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 From monoliths to microservices: 

 Monoliths  all functionality in a single service

 Microservices  many single-concerned, loosely-coupled services

 Microservices implications: 

 Modularity, specialization, faster development

 Performance unpredictability (us-level QoS), cascading QoS violations  A-posteriori 

debugging

 Seer: Proactive performance debugging for interactive microservices

 Leverage DL to anticipate & diagnose root cause of QoS violations

 >90% accuracy on large-scale end-to-end microservices deployments

 Avoid unpredictable performance

 Offer insight to improve microservices design and deployment

Executive Summary
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 Advantages of microservices: 

 Modular  easier to understand

 Speed of development & deployment

 On-demand provisioning, elasticity

 Language/framework heterogeneity
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 Complicate cluster management & performance debugging

 Dependencies cause cascading QoS violations

 Difficult to isolate root cause of performance unpredictability

Performance Debugging Challenges
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 Dependencies cause cascading QoS violations

 Empirical performance debugging  too 

slow, bottlenecks propagate

 Long recovery times for performance

Performance Debugging Challenges

AmazonNetflix

Social Network

Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4

http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4
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 Use ML to identify the culprit (root cause) of an upcoming QoS violation 

 Leverage the massive amount of distributed traces collected over time

 Use targeted per-server hardware probes to determine the cause of the QoS violation

 Inform cluster manager to take proactive action & prevent QoS violation

 Need to predict 100s of msec – a few sec in the future

Seer: Proactive Performance Debugging

Cluster manager

TraceDB

Seer
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 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue 
lengths

 Tracing overhead: <0.1% in QPS, 
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with 
problematic microservices

 Perf counters & contentious 
microbenchmarks
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DL for Cloud Performance Debugging

Output 
signal

 Why? 

 Architecture-agnostic

 Adjusts to changes over time

 High accuracy, good scalability & fast inference (within window of opportunity)

Probability 
that a 
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QoS violation 
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future
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DL for Cloud Performance Debugging

 DNN Configuration

 CNN: Fast, but cannot effectively predict future

 LSTM: Higher accuracy, but affected by noisy, non-critical microservices

 Hybrid network: Highest accuracy, without significantly higher overhead

Output 
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 Training once: slow (hours - days)

 Across load levels, load distributions, request types

 Annotated queue traces  inject microbenchmarks to force controlled QoS violations

 Weight/bias inference with SGD

 Incremental retraining & dynamically expanding/shrinking in the background

 Inference: continuously streaming traces

 20-server dedicated heterogeneous cluster

 Different server configurations

 10s of cores, >100GB RAM per server

 4 end-to-end applications  ~30-40 unique microservices each

 Social Network, Media Service, E-commerce Site, Banking System

Methodology
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Validation

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

 50GB input training dataset

 Accuracy levels off thereafter

 50ms tracing sampling interval

 No benefit from finer-grain tracing
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time after 50GB

Sensitivity Analysis



44

 Tracing interval < 500ms 

low accuracy

 Tracing interval > 100ms 

no further improvement

 Large increase in accuracy 

until ~50GB training set

 Levels off afterwards

 Large increase in training 

time after 50GB

Sensitivity Analysis



45

 Tracing interval < 500ms 

low accuracy

 Tracing interval > 100ms 

no further improvement

 Large increase in accuracy 

until ~50GB training set

 Levels off afterwards

 Large increase in training 

time after 50GB

Sensitivity Analysis



46

 Identify cause of QoS violation

 Private cluster: performance counters & utilization monitors

 Public cluster: contentious microbenchmarks

 Adjust resource allocation

 RAPL (fine-grain DVFS) & scale-up for CPU contention

 Cache partitioning (CAT) for cache contention

 Memory capacity partitioning for memory contention

 Network bandwidth partitioning (HTB) for net contention 

 Storage bandwidth partitioning for I/O contention

 Application level bugs

 Human needs to intervene

Avoiding QoS Violations
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Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo.mp4

Demo

http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo.mp4
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Using ML to Design Better Cloud Systems

 Large-scale Social Network deployment (~600 users, ~2 months deployment)

 Offload Seer on Google TPU v2  24x-118x improvement in training and inference

 Several bugs found (blocking RPCs, livelocks, shared data structs, cyclic dependencies, 

insufficient resources, etc.)

 Fewer QoS violations over time
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 Microservices become increasingly popular

 Traditional performance debugging techniques do not scale and   

introduce long recovery times

 Seer leverages DL to anticipate QoS violations & find their root causes

 >90% detection accuracy, avoids 86% of QoS violations

 Provides insight on how to better design and deploy complex microservices

 Practical solutions for systems whose scale make previous empirical 

solutions impractical

Conclusions
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Thank you! 

 Microservices become increasingly popular
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 Provides insight on how to better design and deploy complex microservices
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