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Abstract—The cost and power impact of suboptimal storage
configurations is significant in datacenters (DCs) as inefficiencies
are aggregated over several thousand servers and represent
considerable losses in capital and operating costs. Designing
performance, power and cost-optimized systems requires a deep
understanding of target workloads, and mechanisms to effectively
model different storage design choices. Traditional benchmarking
is invalid in cloud data-stores, representative storage profiles
are hard to obtain, while replaying the entire application in all
storage configurations is impractical both from a cost and time
perspective. Despite these issues, current workload generators are
not able to accurately reproduce key aspects of real application
patterns. Some of these features include spatial and temporal
locality, as well as tuning the intensity of the workload to emulate
different storage system configurations.
To address these limitations, we propose a modeling and char-
acterization framework for large-scale storage applications. As
part of this framework we use a state diagram-based storage
model, extend it to a hierarchical representation and implement
a tool that consistently recreates I/O loads of DC applications.
We present the principal features of the framework that allow
accurate modeling and generation of storage workloads and the
validation process performed against ten original DC applications
traces. Furthermore, using our framework, we perform an in-
depth, per-thread characterization of these applications and
provide insights on their behavior. Finally, we explore two
practical applications of this methodology: SSD caching and
defragmentation benefits on enterprise storage. In both cases we
observe significant speedup for most of the examined applications.
Since knowledge of the workload’s spatial and temporal locality
is necessary to model these use cases, our framework was
instrumental in quantifying their performance benefits. The
proposed methodology provides a detailed understanding on the
storage activity of large-scale applications and enables a wide
spectrum of storage studies without the requirement for access
to real applications and full application deployment.

I. INTRODUCTION

With the advent of social networking and cloud data-stores,
user data is increasingly being stored in large-capacity and
high-performance storage systems. These systems account for
a significant portion of the total cost of ownership (TCO) of
a datacenter (DC) [12], [3]. Specifically, for online services,
data retrieval is often the bottleneck to application performance
[11], [12], making efficient storage provisioning a first-order
design constraint. One of the main challenges when trying to
evaluate storage system options is the difficulty in replaying
the entire application in all possible system configurations. The
effort itself can be highly inefficient from the time and cost
perspective, given the scale of DC deployments (hundreds of
TBs, over tens of thousands of servers). It is hence imperative
to invest in frameworks that allow for extensive workload
analysis, characterization and modeling.

Large-scale Online Services differ from conventional appli-
cations in that they cannot be approximated by single machine
benchmarking, due to patterns that emerge from user behavior
in a large-scale environment. Furthermore, privacy concerns
make source code, user behavior patterns and datasets of
DC applications rarely available to storage system designers.
This makes the development of a representative model that
captures key aspects of the workload’s storage profile, even
more appealing. Once such a model is available, creating a
tool that reproduces the application’s storage behavior via a
synthetic access pattern will enable large-scale storage studies,
decoupled from the requirement to access application code.

Despite the merit in this effort, previous work on I/O
workload generation lacks the ability to capture the spatial
and temporal locality of I/O access patterns, causing them
to significantly deviate from the application’s real character-
istics. In this work, we provide a framework for research
on large-scale storage systems that addresses these issues.
This infrastructure includes probabilistic, state diagram-based
models that capture information of configurable granularity
on the workload’s access patterns. We develop the models
from production traces of real DC applications based on
previous work [11]. We extend these models to a granular,
hierarchical representation in order to identify the optimal level
of detail for each application. Then we perform an in-depth,
per-thread characterization of the storage activity of ten large-
scale DC applications in terms of the functionality, intensity
and fluctuation of I/O behavior. To the best of our knowledge
this is the first study at a per-thread granularity for large-scale
applications, including information on their spatial locality.
Furthermore, we design a tool that recognizes these models
and recreates synthetic access patterns with I/O features that
closely match those of the original applications. We perform
extensive validation of our methodology to ensure resemblance
between original and synthetic loads in both I/O characteristics
and performance metrics.

The main features we introduce for accurate I/O generation
are:

1) The ability to issue I/Os with specified inter-arrival
times, both static and following time distributions.

2) The ability to preserve the spatial and temporal locality
of I/O accesses, as well as the features and weights of
each transition in the state diagram.

3) The ability to modify the intensity of the generated I/Os
by scaling the inter-arrival time of I/O requests. This
enables high performance storage systems evaluations
(e.g., Solid State Drives).



We use our methodology (model and tool) to evaluate two
important DC storage design challenges. Firstly, we explore
the applicability of Solid State Devices (SSD) caching in DC
workloads. Using our tool, we show that for most of the
examined DC applications, SSD caching offers a significant
storage system speedup without application change (31% on
average for a 32GB SSD cache). In the second use case, we
motivate the need for defragmentation in the DC. We observe
that user data gets accumulated over a period of time and files
get highly fragmented. Using this information from tracing [5],
we rearrange blocks on disk in order to improve the sequential
characteristics of the workloads. Using the tool to run the
defragmented traces we show that defragmentation offers a
significant boost in performance (18% on average), in some
cases even greater than incorporating SSDs.

Succinctly, the main contributions of this work are:
• We present a concise statistical model that accurately

captures the I/O access pattern of large-scale applications
including their spatial locality, inter-arrival times and
type of accesses. It is also hierarchical, which allows
configurable level of detail to accommodate the features
of each application.

• We implement a tool that recognizes this model and
recreates synthetic access patterns with same I/O char-
acteristics and performance metrics as in the original
application. No previous storage tool (e.g., IOMeter) can
simulate spatial and temporal locality of DC workloads.

• This methodology enables storage system studies that
were previously impossible without full application de-
ployment and without access to the real applications.
We demonstrate the applicability of our tool in evaluating
SSD caching and defragmentation. These spatial locality-
based studies have been unexplored due to lack of a tool
that allowed their evaluation.

The rest of this paper is structured as follows. Section 2
discusses related work. Section 3 presents a description of the
model and the tool’s implementation. Section 4 includes a per-
thread characterization of the storage activity of the DC appli-
cations, the methodology’s validation and a comparison of our
toolset with a popularly-used workload generator (IOMeter).
Section 5 discusses the tool’s applicability in evaluating two
important DC storage challenges. Finally, Section 6 presents
topics for future work and concludes the paper.

II. RELATED WORK

Significant prior work [9] has studied how to efficiently pro-
vision DC storage systems. However, a necessary requirement
towards efficiently configuring the storage system is studying
DC workloads. A convenient approach for that should involve
a model that captures the workload’s representative features
and a tool that accurately recreates its access patterns.

Despite this, most prior large-scale storage configuration
techniques are mainly empirical, based on the workload’s
characteristics as derived from traces [7]. Kavalanekar et al
[7], [8] use a trace-based approach to characterize large online
services for storage system configuration and performance

modeling. Traces offer useful insight on the characteristics of
large-scale workloads, but their usefulness is limited by the
system upon which they have been collected. Regenerating
I/O workloads with high fidelity can offer far richer informa-
tion towards understanding the behavior of workloads whose
implementation remains largely unknown. It also enables ad-
dressing instrumental challenges in storage system design (e.g.
incorporating SSDs, defragmentation, placement/migration of
hot data) when optimizing for performance and efficiency.

IOMeter [6], SQLIO [13], Vdbench [15] are all open-source
generators of disk I/O loads. IOMeter allows for specific
I/O characteristics to be defined, SQLIO simulates aspects of
the disk load of the Microsoft SQL Server, while Vdbench
apart from the feature of I/O generation is equipped with the
capability of trace replay. Finally, a workload generator relying
on online histograms in a virtual machine over VMWare’s ESX
Server [2] captures information on disk I/O without significant
CPU or latency overheads. However, all these workload gen-
erators lack the ability to exploit the temporal and especially
the spatial locality of DC applications. Spatial and temporal
locality are extremely important for DC applications, due to
the different behavior of storage devices with and without
locality. Ignoring locality can result in greatly misleading
results in performance, power and TCO.

Finally, where applicable, these tools are based on out-
standing I/Os instead of inter-arrival times. However, the latter
offers a better representation of the workload’s behavior [10],
decoupled from the system that hosts it. For our work, we
extend the functionality of DiskSpd [4], an I/O workload
generator, in ways that enable us to recreate representative
DC loads.

III. MODELING AND GENERATION PROCESS

A. Basic State Diagram Model

Our approach requires a model that captures the I/O features
and locality of storage activity from the application’s point of
view. This means that the model needs to cluster accesses
based on their spatial locality and characteristics. For this
purpose we use the Markov Chain representation proposed by
Sankar et al. [11]. The models are trained based on real storage
traces from production servers of a large-scale datacenter
deployment, and can capture I/O accesses in one or multiple
servers, and from one or multiple users. According to the
model, states correspond to ranges of logical blocks on disk
(LBNs) and transitions represent the probabilities of switching
between LBN ranges. Each transition is characterized by a set
of features that reflect the workload’s I/O behavior and consist
of the block size, randomness, type of I/O (read, write) and
inter-arrival time between subsequent requests.

The insight behind the model’s structure is that spatial
locality is represented by the clustering of I/Os corresponding
to the same state, and temporal locality (i.e., subsequent
I/Os) is represented by the transitions between states in the
model. Therefore, it provides a comprehensive and modular
representation of the workload’s I/O behavior. The probability
for each transition is calculated as the percentage of I/Os that
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Fig. 1: One level State Diagram
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Fig. 2: Two level State Diagram: (a) Transition between minor states and (b) Transition between major states

correspond to it. Figure 1 demonstrates a simplified form of
the state diagram with four states, each of which corresponds
to 25% of the total LBNs. The model works as follows
(highlighted part of the diagram): If an I/O corresponds to
State 1, there is an 11.8% probability that the next I/O will
be a 4K read, random access with an inter-arrival time of 3ms
that corresponds to State 2.

B. Hierarchical State Diagram Model

Different applications have different access patterns, some
requiring more detail than others to be accurately captured.
To convey information of finer granularity, we have extended
the previous model to a hierarchical representation. Figure 2
demonstrates one such model with two levels. To build a two-
level model each state in the one level diagram is subdivided
in four states and becomes a new state diagram. The two-level
diagram will have 16 states. Here LBNs are divided in four
states. In general, the number of states per level is chosen such
that the probabilities of transitions are minimized.

Perhaps counter-intuitively, the number of transitions in the
new diagram is not 256 but 76. As shown in Figure 2, level-
two (fine-grained) transitions only exist within the large states
but not across them. This means that a transition happens

either between two minor states (Figure 2(a)) or between two
major states (Figure 2(b)). This approach exploits the fact that
spatial locality is mostly confined within states. The number
of transitions for a given level is given by

4l−116 +

l−1∑
i=1

4i−112 (1)

while for the flat model it is given by 16l, where l is the
number of levels.

Table I shows how the number of states and transitions
scales for up to 10 levels. It becomes obvious that for the flat
representation the number of transitions increases exponen-
tially with the number of states, while the hierarchical model
has a linear relation with the state count. This choice does
not cancel the value of a flat model, but rather proposes that
a hierarchical model is just as beneficial without making the
number of transitions intractable. Comparing the throughput
of models constructed with the hierarchical and the flat repre-
sentations shows less than 5% difference in throughput.

The number of levels reflects the complexity of an appli-
cation’s access pattern and as shown in the validation section
(V.C), finer granularity is instrumental to accurately represent



Levels State Count Transition Count
Hierarchical Model Flat Model

1 4 16 16
2 16 76 256
3 64 316 4096
4 256 1276 65536
5 1024 5116 1048576

10 1048576 5242876 109951162776

TABLE I: Scalability of the model in terms of number of states
and transitions with an increasing number of levels.

some applications. The proposed model structure guarantees
scalability even for applications that require many levels.

C. Storage Activity Fluctuation

It is well known that DC applications experience high fluc-
tuations in their activity, with peak activity usually occurring
throughout periods of the day and low activity be present
throughout the night. In order to generate representative stor-
age workloads of real applications one must account for this
effect. Studying the fluctuation of the storage activity for DC
applications reveals that the main feature that changes is the
intensity of the I/O requests, i.e. throughout specific periods
of an application’s lifecycle inter-arrival times decrease signifi-
cantly. Other features however, like the spatial locality and size
of the requests are self-similar throughout this lifecycle [10].
In order to account for this fluctuation, we calculate the inter-
arrival times over shorter periods of activity and progressively
switch between workload intensities. Essentially each model
is composed by multiple models of different intensities that
capture the transient features of the I/O requests.

D. Generation Tool Design - DiskSpd

The model, previously discussed, is the first step in recre-
ating accurate DC I/O loads. The second step, involves a tool
that recognizes the model and generates storage workloads
with high fidelity, using some configuration knobs.

For this purpose we use DiskSpd, a tool that started as
a means to measure disk I/O bandwidth and expanded to a
complete workload generator [4]. It performs read and/or write
I/Os in burst mode on either disks or files, given the I/Os’
block size, randomness, and initial block offset. The former
consist of a subset of the most relevant features of DiskSpd
for the current study. Other features include controlling system
parameters such as hardware or software (OS) caches, thread
affinity, number of outstanding I/Os, etc.

To recreate a representative workload using the model
previously discussed, we have introduced a series of features
in DiskSpd. The following subsections describe these features.

1) Inter-arrival Times (Average and Distributions): Study-
ing real application traces has shown that burst mode I/O
accesses, though present for short periods of time, are not
the norm and do not dominate an application’s lifetime. Sub-
sequent I/Os tend to have well-defined time margins between
them. Narayanan et al [10] have shown that inter-arrival times
are a critical feature of I/O behavior, especially in DC applica-
tions that experience high peaks and low troughs throughout

their execution. Multiple studies quantify the magnitude of this
metric and explore the differences among DC workloads [11],
[12].

To demonstrate these margins between accesses of specific
block ranges, we implement inter-arrival times in DiskSpd,
which are calculated for each transition and measured in
ms. Enabling inter-arrival times also means disabling the
simultaneous tuning of outstanding I/Os since the two are
incompatible, with the former ensuring an ”idle” period of
time between I/Os and the latter ensuring a defined number
of on-the-fly I/Os in the queues.

The use of inter-arrival times instead of outstanding I/Os
in a workload generator is first proposed here. Previous tools
are based on defining the system’s queue length. However,
queued I/Os do not characterize an application as well as inter-
arrival times, since queue length is a system feature, while I/O
intensity a workload feature. The difference between the two
becomes clearer in the case where we want to create a more
intense workload as described in Section III.D.3.

Furthermore, in order to capture the variations in storage
intensity we have added the feature of inter-arrival time
distributions, i.e., during the workload’s execution inter-arrival
times can follow one of the following distributions: normal,
exponential, Poisson and gamma. This permits a closer resem-
blance to the fluctuations of a workload’s intensity throughout
its lifetime, as well as the capture of burst I/Os.

In the default version of the tool, the mean for normal
distribution (µ), the rate parameter for exponential (λ), the
expected number of occurrences for Poisson (λ) and the scale
parameter (θ) for gamma correspond to the mean inter-arrival
time calculated from the traces.

2) Multiple Threads and Thread Weights: Access patterns
of real applications have distinct per transition characteristics.
In order to recreate an I/O load using the state diagram
model, we have added the feature of executing threads with
different I/O characteristics each (block size, randomness, type
(rd/wr), target LBN range and inter-arrival times). Each thread
corresponds to a transition in the state diagram and maintains
the original access pattern via the notion of thread weight, i.e.,
the proportion of I/O accesses that correspond to each thread.
During the threads’ execution, we ensure that thread weights
are satisfied with less than 0.05% deviation from the target
weights by adjusting their ”idle” time.

This mechanism might seem redundant if one considers
thread weights as a straightforward translation of inter-arrival
times. Although inter-arrival times are a strong indication of
the proportions of accesses for a transition, there are cases
where fast I/Os are not common, but are confined in a short
period of the application’s execution. In this case, simply
maintaining inter-arrival time will not ensure the transition’s
weight. Although these events are rare, this mechanism ensures
that thread weights are maintained in all cases.

Furthermore, in order to guarantee that thread weights are
satisfied throughout the workload’s execution we perform a
Round Robin visit in states so that all threads are active in
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different phases during the program’s execution instead of
limiting them in an arbitrary period of activity. This way the
synthetic trace becomes a compressed version of the original
workload. Although this does not cover all possible transition
patterns, self-similarity tests [8] in original DC applications
have verified that indeed the spatial characteristics of I/Os are
consistent across time.

3) Intensity Knob: One of the main objectives behind
developing this tool is to evaluate different storage system
configurations. Although when referring to disks, inter-arrival
times are within a few milliseconds or tenths of a millisecond,
when switching to SSDs that number is expected to fall
dramatically, since I/Os are expected to arrive at a higher rate.
Current production traces do not have such intensity; however,
we expect workloads to be tuned to faster storage systems
using SSDs. In order to replay workloads compatible with such
systems, we have added an intensity knob that scales inter-
arrival times down or up to increase or decrease their intensity
respectively. This feature clarifies the distinction between
outstanding I/Os and inter-arrival times. Queuing more I/Os
does not emulate a faster storage system, since in an SSD-
based system, for example, I/Os do not simply get queued in
larger numbers, they also get serviced faster. Maintaining the
outstanding I/Os queue length in this case, stresses the storage
system out of proportion and is not useful for DC scaling
studies. Having this knob offers the opportunity to evaluate a
storage system configuration based on the workload’s expected
intensity margins. It also enables studies that scale the number
of users that initiate requests in the system.

For example, in a Hard Disk-based system when intensity
exceeds the system’s queues’ capabilities, throughput levels-
off. Figure 3 shows this inability of the HDD system to service
high-rate requests. Smaller scale corresponds to a more intense
workload. Although we assume that I/Os will not be dropped,
unless timeouts are present in the system, the application can
still not meet its intensified performance requirements. The
use of SSDs for storage is motivated, among others, by this
performance limitation of the HDD-based system.

An important note to make here is that our work is based
on an open-loop approach, which means that applications
are not retuned when we switch to an SSD-based system.
This potentially underestimates the benefit from the use of
SSDs, but offers a more concise comparison between the
capabilities of the storage systems, since all other parameters
remain constant. A second assumption is that, in order to use

the same models as in the HDD-based system, we expect
subsequent I/Os to be independent of each other, therefore
scaling the inter-arrival times is a valid approximation of the
workload’s access pattern when run on a faster storage sys-
tem. This assumption is justifiable for large-scale applications
where most requests come from different users. Therefore, the
intensity knob makes the application more compatible with a
high service rate storage system, while retaining the previous
spatial locality. Whether this locality and hence the model is
subject to change in a faster system is deferred to future work.

IV. CHARACTERIZATION AND VALIDATION

A. Original DC Workloads

For all our experiments we use traces from production
servers of ten popular large-scale DC applications. Messenger,
Display Ads and User Content are the SQL portions of an On-
line Messenger, an Ads Display and a Live Storage application
respectively. For each one, we study the part that maintains
the SQL database with user information. These applications
service thousands of users; therefore the data being accessed
is typically spread across most of the provisioned disks.

Email, Search and Exchange are latency-critical online ser-
vices. Email and Exchange are hosted in a much larger storage
system than Search. Search has significant spatial locality, with
some portions of the disk being frequently accessed and others
heavily underutilized. TPCC, TPCE and TPCH are large-scale
databases, part of the TPC benchmark suite [14]. Finally, D-
Process is a highly-parallelized distributed computing applica-
tion that resembles Map-Reduce [3], collecting and processing
large amounts of information on applications such as Search.
Its storage comprises of a large number of disks, partitioned
between data and logs. These applications cover the majority
of large-scale workloads in modern DCs.

B. Generating Models from Traces

The first step in order to create the workload models is
collecting real, 24-hour long (unless otherwise specified) traces
from production servers, hosting the applications previously
discussed. The I/O traces are collected from individual servers,
however due to load balancing in DCs the storage behav-
ior is similar across multiple machines [10]. The length of
the traces is sufficiently representative of an application’s
behavior, given the self-similarity of access patterns in DC
workloads [10]. The traces are collected using ETW [5], which
aside from information on I/O features (block size, type of
request, etc.), tracks the file name, thread id and values of
timestamps for each storage access. Having these traces, we
create state-diagram models with different number of levels.
The models are created by clustering I/Os in states based
on their spatial locality and then categorizing them based on
size, type (read/write) and randomness (random/sequential).
Each distinct I/O category becomes a different transition and
based on the number of I/Os that belong to each transition we
calculate its inter-arrival time and probability. These models
are then used to create the synthetic workloads.
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Fig. 4: Throughput Comparison between Original and Synthetic workloads for the 10 applications.

C. DC Application Characterization

We previously described a way to model the I/O character-
istics of large-scale DC applications. Here we perform an in-
depth per-thread characterization of the ten applications based
on this model and provide insights on their behavior. To the
best of our knowledge no such per-thread, storage activity cate-
gorization and characterization has been previously performed
for DC applications. We separate the storage traces per-thread
and define different thread types for each application based
on activity fluctuation, intensity (I/O rate) and functionality of
the thread (Data or Log - where applicable). The different
thread types are shown in Table II. In Table III we show
the per-thread storage characterization for one online service
(Exchange), one SQL-based application (Messenger), and one
of the TPC benchmarks (TPCE). We show the fluctuation for
the aggregate workload and each thread type over the entire
tracing period, as well as the I/O features in terms of aver-
age block size, inter-arrival time, read:write ratio, sequential
I/Os and introduce here the study of spatial locality. Spatial
locality is estimated using one-level models, where each state
corresponds to 25% of the machine’s storage. The third to last
column denotes the thread weight of the individual thread and
of the entire thread type. We also show average performance
metrics (throughput and latency). Examining Exchange reveals
that the majority of storage activity comes from few, very I/O
intensive threads (Data #0), while threads with no fluctuation,
or low activity account for a considerably lower portion of the
total throughput. Exchange is random, write I/O-dominated,
while studying its spatial locality reveals that most accesses
happen in the first half of the provisioned storage.
Email and Search and Exchange have similar behavior in terms
of thread type classification and per-thread storage activity.
Similarly, all the SQL applications (Messenger, Display Ads,
User Content and D-Process) experience high resemblance in
their storage activity. Finally, the I/O behavior of TPCC is very
close to that of TPCE, with the DSS TPCH slightly deviating
in terms of number of threads and intensity of storage activity.

D. Validation

Validating the accuracy of the model and the tool is neces-
sary in order to ensure that original and synthetic workloads

Thread Type Functionality Intensity Fluctuation
Data #0 Data High High
Data #1 Data High Low
Data #2 Data Low High
Data #3 Data Low Low
Log #4 Log High Low
Log #5 Log Low High

TABLE II: Per-Thread Classification for the ten examined applications
based on query type, intensity of storage activity and fluctuation in the intensity
of I/O requests.

are similar in their storage activity. Apart from that, we want
to identify the optimal level of detail for each application. We
perform the following steps:

1) Collect traces from production servers
2) Create workload models with a configurable number of

levels
3) Run the synthetic workload and collect the new trace
4) Compare I/O characteristics and performance metrics

between the original and synthetic storage workload.
For the validation experiments we use a server provisioned for
SQL applications, like Messenger and User Content, with 8
cores, 5 physical volumes, 10 disk partitions and a total of
2.3TB of purely HDD storage.

We maintain the configuration of the storage system the
synthetic trace is replayed on, as close as possible to that of
the original system by performing specific I/O requests in the
appropriate disk partitions. For the SQL-based workloads, for
example, Log I/Os are replayed in the Log partition while SQL
queries are replayed in the data partition. For the remaining
applications, the system varies in the real DC (Search and
D-Process run on striped four-disk SATA systems); however,
throughput does not greatly deviate from its expected value.
Although this result might seem unexpected, for an incorrectly
provisioned system, these applications have relatively low I/O
throughput (IOPS) that is easily satisfied through a system
engineered for SQL. Although the percentile difference is
higher for these two applications, the absolute number of IOPS
remains reasonably low.

For each one of the ten applications we evaluate the
similarities in the features of the I/O requests (block size,
rd/wr, rnd/seq, inter-arrival time and thread weight) as well



Workload Thread Fluctuation Rd:Wr %Seq. Avg. Int. Avg. Req. Spatial Locality Th W Avg Avg Latency
Type Ratio I/Os Time (ms) Size (KB) St1 St2 St3 St4 (one/type) IOPS (ms)

E
xc

ha
ng

e
(6

h)

Total
1:2.64 13.74 16.31 16.71 42.3 55.8 1.9 0.1 1.00/1.00 134.0 3.65

R 1 2.31 55.67 18.31 35.2 60.4 4.3 0.0 0.27 36.81 5.85
W 2.64 22.67 28.65 12.41 45.3 54.5 0.1 0.1 0.73 97.19 0.48

Data #0
1:2 2.1 33.42 8.2 42.1 57.4 0.5 0.0 0.38/0.69 51.18 3.89

R 1 1.3 68.43 8.2 38.1 59.8 3.1 0.0 0.13 18.36 5.19
W 2 2.8 44.27 8.2 48.9 50.1 1.0 0.0 0.26 34.12 0.48

Data #1
3.95:1 11.76 178.5 10.70 47.6 50.1 2.3 0.0 0.041/0.12 5.54 4.12

R 3.95 2.1 238.5 12.4 41.1 58.1 0.8 0.0 0.033 4.432 5.95
W 1 17.85 498.7 4.00 31.9 48.7 19.4 0.0 0.008 1.108 0.46

Data #2
1:100 12.7 706.5 4.00 72.4 27.4 0.0 0.2 2E-3/0.13 0.32 0.50

R 0 - - - - - - - 0 0 -
W 100 12.7 706.5 4.01 72.4 27.4 0.0 0.2 2E-3 0.32 0.49

Data #3
2.44:1 13.3 2836.6 48.2 21.0 68.8 10.2 0.0 2E-4/0.04 0.018 3.89

R 2.44 3.5 4676.3 65.5 43.0 58.4 2.6 0.1 14E-5 0.013 5.16
W 1 13.7 3380.2 16.0 0.0 78.9 21.1 0.0 58E-6 5.2E-3 0.46

M
es

se
ng

er
(6

h)

Total
2.8:1 9.32 4.63 9.17 31.5 22.8 45.5 0.2 1.00/1.00 255.14 8.09

R 2.8 7.32 6.89 8.46 31.0 38.6 30.8 0.2 0.737 194.02 10.01
W 1 11.36 16.43 11.47 32.6 10.8 56.7 0.2 0.263 69.28 3.43

Data #0
1.8:1 11.36 53.9 4.85 31.6 32.4 36.0 0.0 0.052/0.42 13.8 9.36

R 1.8 9.43 81.22 8.10 51.5 10.1 38.4 0.0 0.643 8.87 11.84
W 1 12.36 99.38 1.00 22.9 42.7 34.4 0.0 0.357 4.93 4.62

Data #1
3.35:1 5.36 112.34 8.96 65.8 21.9 12.3 0.0 0.021/0.27 5.53 9.83

R 3.35 4.26 134.56 5.36 71.8 19.6 10.6 0.0 0.016 4.25 10.83
W 1 7.32 178.98 11.48 43.8 30.8 25.4 0.0 0.005 1.27 4.47

Data #2
1:2.1 13.67 456.32 14.56 43.5 36.6 19.0 1.9 0.004/0.13 1.00 8.48

R 1 8.42 731.68 10.01 41.2 23.8 35.6 0.5 0.0012 0.322 10.01
W 2.1 13.65 531.11 18.86 46.3 41.8 8.8 3.1 0.0027 0.678 4.86

Data #3
10.5:1 10.80 483.12 8.98 43.5 38.9 17.6 0.0 0.004/0.18 1.00 8.77

R 10.5 8.78 493.15 7.43 48.9 31.5 19.6 0.0 0.0036 0.913 9.39
W 1 14.56 1015.61 11.48 35.3 56.5 8.2 0.0 3.5E-4 0.087 3.89

Log #4
1:99 12.15 77.1 16.5 9.0 61.9 22.1 6.0 3E-4/5E-3 0.079 1.31

R 1 8.49 1014.6 4.00 79.0 21.0 0.0 0.0 3E-6 8E-5 10.83
W 99 13.17 68.9 18.20 7.5 63.7 22.8 6.0 3E-5 0.078 0.46

Log #5
1:100 12.89 137.8 2.80 30.8 60.8 8.4 0.0 2E-5/4E-4 0.005 0.51

R 0 - - - - - - - 0 0 -
W 100 12.89 137.8 2.80 30.8 60.8 8.4 0.0 2E-5 0.005 0.51

T
PC

E
(1

1m
in

)

Total
10.5:1 8.15 0.48 8.41 89.8 8.4 1.7 0.3 1.00/1.00 24,694 5.55

R 10.5 6.04 0.59 8.02 92.5 5.4 2.1 0 0.913 22,546 6.01
W 1 23.75 6.89 14.68 56.0 26.9 15 2.1 0.087 2,148 0.69

Data #0
12.5 16.3 2.18 8.02 91.0 8.0 0.2 0.8 0.048/0.43 1,172 5.67

R 12.5 11.65 2.37 8.02 90.8 8 0.4 0.7 0.044 1,086 6.13
W 1 50 12.68 8.01 92 0 0 8 0.004 86 0.89

Data #1
7:1 20.6 3.25 6.1 92.4 7.4 0.2 0 0.077/0.30 1,897 4.63

R 7 15.3 3.81 3.8 96.0 4.0 0 0 0.067 1,659 5.35
W 1 37.9 12.89 16.0 87.7 10 2.3 0 0.009 238 0.47

Data #3
70.4:1 15.5 12.32 8.00 91.2 6.2 2.4 0.2 0.035/0.25 859.3 5.35

R 70.4 15.6 12.46 8.00 90.6 7.2 2.4 0.1 0.034 847.3 5.41
W 1 7.1 287.3 4.01 99 0 0 1 0.0005 12.0 0.65

Log #4
1:99 11.75 9.09 2.05 88.8 10 1.0 0.3 5E-4/3E-3 12.37 0.48

R 1 0.01 909.14 0.5 76 16.3 7.4 0.3 5E-6 0.12 5.63
W 99 11.75 9.08 2.05 88.9 11 0.1 0 5E-4 12.25 0.47

Log #5
1:100 1.42 77.1 2.10 89.0 11.0 0 0 2E-5/2E-4 0.54 0.56

R 0 - - - - - - - 0 0 -
W 100 1.42 77.1 2.10 89.0 11.0 0 0 2.2E-5 0.54 0.56

TABLE III: Per-Thread Characterization for one Online Service (Exchange), one SQL-based application (Messenger), and one of the TPC benchmarks
(TPCE). From left to right we show the fluctuation of storage activity, the I/O features in terms of rd:wr ratio, percentage of Seq. I/Os, average block size
and inter-arrival time and spatial locality, as well as average performance metrics, in terms of throughput and latency for each thread type.

Metrics Original Workload Synthetic Workload Deviation

M
es

se
ng

er

Read:Write Ratio 2.8:1 2.8:1 0%
% of Random I/Os 90.68% 89.43% -1.38%

Block Size Distribution 8K(87%) 64K(7.4%) 8K(88%) 64K(7.8%) 0.1%-1%1K(1.6%) 1K(1.7%)

Thread Weights Distribution T1 (19%) T2 (11.6%) T1 (19%) T2 (11.68%) 0% - 0.05%T3 (1.6%) T3 (1.6%)
Average Inter-Arrival Time 4.63ms 4.78ms 1.02%

Throughput (IOPS) 255.14 263.27 3.1%
Average Latency 8.09ms 8.48ms 4.8%

TABLE IV: I/O Features - Performance Metrics Validation for Messenger.
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Fig. 5: Validation of Storage Activity Fluctuation over 24h (Messenger).

as the performance metrics (throughput and latency) of the
synthetic applications as opposed to the original ones. As far
as the proportion of accesses is concerned, we verify that
thread weights are satisfied with less than 0.05% deviation
from their original values. Table IV shows the comparison
for these metrics between original and synthetic workload
for Messenger. The results are similar for the remaining
applications. In all cases the deviation for the I/O features
between original and synthetic load is less than 5%. Similarly
for the performance metrics the deviation is at most 6.7% and
on average 3.38%. Figure 4 shows the throughput comparison
between original and synthetic load for all applications. The
difference in IOPS is always less than 5%, verifying the
accuracy of the modeling and generation process. Furthermore,
in order to ensure the consistency of our results, we calculate
the variance between different runs of the same synthetic
workload and guarantee a difference in throughput less than
1% in all cases.

Figure 4 also plots the optimal number of levels per
application, which is the one for which the synthetic trace
resembles the original workload best. As optimal granularity
we define the first number of levels for which the performance
metrics stabilize (less than 2% difference in IOPS). That way,
we convey the best possible accuracy with the least necessary
model complexity. This methodology allows for a configurable
level of detail in the model of each application. Figure 6
shows how the throughput changes for each application for
an increasing number of levels. In most cases one to three
levels are sufficient for the I/O characteristics to stabilize.
Finally, we verify the resemblance in the fluctuation of storage
activity between original and synthetic workloads. We per-
form a sensitivity study on the granularity at which the I/O
request intensity changes, to choose the interval over which
we calculate inter-arrival times. We observe that within a 30-
minute period there is no significant fluctuation in the storage
activity for the examined applications. Figure 5 shows the
resemblance in storage activity fluctuation between the original
and synthetic application for Messenger. The results are similar
for the other applications as well. In all cases, peaks and
troughs coincide for the two workloads, verifying that the
activity fluctuation requirements are met.

E. Comparison with IOMeter

IOMeter is the most well-known open-source workload gen-
erator [6]. Although it offers many capabilities as far as access
characteristics are concerned, it has limited information on the
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Fig. 6: Throughput for increasing number of levels.

spatial locality of I/Os, making it unsuitable for several DC
storage studies. Furthermore, IOMeter implements outstanding
I/Os but cannot represent inter-arrival times, which seriously
limits its intensity scaling capabilities. Finally, it does not
allow specific file accesses, which as will be seen in Section
VI.B, would make it impractical to evaluate the benefits of
defragmentation. Table V summarizes the differences between
the features supported by the two tools.

In this Section we compare the performance characteristics
of IOMeter and DiskSpd. For the purpose of this comparison
no change is conducted in IOMeter, and the parameters for the
tests are defined using the tool’s default knobs. We perform
identical tests using both tools and quantify the difference in
throughput and latency. The table below (Table VI) shows
how the tools behave in a series of simple access patterns
with the exact same parameters. All tests are run for 30
seconds, performing I/O requests to a simple file. In the
interest of clarity, we do not demonstrate all possible parameter
configurations, but some representative examples. Note that no
notion of spatial locality is introduced in these simple tests.
From the results we observe that both tools behave similarly
with a maximum throughput deviation of 3.4%.
The main difference in the two tools becomes evident when
introducing the notion of spatial locality. To demonstrate that
DiskSpd takes locality into account while IOMeter does not,
we use an optimization technique that will be presented in
more detail in the following section (Section VI.A). SSD
caching takes advantage of frequently-accessed blocks, and
thus improves performance by avoiding accessing the disk
often. If a tool takes into consideration spatial and temporal
locality we expect an improvement in performance when the
synthetic trace is run using SSD caches. We run the synthetic
traces for the ten applications and the corresponding I/O tests
that best resemble their behavior using IOMeter. No notion
of spatial locality is incorporated in the latter. Figure 7 shows
how performance changes as we progressively add SSDs to
the system for each of the workloads. The important point in
these figures is not the precise speedup but the significantly
different behavior of the tools. In all cases it becomes evident
that IOMeter does not reflect the spatial and temporal locality
of the original access pattern. For most applications there is no
speedup for an increasing number of SSDs, due to incorrect
caching of blocks, and for those that a speedup exists it is
inconsistent with what would have been expected as caching
becomes more intense (more SSDs - better speedup).
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Fig. 7: IOMeter vs DiskSpd Speedup Comparison for (a) Messenger, (b) Email, (c) Search, (d) D-Process, (e) User Content (f) Display Ads (g) TPCC, (h)
TPCE, (i) TPCH and (j) Exchange. The results for DiskSpd confirm the expected impact of SSD caching on workload performance. On the other hand, when
the workloads are run using IOMeter there is either no performance speedup (e.g. Messenger) or inconsistent speedup (e.g. User Content) with an increasing
number of SSD caches.

Features IOMeter DiskSpd
Inter-Arrival Times No Yes(Static or Distributions)
Intensity Knob No Yes
Spatial Locality No Yes
Temporal Locality No Yes
Trace Replay No Yes
Granular I/O Load Detail No Yes
Individual File Accesses No Yes

TABLE V: IOMeter vs DiskSpd Features Comparison

Test Configuration IOMeter DiskSpd
(IOPS) (IOPS)

4K Int. Time 10ms Rd Seq 97.99 101.33
16K Int. Time 1ms Rd Seq 949.34 933.69

64K Int. Time 10ms Wr Seq 96.59 95.41
64K Int. Time 10ms Rd Rnd 86.99 84.32

TABLE VI: IOMeter vs DiskSpd Comparison

V. USE CASES

One of the main benefits from using a modeling and
generation tool for DC workloads is enabling storage studies,
which would otherwise require access to application code or
full application deployment. In this section we evaluate two
possible use cases for the tool: SSD caching and defragmen-
tation. Both are spatial and temporal locality-dependent, and
have been unexplored using workload generation tools.

A. SSD caching

Designing an efficient storage system configuration for
widely-deployed applications is a great challenge and in terms
of proper provisioning, a field that separates high-quality sys-
tems from the norm. Studying the spatial locality of the ten DC
applications reveals that for most of them, I/Os are aggregated
in a small LBN range. This motivates incorporating SSDs
to improve performance. Estimating performance, however,
is not easy since writes in SSDs are highly unpredictable,
and often as slow as disk, which makes performance gains
greatly dependent on the I/O access features. This impels using
modeling and characterization to evaluate the potential benefit.

Workload Spatial Locality - Level 1
State1 State2 State3 State4

TPCH 92.7% 6.2% 1.3% 0.0%
TPCE 89.8% 8.4% 1.7% 0.3%

D-Process 73.3% 18.8% 0.0% 0.0%

TABLE VII: Spatial Locality (SSD-caching study). Studying the spatial
locality for the three applications with the highest benefit from SSD caching
reveals that they have the highest I/O aggregation. This justifies the significant
speedups from introducing SSD caching in the system.

Due to the fact that we use an open-loop approach, applica-
tions are not retuned when switching to the SSD-based system.
The experiments are performed by running the previous mod-
els on an SQL-provisioned server with 4 SSD caches (8GB
each) [1], which we progressively turn on.

Figure 7 shows the storage speedup when going from no
SSD caches on (left bar) to all 4 SSD caches on (right bar). We
observe that especially for the I/O intensive TPCH, TPCE and
D-Process, the performance benefit from using a large number
of SSDs is significant (31% on average across all workloads
for 4 SSDs and 79% maximum for TPCH). Studying the
clustering of accesses in the corresponding models reveals
that these three applications have the highest aggregation of
I/O requests (Table VII). Increasing the number of levels in
this case, confines the accessed LBNs in a smaller range, thus
better caching frequently-accessed blocks. An important note
is that in Figure 7, we refer to storage speedup and not speedup
for the entire application. These workloads are not necessarily
limited by storage but their performance improvement, and
the expected improvement in efficiency, are strong incentives
towards the use of SSD caching nonetheless.

B. Defragmentation

Most DC applications experience high levels of fragmenta-
tion, as user-requests get accumulated over time, with Random
I/Os often exceeding 80%. This motivates the use of defrag-
mentation to improve performance and efficiency. From the
information provided by ETW [5] we can extract the name
of the file for each I/O access, estimate fragmentation levels,



Workload Read Write Before After
Rnd Seq Rnd Seq

Messenger 73.7% 26.3% 90.7% 9.3% 63.2% 35.7%
Email 52.8% 45.2% 84.5% 13.7% 61.6% 33.7%

Search 49.8% 45.1% 87.7% 8.5% 70.9% 24.5%
UserContent 58.3% 39.4% 93.1% 5.5% 73.2% 25.0%

D-Process 30.1% 68.8% 73.2% 26.8% 45.4% 54.4%
DisplayAds 96.5% 2.5% 93.5% 4.3% 78.5% 19.2%

TPCC 68.8% 31.2% 97.2% 2.8% 71.1% 29.9%
TPCE 91.3% 8.7% 91.9% 8.2% 77.7% 22.4%
TPCH 96.7% 3.3% 65.5% 35.5% 52.8% 47.2%

Exchange 32.0% 68.1% 83.2% 16.8% 68.1% 31.9%

TABLE VIII: Rnd/Seq Characteristics before and after defragmentation

and perform a block rearrangement to improve the sequential
characteristics as shown in Figure 8. Estimating performance
after defragmentation, using the models, can act as an offline
method to identify the benefits of defragmentation, as well
as the optimal moment to perform defragmentation, without
having to examine the entire application. These are usually
latency-critical applications that cannot afford the overhead of
a continuous online evaluation.

In most cases, the percentage of sequential accesses in-
creases by 20% (Table VIII), which corresponds to a storage
speedup of 8-45% as shown in Figure 9. This result implies
that clustering I/Os is more beneficial than taking advantage
of parallel spindles, due to faster completion of sequential
accesses. Two applications that benefit from this are D-Process
and Email, which have the highest write-to-read probabilities.
Since these applications are random-write dominated, improv-
ing their sequential characteristics allows better utilization of
the full disk rotation. Defragmentation also benefits the TPC
benchmarks that access continuous entries in database tables.

A comparison between the benefits of SSD caching and
defragmentation shows that for some workloads (Email and
Display Ads) defragmentation offers better speedups without
increasing the cost of the system. The decision on which
method is most beneficial at a certain time is up to the storage
system designer, given the application and system of interest.

VI. FUTURE WORK AND CONCLUSIONS

In this work we have proposed a framework for model-
ing, characterization and regeneration of large-scale storage
workloads. We have extended a probabilistic model to capture
granular information on a workload’s I/O pattern and imple-
mented a tool that recreates DC workloads with high fidelity.
This tool can be used for a wide spectrum of studies for large-
scale systems, without the need to access DC application code
or full application deployment.

In contrast with previous work, we take into account spatial
and temporal locality of I/O accesses, a critical feature for
DC applications. We have conducted detailed characterization
of the storage activity of DC applications and performed
extensive validation of the generated I/O traces against ten
real workloads. Finally, we have evaluated two possible uses
for the tool, SSD caching and defragmentation, and quantified
the improvement in performance. We believe that, compared to
previously available workload generators, this framework can

(a) 

(b) 

(c) 

Fig. 8: File Mapping before (a), during (b) and after (c) defragmentation.
Blocks of different colors correspond to different files.
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Fig. 9: Storage Speedup from Defragmentation

be used to make confident design decisions for DC systems.
The main focus of our future work is the development of a

model that aggregates all different parts of the system and a
tool that recreates a synthetic load for complete DC applica-
tions, with possible applications in virtualization, application
consolidation and DC performance and power modeling.
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