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¨ Microservices puts more pressure on performance predictability 
¤ Microservices dependencies à propagate & amplify QoS violations
¤ Finding the culprit of a QoS violation is difficult
¤ Post-QoS violation, returning to nominal operation is hard

¨ Anticipating QoS violations & identifying culprits

¨ Seer: Data-driven Performance Debugging for Microservices
¤ Combines lightweight RPC-level distributed tracing with hardware 

monitoring
¤ Leverages scalable deep learning to signal QoS violations with 

enough slack to apply corrective action

Executive Summary
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From Monoliths to Microservices
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¨ Advantages of microservices: 
¤ Ease & speed of code development & deployment
¤ Security, error isolation
¤ PL/framework heterogeneity

¨ Challenges of microservices: 
¤ Change server design assumptions 
¤ Complicate resource management à dependencies
¤ Amplify tail-at-scale effects
¤ More sensitive to performance unpredictability
¤ No representative end-to-end apps with microservices

Motivation
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¨ 4 end-to-end applications using popular open-source 
microservices à ~30-40 microservices per app
¤ Social Network
¤ Movie Reviewing/Renting/Streaming
¤ E-commerce
¤ Drone control service

¨ Programming languages and frameworks: 
¤ node.js, Python, C/C++, Java/Javascript, Scala, PHP, and Go
¤ Nginx, memcached, MongoDB, CockroachDB, Mahout, Xapian
¤ Apache Thrift RPC, RESTful APIs
¤ Docker containers
¤ Lightweight RPC-level distributed tracing

An End-to-End Suite for Cloud & IoT Microservices
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Resource Management Implications

¨ Challenges of microservices: 
¤ Dependencies complicate resource management
¤ Dependencies change over time à difficult for users to express
¤ Amplify tail@scale effects

Netflix Twitter Amazon Movie Streaming
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¨ Detecting QoS violations after they occur: 
¤ Unpredictable performance propagates through system
¤ Long time until return to nominal operation
¤ Does not scale

The Need for Proactive Performance Debugging
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Performance Implications
CPU Mem Net DiskQueue
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Performance Implications
CPU Mem Net DiskQueue
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¨ Leverage the massive amount of traces collected over time

1. Apply online, practical data mining techniques that 
identify the culprit of an upcoming QoS violation

2. Use per-server hardware monitoring to determine the 
cause of the QoS violation

3. Take corrective action to prevent the QoS violation from 
occurring

¨ Need to predict 100s of msec – a few sec in the future

Seer: Data-Driven Performance Debugging
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¨ RPC level tracing
¨ Based on Apache Thrift

¨ Timestamp start-end 
for each microservice

¨ Store in centralized DB 
(Cassandra)

¨ Record all requests à
No sampling

¨ Overhead: <0.1% in 
throughput and <0.2% 
in tail latency
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¨ Why? 
¤ Architecture-agnostic
¤ Adjusts to changes in  

dependencies over 
time

¤ High accuracy, good 
scalability

¤ Inference within the 
required window

Deep Learning to the Rescue
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¨ Training once: slow (hours - days)
¤ Across load levels, load distributions, request types
¤ Distributed queue traces, annotated with QoS violations
¤ Weight/bias inference with SGD
¤ Retraining in the background

¨ Inference continuously: streaming trace data

DNN Configuration

93% accuracy in signaling upcoming 
QoS violations

91% accuracy in attributing QoS
violation to correct microservice
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¨ Challenges: 
¤ In large clusters inference too slow to prevent QoS violations
¤ Offload on TPUs, 10-100x improvement; 10ms for 90th %ile

inference
¤ Fast enough for most corrective actions to take effect (net bw

partitioning, RAPL, cache partitioning, scale-up/out, etc.)

DNN Configuration

Accuracy stable or increasing with cluster size
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¨ 40 dedicated servers
¨ ~1000 single-concerned 

containers
¨ Machine utilization 80-85%

¨ Inject interference to cause 
QoS violation
¤ Using microbenchmarks

(CPU, cache, memory, 
network, disk I/O)

Experimental Setup
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¨ Identify cause of QoS violation
¤ Private cluster: performance counters & utilization monitors
¤ Public cluster: contentious microbenchmarks

¨ Adjust resource allocation
¤ RAPL (fine-grain DVFS) & scale-up for CPU contention
¤ Cache partitioning (CAT) for cache contention
¤ Memory capacity partitioning for memory contention
¤ Network bandwidth partitioning (HTB) for net contention 
¤ Storage bandwidth partitioning for I/O contention

Restoring QoS
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¨ Post-detection, baseline system à dropped requests

¨ Post-detection, Seer à maintain nominal performance

Restoring QoS
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Demo CPU Mem Net DiskQueue
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¨ Security implications of data-driven approaches

¨ Fall-back mechanisms when ML goes wrong

¨ Not a single-layer solution à Predictability needs vertical approaches

Challenges Ahead

Thank you! 

Serverless microservices IoT swarms


