
Christina Delimitrou1 and Christos Kozyrakis2

1Cornell University, 2Stanford University

ASPLOS – April 12th 2017

Bolt: I Know What You Did Last 

Summer… In the Cloud



2

 Problem: cloud resource sharing hides security vulnerabilities

 Interference from co-scheduled apps  leaks app characteristics

 Enables severe performance attacks

 Bolt: adversarial runtime in public clouds

 Transparent app detection (5-10sec)

 Leverages practical machine learning techniques

 DoS  140x increase in latency

 User study: 88% correctly identified applications

 Resource partitioning is helpful but insufficient

Executive Summary



3

Motivation

App1 App2



4

Motivation

App1 App2

containers



5

Motivation

App1 App2

containers

memory 

capacity



6

Motivation

App1 App2

containers

memory 

capacity

storage 

capacity/bw



7

Motivation

App1 App2

containers

memory 

capacity

storage 

capacity/bw
network bw



8

Motivation

App1 App2

containers

memory 

capacity

storage 

capacity/bw
network bw

LL cache



9

Motivation

App1 App2

containers

memory 

capacity

storage 

capacity/bw
network bw

LL cache

power



10

Motivation

App1 App2

containers

memory 

capacity

storage 

capacity/bw
network bw

LL cache

power

Not all isolation techniques available

Not all used/configured correctly

Not all scale well

Mem bw/core resources not isolated



11

Bolt

 Key idea: Leverage lack of isolation in public clouds to 

infer application characteristics

 Programming framework, algorithm, load characteristics

 Exploit: enable practical, effective, and hard-to-detect 

performance attacks 

 DoS, RFA, VM pinpointing

 Use app characteristics (sensitive resource) against it

 Avoid CPU saturation  hard to detect



12

Threat Model

 Impartial, neutral cloud provider

 Active adversary but no control over VM placement

Adversary VictimCloud

provider



13

Bolt

Adversary Victim

Contention

injection

1App

inference
3

Interference 

Impact

measurement

2



14

Bolt

Adversary Victim

Contention

injection

1

Interference 

Impact

measurement

2

App

inference
3

Custom

contention

kernel

4

Performance 

attack5



15

1. Contention Measurement

Adversary Victim

Contention injection
1

Interference 

impact

measurement

2

 Set of contentious kernels (iBench)

 Compute

 L1/L2/L3

 Memory bw

 Storage bw

 Network bw

 (Memory/Storage capacity)

 Sample 2-3 kernels, run in 

adversarial VM

 Measure impact on performance of 

kernels vs. isolation



16

2. Practical App Inference

Adversary Victim

 Infer resource pressure in non-

profiled resources

 Sparse  dense information

 SGD (Collaborative filtering)

 Classify unknown victim based 

on previously-seen 

applications

 Label & determine resource 

sensitivity

 Content-based recommendation

Practical app inference

3

Hybrid recommender



17

Big Data to the Rescue

1. Infer pressure in non-profiled resources

 Reconstruct sparse information

 Stochastic Gradient Descent (SGD), O(mpk)

Bolt

Contention

injection
uBench

uBench

Data

App
App

SVD+SGD

App
AppInterference

profile

r1 r2 r3 … rN

a11 0 0 … a1N

0 a22 0 … 0

… … … … …

aM1 0 aM3 … 0

r1 r2 r3 … rN

a11 a12 a13 … a1N

a21 a22 a23 … a2N

… … … … …

aM1 aM2 aM3 … aMN



18

Big Data to the Rescue

2. Classify and label victims

 Weighted Pearson Correlation Coefficients

 Output: distribution of similarity scores to app classes

Bolt

Data

App
App

Pearson Corr Coeff

App
App

App label & 

characteristics

r1 r2 r3 … rN

a11 a12 a13 … a1N

a21 a22 a23 … a2N

… … … … …

aM1 aM2 aM3 … aMN

Hadoop SVM: 65%

Spark ALS: 21%

memcached: 11%

… 



19

Inference Accuracy

 40 machine cluster (420 cores)

 Training apps: 120 jobs (analytics, databases, webservers, in-

memory caching, scientific, js)  high coverage of resource space

 Testing apps: 108 latency-critical webapps, analytics

 No overlap in algorithms/datasets between training and testing sets

Application class Detection accuracy (%)

In-memory caching (memcached) 80%

Persistent databases (Cassandra, MongoDB) 89%

Hadoop jobs 92%

Spark jobs 86%

Webservers 91%

Aggregate 89%



20

3. Practical Performance Attacks

1. Determine the resource 

bottleneck of the victim

2. Create custom contentious 

kernel that targets critical 

resource(s)

3. Inject kernel in Bolt

 Several performance attacks 

(DoS, RFAs, VM pinpointing)

 Target specific, critical resource 

 low CPU pressure

Adversary Victim

Custom kernel

injection
4



21

3. Practical DoS Attacks

 Launched against same 108 applications as before

 On average 2.2x higher execution time and up to 9.8x 

 For interactive services, on average 42x increase in tail latency

and up to 140x

 Bolt does not saturate CPU

 Naïve attacker gets migrated



22

Demo



23

User Study

 20 independent users from Stanford and Cornell

 Cluster

 200 EC2 servers, c3.8xlarge (32vCPUs, 60GB memory)

 Rules: 

 4vCPUs per machine for Bolt

 All users have equal priority

 Users use thread pinning

 Users can select specific instances

 Training set: 120 apps incl. analytics, webapps, scientific, etc. 



24

Accuracy of App Labeling

53 app classes

(analytics, webapps, 

FS/OS, HLS/sim, 

other…)



25

Accuracy of App Characterization

Performance 

attack results

in the paper



26

The Value of Isolation

 Need more scalable, fine-grain, and complete isolation 

techniques

45%

14%



27

 Bolt: highlight the security vulnerabilities from lack of isolation

 Fast detection using online data mining techniques

 Practical, hard-to-detect performance attacks

 Current isolation helpful but insufficient

 In the paper: 

 Sensitivity to Bolt parameters

 Sensitivity to applications and platform parameters

 User study details

 More performance attacks (resource freeing, VM pinpointing)

Conclusions



28

 Bolt: highlight the security vulnerabilities from lack of isolation

 Fast detection using online data mining techniques

 Practical, hard-to-detect performance attacks

 Current isolation helpful but insufficient

 In the paper: 

 Sensitivity to Bolt parameters

 Sensitivity to applications and platform parameters

 User study details

 More performance attacks (resource freeing, VM pinpointing)

Questions? 



29

Evolving Applications

 Cloud applications change behavior

 Users use the same cloud resources for several apps over time

 Bolt periodically wakes up, checks if app profile has changed; if 

so, reprofile & reclassify



30

Inference Within a Framework

 Within a framework, dataset and choice of algorithm affect 
resource requirements

 Bolt matches a new unknown application to apps in a 
framework by distinguishing their resource needs


