
𝝁QSIM: ENABLING ACCURATE AND SCALABLE SIMULATION
FOR INTERACTIVE MICROSERVICES

Yanqi Zhang, Yu Gan, Christina Delimitrou
Cornell University

Session: Datacenters and Cloud Computing, March 26th

MARCHING TO MICROSERVICES

1

Monolith Application

MARCHING TO MICROSERVICES

1

Monolith Application

Microservices

MARCHING TO MICROSERVICES

1

• Easier development & update
Monolith Application

Microservices

MARCHING TO MICROSERVICES

1

• Easier development & update
• Debugging & error isolation

Monolith Application

Microservices

MARCHING TO MICROSERVICES

1

• Easier development & update
• Debugging & error isolation
• Elasticity

Monolith Application

Microservices

MARCHING TO MICROSERVICES

1

• Easier development & update
• Debugging & error isolation
• Elasticity
• PL/framework heterogeneity

Monolith Application

Microservices

MARCHING TO MICROSERVICES

2

Visualization tool: https://github.com/netflix/vizceral.git

Real time traffic of Social Network Microservices

MARCHING TO MICROSERVICES

2

• Complicate cluster management due to microservice dependencies

Visualization tool: https://github.com/netflix/vizceral.git

Real time traffic of Social Network Microservices

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES

3

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES

 Performance unpredictability usually occurs at large scale

3

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES

 Performance unpredictability usually occurs at large scale

 Leverage simulation

3

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES

 Performance unpredictability usually occurs at large scale

 Leverage simulation
• Architecture simulator: Gem5, Zsim (ISCA’13)

• Cluster level queueing simulator: BigHouse (ISPASS’12)

3

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES

 Performance unpredictability usually occurs at large scale

 Leverage simulation
• Architecture simulator: Gem5, Zsim (ISCA’13)

• Cluster level queueing simulator: BigHouse (ISPASS’12)

 Microservices introduce new simulation requirements

3

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES

 Performance unpredictability usually occurs at large scale

 Leverage simulation
• Architecture simulator: Gem5, Zsim (ISCA’13)

• Cluster level queueing simulator: BigHouse (ISPASS’12)

 Microservices introduce new simulation requirements
• Scalability to study cluster management

3

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES

 Performance unpredictability usually occurs at large scale

 Leverage simulation
• Architecture simulator: Gem5, Zsim (ISCA’13)

• Cluster level queueing simulator: BigHouse (ISPASS’12)

 Microservices introduce new simulation requirements
• Scalability to study cluster management

• Accurate multi-stage models for individual service/microservice

3

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES

 Performance unpredictability usually occurs at large scale

 Leverage simulation
• Architecture simulator: Gem5, Zsim (ISCA’13)

• Cluster level queueing simulator: BigHouse (ISPASS’12)

 Microservices introduce new simulation requirements
• Scalability to study cluster management

• Accurate multi-stage models for individual service/microservice

• Modeling arbitrary dependency graphs and dataflow paths

3

INFRASTRUCTURE CHALLENGES FOR MICROSERVICES

 Performance unpredictability usually occurs at large scale

 Leverage simulation
• Architecture simulator: Gem5, Zsim (ISCA’13)

• Cluster level queueing simulator: BigHouse (ISPASS’12)

 Microservices introduce new simulation requirements
• Scalability to study cluster management

• Accurate multi-stage models for individual service/microservice

• Modeling arbitrary dependency graphs and dataflow paths

• Modeling blocking and synchronization behavior

3

𝝁QSIM DESIGN

4

𝝁QSIM DESIGN

 Accurate yet scalable service models

• Event-driven queueing simulator

4

𝝁QSIM DESIGN

 Accurate yet scalable service models

• Event-driven queueing simulator

• Simple microservice: single stage

4

Stage 0

𝝁QSIM DESIGN

 Accurate yet scalable service models

• Event-driven queueing simulator

• Simple microservice: single stage

• Complex service: decomposed to multiple stages

4

Stage 0

Stage 0 Stage 1 Stage 2

𝝁QSIM DESIGN

 Accurate yet scalable service models

• Event-driven queueing simulator

• Simple microservice: single stage

• Complex service: decomposed to multiple stages

 Modeling dependency graph & dataflow path

• Specify dependency graph & dataflow paths

4

Stage 0

Stage 0 Stage 1 Stage 2

Service A Service B Service A

client server client

𝝁QSIM DESIGN

 Accurate yet scalable service models

• Event-driven queueing simulator

• Simple microservice: single stage

• Complex service: decomposed to multiple stages

 Modeling dependency graph & dataflow path

• Specify dependency graph & dataflow paths

 Modeling blocking/synchronization

• Encode blocking/synchronization behavior in
dataflow path

4

Stage 0

Stage 0 Stage 1 Stage 2

Service A Service B Service A

client server client

𝝁QSIM DESIGN

 Accurate yet scalable service models

• Event-driven queueing simulator

• Simple microservice: single stage

• Complex service: decomposed to multiple stages

 Modeling dependency graph & dataflow path

• Specify dependency graph & dataflow paths

 Modeling blocking/synchronization

• Encode blocking/synchronization behavior in
dataflow path

• Model sources of blocking: network connections,
threads blocked by I/O accesses

4

Stage 0

Stage 0 Stage 1 Stage 2

Service A Service B Service A

client server client

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

TCP RX TCP TX

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

TCP RX TCP TX

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

TCP RX TCP TXEpoll
Socket

read

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

Connection A

Connection B 3

1 2

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

Connection A

Connection B 3

1 2

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

Connection A

Connection B 3

1 2

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

Connection A

Connection B 3

12

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

Connection A

Connection B 3

1 2

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

Connection A

Connection B 3

1 2

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING INDIVIDUAL MICROSERVICES

 Memcached

5

Connection A

Connection B 3

1 2

 𝝁qSim microservice model
• Multiple stages per microservice

• Provided models for common OS queueing utilities (e.g., epoll & socket read)

• Each stage optionally coupled with a queue

• Multiple execution paths (e.g., Memcached read/write) per microservice

TCP RX TCP TXEpoll
Socket

read

Mem$

read

Mem$

write

Socke

t

send

MODELING DEPENDENCY GRAPH & DATAFLOW

6

MODELING DEPENDENCY GRAPH & DATAFLOW

6

 Microservice dependency graph

NGINX

Memcached

MongoDB

MODELING DEPENDENCY GRAPH & DATAFLOW

6

 Microservice dependency graph

 Dataflow
• Sequence of microservices to execute

• Differ across request types

• Dataflow node encodes blocking/synchronization operation

NGINX

Memcached

MongoDB

MODELING DEPENDENCY GRAPH & DATAFLOW

6

 Microservice dependency graph

 Dataflow
• Sequence of microservices to execute

• Differ across request types

• Dataflow node encodes blocking/synchronization operation

 Deployment
• Available servers and hardware resources

• Service to server mapping

• Services on the same server share network stack & disk I/O

NGINX

Memcached

MongoDB

MODELING DEPENDENCY GRAPH & DATAFLOW

7

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

7

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

• Dependency graph

7

NGINX Memcached

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

• Dependency graph

• Dataflow

7

NGINX Memcached

NGINX Memcached NGINX

Block recv
connection

Unblock recv
connection

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

• Dependency graph

• Dataflow

7

Connection A

Connection B

NGINX Memcached

NGINX Memcached NGINX

NGINX Memcached

1

3

2

Block recv
connection

Unblock recv
connection

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

• Dependency graph

• Dataflow

7

Connection A

Connection B

NGINX Memcached

NGINX Memcached NGINX

NGINX Memcached

1

3

2

Block recv
connection

Unblock recv
connection

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

• Dependency graph

• Dataflow

7

Connection A

Connection B

NGINX Memcached

NGINX Memcached NGINX

NGINX Memcached

1

3

2

Block recv
connection

Unblock recv
connection

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

• Dependency graph

• Dataflow

7

Connection A

Connection B

NGINX Memcached

NGINX Memcached NGINX

NGINX Memcached

1

3

2

Block recv
connection

Unblock recv
connection

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

• Dependency graph

• Dataflow

7

Connection A

Connection B

NGINX Memcached

NGINX Memcached NGINX

NGINX Memcached

1

3

2

Block recv
connection

Unblock recv
connection

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

• Dependency graph

• Dataflow

7

Connection A

Connection B

NGINX Memcached

NGINX Memcached NGINX

NGINX Memcached

1

3

2

Block recv
connection

Unblock recv
connection

MODELING DEPENDENCY GRAPH & DATAFLOW

 Example: 2-tier application & http 1/1.1 protocol

• Dependency graph

• Dataflow

7

Connection A

Connection B

NGINX Memcached

NGINX Memcached NGINX

NGINX Memcached

1

3

2

Block recv
connection

Unblock recv
connection

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

Follow
User

User
Info

MongoDB

Memcached

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

R

Follow
User

User
Info

MongoDB

Memcached

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

Follow
User

User
Info

MongoDB

Memcached

r

r

r

r

r

r

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

Follow
User

User
Info

MongoDB

Memcached

rrrrrr

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

Follow
User

User
Info

MongoDB

Memcached

r

r

r

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

Follow
User

User
Info

MongoDB

Memcached

r

r

r

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

R

Follow
User

User
Info

MongoDB

Memcached

r

r

r

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

R

Follow
User

User
Info

MongoDB

Memcached

r

r

r

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

R

Follow
User

User
Info

MongoDB

Memcached

r

r

r

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

R

Follow
User

User
Info

MongoDB

Memcached

r

r

r

DEPENDENCY GRAPH FOR COMPLEX MICROSERVICES

8

 Social network application

MongoDB

NGINX

Compose
Post

Video

Image

Text

UserTag

Posts
Storage

Write
Timeline

Write
Graph

Memcached

MongoDB

Memcached

MongoDB

Memcached

Source: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

Unique
ID

URL
Shorten

Read
Timeline

Read
Post

R

Follow
User

User
Info

MongoDB

Memcached

r

r

r

SIMULATOR INPUTS

9

SIMULATOR INPUTS

9

 Microservice queueing model
• Identifying sources of queueing

• Typical queues: network, epoll/kqueue, socket read, disk I/O…

• Microservice models reusable (open source community)

SIMULATOR INPUTS

9

 Microservice queueing model
• Identifying sources of queueing

• Typical queues: network, epoll/kqueue, socket read, disk I/O…

• Microservice models reusable (open source community)

 Processing time distribution
• Instrumenting applications and profiling on real servers

• Instrumentations reusable

SIMULATOR INPUTS

9

 Microservice queueing model
• Identifying sources of queueing

• Typical queues: network, epoll/kqueue, socket read, disk I/O…

• Microservice models reusable (open source community)

 Processing time distribution
• Instrumenting applications and profiling on real servers

• Instrumentations reusable

 Microservice dependencies & dataflow paths
• Obtained from app developers

SIMULATOR INPUTS

9

 Microservice queueing model
• Identifying sources of queueing

• Typical queues: network, epoll/kqueue, socket read, disk I/O…

• Microservice models reusable (open source community)

 Processing time distribution
• Instrumenting applications and profiling on real servers

• Instrumentations reusable

 Microservice dependencies & dataflow paths
• Obtained from app developers

 Server & system resources

VALIDATION

10

 Validation experiments
• Multi-tier microservices: 2/3-tier application

• Load balancing & fanout effects

• Microservices based on RPC

• Comparison with BigHouse

 Server platform for trace collection
• 10-server cluster

• Intel(R) Xeon(R) CPU E5-2660 v3

• 2 sockets, 10 cores/socket, 2 threads/core

• Min/max DVFS frequency: 1.2GHz/2.6GHz

• Network bandwidth: 1Gbps

2/3-TIER APPLICATION

11

 2-tier application

NGINX Memcached

2/3-TIER APPLICATION

11

 2-tier application

NGINX Memcached

R

2/3-TIER APPLICATION

11

 2-tier application

NGINX Memcached

R

2/3-TIER APPLICATION

11

 2-tier application

NGINX Memcached

R

2/3-TIER APPLICATION

11

 2-tier application

NGINX Memcached

R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

R R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

R
R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

R R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

R

R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

R R

2/3-TIER APPLICATION

11

 2-tier application

 3-tier application

NGINX

Memcached

MongoDB

NGINX Memcached

R

R R

LOAD BALANCING

12

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R R

LOAD BALANCING

12

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

R

LOAD BALANCING

12

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

R

LOAD BALANCING

12

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

R

LOAD BALANCING

12

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R R

LOAD BALANCING

12

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

R

LOAD BALANCING

12

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

R

LOAD BALANCING

12

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

R

LOAD BALANCING

12

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R R

LOAD BALANCING

12

 Linear throughput increase from cluster size of 4 to 8

 Sub-linear increase from cluster size of 8 to 16

Load Balancer

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R R

REQUEST FANOUT

13

NGINX Root Aggregator

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

REQUEST FANOUT

13

NGINX Root Aggregator

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

REQUEST FANOUT

13

NGINX Root Aggregator

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

r rr

REQUEST FANOUT

13

NGINX Root Aggregator

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

r rr

REQUEST FANOUT

13

NGINX Root Aggregator

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

REQUEST FANOUT

13

NGINX Root Aggregator

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

REQUEST FANOUT

13

 Throughput decreases with request fanout

NGINX Root Aggregator

NGINX
Web Server

NGINX
Web Server

NGINX
Web Server

R

RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC

RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC

RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

r r

RPC

RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

r r

RPC

RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC

RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC

RPC & LARGE-SCALE MICROSERVICES

14

 Simplified social network

Frontend

Post
Service

Media
Service

User
Service

Mem$

Mongo

Mem$

Mongo

Mem$

Mongo

R

RPC

COMPARISON WITH BIGHOUSE

15

 Memcached

 NGINX

Epoll
Socket
read

Mem$
proc

Socket
send

TCP RX TCP TX

Epoll
Socket
read

Nginx
proc

TCP RX TCP TX

COMPARISON WITH BIGHOUSE

15

 Memcached

 NGINX

Epoll
Socket
read

Mem$
proc

Socket
send

TCP RX TCP TX

Epoll
Socket
read

Nginx
proc

TCP RX TCP TX

• BigHouse saturates at 50kQPS

• 𝝁qSim & real server saturates at 450kQPS

COMPARISON WITH BIGHOUSE

15

 Memcached

 NGINX

Epoll
Socket
read

Mem$
proc

Socket
send

TCP RX TCP TX

Epoll
Socket
read

Nginx
proc

TCP RX TCP TX

• BigHouse saturates at 50kQPS

• 𝝁qSim & real server saturates at 450kQPS

• BigHouse saturates at 2.5kQPS

• 𝝁qSim & real server saturates at 15kQPS

SIMULATION SPEED

16

 Simulation speed relevant factors
• Simulated input load

• Processing time distribution

• Microservice model complexity & network complexity

SIMULATION SPEED

16

 Simulation speed relevant factors
• Simulated input load

• Processing time distribution

• Microservice model complexity & network complexity

 Performance compared to real system
• Tail@Scale experiment: 26.5x slow down for cluster of 500 servers

• 4-thread Memcached at 50kQPS: 2.5x speed up

• 1-process Nginx at 10kQPS: 4x speed up

SIMULATION SPEED

16

 Simulation speed relevant factors
• Simulated input load

• Processing time distribution

• Microservice model complexity & network complexity

 Performance compared to real system
• Tail@Scale experiment: 26.5x slow down for cluster of 500 servers

• 4-thread Memcached at 50kQPS: 2.5x speed up

• 1-process Nginx at 10kQPS: 4x speed up

 Future work
• Parallelizing simulation

• Each thread simulates a partition of the network

CONCLUSION

17

 Microservices introduce new system challenges
• Need scalable simulation techniques to study large scale effects

 𝝁qSim: validated microservice simulator
• Modeling the internal queueing structure of individual microservices

• Modeling dataflow behavior across the microservices

• Validated against simple & complex microservices and accurately capturing
throughput/latency

• Planning to open source @ microservices.ece.cornell.edu

THANKS & QUESTIONS

18

 Microservices introduce new system challenges
• Need scalable simulation techniques to study large scale effects

 𝝁qSim: validated microservice simulator
• Modeling the internal queueing structure of individual microservices

• Modeling dataflow behavior across the microservices

• Validated against simple & complex microservices and accurately capturing
throughput/latency

• Planning to open source @ microservices.ece.cornell.edu

SPEED COMPARISON WITH BIGHOUSE (BACKUP)

19

𝝁qSim simulated
real time

5s 20s 60s

𝝁qSim simulation
time

12.8

s
51.2s

154.1

s

BigHouse warmup
samples

5
x50k

20
x50k

60
x50k

5000

BigHouse simulation
time

8.2s 28.7s 154s 1.2s

𝝁qSim simulated
real time

5s 20s 60s

𝝁qSim simulation
time

0.7s 2.7s 8.1s

BigHouse warmup
samples

5
x2k

20
x2k

60
x2k

5000

BigHouse simulation
time

9s 23s 64s 7.1s

4-thread Memcached at 50k

1-process NGINX at 2k

USE CASES – TAIL@SCALE (BACKUP)

20

 For simple single-tier single stage

 Different Cluster Sizes

 Different Fraction of Slow Servers

USE CASES – POWER MANAGEMENT (BACKUP)

21

 End-to-End QoS Target
• 5ms

 Input Load
• Diurnal pattern

 Results

