginx
2.4 —— memcached 2.4 —— memcached

% I 'J‘ |n_|||u|u||\m||lw__ L [T,
L Al 1 |
g h >l g Wy " ! !)

C 18 I I | 1 | 1.8 ”
2 ey 'IHI\IH\I" ! |'H\IH\HMIHI\II'I I iy AN mmll»\lﬂ [e L 'H ! T TR
o L e S W il th = 5 i

0 50 100 150 200 5 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (sec) Time (sec) Time (sec)

Cornell University

Computer Systerﬁs Laboratory

