
Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng,

Yuan He, Meghna Pancholi, and Christina Delimitrou

Cornell University

ASPLOS – April 15th 2019

SEER: LEVERAGING BIG DATA TO NAVIGATE THE COMPLEXITY

OF PERFORMANCE DEBUGGING IN CLOUD MICROSERVICES

2

 From monoliths to microservices:

 Monoliths all functionality in a single service

 Microservices many single-concerned, loosely-coupled services

Executive Summary

3

 From monoliths to microservices:

 Monoliths all functionality in a single service

 Microservices many single-concerned, loosely-coupled services

Executive Summary

4

 From monoliths to microservices:

 Monoliths all functionality in a single service

 Microservices many single-concerned, loosely-coupled services

 Microservices implications:

 Modularity, specialization, faster development

 Performance unpredictability (us-level QoS), cascading QoS violations A-posteriori

debugging

Executive Summary

5

 From monoliths to microservices:

 Monoliths all functionality in a single service

 Microservices many single-concerned, loosely-coupled services

 Microservices implications:

 Modularity, specialization, faster development

 Performance unpredictability (us-level QoS), cascading QoS violations A-posteriori

debugging

 Seer: Proactive performance debugging for interactive microservices

 Leverage DL to anticipate & diagnose root cause of QoS violations

 >90% accuracy on large-scale end-to-end microservices deployments

 Avoid unpredictable performance

 Offer insight to improve microservices design and deployment

Executive Summary

6

Motivation

webserver databases

ads

posts

photos

recommender

7

Motivation

webserver

databases

recommender

ads

photos

posts

8

Motivation

webserver

databases

recommender

ads

photos

posts

ads

posts

photos

recommender

webserver databases

Monolith Microservices

9

 Advantages of microservices:

 Modular easier to understand

 Speed of development & deployment

 On-demand provisioning, elasticity

 Language/framework heterogeneity

Motivation

webserver

databases

recommender

ads

photos

posts

ads

posts

photos

recommender

webserver databases

Monolith Microservices

10

 Complicate cluster management & performance debugging

 Dependencies cause cascading QoS violations

 Difficult to isolate root cause of performance unpredictability

Performance Debugging Challenges

Netflix Twitter Amazon

11

 Complicate cluster management & performance debugging

 Dependencies cause cascading QoS violations

 Difficult to isolate root cause of performance unpredictability

Performance Debugging Challenges

Netflix

Twitter

Amazon

12

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging too

slow, bottlenecks propagate

 Long recovery times for performance

13

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging too

slow, bottlenecks propagate

 Long recovery times for performance

14

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging too

slow, bottlenecks propagate

 Long recovery times for performance

15

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging too

slow, bottlenecks propagate

 Long recovery times for performance

16

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging too

slow, bottlenecks propagate

 Long recovery times for performance

17

Performance Debugging Challenges

Netflix Amazon

QoS met

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging too

slow, bottlenecks propagate

 Long recovery times for performance

18

Performance Debugging Challenges

Netflix Amazon

QoS violated

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging too

slow, bottlenecks propagate

 Long recovery times for performance

19

 Dependencies cause cascading QoS violations

 Empirical performance debugging too

slow, bottlenecks propagate

 Long recovery times for performance

Performance Debugging Challenges

AmazonNetflix

Social Network

Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4

http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4

20

 Use ML to identify the culprit (root cause) of an upcoming QoS violation

 Leverage the massive amount of distributed traces collected over time

 Use targeted per-server hardware probes to determine the cause of the QoS violation

 Inform cluster manager to take proactive action & prevent QoS violation

 Need to predict 100s of msec – a few sec in the future

Seer: Proactive Performance Debugging

Cluster manager

TraceDB

Seer

21

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

22

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

23

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

24

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

25

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

26

DL for Cloud Performance Debugging

Output
signal

 Why?

 Architecture-agnostic

 Adjusts to changes over time

 High accuracy, good scalability & fast inference (within window of opportunity)

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

27

DL for Cloud Performance Debugging

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

28

DL for Cloud Performance Debugging

 Container

utilization

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

29

DL for Cloud Performance Debugging

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

 Container

utilization

 Latency

30

DL for Cloud Performance Debugging

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

 Container

utilization

 Latency

 Queue

length

31

DL for Cloud Performance Debugging

 Container

utilization

 Latency

 Queue

length

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

32

DL for Cloud Performance Debugging

 Container

utilization

 Latency

 Queue

length

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

Dimensionality

reduction

33

DL for Cloud Performance Debugging

 Container

utilization

 Latency

 Queue

length

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

Dimensionality

reduction

Near-future

prediction

34

DL for Cloud Performance Debugging

 DNN Configuration

 CNN: Fast, but cannot effectively predict future

 LSTM: Higher accuracy, but affected by noisy, non-critical microservices

 Hybrid network: Highest accuracy, without significantly higher overhead

Output
signal

Input
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

 Queue

length

35

 Training once: slow (hours - days)

 Across load levels, load distributions, request types

 Annotated queue traces inject microbenchmarks to force controlled QoS violations

 Weight/bias inference with SGD

 Incremental retraining & dynamically expanding/shrinking in the background

 Inference: continuously streaming traces

 20-server dedicated heterogeneous cluster

 Different server configurations

 10s of cores, >100GB RAM per server

 4 end-to-end applications ~30-40 unique microservices each

 Social Network, Media Service, E-commerce Site, Banking System

Methodology

36

 Social Network

End-to-end Microservices

37

 Social Network

End-to-end Microservices

38

 Social Network

End-to-end Microservices

39

 Social Network

End-to-end Microservices

40

Validation

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

 50GB input training dataset

 Accuracy levels off thereafter

 50ms tracing sampling interval

 No benefit from finer-grain tracing

41

Validation

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

 50GB input training dataset

 Accuracy levels off thereafter

 50ms tracing sampling interval

 No benefit from finer-grain tracing

42

Validation

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

 50GB input training dataset

 Accuracy levels off thereafter

 50ms tracing sampling interval

 No benefit from finer-grain tracing

43

 Tracing interval < 500ms

low accuracy

 Tracing interval > 100ms

no further improvement

 Large increase in accuracy

until ~50GB training set

 Levels off afterwards

 Large increase in training

time after 50GB

Sensitivity Analysis

44

 Tracing interval < 500ms

low accuracy

 Tracing interval > 100ms

no further improvement

 Large increase in accuracy

until ~50GB training set

 Levels off afterwards

 Large increase in training

time after 50GB

Sensitivity Analysis

45

 Tracing interval < 500ms

low accuracy

 Tracing interval > 100ms

no further improvement

 Large increase in accuracy

until ~50GB training set

 Levels off afterwards

 Large increase in training

time after 50GB

Sensitivity Analysis

46

 Identify cause of QoS violation

 Private cluster: performance counters & utilization monitors

 Public cluster: contentious microbenchmarks

 Adjust resource allocation

 RAPL (fine-grain DVFS) & scale-up for CPU contention

 Cache partitioning (CAT) for cache contention

 Memory capacity partitioning for memory contention

 Network bandwidth partitioning (HTB) for net contention

 Storage bandwidth partitioning for I/O contention

 Application level bugs

 Human needs to intervene

Avoiding QoS Violations

47

48

Front

end

Front

end

49

Front

end

Logic tiers Front

end

Logic tiers

50

Front

end

Logic tiers Back

end
Front

end

Logic tiers Back

end

51

Queue

52

CPUQueue

53

CPUQueue

54

CPUQueue

QoS met

55

CPUQueue

QoS violated

56

Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo.mp4

Demo

http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo.mp4

57

Using ML to Design Better Cloud Systems

 Large-scale Social Network deployment (~600 users, ~2 months deployment)

 Offload Seer on Google TPU v2 24x-118x improvement in training and inference

 Several bugs found (blocking RPCs, livelocks, shared data structs, cyclic dependencies,

insufficient resources, etc.)

 Fewer QoS violations over time

58

 Microservices become increasingly popular

 Traditional performance debugging techniques do not scale and

introduce long recovery times

 Seer leverages DL to anticipate QoS violations & find their root causes

 >90% detection accuracy, avoids 86% of QoS violations

 Provides insight on how to better design and deploy complex microservices

 Practical solutions for systems whose scale make previous empirical

solutions impractical

Conclusions

59

Questions?

 Microservices become increasingly popular

 Traditional performance debugging techniques do not scale and

introduce long recovery times

 Seer leverages DL to anticipate QoS violations & find their root causes

 >90% detection accuracy, avoids 86% of QoS violations

 Provides insight on how to better design and deploy complex microservices

 Practical solutions for systems whose scale make previous empirical

solutions impractical

60

Questions?

Thank you!

 Microservices become increasingly popular

 Traditional performance debugging techniques do not scale and

introduce long recovery times

 Seer leverages DL to anticipate QoS violations & find their root causes

 >90% detection accuracy, avoids 86% of QoS violations

 Provides insight on how to better design and deploy complex microservices

 Practical solutions for systems whose scale make previous empirical

solutions impractical

