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Service Traffic Map / us-east-1

=
Amazon

Real time traffic of Social Network Microservices

* Complicate cluster management due to microservice dependencies

Visualization tool: https://github.com/netflix/vizceral.git
Cornell University

Computer Systems Laboratory
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= Leverage simulation
* Architecture simulator: Gemb, Zsim (ISCA’13)
* Cluster level queueing simulator: BigHouse (ISPASS5'12)

= Microservices introduce new simulation requirements
* Scalability to study cluster management
* Accurate multi-stage models for individual service/microservice
* Modeling arbitrary dependency graphs and dataflow paths
* Modeling blocking and synchronization behavior
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= Accurate yet scalable service models
* Event-driven queueing simulator

* Simple microservice: single stage
» Complex service: decomposed to multiple stages

* Modeling dependency graph & dataflow path [Service AH Service BHService A]
* Specity dependency graph & dataflow paths client server client

= Modeling blocking/synchronization

* Encode blocking/synchronization behavior in
dataflow path

* Model sources of blocking: network connections,
threads blocked by I/O accesses
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= Microservice dependency graph

Memcached]
= Dataflow [ NGINX
 Sequence of microservices to execute MongoDB ]
* Differ across request types

 Dataflow node encodes blocking/synchronization operation

* Deployment
» Available servers and hardware resources
* Service to server mapping
» Services on the same server share network stack & disk I/O
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 Typical queues: network, epoll/kqueue, socket read, disk I/O...
* Microservice models reusable (open source community)

= Processing time distribution

* Instrumenting applications and profiling on real servers
* Instrumentations reusable

= Microservice dependencies & dataflow paths
* Obtained from app developers

= Server & system resources
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= Validation experiments
 Multi-tier microservices: 2/3-tier application
* Load balancing & fanout effects
* Microservices based on RPC
« Comparison with BigHouse

= Server platform for trace collection
* 10-server cluster

Intel(R) Xeon(R) CPU E5-2660 v3

2 sockets, 10 cores/socket, 2 threads/core

Min/max DVEFS frequency: 1.2GHz/2.6GHz

Network bandwidth: 1Gbps
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Load-Latency Curve for 2-Tier Application (NGINX 4 MEMC 2)

= 2-tier application
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LOAD BALANCING C S L.E

= Linear throughput increase from cluster size of 4 to 8
= Sub-linear increase from cluster size of 8 to 16

Load-Latency Curve for NGINX Load Balancer
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* Throughput decreases with request fanout

Load-Latency Curve for NGINX Fanout
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= Simplified social network
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RPC & LARGE-SCALE MICROSERVICES

= Simplified social network
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COMPARISON WITH BIGHOUSE CSI|E:

Load-Latency Curve for Memcached (4-Thread)
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COMPARISON WITH BIGHOUSE

= Memcached

CSI=

Load-Latency Curve for Memcached (4-Thread)
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SIMULATION SPEED CS|&:

= Simulation speed relevant factors
 Simulated input load
* Processing time distribution
* Microservice model complexity & network complexity
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= Simulation speed relevant factors
 Simulated input load
* Processing time distribution
* Microservice model complexity & network complexity

* Performance compared to real system

* Tail@Scale experiment: 26.5x slow down for cluster of 500 servers
* 4-thread Memcached at 50kQPS: 2.5x speed up
* 1-process Nginx at 10kQPS: 4x speed up

= Future work

* Parallelizing simulation
« Each thread simulates a partition of the network
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CONCLUSION CS|E:

= Microservices introduce new system challenges
* Need scalable simulation techniques to study large scale effects

= uqSim: validated microservice simulator
* Modeling the internal queueing structure of individual microservices

* Modeling dataflow behavior across the microservices

 Validated against simple & complex microservices and accurately capturing
throughput/latency

 Planning to open source @ microservices.ece.cornell.edu
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SPEED COMPARISON WITH BIGHOUSE (BACKUP) CS L.
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USE CASES — TAIL@SCALE (BACKUP) Cstﬁa

= For simple single-tier single stage

Tail@Scale effect of fanout

= Different Cluster Sizes
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USE CASES — POWER MANAGEMENT (BACKUP) CSii:

* End-to-End QoS Target

Real Power Management For 2 Tier Application (NGINX_8_MEMC_2)
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