IMPROVING RESOURCE EFFICIENCY
IN CLOUD COMPUTING

Christina Delimitrou



Resource efficiency is a first-order
system constraint

‘ How efficiently do we utilize resources? ‘

How efficiently do we design systems?



Why Care about Resource Efficiency?

Performance /Cost

Time

Performance /Cost

Time
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The Promise of Cloud Computing

Flexibility

Provision and launch new services in seconds

High performance

High throughput & low tail latency

Cost effectiveness

Low capital & operational expenses

Cloud computing scalability:
high performance AND low cost



The Reality of Cloud Computing
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Scaling Datacenters

Switch-to-commodity—servers One time trick
lmprovecooling/powerdistribution < 10%
Build-more-datacenters >$300M per datacenter
Add-mere—servers Power limit
Rebyron-processortechnology End of voltage scaling

Use existing systems more efficiently



Datacenter Underutilization

Google (Borg)?
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! C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management,
ASPLOS 2014.

2 L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2013.



Datacenter Underutilization...

{s-the—clustermemeagerstfeauh

Is the user’s fault!



Reserved vs. Used Resources
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11 Twitter: up to 5x CPU & up to 2x memory overprovisioning
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Reserved vs. Used Resources
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20% of job under-sized, ~70% of jobs over-sized
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Datacenter Underutilization...

Is the user’s fault!
(not really...)
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Resource Management is Hard
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Can we improve resource efficiency while
preserving application QoS guarantees?

Potential: 3-5x efficiency; $10Ms in cost savings

19



Requirements

Automate resource management

Large, multi-dimensional space = Leverage big data

General solution
Different application types (batch, latency-critical)

Different types of hardware

Cross-layer design

Architecture = OS =2 Scheduler = Application design

20



Contributions
N
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Contributions

Paragon [ASPLOS’13, TopPicks’14]
[IISWC'1 3]

Resource
reservations

Users >

1. Practical
data mining
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Contributions

Quasar [ASPLOS’14]

2. High level
interface

DL

reservations

1. Practical
data mining
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Contributions

Systems:

Application assignment:

Paragon [ASPLOS’13, TopPicks’14, CAL'13, ISWC'13]

Cluster management:

Quasar [ASPLOS’14]
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Contributions

Systems:

Scalable scheduling: Tarcil [SOCC’15]
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Contributions

Systems:

Scalable scheduling:

Tarcil [SOCC'15]

Cloud provisioning:

Hybrid Cloud [in submission]
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Contributions

Systems:

Scalable scheduling:

Tarcil [SOCC'15]

Cloud provisioning:

Hybrid Cloud [in submission]

Admission control:

ARQ [ICAC'13]
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Contributions

Systems:

Scalable scheduling: Tarcil [SOCC’15]

Cloud provisioning: Hybrid Cloud [in submission]
Admission control: ARQ [ICAC'13]

Datacenter application modeling:

ECHO [lIswC'12], Storage application modeling [CAL'12, ISWC'11,
ISPASS’11]



Paragon

Users

[ASPLOS’13, TopPicks’14]

Resource
reservations

Schedliler
Practical data

mining techniques
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Heterogeneity & Interference Matter
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Heterogeneity
DCs provisioned over 15 years

Multiple server generations &
configurations

Interference

Apps contend on shared resources
CPU & cache hierarchy

Memory system

Storage & network |/O
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Extracting Resource Preferences

Naive: exhaustive characterization
~10-20 platforms x 1,000 apps

Resource
reservations

Users| APP >

Cluster

Mine
big data

Looks like a recommendation problem
31



Recommendation Systems

Content-based systems:
Description of items (keywords, feature vector, etc. )

Profile of user preferences (history, model, user-system
interaction, etc. )

Collaborative filtering:
Uncover similarities between users and items

No need to know item features or explicit user preferences in
advance

32



Recommendation Systems

Content-based systems:
Description of items (keywords, feature vector, etc. )

Profile of user preferences (history, model, user-system
interaction, etc. )

Collaborative filtering:
Uncover similarities between users and items

No need to know item features or explicit user preferences in
advance
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users

Something familiar...

Collaborative filtering — similar to Netflix Challenge system
Singular Value Decomposition (SVD) + PQ reconstruction (SGD)

movies
5 4

SVD

Sparse utility matrix

PQ reconstruction

movies
(13 5 45 4 3]
34 153 3 3
435 2 4 1 2
SvD
21 3 55 3 | [m——
14 2 3 4 3 2
32 435655
21 3 45 3 4|

Dense utility matrix

Recommendations
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SVD

user

movie

rating (e.g.,
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SVD
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Heterogeneity Classification

User A
User B

User N

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Movie M
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Heterogeneity Classification

User A
User B

User N

Platform 1

Platform 2

Platform 3 Platform 4

Platform 5 ...

Platform M
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Heterogeneity Classification

App A
App B

App N

Platform 1

Platform 2

Platform 3 Platform 4

Platform 5 ...

Platform M
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Heterogeneity Classification

Platform 1 Platform 2 Platform 3 Platform 4 Platform5 ... Platform M
App A | 1,500QPS 843QPS
App B 458QPS 946QPS
App N 1,016QPS 186QPS

App

performance

40



Heterogeneity Classification

Platform 1 Platform 2 Platform 3 Platform 4 Platform5 ... Platform M
App A | 1,500QPS 843QPS
App B
App N

[ Profiled Performance }

{ Inferred Performance }
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Heterogeneity Classification

Platform 1 Platform 2 Platform 3 Platform 4 Platform5 ... Platform M
App A | 1,500QPS 843QPS 675QPS 843QPS 1,786QPS .. 8,675QPS
App B
App N

[ Profiled Performance }

{ Inferred Performance }
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Heterogeneity Classification

Platform 1 Platform 2 Platform 3 Platform 4 Platform5 ... Platform M
App A | 1,500QPS 843QPS 675QPS 843QPS 1,786QPS . . 8,675QPS
App B 987 QPS 458QPS 77 3QPS 1,073QPS 986QPS ... 1,836QPS

App N

[ Profiled Performance }

{ Inferred Performance }
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Heterogeneity Classification

Platform 1 Platform 2 Platform 3 Platform 4
App A | 1,500QPS 843QPS 675QPS
App B 987 QPS 458QPS 77 3QPS
App N | 9,893QPS 7,686QPS 786QPS

Performance depends on app type:

QPS, completion time, IPC, ...

843QPS
1,073QPS

1,118QPS

Platform 5
1,786QPS
986QPS

997QPS

Platform M

8,675QPS
1,836QPS

1,354QPS

Profiled Performance }

|
|

Inferred Performance }
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Interference Classification

L1-i $ LLC Mem bw CPU Int I/Obw ««: Netbw
App A 95 81 7 56 43 100
App B 92 4 14 18 81 78
App N 45 49 56 11 99 54

[ Profiled Sensitivity }

E Inferred Sensitivity }
45




Measuring Interference Sensitivity

Cross-application profiling: infeasible

Measuring in hardware: platform-dependent & inaccurate

iBench': set of microbenchmarks of tunable intensity

QoS Y e e e e pupspa sy
@ 0.8 Increase intensity until the
S 0.6! application violates QoS
S :
S04l (tolerated interference)
)
O 0.2} -
Generated interference?
0-% 20 40 60 80 100

Benchmark Intensity (%)

'C. Delimitrou and C. Kozyrakis. “iBench: Quantifying Interference for Datacenter
Applications” [IISWC’1 3]
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Why SVD¢?

SVD+SGD: Low reconstruction error
Simple, fast, scalable (O(min(m?n, n?m)))
Offer insight on similarities

Similar to
streaming apps
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Greedy Resource Selection

Select servers that:
Can tolerate the interference of new application
Generate interference the new application can tolerate

Have appropriate platform configuration

Resource
reservations

Users Scheduler

"

48



Evaluation

1,000 EC2 servers

14 different server configurations
2 vCPU to 16 vCPU instances

5,000 applications

SPEC, PARSEC, SPLASH-2, BioParallel, Minebench, SpecWeb, Hadoop
benchmarks

Obijectives:

High application performance

High resource utilization

49



Validation

1,000 servers
5,000 applications

Start with zero knowledge

Classification
Engine

Metric

Heterogeneity

Avg estimation error

Applications (%) /

CPU-bound | Memory-bound

3.1% 3.6%

1/O-bound

4.1%

Interference

Avg estimation error

3.7% 3.5%

o
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Evaluation: Performance
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Evaluation: Performance
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Paragon preserves QoS for 71% of workloads

Bounds degradation to less than 10% for 90% of workloads
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Evaluation: Performance
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1 Paragon preserves QoS for 71% of workloads

- Bounds degradation to less than 10% for 20% of workloads
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Evaluation: System Utilization

100 100

90 90
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1 Utilization increases from 19% to 58%
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Are We Done?
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A Larger Problem

The user specifies resource reservations = overprovisioning

Resource

reservations

1. Practical data
mining techniques

56



Quasar

2. High level
interface

DA IIIIII ~

reservarions

[ASPLOS’14]

1. Practical data
mining techniques
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High-Level Interfaces

Focus on what performance is needed,
not on how to achieve it

Declarative interfaces:
SQL =2 describe the queries, not how they should be executed

DSLs = user describes program, language /compiler optimize

Performance targets:
Batch: completion time, deadline

Interactive: throughput, tail latency

58



Extracting Resource Preferences

7 Need to translate performance to resources

Combinations

. 1 ,OOO,OOO,OOOA
Heterogeneity

Interference
Resources per server

Resource ratio 1,000,000

Number of servers 1,000

. i i >
Application params 10 servers 100 servers 1000 servers
40 apps 300 apps 1200 apps

Systems

1 Exhaustive characterization is infeasible

59



Applying Data Mining

< o

‘/A

> 100,000,000 *°
—A

Platform 1 & L-i $ Platform 1 & LLC M & Net bw
& 2 CPU/64GB RAM & 2 CPU/64GB RAM .. /48GB RAM
& 2 servers & 1 server 1 server
App A 1,500QPS 843QPS 10,456QPS
App B 987QPS 458QPS 1,836QPS
App N i 10,893QPS 7,686QPS .- 1,354QPS ]

1 Exhaustive classification is impractical



Practical Resource Recommendations

Classification Engine

Heterogeneity

Interference

Goal

Determine suitable
server platform

Determine sensitivity to

resource interference
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Practical Resource Recommendations

Classification Engine

Heterogeneity

Scale-up

Goal

Determine suitable
server platform

Determine sensitivity to

resource interference

Determine amount /ratio
of resources per server
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Practical Resource Recommendations

Classification Engine

Heterogeneity

Scale-out

Goal

Determine suitable
server platform

Determine sensitivity to

resource interference

Determine amount /ratio
of resources per server

Determine appropriate
number of servers
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Practical Resource Recommendations

Classification Engine

Heterogeneity

Application params

Goal

Determine suitable
server platform

Determine sensitivity to

resource interference

Determine amount /ratio
of resources per server

Determine appropriate
number of servers

Determine appropriate
settings for Hadoop, Spark, ...

64



Quasar Overview

Scheduler

Resource
preferences

(4

=
>

Profiling Data mining

65



Quasar Overview
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Quasar Overview

Scheduler

==

.

Resource

preferences

~

(Greedy\
algorithm

(4
Q

—

Profiling

Data mining

Resource selection
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Quasar QOverview

/ Scheduler \

4 )
/ Greedy
Resource algorithm
\ preferences Q
\. y /
\C >

Profiling Data mining Resource selection
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Quasar Overview

/ Scheduler

(
Ap

\J

~

(G reedy\
Resource algorithm
preferences ﬁ
+ N | <o
B )
\. W, y
I

Cluster

Profiling Data mining

[10-60sec] [20msec]

One-time for repetitive apps

Resource selection

[50msec-2sec]
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Quasar Implementation

10,000 loc of C++ and Python
Runs on Linux and OS X

Supports frameworks in C/C++, Java, Scala and Python

~100-600 loc for framework-specific code

Side-effect free profiling runs with sealed containers

70



Evaluation: Cloud Scenario

Cluster

200 EC2 servers, 14 different server types

Workloads: 1,200 apps with 1sec inter-arrival rate

Analytics: Hadoop, Spark, Storm

Latency-critical: Memcached, HotCrp, Cassandra
Single-threaded: SPEC CPU2006

Multi-threaded: PARSEC, SPLASH-2, BioParallel, Specjbb
Multiprogrammed: 4-app mixes of SPEC CPU2006

Obijectives: high cluster utilization and good app QoS
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Instance Size

Demo

Performance Histogram

Cassandra

B memcached Hadoop B Storm

Spark Single-node

Quasar

100%

Reservation + LL

00%

0%

Performance Histogram

I . ]
Performance histogram |
Reservation & LL

>95% l_ I A CIUSi%o/D i

[80,90)+ . 1 [80,90)
Performance histogram

[70,80)} - [70,80)}

[60,70)} Quasar [60,70)}

[50,60)} [50,60) |

<50% : J : ‘ . <50%}

0 200 400 600 800 1000 1200 0

Progress bar

200

400 600 800 1000 1200

Progress bar
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Demo




Cloud Scenario Summary

Quasar achieves:

21% of applications meet QoS
~10% overprovisioning as opposed to up to 5x
Up to 70% cluster utilization at steady-state

23% shorter scenario completion time
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Early Adoption

twitter)

=
atat

https:/ /github.com /att-innovate /charmander

| <

Es MESOS
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Contributions

Quasar [ASPLOS'14]

2. High leve
interface

1. Practical
data mining
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Contributions

Tarcil [soccC15]

2. High level
interface

3. Distributed,
sampling-based scheduling

1. Practical

data mining
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Contributions

HYbl'id Cloud [in submission]

4. Private vs.
public resources
2. High level
interface

amazon

3. Dis’rrilc;.l-J‘:red, 1. Practical
sampling-based scheduling data mining

webservices™
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Contributions

ARQ [ICAC'13]

5. Admission 4. Private vs.
control public resources

2. High level
interface

amazon

3. Dis’rrilc;.l-J‘:red, 1. Practical
sampling-based scheduling data mining

webservices™
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Conclusions

Resource efficiency: significant challenge in systems of all scales

Focus on scalability of large-scale datacenters

Cluster management: high utilization & high app performance
High-level declarative interface
Practical data mining techniques

Cross-layer design
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Questions2?

Resource efficiency: significant challenge in systems of all scales

Focus on scalability of large-scale datacenters

Cluster management: high utilization & high app performance
High-level declarative interface
Practical data mining techniques

Cross-layer design

Thank youl!
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