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• Complicate cluster management due to microservice dependencies

Visualization tool: https://github.com/netflix/vizceral.git

Real time traffic of Social Network Microservices
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• Complex service: decomposed to multiple stages

 Modeling dependency graph & dataflow path

• Specify dependency graph & dataflow paths

 Modeling blocking/synchronization

• Encode blocking/synchronization behavior in 
dataflow path

• Model sources of blocking: network connections, 
threads blocked by I/O accesses
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 Microservice dependency graph

 Dataflow
• Sequence of microservices to execute

• Differ across request types

• Dataflow node encodes blocking/synchronization operation

 Deployment
• Available servers and hardware resources

• Service to server mapping

• Services on the same server share network stack & disk I/O

NGINX

Memcached

MongoDB
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• Typical queues: network, epoll/kqueue, socket read, disk I/O…

• Microservice models reusable (open source community) 

 Processing time distribution
• Instrumenting applications and profiling on real servers

• Instrumentations reusable

 Microservice dependencies & dataflow paths
• Obtained from app developers

 Server & system resources
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 Validation experiments
• Multi-tier microservices: 2/3-tier application

• Load balancing & fanout effects

• Microservices based on RPC

• Comparison with BigHouse

 Server platform for trace collection
• 10-server cluster

• Intel(R) Xeon(R) CPU E5-2660 v3

• 2 sockets, 10 cores/socket, 2 threads/core

• Min/max DVFS frequency: 1.2GHz/2.6GHz

• Network bandwidth: 1Gbps
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 Linear throughput increase from cluster size of 4 to 8

 Sub-linear increase from cluster size of 8 to 16
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 Throughput decreases with request fanout

NGINX Root Aggregator

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R



RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC



RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC



RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

r r

RPC



RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

r r

RPC



RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC



RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC



RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC



COMPARISON WITH BIGHOUSE

15

 Memcached

 NGINX

Epoll
Socket 
read

Mem$ 
proc

Socket
send

TCP RX TCP TX

Epoll
Socket 
read

Nginx 
proc

TCP RX TCP TX



COMPARISON WITH BIGHOUSE

15

 Memcached

 NGINX

Epoll
Socket 
read

Mem$ 
proc

Socket
send

TCP RX TCP TX

Epoll
Socket 
read

Nginx 
proc

TCP RX TCP TX

• BigHouse saturates at 50kQPS

• 𝝁qSim & real server saturates at 450kQPS



COMPARISON WITH BIGHOUSE

15

 Memcached

 NGINX

Epoll
Socket 
read

Mem$ 
proc

Socket
send

TCP RX TCP TX

Epoll
Socket 
read

Nginx 
proc

TCP RX TCP TX
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• BigHouse saturates at 2.5kQPS

• 𝝁qSim & real server saturates at 15kQPS
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 Simulation speed relevant factors 
• Simulated input load

• Processing time distribution

• Microservice model complexity & network complexity

 Performance compared to real system
• Tail@Scale experiment: 26.5x slow down for cluster of 500 servers

• 4-thread Memcached at 50kQPS: 2.5x speed up

• 1-process Nginx at 10kQPS:  4x speed up

 Future work
• Parallelizing simulation

• Each thread simulates a partition of the network
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 Microservices introduce new system challenges
• Need scalable simulation techniques to study large scale effects

 𝝁qSim: validated microservice simulator
• Modeling the internal queueing structure of individual microservices

• Modeling dataflow behavior across the microservices

• Validated against simple & complex microservices and accurately capturing 
throughput/latency

• Planning to open source @ microservices.ece.cornell.edu 
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 𝝁qSim: validated microservice simulator
• Modeling the internal queueing structure of individual microservices

• Modeling dataflow behavior across the microservices

• Validated against simple & complex microservices and accurately capturing 
throughput/latency

• Planning to open source @ microservices.ece.cornell.edu
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𝝁qSim simulated 
real time

5s 20s 60s

𝝁qSim simulation 
time

12.8

s
51.2s

154.1

s

BigHouse warmup 
samples

5
x50k

20
x50k

60
x50k

5000

BigHouse simulation 
time

8.2s 28.7s 154s 1.2s

𝝁qSim simulated 
real time

5s 20s 60s

𝝁qSim simulation 
time

0.7s 2.7s 8.1s

BigHouse warmup 
samples

5
x2k

20
x2k

60
x2k

5000

BigHouse simulation 
time

9s 23s 64s 7.1s

4-thread Memcached at 50k

1-process NGINX at 2k
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 For simple single-tier single stage

 Different Cluster Sizes

 Different Fraction of Slow Servers



USE CASES – POWER MANAGEMENT (BACKUP)
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 End-to-End QoS Target
• 5ms

 Input Load
• Diurnal pattern

 Results


