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Abstract—Suboptimal storage design has significant cost and power impact in large-scale datacenters (DCs). Performance, power and cost-
optimized systems require deep understanding of target workloads, and mechanisms to effectively model different storage design choices.
Traditional benchmarking is invalid in cloud data-stores, representative storage profiles are hard to obtain, while replaying applications in different
storage configurations is impractical both in cost and time. Despite these issues, current workload generators are not able to reproduce key
aspects of real application patterns (e.g., spatial/temporal locality, I/O intensity).
In this paper, we propose a modeling and generation framework for large-scale storage applications. As part of this framework we use a state
diagram-based storage model, extend it to a hierarchical representation, and implement a tool that consistently recreates DC application I/O
loads. We present the principal features of the framework that allow accurate modeling and generation of storage workloads, and the validation
process performed against ten original DC application traces. Finally, we explore two practical applications of this methodology: SSD caching and
defragmentation benefits on enterprise storage. Since knowledge of the workload’s spatial and temporal locality is necessary to model these use
cases, our framework was instrumental in quantifying their performance benefits. The proposed methodology provides detailed understanding of
the storage activity of large-scale applications, and enables a wide spectrum of storage studies, without the requirement to access application
code and full application deployment.

Index Terms—Modeling of computer architecture, Super (very large) computers, Mass storage, Modeling techniques.
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1 INTRODUCTION

A S cloud data-stores and social networking emerge, user
data is increasingly being stored in large-capacity and

high-performance storage systems. These systems account
for a significant portion of the total cost of ownership (TCO)
of a datacenter (DC) [7], [10]. Specifically, for online services,
data retrieval is often the bottleneck to application perfor-
mance [9], [10], making efficient storage provisioning a first-
order design constraint.

The main challenges for large-scale online services are
three-fold: first, they cannot be approximated by single ma-
chine benchmarking, due to user behavior patterns, second,
privacy concerns make source code, and datasets unavailable
to storage system designers, and third, replaying applications
in all possible system configurations is highly impractical.
It is hence imperative to invest in frameworks that enable
extensive workload analysis, modeling and generation. This
increases the appeal of a representative model that captures
key aspects of the workload’s storage profile, and a tool that
reproduces this storage behavior via a synthetic load. This
framework enables large-scale storage studies, decoupled
from the requirement to access application code.

Despite the merit in this effort, previous work on I/O
workload generation [2], [6], [11], [12] lacks the ability to
capture the spatial and temporal locality of I/O accesses. In
this work, we provide a framework for research on large-
scale storage systems that addresses these issues. This infras-
tructure includes probabilistic, state diagram-based models
that capture information of configurable granularity on the
workload’s access patterns. The models are developed from
production traces of real DC applications based on previous
work [9]. We extend these models to a granular, hierarchical
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representation to identify the optimal level of detail for each
application. Furthermore, we design a tool that recognizes
these models and recreates synthetic access patterns that
closely match those of the original applications. We perform
extensive validation of our methodology to ensure resem-
blance in both I/O characteristics and performance metrics.

We use our methodology (model and tool) to evaluate two
important DC storage design challenges. First, we explore
the applicability of Solid State Devices (SSD) caching in
DC workloads. Using the modeling framework, we show
that for most of the examined DC applications, SSD caching
offers significant storage system speedup without application
change (31% on average for a 32GB SSD cache). In the second
use case, we evaluate defragmentation for DC storage. We
observe that, over a period of time, user data gets accumu-
lated and files become highly fragmented. Leveraging tracing
information [5], we rearrange blocks on disk to improve the
workloads’ sequential characteristics. Using our framework,
we show that defragmentation offers a significant boost in
performance (18% on average), in some cases greater than
incorporating SSDs.

Succinctly, the main contributions of this work are:
• A concise statistical model that accurately captures the

I/O access patterns of large-scale applications, including
their locality, and inter-arrival times. It is also hier-
archical, which allows configurable level of detail to
accommodate the features of each application.

• A tool that recognizes this model, and recreates synthetic
access patterns with same I/O characteristics and perfor-
mance metrics as in the original application. No previous
tool (e.g., IOMeter) simulates spatial and temporal I/O
locality of DC workloads.

• This methodology enables storage system studies that
were previously impossible without full application
deployment, and without access to real application
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Fig. 1. Hierarchical (Two level) State Diagram Model

code. We demonstrate the applicability of our tool in
evaluating SSD caching and defragmentation. These
locality-based studies have been unexplored due to lack
of a tool that allowed their evaluation.

In the remainder of the paper we present: the modeling
and generation framework, the model’s validation and a
comparison with a popular workload generator (IOMeter)
(Section 2), the tool’s applicability to DC storage challenges
(Section 3), as well as topics for future work (Section 4).

2 MODELING AND GENERATION PROCESS

In this Section we present the modeling and generation
process implemented in our framework. More details on this,
as well as extensive validation results can be found in [3].

2.1 State Diagram Model
Our approach requires a model that captures the I/O features
and locality of storage activity, i.e., clusters accesses based
on their spatial locality. For this, we use the Markov Chain
representation proposed by Sankar et al. [9]. The models are
trained based on real storage traces from production servers
of a large-scale DC deployment, and capture I/O accesses in
one or multiple servers, and from one or multiple users.

- Basic Model: According to the model, states correspond
to ranges of logical blocks on disk (LBNs) and transitions
represent the probabilities of switching between LBN ranges.
Each transition is characterized by a set of features that reflect
the workload’s I/O behavior and consist of the block size,
randomness, type of I/O (read, write) and inter-arrival time
between subsequent requests. In its simplest form, the model
consists of a number of states, e.g., four states, each of which
corresponds to 25% of the total LBNs. The model works as
follows (highlighted part of Figure 1): If an I/O corresponds
to State 1, there is an 11.8% probability that the next I/O
will be a 4K read, random access with an inter-arrival time
of 3ms that corresponds to State 2.

- Hierarchical Model: To convey information of finer granu-
larity, we have extended the previous model to a hierarchical
representation. Figure 1 demonstrates one such model with
two levels. For this example, each state in the one level
diagram is subdivided in four states and becomes a new state
diagram. The two-level diagram has 16 states.

Perhaps counter-intuitively, the number of transitions in
the new diagram is not 256, but 76. As shown in Figure 1,
level-two (fine-grained) transitions only exist within large
states, but not across them. This means that a transition

TABLE 1
Scalability of the model in terms of state and transition count.

Levels State Count Transition Count
Hierarchical Model Flat Model

1 4 16 16
2 16 76 256
3 64 316 4096
4 256 1276 65536
5 1024 5116 1048576

10 1048576 5242876 109951162776

happens either between two major states (State 1 to State
2), or between two minor states (State 31 to State 33). The
transition count for a number of levels is given by

4l−116 +

l−1∑
i=1

4i−112 (1)

while for the flat model that explores all transitions, it is
16l, where l is the number of levels. Reducing the number
of transitions without sacrificing information happens in
two steps: (i) we choose the number of states per level
that minimizes the inter-state transitions, (ii) we choose the
optimal number of levels per application. This way spatial
locality is mostly confined within states.

Table 1 shows how the number of states and transi-
tions scales for up to 10 levels. For the flat representation
the number of transitions increases exponentially with the
number of states, while the hierarchical model has a linear
relation with state count. This choice does not cancel the
value of a flat model, but rather proposes that a hierarchical
model is just as beneficial without making the number of
transitions intractable. Comparing the throughput of models
constructed with the hierarchical and the flat representations
shows less than 5% difference in throughput. The proposed
model structure guarantees scalability even for applications
that require many levels.
2.2 Generation Tool Design - DiskSpd
The model, previously discussed, is the first step in recreating
accurate DC I/O loads. The second step, involves a tool that
recognizes the model and generates storage workloads with
high fidelity, using some configuration knobs.

For this purpose we use DiskSpd, a workload generator
[4], which performs read and/or write I/Os in burst mode on
either disks or files, given the I/Os’ block size, randomness,
and initial block offset. The former consist of a subset of the
most relevant features of DiskSpd for the current study.
The main features we introduce for accurate generation are:

1) The ability to issue I/Os with specified inter-arrival
times, both static and following time distributions.

2) The ability to preserve the spatial and temporal locality
of I/O accesses, as well as the features and weights of
each transition in the state diagram.

3) The ability to modify the intensity of the generated I/Os
by scaling the inter-arrival time of independent I/O
requests. This enables high performance storage systems
evaluations (e.g., SSDs).

4) The ability to reflect the storage activity fluctuations of
the original application by changing the intensity of I/O
requests (i.e., inter-arrival times) over short periods of
time. Essentially each model is composed by multiple
models of different intensities that capture the transient
features of the I/O requests.
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TABLE 2
I/O features - Performance metrics validation for Messenger.

Metrics Original Synthetic Deviation
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0%-0.05%T2 (11.6%) T2 (11.68%)
T3 (1.6%) T3 (1.6%)

Avg Int-Arr. Time 4.63ms 4.78ms 1.02%
Throughput 255.14 263.27 3.1%
Avg Latency 8.09ms 8.48ms 4.8%
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Fig. 2. Throughput comparison between original and synthetic workloads
for the 10 applications.

2.3 Validation

Validating the accuracy of the framework is necessary to
ensure that original and synthetic workloads are similar in
their storage activity, and to identify the optimal level of
detail for each application. We perform the following steps:

1) Collect traces from production servers
2) Create models with a configurable number of levels
3) Run the synthetic workload and collect new trace
4) Compare I/O characteristics and performance metrics

between original and synthetic workload.
We use ten DC applications, which include SQL-based,
online services and computationally intensive workloads.
Experiments are run on an SQL-provisioned server, with 8
cores, 10 disk partitions and a total of 2.3TB of HDD storage.

For each of the ten applications we evaluate the similarities
in terms of I/O features (block size, rd/wr, rnd/seq, inter-
arrival time and thread weight) and performance metrics
(throughput (IOPS) and latency) between original and syn-
thetic applications. We verify that thread weights are satisfied
with less than 0.05% deviation from their original values.
Table 2 shows the comparison for these metrics for Messen-
ger. The results are similar for the remaining applications.
In all cases the deviation in I/O features is less than 5%,
and for performance metrics at most 6.7%, and on average
3.38%. Figure 2 shows the throughput comparison between
original and synthetic load for all applications. The difference
in IOPS is always less than 5%, verifying the accuracy
of the modeling and generation process. Furthermore, in
order to ensure the consistency of our results, we verify
that throughput variance between different runs of the same
synthetic workload is less than 1%.

Figure 2 also plots the optimal number of levels per
application, which is the one for which the synthetic trace
resembles the original workload best. We define it as the first

number of levels for which the performance metrics stabilize
(less than 2% difference in IOPS). This way, we convey
the best possible accuracy with the least necessary model
complexity. In most cases, one to three levels are sufficient
for the I/O characteristics to stabilize. Finally, we verify the
resemblance of storage activity fluctuation between original
and synthetic workloads. We capture activity fluctuations by
creating multiple models, over 30-minute time intervals, and
switching between these models when generating the syn-
thetic workload. We observe that no significant fluctuations
in storage activity occur at a granularity less than 30-minutes,
for the examined applications.

2.4 Comparison with IOMeter
IOMeter is the most well-known open-source workload gen-
erator [6]. It offers many capabilities as far as access features
are concerned, but has limited information on I/O spatial
locality, making it unsuitable for several DC storage studies.
Furthermore, IOMeter implements outstanding I/Os, but
cannot represent inter-arrival times, which seriously inhibits
its intensity scaling capabilities. Finally, it does not allow
specific file accesses, which would make it impractical to
evaluate the benefits of defragmentation (see Section 3.2).

Here we compare the performance (throughput and la-
tency) of IOMeter and DiskSpd. For this purpose no change
to capture I/O locality is conducted in IOMeter, and the
parameters for the tests are defined using the tool’s default
knobs. Note that no notion of spatial locality is introduced
in these simple tests. From the results we observe that both
tools behave similarly with a maximum throughput devia-
tion of 3.4%. Their main difference becomes evident when
introducing the notion of spatial locality. To demonstrate
that DiskSpd takes locality into account, while IOMeter does
not, we use an optimization technique that is presented in
more detail in Section 3.1. SSD caching takes advantage of
frequently-accessed blocks, and improves performance by
avoiding accessing the disk often. If a tool takes locality into
consideration, we expect a performance improvement when
the synthetic workload is run using SSD caches. We compare
the performance of the ten synthetic traces run with DiskSpd
and the corresponding I/O tests that best resemble them
using IOMeter. No notion of spatial locality is incorporated
in the latter. Figure 3 shows how performance changes as
we progressively add SSDs to the system for Messenger and
User Content. The important point in these figures is not the
precise speedup but the significantly different behavior of the
tools. It becomes evident that IOMeter does not reflect the
spatial and temporal locality of the original access pattern.
There either is no speedup, as is the case for Messenger, due
to incorrect block caching, or there is inconsistent speedup
(User Content) to what would have been expected as caching
becomes more intense (more SSDs - better speedup).

3 USE CASES

One of the main benefits from using the proposed framework
is enabling storage studies, which would otherwise require
access to application code or full application deployment.
Here we evaluate two possible use cases for the tool: SSD
caching and defragmentation. Both are locality-dependent,
and have been unexplored using workload generation tools.
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3.1 SSD caching
Studying the spatial locality of the ten applications reveals
that for most of them, I/Os are aggregated in a small
LBN range. This motivates incorporating SSDs to improve
performance. Estimating performance, however, is not easy,
since writes in SSDs are highly unpredictable, and often as
slow as disk. Here we use the previous models (open-loop
approach) to predict speedup. Experiments are performed on
an SQL-provisioned server with 4 SSD caches (8GB each) [1].

Figure 4 shows the storage speedup when all 4 SSD
caches are on for the examined applications. We observe that
especially for the I/O intensive TPCH, TPCE and D-Process,
the performance benefit is significant (31% on average across
all workloads for 4 SSDs, and 79% maximum for TPCH).
Studying the clustering of accesses in the corresponding
models reveals that these three applications have the highest
I/O aggregation. More levels offer better speedup approxi-
mation. An important note is that in Figure 4, we refer to
storage speedup and not speedup for the entire application.
These workloads are not necessarily limited by storage but
their performance (and efficiency) improvement are strong
incentives towards the use of SSD caching nonetheless.

3.2 Defragmentation
Most DC applications experience high levels of fragmen-
tation, as user-requests get accumulated over time, with
Random I/Os often exceeding 80%. This motivates the use
of defragmentation to improve performance. From tracing [5]
we extract the name of the accessed file, estimate fragmen-
tation levels, and perform a block rearrangement to improve
the sequential characteristics. Estimating performance after
defragmentation using new models based on defragmented
traces, can act as an offline method to identify its benefits,
as well as the optimal moment to perform defragmentation.
These are usually latency-critical applications that cannot
afford the overhead of a continuous online evaluation.

In most cases, sequential I/Os increase by 20%, which
corresponds to a storage speedup of 8-45% (Figure 4). This
implies that clustering I/Os is more beneficial than taking

advantage of parallel spindles, due to faster sequential access
completion. D-Process and Email, which have high write-to-
read ratios, benefit most from defragmentation. Since these
are random-write dominated applications, improving their
sequential characteristics allows better utilization of the full
disk rotation. Defragmentation also benefits the TPC bench-
marks that access continuous entries in database tables.

Comparing SSDs and defragmentation shows that for
some workloads (e.g., Messenger, Email) defragmentation
offers better speedups without increasing the system’s cost.
The decision on which method to use is up to the storage
system designer, given the application and system of interest.

The model enables accurate performance estimations with-
out needing to deploy the optimizations in the entire DC.

4 FUTURE WORK AND CONCLUSIONS

We have proposed a framework for modeling, characteriza-
tion and regeneration of DC storage workloads. We have
extended a probabilistic model to capture granular informa-
tion on a workload’s I/O pattern and implemented a tool
that recreates DC workloads with high fidelity. This tool
can be used for a wide spectrum of studies in large-scale
systems, without requiring access to DC application code or
full application deployment.

In contrast with previous work, we take into account
I/O spatial and temporal locality, a critical feature for DC
applications. We have performed extensive validation of the
generated I/O traces against ten real large-scale applications,
and have evaluated two possible uses for the framework, and
quantified the performance improvement. We believe that,
compared to previously available workload generators, this
framework can be used to make confident design decisions
in DC systems. Our future work focuses on the development
of a model that aggregates all different system parts and a
tool that recreates a synthetic load for complete DC applica-
tions, with possible applications to virtualization, application
consolidation and DC performance and power modeling.
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