

SEER: LEVERAGING BIG DATA TO NAVIGATE THE COMPLEXITY OF PERFORMANCE DEBUGGING IN CLOUD MICROSERVICES

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and Christina Delimitrou

Cornell University

ASPLOS – April 15th 2019

- □ From monoliths to microservices:
 - \square Monoliths \rightarrow all functionality in a single service
 - \square Microservices \rightarrow many single-concerned, loosely-coupled services

- □ From monoliths to microservices:
 - \square Monoliths \rightarrow all functionality in a single service
 - \square Microservices \rightarrow many single-concerned, loosely-coupled services

□ From monoliths to microservices:

- \square Monoliths \rightarrow all functionality in a single service
- Microservices → many single-concerned, loosely-coupled services
- Microservices implications:
 - Modularity, specialization, faster development
 - Performance unpredictability (us-level QoS), cascading QoS violations → A-posteriori

100

debugging

□ From monoliths to microservices:

- \square Monoliths \rightarrow all functionality in a single service
- Microservices → many single-concerned, loosely-coupled services
- Microservices implications:
 - Modularity, specialization, faster development
 - Performance unpredictability (us-level QoS), cascading QoS violations \rightarrow A-posteriori

Seer: Proactive performance debugging for interactive microservices

- Leverage DL to anticipate & diagnose root cause of QoS violations
- >90% accuracy on large-scale end-to-end microservices deployments
- Avoid unpredictable performance
- Offer insight to improve microservices design and deployment

debugging

Microservices

Monolith

Advantages of microservices:

- Modular \rightarrow easier to understand
- Speed of development & deployment
- On-demand provisioning, elasticity
- Language/framework heterogeneity

- Complicate cluster management & performance debugging
- Dependencies cause cascading QoS violations
- Difficult to isolate root cause of performance unpredictability

Twitter

- Complicate cluster management & performance debugging
- Dependencies cause cascading QoS violations
- Difficult to isolate root cause of performance unpredictability

Time (s)

0

 $\mathbf{20}$

Demo: <u>http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4</u> 19

Seer: Proactive Performance Debugging

Use ML to identify the culprit (root cause) of an upcoming QoS violation

- Leverage the massive amount of distributed traces collected over time
- Use targeted per-server hardware probes to determine the cause of the QoS violation
- Inform cluster manager to take proactive action & prevent QoS violation
 - Need to predict 100s of msec a few sec in the future

Two-level tracing

- Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS, <0.2% in 99th %ile latency

- Per-node hardware monitoring
 - Targeted on nodes with problematic microservices
 - Perf counters & contentious microbenchmarks

Two-level tracing

- Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS, <0.2% in 99th %ile latency

- Per-node hardware monitoring
 - Targeted on nodes with problematic microservices
 - Perf counters & contentious microbenchmarks

Two-level tracing

- Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS, <0.2% in 99th %ile latency
- eue PS, g TCP RX \rightarrow Epoll \rightarrow Nginx proc TCP TX

Front-end

Client

- Per-node hardware monitoring
 - Targeted on nodes with problematic microservices
 - Perf counters & contentious microbenchmarks

Back-end

DB

Logic tiers

Two-level tracing

- Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS, <0.2% in 99th %ile latency
- Front-end Client Nginx TCP RX Epoll TCP TX proc

Logic tiers

- Per-node hardware monitoring
 - Targeted on nodes with problematic microservices
 - Perf counters & contentious microbenchmarks

Back-end

□ Two-level tracing

- Distributed RPC-level tracing
 - Similar to Dapper, Zipkin
 - Per-microservice latencies
 - Inter- and intra-microservice queue lengths
 - Tracing overhead: <0.1% in QPS,</p> <0.2% in 99th %ile latency

- Targeted on nodes with problematic microservices
- Perf counters & contentious microbenchmarks

□ Why?

Architecture-agnostic

Adjusts to changes over time

High accuracy, good scalability & fast inference (within window of opportunity)

DNN Configuration

- CNN: Fast, but cannot effectively predict future
- LSTM: Higher accuracy, but affected by noisy, non-critical microservices
- Hybrid network: Highest accuracy, without significantly higher overhead

Methodology

Training once: slow (hours - days)

- Across load levels, load distributions, request types
- \square Annotated queue traces ightarrow inject microbenchmarks to force controlled QoS violations
- Weight/bias inference with SGD
- Incremental retraining & dynamically expanding/shrinking in the background
- Inference: continuously streaming traces
- 20-server dedicated heterogeneous cluster
 - Different server configurations
 - □ 10s of cores, >100GB RAM per server

□ 4 end-to-end applications \rightarrow ~30-40 unique microservices each

Social Network, Media Service, E-commerce Site, Banking System

Validation

- 50GB input training dataset
 Accuracy levels off thereafter
 50ms tracing sampling interval
 - No benefit from finer-grain tracing

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

Validation

50GB input training dataset
 Accuracy levels off thereafter
 50ms tracing sampling interval
 No benefit from finer-grain tracing

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

Validation

50GB input training dataset
 Accuracy levels off thereafter
 50ms tracing sampling interval
 No benefit from finer-grain tracing

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

Sensitivity Analysis

- Large increase in accuracy until ~50GB training set
 - Levels off afterwards
- Large increase in training time after 50GB

- □ Tracing interval < 500ms →
 low accuracy
- □ Tracing interval > 100ms →
 no further improvement

Sensitivity Analysis

- Large increase in accuracy until ~50GB training set
 - Levels off afterwards
- Large increase in training time after 50GB

- □ Tracing interval < 500ms →
 low accuracy
- □ Tracing interval > 100ms →
 no further improvement

Sensitivity Analysis

- Large increase in accuracy until ~50GB training set
 - Levels off afterwards
- Large increase in training time after 50GB

- □ Tracing interval < 500ms →
 low accuracy
- □ Tracing interval > 100ms →
 no further improvement

Avoiding QoS Violations

Identify cause of QoS violation

- Private cluster: performance counters & utilization monitors
- Public cluster: contentious microbenchmarks

Adjust resource allocation

- RAPL (fine-grain DVFS) & scale-up for CPU contention
- Cache partitioning (CAT) for cache contention
- Memory capacity partitioning for memory contention
- Network bandwidth partitioning (HTB) for net contention
- Storage bandwidth partitioning for I/O contention

Application level bugs

Human needs to intervene

Seer

Default

< 🗆 🕨

ł

• . 3

990

ł

Default

< □

•

590

ł

-

•

3

Default

Seer

4 日

=

< □

•

ł

Seer

Default

end

QoS

120

SAC

Default

< 🗆 🕨

æ

• . 990

Ē.

E

Demo: <u>http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo.mp4</u>

Using ML to Design Better Cloud Systems

Large-scale Social Network deployment (~600 users, ~2 months deployment)

□ Offload Seer on Google TPU v2 \rightarrow 24x-118x improvement in training and inference

- Several bugs found (blocking RPCs, livelocks, shared data structs, cyclic dependencies, insufficient resources, etc.)
- Fewer QoS violations over time

Conclusions

Microservices become increasingly popular

- Traditional performance debugging techniques do not scale and introduce long recovery times
- Seer leverages DL to anticipate QoS violations & find their root causes
 >90% detection accuracy, avoids 86% of QoS violations
- Provides insight on how to better design and deploy complex microservices
- Practical solutions for systems whose scale make previous empirical solutions impractical

Questions?

Microservices become increasingly popular

- Traditional performance debugging techniques do not scale and introduce long recovery times
- Seer leverages DL to anticipate QoS violations & find their root causes
 >90% detection accuracy, avoids 86% of QoS violations
- Provides insight on how to better design and deploy complex microservices
- Practical solutions for systems whose scale make previous empirical solutions impractical

60

Questions?

- Microservices become increasingly popular
- Traditional performance debugging techniques do not scale and introduce long recovery times
- Seer leverages DL to anticipate QoS violations & find their root causes
 >90% detection accuracy, avoids 86% of QoS violations
- Provides insight on how to better design and deploy complex microservices
- Practical solutions for systems whose scale make previous empirical solutions impractical

Thank you

