
Christina Delimitrou 
Stanford University 

Defense	
  –	
  May	
  26th	
  2015	
  	
  

IMPROVING RESOURCE EFFICIENCY 

IN CLOUD COMPUTING 



2 

Resource efficiency is a first-order 
system constraint 

How efficiently do we utilize resources?  

How efficiently do we design systems? 

How efficiently do we utilize resources?  



3 

Why Care about Resource Efficiency?  

Pe
rf

or
m

an
ce

/C
os

t 
Pe

rf
or

m
an

ce
/C

os
t 

Time 

Time 



4 

~10K commodity servers 
Sophisticated cluster managers 
~10s MWatts 
$100,000,000s 

Private clouds:  
•  Google, Microsoft, Twitter, eBay  
Public clouds:  
•  Amazon EC2, Windows Azure, GCE 



5 

¨  Flexibility 
¤ Provision and launch new services in seconds 

¨  High performance 
¤ High throughput & low tail latency 

¨  Cost effectiveness 
¤ Low capital & operational expenses 

Cloud computing scalability:  
high performance AND low cost 

The Promise of Cloud Computing 



6 

The Reality of Cloud Computing 



7 

¨  Switch to commodity servers 
¨  Improve cooling/power distribution 

¨  Build more datacenters 

¨  Add more servers 
¨  Rely on processor technology 

Scaling Datacenters 

< 10% 

>$300M per datacenter 

End of voltage scaling 

One time trick 

Power limit 

Use existing systems more efficiently 



8 

Datacenter Underutilization 

 

1 C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient and QoS-Aware Cluster Management, 
ASPLOS 2014.  
2 L. A. Barroso, U. Holzle. The Datacenter as a Computer, 2013.  

 

Twitter (Mesos)1 

4-5x 

Google (Borg)2 

3-5x 

0    10    20     30    40     50     60     70    80    90    100 
CPU Utilization (%) 



9 

Datacenter Underutilization…  

Is the cluster manager’s fault 
Is the user’s fault!  



10 

Reserved vs. Used Resources 

 

¨  Twitter: up to 5x CPU & up to 2x memory overprovisioning 

3-5x 

1.5-2x 



11 

Reserved vs. Used Resources 

  
¨  20% of job under-sized, ~70% of jobs over-sized 

~25,000 jobs 
936 distinct users 

[ASPLOS’14] 

Reservation=Usage 



12 

Datacenter Underutilization…  

Is the user’s fault! 
(not really…)  



13 

Resource Management is Hard 



14 

Performance Depends on  

Cores 

Pe
rf

or
m

an
ce

 Scale-up 



15 

Performance Depends on  

Cores 

Pe
rf

or
m

an
ce

 Heterogeneity 



16 

Performance Depends on  

Cores 

Pe
rf

or
m

an
ce

 Heterogeneity 

Servers 

Pe
rf

or
m

an
ce

 Scale-out 



17 

Performance Depends on  

Cores 

Pe
rf

or
m

an
ce

 Heterogeneity 

Servers 

Pe
rf

or
m

an
ce

 Scale-out 

Input size 

Pe
rf

or
m

an
ce

 Input load 



18 

Performance Depends on  

Cores 

Pe
rf

or
m

an
ce

 Heterogeneity 

Interference 

Pe
rf

or
m

an
ce

 Interference 

Input size 

Pe
rf

or
m

an
ce

 Input load 

Servers 

Pe
rf

or
m

an
ce

 Scale-out 

When sw changes,  
when platforms change, etc.  Overprovision Reservations! 



19 

Can we improve resource efficiency while  
preserving application QoS guarantees? 

Potential: 3-5x efficiency; $10Ms in cost savings 



20 

¨  Automate resource management 

¤  Large, multi-dimensional space à Leverage big data 

¨  General solution 

¤ Different application types (batch, latency-critical) 

¤ Different types of hardware 

¨  Cross-layer design 

¤ Architecture à OS à Scheduler à Application design 

Requirements 



21 

Contributions 



22 

Scheduler Cluster Users 

1. Practical  
data mining 

Contributions 

Paragon [ASPLOS’13, TopPicks’14] 
       [IISWC’13] 

Resource 
reservations 



23 

Scheduler Cluster 

2. High level  
interface 

1. Practical  
data mining 

Contributions 

Quasar [ASPLOS’14] 

Resource 
reservations Users 



24 

Application assignment:   Paragon [ASPLOS’13, TopPicks’14, CAL’13, IISWC’13] 

Cluster management:      Quasar [ASPLOS’14] 

Contributions 
Systems:  



25 

Application assignment:   Paragon [ASPLOS’13, TopPicks’14], iBench [IISWC’13] 

Cluster management:      Quasar [ASPLOS’14] 

Scalable scheduling:        Tarcil [SOCC’15] 

Contributions 
Systems:  



26 

Application assignment:   Paragon [ASPLOS’13, TopPicks’14], iBench [IISWC’13] 

Cluster management:      Quasar [ASPLOS’14] 

Scalable scheduling:        Tarcil [SOCC’15] 

Cloud provisioning:          Hybrid Cloud [in submission] 

Contributions 
Systems:  



27 

Application assignment:   Paragon [ASPLOS’13, TopPicks’14], iBench [IISWC’13] 

Cluster management:      Quasar [ASPLOS’14] 

Scalable scheduling:        Tarcil [SOCC’15] 

Cloud provisioning:          Hybrid Cloud [in submission] 

Admission control:           ARQ [ICAC’13] 

Contributions 
Systems:  



28 

Application assignment:   Paragon [ASPLOS’13, TopPicks’14], iBench [IISWC’13] 

Cluster management:      Quasar [ASPLOS’14] 

Scalable scheduling:        Tarcil [SOCC’15] 

Cloud provisioning:          Hybrid Cloud [in submission] 

Admission control:           ARQ [ICAC’13] 

Datacenter application modeling:  
ECHO [IISWC’12], Storage application modeling [CAL’12, IISWC’11, 
ISPASS’11] 

Contributions 
Systems:  



29 

Paragon 

      [ASPLOS’13, TopPicks’14] 

Scheduler Cluster 

Practical data 
mining techniques 

Users 

Resource 
reservations 



30 

Heterogeneity & Interference Matter 

¨  Heterogeneity 
¤  DCs provisioned over 15 years 
¤  Multiple server generations & 

configurations 

¨  Interference 
¤  Apps contend on shared resources  

n  CPU & cache hierarchy 
n  Memory system 
n  Storage & network I/O 

 

Ignore Heterogeneity 
Ignore Both 



31 

¨  Naïve: exhaustive characterization 
¤  ~10-20 platforms x 1,000 apps 

¨  Looks like a recommendation problem 

Extracting Resource Preferences 

Users Scheduler Cluster 

Resource 
reservations 

App App 

Data 

App App 

Mine  
big data 

App 



32 

Recommendation Systems 

¨  Content-based systems:  
¤ Description of items (keywords, feature vector, etc. ) 
¤  Profile of user preferences (history, model, user-system 

interaction, etc. ) 

¨  Collaborative filtering:  
¤ Uncover similarities between users and items 
¤ No need to know item features or explicit user preferences in 

advance 



33 

Recommendation Systems 

¨  Content-based systems:  
¤ Description of items (keywords, feature vector, etc. ) 
¤  Profile of user preferences (history, model, user-system 

interaction, etc. ) 

¨  Collaborative filtering:  
¤ Uncover similarities between users and items 
¤ No need to know item features or explicit user preferences in 

advance 



34 

Something familiar…  

¨  Collaborative filtering – similar to Netflix Challenge system 
¤  Singular Value Decomposition (SVD) + PQ reconstruction (SGD) 

 

 

Sparse utility matrix 

SVD 
PQ reconstruction 

Dense utility matrix 

movies 

us
er

s 

5 4

1 3

2 4

1 5

2 3

3 5

2 3

1 3 5 4 5 4 3

3 4 1 5 3 3 3

4 3 5 2 4 1 2

2 1 3 5 5 3 1

1 4 2 3 4 3 2

3 2 4 3 5 5 5

2 1 3 4 5 3 4

Recommendations 
SVD  

movies 



35 

SVD 

a11 a12 ... a1n
a21 a22 ... a2n
   
am1 am2 ... amn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

u11 ... u1r
  
um1 ... umr

!

"

#
#
#
#

$

%

&
&
&
&

σ1 ... 0
  
0 ... σ r

!

"

#
#
#
#

$

%

&
&
&
&

v11 ... v1r
  
vn1 ... vnr

!

"

#
#
#
#

$

%

&
&
&
&

u1 
 
 … 
um 

x x 

= 

movie 
user 

m1  m2  …  mn 

m1  …     mn 

u1 
u2 
   
um 

…
 rating (e.g.,         ) 



36 

SVD 

a11 a12 ... a1n
a21 a22 ... a2n
   
am1 am2 ... amn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

u11 ... u1r
  
um1 ... umr

!

"

#
#
#
#

$

%

&
&
&
&

σ1 ... 0
  
0 ... σ r

!

"

#
#
#
#

$

%

&
&
&
&

v11 ... v1r
  
vn1 ... vnr

!

"

#
#
#
#

$

%

&
&
&
&

u1 
 
 … 
um 

x x 

= 

m1  m2 …  mn 

m1  …     mn 

movie 
user 

similarity concept 

correlation of user  
to similarity concept 

correlation of movie  
to similarity concept 

u1 
u2 
   
um 

…
 rating (e.g.,         ) 



37 

Heterogeneity Classification 

Movie 1 Movie 2 Movie 3 Movie 4 Movie 5 Movie M 

User A 

User B 

User N 

…
 

… 



38 

Heterogeneity Classification 

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform M 

User A 

User B 

User N 

…
 

… 



39 

Heterogeneity Classification 

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform M 

App A 

App B 

App N 

…
 

… 



40 

Heterogeneity Classification 

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform M 

App A 1,500QPS 843QPS 

App B 458QPS 946QPS 

App N 1,016QPS 186QPS 

…
 

… 

App  
performance 



41 

Heterogeneity Classification 

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform M 

App A 1,500QPS 843QPS 

App B 

App N 

…
 

… 

Profiled Performance 

Inferred Performance 



42 

Heterogeneity Classification 

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform M 

App A 1,500QPS 843QPS 

App B 

App N 

…
 

… 
843QPS 675QPS 1,786QPS 8,675QPS … 

Profiled Performance 

Inferred Performance 



43 

Heterogeneity Classification 

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform M 

App A 1,500QPS 843QPS 

App B 987QPS 1,836QPS 

App N 

…
 

… 
843QPS 675QPS 1,786QPS 8,675QPS 

458QPS 773QPS 986QPS 1,073QPS 

… 
… 

Profiled Performance 

Inferred Performance 



44 

Heterogeneity Classification 

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform M 

App A 1,500QPS 843QPS 

App B 987QPS 1,836QPS 

App N 9,893QPS 7,686QPS 

…
 

… 
843QPS 675QPS 1,786QPS 8,675QPS 

458QPS 773QPS 986QPS 1,073QPS 

1,354QPS 786QPS 1,118QPS 997QPS 

…
 

…
 

…
 

…
 

…
 

…
 

… 
… 

… 

Profiled Performance 

Inferred Performance 
Performance depends on app type:  

QPS, completion time, IPC, …  



45 

Interference Classification 

L1-i $ LLC Mem bw CPU Int I/O bw Net bw 

App A 95 56 

App B 92 78 

App N 45 49 

…
 

… 
81 7 43 100 

4 14 81 18 

54 56 11 99 

…
 

…
 

…
 

…
 

…
 

…
 

… 
… 

… 

Profiled Sensitivity 

Inferred Sensitivity 



46 

Measuring Interference Sensitivity 

¨  Cross-application profiling: 

¨  Measuring in hardware: 

¨  iBench1: set of microbenchmarks of tunable intensity 

1C. Delimitrou and C. Kozyrakis. “iBench: Quantifying Interference for Datacenter 
Applications” [IISWC’13] 

QoS 

28% 

Increase intensity until the 
application violates QoS 
(tolerated interference) 

Generated interference?  

infeasible 

platform-dependent & inaccurate 



47 

Why SVD?  

SVD+SGD: Low reconstruction error 
Simple, fast, scalable (O(min(m2n, n2m))) 

Offer insight on similarities 

Low CPU 
High LLC 
Similar to 

streaming apps 

Recommend  
accounts to follow 

Apps that benefit from high CPU frequency 
Apps similar in I-cache are also similar in branch behavior 

Refactor parts of  
app for efficiency 



48 

¨  Select servers that:  
¤  Can tolerate the interference of new application 
¤  Generate interference the new application can tolerate 
¤  Have appropriate platform configuration 

Greedy Resource Selection 

Scheduler Cluster Users 

Resource 
reservations 



49 

¨  1,000 EC2 servers 
¤  14 different server configurations 
¤  2 vCPU to 16 vCPU instances 

¨  5,000 applications  
¤  SPEC, PARSEC, SPLASH-2, BioParallel, Minebench, SpecWeb, Hadoop 

benchmarks 

¨  Objectives:  
¤  High application performance 
¤  High resource utilization 

 

Evaluation 



50 

¨  1,000 servers 
¨  5,000 applications 

¨  Start with zero knowledge 

Validation 

Classification 
Engine 

Metric 
Applications (%) 

CPU-bound Memory-bound I/O-bound 

Heterogeneity Avg estimation error 3.1% 3.6% 4.1% 

Interference Avg estimation error 3.7% 3.5% 5.1% 

3.5% 

3.8% 



51 

¨  Least loaded scheduler (common practice today)  
¤  Violates QoS for 97% of workloads 

Evaluation: Performance 



52 

¨  Paragon preserves QoS for 71% of workloads  

¨  Bounds degradation to less than 10% for 90% of workloads  

Evaluation: Performance 



53 

¨  Paragon preserves QoS for 71% of workloads  

¨  Bounds degradation to less than 10% for 90% of workloads  

Evaluation: Performance 

Gain 



54 

Evaluation: System Utilization 

 

 

 

 

 

¨  Utilization increases from 19% to 58% 

Paragon Least-Loaded (LL) 



55 

Are We Done?  



56 

A Larger Problem 

Cluster 

The user specifies resource reservations à overprovisioning 

Scheduler Resource 
reservations Users 

1. Practical data 
mining techniques 



57 

Quasar 
[ASPLOS’14] 

Scheduler Cluster 

1. Practical data 
mining techniques 

2. High level  
interface 
Resource 

reservations Users 



58 

High-Level Interfaces 

¨  Declarative interfaces:  
¤  SQL à describe the queries, not how they should be executed  
¤  DSLs à user describes program, language/compiler optimize 

¨  Performance targets:  
¤  Batch: completion time, deadline 
¤  Interactive: throughput, tail latency 

Focus on what performance is needed,  
not on how to achieve it 



59 

Extracting Resource Preferences 

¨  Need to translate performance to resources 

¨  Exhaustive characterization is infeasible 

Heterogeneity 

Interference 

Resources per server 

Resource ratio 

10 servers 
40 apps 

100 servers 
300 apps 

1000 servers 
1200 apps 

Combinations 

1,000 

1,000,000 

0 

1,000,000,000 

Systems 

Number of servers 

Application params 



60 

Applying Data Mining 

¨  Exhaustive classification is impractical 

Platform 1 & LLC  

& 2 CPU/64GB RAM 
& 1 server 

Platform M & Net bw  

& 10 CPU/48GB RAM 
& 1 server 

843QPS 10,456QPS 

458QPS 1,836QPS 

7,686QPS 1,354QPS 

… 

…
 

> 100,000,000 

…
 

…
 

…
 

… 
… 

… 

Platform 1 & L-i $ 
& 2 CPU/64GB RAM 

& 2 servers 

App A 

App B 

App N 

1,500QPS 

987QPS 

10,893QPS 



61 

Practical Resource Recommendations 

Heterogeneity 

Interference 

Classification Engine Goal 
Determine suitable  

server platform 
Determine sensitivity to  
resource interference 



62 

Practical Resource Recommendations 

Heterogeneity 

Interference 

Classification Engine Goal 
Determine suitable  

server platform 
Determine sensitivity to  
resource interference 

Scale-up 
Determine amount/ratio 
 of resources per server 



63 

Practical Resource Recommendations 

Heterogeneity 

Interference 

Scale-up 

Classification Engine Goal 
Determine suitable  

server platform 
Determine sensitivity to  
resource interference 

Determine amount/ratio 
 of resources per server 

Scale-out Determine appropriate  
number of servers 



64 

Practical Resource Recommendations 

Heterogeneity 

Interference 

Scale-up 

Classification Engine Goal 
Determine suitable  

server platform 
Determine sensitivity to  
resource interference 

Determine amount/ratio 
 of resources per server 

Scale-out Determine appropriate  
number of servers 

Application params Determine appropriate  
settings for Hadoop, Spark, … 



65 

Quasar Overview 

Profiling 

Cluster 

QoS Scheduler 

User 
App 

App 

App 

App 

App 

Resource 
preferences 

App 

Data mining 



66 

Quasar Overview 

Cluster 

Scheduler 

Greedy 
algorithm 

Profiling 

User Resource 
preferences 

Data mining Resource selection 

App 



67 

Quasar Overview 

Cluster 

Scheduler 

Greedy 
algorithm 

Profiling 

User Resource 
preferences 

Data mining Resource selection 

App 



68 

Quasar Overview 

Cluster 

Scheduler 

Greedy 
algorithm 

Profiling 

User Resource 
preferences 

Data mining Resource selection 

App 

App App 



69 

Quasar Overview 

Profiling 
[10-60sec] 

Data mining 
[20msec] 

Resource selection 
[50msec-2sec] 

One-time for repetitive apps 

Cluster 

Scheduler 

Greedy 
algorithm User 

App 

App 

App 

App 

Resource 
preferences 

App 



70 

Quasar Implementation 

¨  10,000 loc of C++ and Python 

¨  Runs on Linux and OS X  

¨  Supports frameworks in C/C++, Java, Scala and Python 
¤ ~100-600 loc for framework-specific code 

 

¨  Side-effect free profiling runs with sealed containers 



71 

Evaluation: Cloud Scenario 

¨  Cluster 
¤  200 EC2 servers, 14 different server types 

¨  Workloads: 1,200 apps with 1sec inter-arrival rate 
¤  Analytics: Hadoop, Spark, Storm   
¤  Latency-critical: Memcached, HotCrp, Cassandra 
¤  Single-threaded: SPEC CPU2006 
¤  Multi-threaded: PARSEC, SPLASH-2, BioParallel, Specjbb 
¤  Multiprogrammed: 4-app mixes of SPEC CPU2006 

¨  Objectives: high cluster utilization and good app QoS 



72 

Demo 
In

st
an

ce
 S

iz
e 

memcached 
Cassandra 

Storm Hadoop 
Single-node Spark 

Core Allocation Map 
Quasar 

Instance 
Core 

Core Allocation Map 
Reservation & LL 

Performance histogram 
Quasar 

Performance histogram 
Reservation & LL 

Cluster  
Utilization 

Progress bar Progress bar 

100% 

0% 

100% 

0% 

Quasar Reservation + LL 



73 



74 

Quasar achieves: 
¨  91% of applications meet QoS 

¨  ~10% overprovisioning as opposed to up to 5x 

¨  Up to 70% cluster utilization at steady-state 

¨  23% shorter scenario completion time 

Cloud Scenario Summary 



75 

Early Adoption 

  

https://github.com/att-innovate/charmander 



76 

Scheduler Cluster 

2. High level  
interface 

1. Practical  
data mining 

Contributions 

Quasar [ASPLOS’14] 

Users 



77 

Cluster Users 

Contributions 

Tarcil [SOCC’15] 

2. High level  
interface S 

S 

S 
…

 

3. Distributed,  
sampling-based scheduling 

1. Practical  
data mining 



78 

Users 

Contributions 

Hybrid Cloud [in submission] 

2. High level  
interface S 

S 

S 
…

 

Cluster 

Cluster 

4. Private vs.  
public resources 

3. Distributed,  
sampling-based scheduling 

1. Practical  
data mining 



79 

Users 

Contributions 

ARQ [ICAC’13] 

2. High level  
interface S 

S 

S 
…

 

Cluster 

Cluster 

4. Private vs.  
public resources 

3. Distributed,  
sampling-based scheduling 

1. Practical  
data mining 

5. Admission 
control 



80 

Conclusions 

¨  Resource efficiency: significant challenge in systems of all scales 
¤  Focus on scalability of large-scale datacenters 

¨  Cluster management: high utilization & high app performance 
¤ High-level declarative interface 
¤  Practical data mining techniques 
¤ Cross-layer design 



81 

¨  Resource efficiency: significant challenge in systems of all scales 
¤  Focus on scalability of large-scale datacenters 

¨  Cluster management: high utilization & high app performance 
¤ High-level declarative interface 
¤  Practical data mining techniques 
¤ Cross-layer design 

Questions??  

Thank you!  


