
Yu Gan, Meghna Pancholi, Dailun Cheng,
Siyuan Hu, Yuan He and Christina Delimitrou

Cornell University

HotCloud– July	9th 2018

Seer: Leveraging Big Data to Navigate The
Increasing Complexity of Cloud Debugging

2

¨ Microservices puts more pressure on performance predictability
¤ Microservices dependencies à propagate & amplify QoS violations
¤ Finding the culprit of a QoS violation is difficult
¤ Post-QoS violation, returning to nominal operation is hard

¨ Anticipating QoS violations & identifying culprits

¨ Seer: Data-driven Performance Debugging for Microservices
¤ Combines lightweight RPC-level distributed tracing with hardware

monitoring
¤ Leverages scalable deep learning to signal QoS violations with

enough slack to apply corrective action

Executive Summary

3

From Monoliths to Microservices

4

¨ Advantages of microservices:
¤ Ease & speed of code development & deployment
¤ Security, error isolation
¤ PL/framework heterogeneity

¨ Challenges of microservices:
¤ Change server design assumptions
¤ Complicate resource management à dependencies
¤ Amplify tail-at-scale effects
¤ More sensitive to performance unpredictability
¤ No representative end-to-end apps with microservices

Motivation

5

¨ 4 end-to-end applications using popular open-source
microservices à ~30-40 microservices per app
¤ Social Network
¤ Movie Reviewing/Renting/Streaming
¤ E-commerce
¤ Drone control service

¨ Programming languages and frameworks:
¤ node.js, Python, C/C++, Java/Javascript, Scala, PHP, and Go
¤ Nginx, memcached, MongoDB, CockroachDB, Mahout, Xapian
¤ Apache Thrift RPC, RESTful APIs
¤ Docker containers
¤ Lightweight RPC-level distributed tracing

An End-to-End Suite for Cloud & IoT Microservices

6

Resource Management Implications

¨ Challenges of microservices:
¤ Dependencies complicate resource management
¤ Dependencies change over time à difficult for users to express
¤ Amplify tail@scale effects

Netflix Twitter Amazon Movie Streaming

7

¨ Detecting QoS violations after they occur:
¤ Unpredictable performance propagates through system
¤ Long time until return to nominal operation
¤ Does not scale

The Need for Proactive Performance Debugging

8

Performance Implications
CPU Mem Net DiskQueue

9

Performance Implications
CPU Mem Net DiskQueue

10

¨ Leverage the massive amount of traces collected over time

1. Apply online, practical data mining techniques that
identify the culprit of an upcoming QoS violation

2. Use per-server hardware monitoring to determine the
cause of the QoS violation

3. Take corrective action to prevent the QoS violation from
occurring

¨ Need to predict 100s of msec – a few sec in the future

Seer: Data-Driven Performance Debugging

11

¨ RPC level tracing
¨ Based on Apache Thrift

¨ Timestamp start-end
for each microservice

¨ Store in centralized DB
(Cassandra)

¨ Record all requests à
No sampling

¨ Overhead: <0.1% in
throughput and <0.2%
in tail latency

Tracing
Collector

WebUI

Client

http

Cassandra

QueryEngine

[…]

m
ic

ro
se

rv
ic

es

latency

Gantt charts

zTracer

TCP

TCP

Proc

uService K
RPC timeTX

zTracer

TCP

TCP

Proc

uService K+1

RPC timeRX

TCP procTX

TCP procRX

App proc

[…]

Tracing Framework

12

¨ Why?
¤ Architecture-agnostic
¤ Adjusts to changes in

dependencies over
time

¤ High accuracy, good
scalability

¤ Inference within the
required window

Deep Learning to the Rescue

13

¨ Container
utilization

¨ Latency

¨ Queue
depth

DNN Configuration

Output
signal

Which
microservice
will cause a

QoS violation
in the near

future?

Input
signal

14

¨ Container
utilization

¨ Latency

¨ Queue
depth

DNN Configuration

Output
signal

Which
microservice
will cause a

QoS violation
in the near

future?

Input
signal

15

¨ Training once: slow (hours - days)
¤ Across load levels, load distributions, request types
¤ Distributed queue traces, annotated with QoS violations
¤ Weight/bias inference with SGD
¤ Retraining in the background

¨ Inference continuously: streaming trace data

DNN Configuration

93% accuracy in signaling upcoming
QoS violations

91% accuracy in attributing QoS
violation to correct microservice

16

¨ Challenges:
¤ In large clusters inference too slow to prevent QoS violations
¤ Offload on TPUs, 10-100x improvement; 10ms for 90th %ile

inference
¤ Fast enough for most corrective actions to take effect (net bw

partitioning, RAPL, cache partitioning, scale-up/out, etc.)

DNN Configuration

Accuracy stable or increasing with cluster size

17

¨ 40 dedicated servers
¨ ~1000 single-concerned

containers
¨ Machine utilization 80-85%

¨ Inject interference to cause
QoS violation
¤ Using microbenchmarks

(CPU, cache, memory,
network, disk I/O)

Experimental Setup

18

¨ Identify cause of QoS violation
¤ Private cluster: performance counters & utilization monitors
¤ Public cluster: contentious microbenchmarks

¨ Adjust resource allocation
¤ RAPL (fine-grain DVFS) & scale-up for CPU contention
¤ Cache partitioning (CAT) for cache contention
¤ Memory capacity partitioning for memory contention
¤ Network bandwidth partitioning (HTB) for net contention
¤ Storage bandwidth partitioning for I/O contention

Restoring QoS

19

¨ Post-detection, baseline system à dropped requests

¨ Post-detection, Seer à maintain nominal performance

Restoring QoS

20

Demo CPU Mem Net DiskQueue

21

22

¨ Security implications of data-driven approaches

¨ Fall-back mechanisms when ML goes wrong

¨ Not a single-layer solution à Predictability needs vertical approaches

Challenges Ahead

Thank you!

Serverless microservices IoT swarms

