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ABSTRACT
Swarms of autonomous devices are increasing in ubiquity and size,
making the need for rethinking their hardware-software system
stack critical.

We present HiveMind, the first swarm coordination platform
that enables programmable execution of complex task workflows
between cloud and edge resources in a performant and scalable
manner. HiveMind is a software-hardware platform that includes
a domain-specific language to simplify programmability of cloud-
edge applications, a program synthesis tool to automatically explore
task placement strategies, a centralized controller that leverages
serverless computing to elastically scale cloud resources, and a
reconfigurable hardware acceleration fabric for network and remote
memory accesses.

We design and build the full end-to-end HiveMind system on
two real edge swarms comprised of drones and robotic cars. We
quantify the opportunities and challenges serverless introduces
to edge applications, as well as the trade-offs between centralized
and distributed coordination. We show that HiveMind achieves sig-
nificantly better performance predictability and battery efficiency
compared to existing centralized and decentralized platforms, while
also incurring lower network traffic. Using both real systems and
a validated simulator we show that HiveMind can scale to thou-
sands of edge devices without sacrificing performance or efficiency,
demonstrating that centralized platforms can be both scalable and
performant.
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1 INTRODUCTION
Swarms of edge devices are increasing in number and size [13,
17, 26, 31–33, 35, 36, 43, 44, 59, 61, 62, 62, 72, 75, 98, 110, 116, 119,
123, 125]. Swarms enable new applications, often with intermittent
activity [58, 70, 71, 90, 91, 96, 116, 119, 127], spanning accounting for
people in disaster zones, to monitoring crops, and navigating self-
driving vehicles. The devices themselves have low-power, modest
resources, and are prone to unreliable network connections.

As swarm sizes increase, designing a hardware-software system
stack that enables programmable and performant operation for
resources that span cloud and edge devices becomes a pressing
need. Prior work has explored both centralized [26, 33, 119] and
distributed [36, 46, 58, 90, 123] approaches. In centralized systems
all control, i.e., decision making on task allocation, as well as task
execution happens in a backend cloud infrastructure. In distributed
settings each edge device is mostly-autonomous, i.e., selects tasks to
execute, and executes them locally, only transferring its output to a
backend system. Neither approach is optimal. Centralized systems,
while they enjoy global visibility into the swarm’s state and can
leverage cloud resources, quickly hit scalability bottlenecks with
more edge devices. Distributed systems, on the other hand, scale
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Figure 1: Execution time and consumed battery for a treasure
hunt scenario where drones try to locate objects in a field for
a (top) real 16- and (bottom) simulated 1000-drone swarms.

better, but are hindered by the lack of coordination between devices,
especially when there is redundant computation, or computation
that would benefit from swarm-wide learning.

We present HiveMind, the first hardware-software system stack
for swarm coordination that effectively bridges the gap between
centralized and distributed coordination. HiveMind focuses on per-
formance predictability, resource efficiency, and programmabil-
ity. It relies on three key design components. First, it proposes
a high-level declarative programming model for users to express
the task graph of their applications, abstracting away the com-
plexity of explicitly managing cloud and edge resources. It then
uses program synthesis to explore different task placements strate-
gies between cloud and edge, transparently to the user. Second,
HiveMind uses a centralized, cloud-residing controller with global
visibility into the swarm’s state and available resources. To make
centralized coordination scalable, HiveMind leverages serverless
computing [6, 7, 12, 14, 19, 20, 77], which ties well with the inter-
mittent activity and fine-grained parallelism of edge tasks, which
do not warrant long-term resource reservations. It additionally
automates task scheduling and straggler mitigation, lowering the
bar for porting new applications to cloud-edge platforms. Third,
at the hardware level, HiveMind proposes a reconfigurable, FPGA-
based acceleration fabric for remote memory access and network-
ing between edge and cloud resources and within cloud servers.
By revisiting the entire system stack for edge swarms, HiveMind
achieves the best of centralized and distributed coordination, while
removing the burden of managing cloud-edge resources from the
user.

We build the entire end-to-end HiveMind system on a real swarm
with 16 drones with a 12-machine backend server cluster. We also
showHiveMind’s generality in terms of edge devices by also porting
it on a swarm of 14 terrestrial robots. We implement a benchmark
suite comprised of a wide spectrum of edge applications, such as
SLAM, image recognition, and weather analytics, as well as end-
to-end multi-phase scenarios, locating stationary items in an area,
and identifying the number of unique people in a field. We quan-
tify the implications of serverless for IoT applications, as well as
the trade-offs between centralized and distributed execution. Fig. 1
shows the performance and energy efficiency of HiveMind for a
representative end-to-end scenario, compared to fully centralized
and fully distributed systems. For the centralized system we show
a setting that uses serverless (FaaS) and one that uses statically
provisioned cloud resources of equal cost (IaaS). The scenario in-
volves the drones trying to locate a set of tennis balls randomly
placed in a sports field. We show results for the real 16 drones and
a simulated 1000-drone swarm, using a new, validated simulator.
In all cases, HiveMind greatly outperforms the other systems, both
in terms of performance and energy efficiency. The difference is
more dramatic for larger swarms, where centralized systems hit
scalability bottlenecks. These results are consistent across all exam-
ined applications. Finally, we show that each software-hardware
component in HiveMind is essential in achieving these benefits,
although its mechanisms can be used independently as well, e.g.,
in the event where FPGA acceleration is not available in a cloud.

2 SWARM COORDINATION DESIGN
TRADE-OFFS

We first quantify the trade-offs between centralized and distributed
approaches in swarm coordination, to identify overheads that can be
accelerated in hardware, and programmability bottlenecks that can
be addressed through better software interfaces. All experiments
are done end-to-end, on a real drone swarm, with a server cluster
as the cloud backend.

2.1 Methodology

Drones: We use a swarm of 16 programmable Parrot AR. Drones
2.0 [21], each equipped with an ARM 32-bit Cortex A8 1GHz proces-
sor running Linux 2.6.32. There are 2GB of on-board RAM, comple-
mented with a 32GB USB flash drive. Each drone has a vertical 720p
front-camera for obstacle avoidance, and the following sensors: gy-
roscope, accelerometer, thermometer, magnetometer, hygrometer,
and altitude ultrasound sensor. We additionally fit an 8MP camera
to each drone’s underside over USB, for high definition photos. Un-
less otherwise specified, drones collect 8 frames per second, at 2MB
per frame. Drones fly at a height of 4-6𝑚 and move at 4𝑚/𝑠 . Their
camera has a 92field of view (FoV), with an approximate coverage
of 6.7𝑚 × 8.75𝑚 per frame.

Cluster: We use a dedicated cluster with 12, 2-socket, 40-core
Intel servers with 128-256GB of RAM each, running Ubuntu 18.04.
Each server is connected to a 40Gbps ToR switch over 10Gbe NICs.
Servers communicate with the swarm with two 867Mbps LinkSys
AC2200 MU-MIMO wireless routers [15].
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Figure 2: The drone swarm executing (a) the first scenario where the number and location of a set of static items (tennis balls)
is determined, and (b) the second scenario, where the number of unique people in a field is determined.

Single-phase applications: We design and implement a bench-
mark suite of diverse applications, which process sensor data col-
lected on the drones. We select both resource intensive applica-
tions better suited for cloud resources, and more lightweight ser-
vices that edge devices can accommodate. These include 𝑆1: face
recognition (identify human faces using FaceNet [112]), 𝑆2: tree
recognition (identify trees using a CNN from TensorFlow’s Model
Zoo [25, 29]), 𝑆3: drone detection (detect other drones using an SVM
classifier trained for the orange tag all our drones have [5]), 𝑆4: ob-
stacle avoidance (detect obstacles in the drone’s vicinity and adjusts
course to avoid them, using the obstacle detection framework in
ardrone-autonomy [5]), 𝑆5: people deduplication (disambiguate
between faces using FaceNet [112]), 𝑆6: maze (navigate through
a walled maze using the Wall Follower algorithm [23, 52]), 𝑆7:
weather analytics (weather prediction based on temperature and
humidity levels in sensor data), 𝑆8: soil analytics (estimation of soil
hydration from images and humidity sensor), 𝑆9: text recognition
(image to text conversion of signs), and finally 𝑆10: simultaneous
localization and mapping (SLAM, using image and sensor data) [4].
We evaluate one service at a time to eliminate interference, however,
the platform supports multi-tenancy.

Multi-phase scenarios: In addition to the previous applications,
we also build two end-to-end scenarios, each with multiple phases
of computation and I/O, to examine more representative use cases
for drone swarms, shown in Fig. 2.

• Scenario A – Stationary Items: The swarm is tasked with locat-
ing 15 tennis balls placed in a baseball field. At time zero, the field
is divided equally among the drones. Routes within each region
are derived using A∗ [48], where each drone tries to minimize
the total distance traveled. In addition to collecting images, each
drone also runs an on-board obstacle avoidance engine, based
on the SVM classifier in ardrone-autonomy [5, 10] trained on
trees, people, drones, and buildings. Obstacle avoidance always
runs on-board to avoid catastrophic failures due to long network
delays with the cloud. We have ensured that it does not have a
large impact on power consumption.

• Scenario B – Moving People: The swarm needs to recognize
and count a total of 25 people on a baseball field; the number of
people is not known to the system. People are allowed to move

within the field, therefore the same person may be photographed
by multiple drones, requiring disambiguation. We implement two
versions of the person recognition model based on the Tensorflow
Detection Model Zoo [8, 25, 29], one that can run on a serverless
framework, and a native implementation for the edge. People
disambiguation is based on the FaceNet [112] face recognition
framework, which uses a CNN to learn a mapping between faces
and a compact Euclidean space, where distances correspond to
an indication of face similarity.

2.2 Network Overheads
We first examine a setting where all computation happens in the
cloud, leading to network congestion. Fig. 3a shows the fraction of
end-to-end latency corresponding to network processing, task exe-
cution, and management operations (task instantiation, scheduling,
etc.) across the ten single-tier jobs and two end-to-end scenarios.
Execution includes computation and data sharing between func-
tions. Non-shaded bars show median latency, and shaded bars tail
latency (99𝑡ℎ pctl). Across all jobs, networking accounts for at least
22% of median latency (33% on average), and a higher fraction of tail
latency. This is even more pronounced for the end-to-end scenarios,
which involve multiple phases of computation and communica-
tion between the drones and cluster. Services are not running at
max load here, so the network links are not oversubscribed. We
now examine the system’s scalability as network load increases.
Fig. 3b shows the bandwidth and tail latency for Face Recognition,
as the number of drones collecting images of higher resolution in-
creases. Tail latency remains low for fewer than 4 drones, even for
max resolution (8MP). As the number of drones increases, the net-
work saturates, and latency increases dramatically. While the max
resolution is not always required, offloading all data to the cloud
limits the number of devices the framework can reliably support,
or requires acceleration of networking processing to accommodate
larger swarms.

2.3 Centralized versus Distributed Execution
Finally, we examine the trade-offs between fully centralized exe-
cution, where all computation and data aggregation happens in
the server cluster, compared to a fully decentralized environment,
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Figure 3: (a) Latency breakdown to network, management operations (scheduling, instantiation, etc.), and cloud execution
across all single-tier tasks and multi-tier scenarios. Non-shaded bars show the median latency, and shaded bars the tail latency
(99𝑡ℎ percentile). Fig. (b) network bandwidth usage for the face recognition tasks (𝑆1).
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Figure 4: Distribution of task latency execution across the (a) ten single-tier jobs and the (b) two end-to-end scenarios for
centralized cloud execution (non shaded plots) and distributed edge execution (shaded plots). Each violin plot shows the PDF of
task latencies for that application.

where computation happens on the edge devices, and only the final
outputs are transmitted to the cloud.

To control the placement and instantiation of short-lived tasks in
the backend cloud we use Apache OpenWhisk [20], a widely-used
open-source serverless framework, and the backbone of IBM Cloud
Functions [68, 70, 71, 82, 114]. OpenWhisk instantiates functions
in Docker containers, via an HTTP request to an NGINX front-end,
which triggers the OpenWhisk Controller to check a database [2]
for authentication, and select an Invoker to instantiate the func-
tion. Applications are in a language OpenWhisk supports (Python,
node.js, Ruby, PHP, Scala, Java, Go). While the trade-offs between
centralized and distributed execution have been explored for tradi-
tional cloud environments [63, 90, 91, 115], the opportunities and
challenges serverless introduces impact prior findings. We discuss
these implications in more detail in Section 3. Each of the ten jobs
runs for 120s, repeated 10 times, and each end-to-end scenario runs
to completion, repeated 50 times.

Fig. 4a shows the task latency distribution across the ten single-
tier jobs, and Fig. 4b across the two end-to-end scenarios. For most

jobs, centralized execution achieves better and more predictable
performance than on-board execution, despite the increased over-
heads from offloading data to the cloud. The difference stems both
from the higher compute and memory capabilities of server nodes,
and from the higher concurrency serverless can exploit compared
to on-board execution.

The three exceptions are drone detection (𝑆3) and weather ana-
lytics (𝑆7), which behave comparably on the cloud and edge due to
their modest resource needs, and obstacle avoidance (𝑆4), which
achieves better performance at the edge, by avoiding data trans-
fers, and by adjusting its route in-place, instead of waiting for the
cluster to update its route if there is an obstacle. The results are
similar for the two scenarios, and more pronounced for the more
computationally-intensive Scenario B. Despite the performance
advantage of the cloud, it also greatly increases network traffic,
hurting scalability.

Beyond the performance comparison, on-board execution quickly
drains the drones’ battery, leaving the second scenario incomplete
due to several drones running out of power.
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Figure 5: The opportunities of serverless for edge jobs: (a) Task latency with fixed and serverless deployments, (b) Latency for
Face Recognition with a fluctuating load, and (c) Number of active tasks when a fraction of functions fail.

3 THE ROLE OF SERVERLESS IN EDGE
SWARMS

From the previous study, it is clear that centralized control is supe-
rior in terms of performance and resource efficiency, however, it
suffers from high network overheads and scalability bottlenecks.
To address in particular the second of these challenges, we leverage
serverless computing, a new event-driven programming framework
for services with fine-grained parallelism and intermittent activity.
We first quantify the opportunities serverless offers as the program-
ming model of the cloud backend, and then discuss its challenges.

Since in this sectionwe are exclusively interested in the trade-offs
between serverless and traditional IaaS/PaaS deployments for edge
applications, we consider performance metrics within the bounds
of the cloud system, i.e., latency is measured from the moment
sensor data arrive to the cloud until before the response is sent to
the drones. This isolates any overheads that serverless may add
from the impact of network congestion between edge and cloud.

3.1 Serverless Background
Serverless or Function-as-a-Service (FaaS) computing has recently
emerged as a cost-efficient alternative for applications with high
data-level parallelism, intermittent activity, fluctuating load, and
mostly stateless operation, for which maintaining long-running
reserved resources is inefficient [6, 7, 14, 20, 30, 38, 67, 73, 76, 77,
82, 85, 93, 95, 101, 114, 122]. Serverless functions are instantiated
in short-lived containers or VMs, last up to a few minutes, and con-
tainers are terminated shortly after the process completes, freeing
up resources. Users are charged on a per-request basis, depending
on the amount of CPU and memory time allocated.

Serverless gives cloud providers better visibility into applica-
tion characteristics, and reduces cloud overprovisioning [39, 40, 53,
55, 56, 94, 109], as users are no longer responsible for explicitly
reserving allocated resources.

Functions typically take less than a second to spawn, and most
providers allow the user to spawn thousands of concurrent func-
tions. Functions are instantiated in containers or VMs but are not
guaranteed a specific machine type, and are scheduled by the
provider to improve utilization. Serverless lowers the entry bar
for new applications, but also opens them up to unpredictable per-
formance due to function interference. Current providers only offer
service level agreements (SLAs) in terms of availability, not perfor-
mance, as the provider does not have visibility into application-level
performance metrics.

Internet of Things (IoT) applications are particularly well suited
for serverless, given their intermittent nature, and the modest
amount of on-board resources, which motivates cloud offloading [6,
7, 12, 14, 19, 20, 74, 77, 103, 104, 108, 111, 120]. Serverless also intro-
duces caveats for edge applications, especially when they have to
meet quality of service (QoS) requirements, the violation of which
can cause catastrophic failures of edge equipment.While prior work
has studied the architectural implications of serverless for cloud
jobs [114], its implications for edge services are not clear.

3.2 The Opportunities of Serverless

Concurrency: Fig. 5a shows the task latency distribution across
all ten applications under constant load, when using a fixed amount
of cloud resources in a containerized (non-serverless) datacenter,
and when using serverless without and with intra-task parallelism.
An example of a task is the process of recognizing a human face in a
frame batch of one second. In serverless, each task can instantiate a
single function, or leverage intra-task parallelism to further improve
performance. For fairness, the total amount of CPU time is the same
for all deployments. The boundaries of the box plots show the 25𝑡ℎ

and 75𝑡ℎ percentiles, the horizontal line shows the median latency,
and the whiskers show 5𝑡ℎ and 95𝑡ℎ percentiles.

Even without intra-task parallelism, serverless is almost always
an order of magnitude faster than the fixed allocation. This is not
surprising, given that serverless takes advantage of parallelism
across tasks without being limited in the number of cores it can
occupy (except if the user limit is reached; 1,000 functions by de-
fault on AWS Lambda [6]). The maze traversal, and the weather
and soil analytics do not significantly benefit from fine-grained
parallelism. For the maze traversal, the tasks per second are lower
than for the other jobs, as drones move slowly in the maze, hence
the benefit from task concurrency is diminished, and for weather
analytics, the amount of sensor data is modest and the computa-
tion is lightweight, so even the constrained fixed resources do not
become oversubscribed.

Enabling intra-task parallelism further improves performance.
For jobs like image-to-text recognition and SLAM, the improvement
is dramatic, as they have ample parallelism, and are CPU- and
memory-intensive.

This shows that as long as the edge application has ample par-
allelism (data-, task-, or request-level), serverless benefits perfor-
mance. There are two caveats to this: first, the latency variability is
typically higher in serverless, due to interference between functions



ISCA ’22, June 18–22, 2022, New York, NY, USA L. Patterson, D. Pigorovsky, B. Dempsey, N. Lazarev, A. Shah, C. Steinhoff, A. Bruno, J. Hu, and C. Delimitrou

Reserved Serverless Tail Latency Average Latency

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0

500

1000

1500

2000

2500

Ta
sk

La
te

nc
y

(m
s)

S1:Face Rec.
S2:Tree Rec.
S3:Drone Rec.
S4:Obstacle Avoid.
S5:Deduplication
S6:Maze
S7:Weather
S8:Soil Analytics
S9:Text Rec.
S10:SLAM

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0

20

40

60

80

100

La
te

nc
y 

B
re

ak
do

w
n 

(%
)

Instatiation Data I/O Execution

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0

500

1000

1500

2000

2500

3000

T
as

k 
La

te
nc

y 
(m

s)

CouchDB
RPC
In-memory

Figure 6: The challenges of serverless for edge applications. (a) Performance variability across task executions, (b) Impact of
instantiation and data sharing on task latency, and (c) Impact of data sharing protocol on task latency. 𝑆1-𝑆10 correspond to the
ten applications, and 𝑆𝑐𝐴,𝑆𝑐𝐵 correspond to the two end-to-end scenarios, as shown in Fig. 6b.

sharing a physical node, and due to the instantiation and manage-
ment overheads introduced by OpenWhisk. Second, parallelism
does not come for free, as the user or cloud provider need to deter-
mine the available parallelism of a given job; distributing work and
aggregating results also incurs overheads from data sharing and
synchronization. Despite OpenWhisk introducing millisecond-level
overheads for instantiating a container, traditional PaaS/IaaS clouds
introduce several seconds of overheads to spin up new instances.

Elasticity: Fig. 5b shows the task latency for Face Recognition
(𝑆1), under fluctuating load. First only one drone sends images at
low rate, and progressively more drones transfer images of higher
frames-per-second (fps) to the cloud. Eventually, the load decreases
down to a single drone. We compare serverless to two fixed deploy-
ments; one provisioned for the average and one for the worst-case
load. While serverless closely follows the load, the average-load
deployment quickly becomes saturated, hurting latency. The max-
load deployment also follows the load, but greatly underutilizes
resources [53–57, 94, 109]. Given the intermittent activity of edge
devices, statically provisioning cloud resources is inefficient.

Fault tolerance: Fig. 5c shows the number of tasks over time for
the same fluctuating load scenario, when a number of functions
fails during execution. Even for 20% failed tasks, OpenWhisk is able
to hide the increased workload, by quickly respawing tasks on new
cores before they degrade the end-to-end execution time. This is
important for edge services, as faulty or missing sensor data can
cause tasks to fail.

3.3 The Challenges of Serverless
Despite its benefits, serverless introduces several challenges.

Performance predictability: Fig. 6a highlights the higher perfor-
mance variability serverless exhibits compared to reserved cloud
resources. For all ten jobs, we show violin plots of the task la-
tency distribution on reserved and serverless deployments. Each
application runs at modest load to avoid overloading the reserved
resources. Latency variability is consistently higher with serverless;
a similar difference is less pronounced in the reserved resources.
This is due to the instantiation overheads of serverless, which are
more evident under low load when OpenWhisk terminates unused

containers, the impact of OpenWhisk’s scheduler when determin-
ing task placement, and the overhead of data sharing between
dependent functions. OpenWhisk – and most commercial server-
less platforms – does not permit direct communication between
functions, using instead a database (CouchDB) or persistent storage
for intermediate data.

Instantiation overheads: Fig. 6b shows the latency breakdown in
serverless in terms of instantiation overheads, data sharing between
functions, and useful computation. Measurements are obtained by
instrumenting the OpenWhisk controller and Docker containers.
Non-shaded bars show median, and shaded bars tail latency. In-
stantiating containers takes on average 22% of median and 29% of
tail latency. For the short-running tasks of weather analytics that
fraction exceeds 40%, while for the more computationally-intensive
maze traversal, it falls below 20%. In all cases, it is a substantial
factor to task latency, and a major contributor to tail latency. Given
that edge tasks are usually short-lived, a system should minimize
instantiation overheads without sacrificing resource efficiency.

Function communication: Fig. 6c delves deeper into the over-
heads associated with data exchange between dependent functions.
By default in OpenWhisk, and other serverless frameworks [6, 12,
18, 19], functions do not directly communicate with each other, i.e.,
a child function does not know the location of its parent. In Open-
Whisk the “third party” used for communication is a CouchDB in-
stance. In AWS Lambda, functions communicate through S3, AWS’s
remote persistent storage fabric. The reason for this communication
model is that, under serverless, a function should be able to run
anywhere in the datacenter, transparently to the user. On the other
hand, disallowing direct function communication introduces non-
negligible overheads, especially in latency-critical services. Fig. 6d
compares task latency with the default CouchDB system in Open-
Whisk, to direct RPC communication, and in-memory computation,
where a child function is always placed on the same live container
as its parent. CouchDB experiences the highest latency, especially
for tail latency. This is not surprising, given that for two functions
to exchange data they have to go through the OpenWhisk controller
to get a handle to a database object. Direct RPC communication
is considerably faster, but it is still outperformed by in-memory
communication which does not involve any data exchange.
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Figure 7: HiveMind platform overview. The compiler and synthesis toolchain in HiveMind start from a user’s high-level
specification of a job’s task graph to generate the code for the individual tasks and cross-task APIs, and determine whether
tasks should execute at the edge or backend cloud. HiveMind’s scheduler instantiates serverless functions on shared nodes and
allocates resources appropriately, and the hardware acceleration fabrics in HiveMind improve performance for RPC processing
and remote memory access.

This analysis shows that while serverless has the potential to
enable scalable backend computation for swarm coordination, sev-
eral challenges need to be addressed, including providing a high-
level programming interface for users to express their computation
without needing to manage low level deployment details, like task
scheduling and placement, concurrency configuration, function
instantiation, and data sharing.

4 HIVEMIND DESIGN
Based on the analysis discussed above we design HiveMind, a scal-
able software-hardware system stack for the coordination of edge
swarms that is programmable, performant, and resource-efficient.
HiveMind follows a vertical design that includes a domain specific
language and code synthesis toolchain, a centralized controller for a
serverless cloud, and a reconfigurable acceleration fabric for remote
memory access and networking. HiveMind abstracts away as much
of the complexity of operating a cloud-edge system as possible from
the user, without sacrificing performance or efficiency.

To this end, HiveMind makes the following five key contribu-
tions: (1) a declarative programming model that allows users to
express the high-level structure of their computation without be-
ing exposed to the complexities of deployment; (2) a centralized
controller that automatically determines what computation should
be placed in the cloud versus edge resources; (3) a scheduler for
the serverless cloud that handles task placement and function in-
stantiation; (4) a fast remote memory access accelerator that en-
ables data exchange between dependent functions; and finally (5)
a reconfigurable networking acceleration fabric that reduces the
communication overheads between cloud and edge.

Fig. 7 shows an overview of the HiveMind platform. Below we
discuss each key system component in more detail.

4.1 HiveMind DSL and Programming Model
Exposing all complexity associated with composing and deploying
an application on a cloud-edge system to the user hinders the adop-
tion of these platforms, or introduces performance and/or efficiency
losses due to programmer faults [1, 9, 11, 16]. Instead, HiveMind fol-
lows the approach of domain specific languages (DSL) [86, 87, 106],
which abstract away most of the system complexity, allowing the
user to focus on the high level objectives of their computation,
instead of the low-level system details needed to achieve them.

While prior work has explored task-level programming frame-
works for the edge [24, 126], these systems primarily focus on
querying data collected on edge devices, and/or launching single-
phase, specialized computation that consumes sensor data. Hive-
Mind instead implements an Domain Specific Language (DSL) that
targets complex, multi-phase jobs, and automates the synthesis of
cross-task APIs, data sharing, and task placement. This aids pro-
grammability, as developers do not have to handle the complexity
of defining APIs between tasks, which is a major source of bugs in
such systems [69, 71, 88], especially since the supported APIs vary
across edge devices, and the devices themselves can have differ-
ent ISAs, which complicates work partitioning. Public bug reports
in multi-tier cloud and edge applications show that incorrect or
inefficient API definition is one of the primary sources behind un-
predictable performance, failures, unreachable services, or resource
inefficiency [1, 9, 11, 16, 69].

The HiveMind DSL exposes a declarative programming interface
in Python for users to express a high-level description of their task
graph, and import the logic associated with different execution
steps, similar to PyFlow [22], but significantly augmented to sup-
port the cross-task dependencies of edge applications. Listing 1
shows a subset of the DSL’s operations to define tasks and task
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Task(name,dataIn,dataOut,code,taskArgs)
Definition of task, with
i/o data, link to code
path & optional arguments

TaskGraph(edgeList,constraints)
List of tasks in the
application's control flow
and perf/cost constraints

Parallel(taski,taskj)
List of tasks a task can
execute in parallel to

Overlap(taski,taskj)
List of tasks a task can
overlap with

Serial(taski,taskj)
List of tasks that cannot
overlap

Synchronize(task,condition)
Synchronization point
across tasks

Listing 1: Subset of HiveMind’s
DSL operations.

.
Schedule(task)
Sched. constraints &
task priorities

Isolate(task)
The tasks requiring
dedicated containers

Place(task)
Fix task placement
(edge or cloud)

Restore(task)
Fault tolerance policy

Learn(task)
On/Off online learning
(one device vs. swarm)

Persist(task)
Store task's output
in persistent storage

Listing 2: Optional man-
agement directives.

graphs, as well as to denote timing and execution dependencies be-
tween tasks. Users can specify whether tasks are allowed to run in
parallel, can partially overlap, or need to execute serially. Listing 2
also shows some of HiveMind’s optional management directives,
which users can leverage to specify scheduling constraints for spe-
cific tasks, fault tolerance policies in the event of a device failure,
data persistence requirements for the output for certain tasks, as
well as to enable or disable the retraining of any ML models during
application execution. The two listings only show a subset of Hive-
Mind’s language; we omit data structures in the interest of space;
there is support for both individual objects and data streams. In
addition to expressing the control flow of their application, users
also specify the performance metrics their application must meet,
in terms of execution time, latency, and/or throughput. An upper
limit in terms of cost for cloud resources can also be expressed.
These metrics are used by HiveMind to determine how to partition
computation between cloud and edge resources.

Listing 3 shows a simplified version of the task definitions for
Scenario B, where unique people are counted in a field.

Once a user expresses their application’s task graph, the Hive-
Mind compiler and program synthesis tool compose the end-to-end
application, including automatically synthesizing the required APIs
for data communication between computational steps (hereafter
referred to as tiers). HiveMind generates two types of cross-tier
APIs; one based on RPCs using Apache Thrift [3] for computation
that may run at the edge, and another using OpenWhisk’s function
interface for tasks running on the serverless cluster [2, 20]. The
former generates code in C++ for the cross-task APIs, while the
latter uses CouchDB’s communication protocol. In Sec. 4.4 we re-
place OpenWhisk’s default protocol with a hardware acceleration
fabric for remote memory access. As the number of phases in a job
increases, the number of APIs HiveMind needs to generate also
increases. This process is entirely automated, and only happens
once, at initialization. Once APIs are composed, HiveMind selects
appropriate task mappings at runtime. To reduce the number of
generated scenarios, HiveMind accepts optional hints from users
regarding tasks that need to run either at the cloud or edge, due to
hardware specs, security reasons.

TaskGraph(list=['createRoute','collectImage',
'obstacleAvoid','faceRecognition',
'deduplication'],constraint=[execTime='10s'])

Task(createRoute,inputMap,outputRoute,
'filepath/to/task/code',
load_balancer='round robin',
parentTask=None,childTask=['collectImage'])

Task(collectImage,None,sensorData,
'filepath/to/task/code',
speed='4',resolution='1024p',
colorFormat='color',
parentTask=['createRoute'],childTask=
['obstacleAvoidance','faceRecognition'])

Task(obstacleAvoidance,sensorData,adjustRoute,
'filepath/to/task/code',
algorithm='slam',
parentTask=['collectImage']],childTask=[])

Task(faceRecognition,sensorData,recognitionStats,
'filepath/to/task/code',
trainingData='zoo',
algorithm='tensorflow_zoo',
parentTask=['collectImage']],
childTask=['deduplication'])

Task(deduplication,recognitionStats,dedupList,
'filepath/to/task/code',
sync='all',
parentTask=['faceRecognition']],
childTask=[])

Parallel(obstacleAvoidance,faceRecognition)
Serial(faceRecognition,deduplication)
Learn(faceRecognition,'Global')

Place(obstacleAvoidance,'Edge:all')
Persist(faceRecognition)
Persist(deduplication)

Listing 3: Example HiveMind application for People Recog-
nition and Deduplication.

4.2 Hybrid Execution Model
Sec. 2.3 showed that offloading all computation to the cloud causes
network congestion, limiting scalability. On the other hand, running
all tasks at the edge quickly depletes the device’s battery, and is
prone to unpredictable performance.

Partitioning work between cloud and edge resources is a chal-
lenging, long-standing problem [46, 74, 90, 91, 115, 119]. There
has been extensive work on offloading computation to a backend
cloud, either by manually tagging tasks to run in the cloud, or
by automating the offloading process, especially for mobile de-
vices [46, 49, 107, 119]. In the context of an edge swarm, partition-
ing work manually is problematic for several reasons; first, users
do not have a good assessment of the performance and power con-
sumption of different partitioning strategies, unless they can profile
the application in detail. Even then, edge applications are prone to
load fluctuations and failures, which can affect previous findings.
Second, changing where computation runs affects the software in-
frastructure needed; for example, in our drone swarm, edge devices
communicate with the cloud using RPCs, over TCP/IP, while cloud
serverless functions communicate over OpenWhisk’s CouchDB
interface. Third, the use of serverless in the backend cloud changes
previous trade-offs, as its instantiation overheads are higher com-
pared to traditional cloud resources, and conversely, the ability of
serverless to leverage fine-grained parallelism is more pronounced
compared to long-term resource reservations. Additionally, prior
work on automating cloud offloads [46, 49, 107] primarily focuses on
mobile devices, e.g., phones, which have more powerful resources
than typical UAVs, do not have to also manage flight autonomy,
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Figure 8: Hivemind’s exploration process for task placement.

and mostly optimize for power efficiency instead of performance
predictability for multi-tier jobs. Similarly, prior work on offloading
work to serverless is mostly limited to using serverless for overflow
load [73], and still needs to address the challenges of Sec. 3.3.

Fig. 8 shows an example of this exploration for the second end-
to-end scenario of Sec. 2.1. HiveMind’s program synthesis then
creates all – meaningful – execution models, where part or all
of the computation is placed on the edge devices, following any
constraints provided by the user about where specific tasks should
run. For a simple, 2-tier task graph (𝐴 → 𝐵), HiveMind would
compose the APIs for a total of 4 end-to-end scenarios (𝐴𝑐𝑙𝑜𝑢𝑑 →
𝐵𝑐𝑙𝑜𝑢𝑑 , 𝐴𝑒𝑑𝑔𝑒 → 𝐵𝑐𝑙𝑜𝑢𝑑 , 𝐴𝑐𝑙𝑜𝑢𝑑 → 𝐵𝑒𝑑𝑔𝑒 , 𝐴𝑒𝑑𝑔𝑒 → 𝐵𝑒𝑑𝑔𝑒 ).

Requiring the scenario to be meaningful reduces the search space
by discarding execution models that would not make sense practi-
cally, e.g., collecting sensor data in the cloud. For each remaining
execution model, HiveMind creates the required communication
APIs, either using an RPC framework for cloud-edge communica-
tion, or using OpenWhisk’s API for intra-cloud communication,
and profiles the application on the target swarm. The performance
and power results are presented to the user, who selects the initial
work partitioning scheme that satisfies their performance and/or
efficiency constraints. A user can specify constraints in terms of
performance, power, cost, or a combination of these metrics. At run-
time, HiveMind can change its task mapping if the user-provided
goals are not met. Changes to task placement currently only hap-
pen at task granularity, i.e., HiveMind would not migrate a single,
partially-completed task between cloud and edge at runtime.

To maintain global visibility into all resources, HiveMind uses a
centralized Controller, residing in the cluster. The controller con-
sists of a load balancer, which partitions the available work across
all devices, an interface to the scheduler responsible for serverless
function placement, an interface to communicate to the edge de-
vices, and a monitoring system that collects tracing information
from the cloud and edge resources.

4.3 Serverless Cloud Scheduler
We implement our scheduler directly in OpenWhisk’s centralized
controller, which is responsible for finding an appropriate Invoker
to launch a function, and passing it the function information via

Kafka’s publish-subscribe messaging model. The Invoker then in-
stantiates the function in a container [20]. While prior work has
improved on native serverless schedulers to either improve resource
efficiency or performance and fairness [66, 67, 73, 81, 101], this work
primarily targets cloud-only applications, and applications with a
single or a few computation and I/O stages.

Users can specify scheduling constraints through HiveMind’s
DSL, as discussed in Sec. 4.1. If scheduling constraints are specified,
HiveMind’s scheduler follows them, assuming they do not conflict
with each other, and there are available resources in the cluster. If
no scheduling constraints are specified, HiveMind places functions
to optimize performance. For each server in the cluster, HiveMind
deploys a worker monitor ; a lightweight process that periodically
monitors the performance of active functions, and the server’s
utilization. Using these monitors, the scheduler identifies nodes
with sufficient resources to host new functions.

The scheduler performs two optimizations: first, in multi-tier
jobs where consecutive tiers are hosted on serverless, the scheduler
tries to place child functions in the same container as their parent,
to avoid the costly data exchange through CouchDB. Prior work has
explored co-scheduling dependent functions on the same physical
node to leverage fast memory-based communication [81]. This
is not always possible, either because a server is overloaded, or
because the child requires different software dependencies than
the parent. The child may also be spawned with some delay, at
which point the parent’s container has been terminated. For such
cases, HiveMind implements a new remote memory protocol that
allows fast in-memory data exchange between functions (Sec. 4.4).
In general, in serverless, once a parent task invokes a child, it
terminates its own function, and OpenWhisk destroys the parent’s
container. In cases where descendant tasks can be placed on the
container their parent used, HiveMind also places the parent’s
output data in a virtual memory region visible by the child, similarly
to prior work [60, 81, 117].

The scheduler’s second optimization is to reduce instantiation
overheads. In line with similar optimizations on public clouds [6, 7,
14], HiveMind does not immediately terminate an idling container,
for the event where a new function arrives in the near future that
can use it. If a new function does arrive, HiveMind schedules it in
that container. If not, it terminates it. The amount of time an idling
container remains alive is empirically set; it ranges between 10 and
30 seconds, given that serverless containers are instantiated much
faster than traditional IaaS and PaaS containers.

Finally, to avoid interference between functions, two containers
can share a physical server, but never share a logical core. Hive-
Mind pins containers to cores to avoid interference from the OS
scheduler’s decisions. For our examined applications memory con-
tention was never an issue; however, cache partitioning and mem-
ory bandwidth partitioning can also be integrated in HiveMind for
performance and security isolation.

In Sec. 5.6 we study the centralized scheduler’s scalability. While
the system scales to many edge devices, as with any centralized
system, it can become a bottleneck. In that case, HiveMind uses
multiple schedulers, each responsible for a subset of tasks, but with
global visibility into all cloud and edge resources. Such shared state
cluster managers have demonstrated scalability without hurting
decision quality in cloud environments [57, 113].
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4.4 Fast Remote Memory Access
As discussed above, placing a child function in the same container
as its parent is not always possible. In those cases, OpenWhisk’s
default data exchange involves requests to the Controller and to
CouchDB, where the results of previous functions are stored. This
is expensive, especially when many functions try to access data
concurrently [42, 83, 84, 100, 118].

Instead, HiveMind uses a hardware-accelerated platform based
on an Intel Broadwell FPGA-enabled architecture. The host is an
Intel Xeon E5-2600 v4 CPU, integrated with an Arria 10 GX1150
FPGA over a UPI bus (memory interconnect). Incoming requests
are processed directly by the FPGA, following an RDMA over Con-
verged Ethernet (RoCE)-style protocol, eliminating the need to copy
data between application memory and the data buffers in the OS,
and are transferred to the CPU running the function’s container
via the memory interconnect. The physical placement of parent
and child functions is known by the centralized controller. While
RDMA protocols have been previously used for disaggregating
resources like memory [47, 121, 124], HiveMind is the first imple-
mentation of an FPGA-based remote memory acceleration fabric
for fast communication between serverless functions.

The FPGA-based implementation significantly improves per-
formance by bypassing the host’s network stack, and the tight
integration between the host and FPGA avoids the overheads of
the PCIe interfaces [41, 65, 79, 83, 89, 99, 100]. HiveMind directly
leverages the processor’s cache coherence protocol to handle dirty
data tracking and demand paging with no software involvement,
thus reducing the remote memory access overhead. While remote
memory access deviates from serverless’s default policy of disallow-
ing direct communication between dependent functions, it does not
break the serverless abstraction that a function can run anywhere
in the cluster transparently to the user. A child function need not
know the physical location of its parent (and vice versa). The child
simply sees a virtualized object location for the parent’s output,
with address mapping handled by the FPGA.

4.5 Hardware-Based Networking Acceleration
Sec. 2 showed that congested networks can have a dramatic impact
on performance and power efficiency; similar observations have
beenmade for cloud-based services [34, 42, 45, 64, 65, 79, 80, 97, 118].
The remote memory access framework above reduces the overhead
of function communication, however, accelerating traditional RPC-
based networking is still required, since the edge devices use RPCs
to transfer data to/from the cloud [50, 89, 92, 100, 105, 118]. For
network acceleration, we piggyback on the same hardware plat-
form used above. Fig. 9 shows how the tightly-coupled FPGA is
connected to the host servers and the network, and partitioned
between network acceleration and remote memory acceleration.
We offload the entire RPC stack on the FPGA, and use the mem-
ory interconnect (UPI bus) to view the FPGA as another NUMA
node, and quickly transfer data to/from the host CPU, using zero
copy. Our FPGA-based implementation supports multiple threads
of asynchronous (non-blocking) RPCs. The FPGA’s area is large
enough to support both remote memory accesses (18% of LUTs)
and RPC offloading (24% of LUTs). We statically partition the FPGA
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Figure 9: Overview of FPGA-based acceleration fabrics in
HiveMind for remote memory access between serverless
functions, and for RPC acceleration between the backend
cloud and edge devices.

between the two processes, although dynamic partitioning could
be supported if needed.

HiveMind’s network acceleration supports a multi-connection
setup between clients and servers. The networking API defines
two classes: the RPCServer and the RPCClient for each client-server
pair. The RPCClient encapsulates a pool of RPC caller threads that
concurrently call remote procedures registered in the RPCServer.
The software stack sets up the connections and implements a zero-
copying API, to directly place incoming RPC requests and responses
to dedicated buffers (queues) accessible by the hardware. Buffer
sizes are configured on a per-application basis, online, through
partial reconfiguration. The rest of the processing is handled by
the FPGA NIC. When processing for a packet completes, the FPGA
places the RPC payload in a shared memory buffer. Packets are
processed to completion by a single thread.

In contrast to existing programmable NICs, which leverage PCIe-
based interfaces [37, 41, 64, 78, 79], we again use a NUMA memory
interconnect to interface the host CPU with the FPGA, to optimize
the transfer of small RPCs, which are common in edge devices.
The NUMA memory interconnect is encapsulated into the CCI-P
protocol stack [28].

The intuition behind the use of an FPGA for network acceleration
is that it allows the networking fabric to be reconfigurable, which
suits the diverse needs of edge applications. Reconfiguration is split
in hard and soft reconfiguration. The former is only used for coarse-
grained control decisions, such as selecting the CPU-NIC interface
protocol or the transport layer (TCP or UDP). Soft reconfiguration,
on the other hand, is based on soft register files accessible by the
host CPU via PCIe, and their corresponding control logic. It is used
for configuring the batch size of CCI-P transfers, provisioning the
transmit and receive queues, configuring the queue number and
size, configuring the number of active RPC flows, and selecting
a load balancing scheme. Soft reconfiguration incurs some small
overheads, however, it enables fine-tuning the acceleration fabric
to the needs of different applications.
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The server’s NIC simply forwards packets to the FPGA without
processing them in the host CPU. HiveMind’s network acceleration
achieves 2.1us round trip latencies between cloud servers connected
to the same ToR switch, and a max throughput with a single CPU
core of 12.4Mrps for 64B RPCs. This improves the system’s perfor-
mance predictability, and frees up a lot of CPU resources, which
can be used for function execution. In Sec. 5 we evaluate how these
benefits factor into end-to-end performance.

4.6 Other Features

Continuous learning: A benefit of centralized coordination is
that data from all devices can be collectively used to improve the
learning ability of the swarm. A user can enable or disable continu-
ous learning in their application description. If enabled, instead of
only using one device’s decisions to retrain it, HiveMind leverages
the entire swarm’s decisions to retrain all devices jointly, which
significantly accelerates their decision quality.

Fault tolerance: Edge devices are prone to failures. All devices
send a periodic heartbeat to HiveMind (once per second). If the
controller does not receive a heartbeat for more than 3s, it assumes
that the device has failed. HiveMind handles such failures by repar-
titioning the load among the remaining devices. Fig. 10 shows such
an example for our application scenarios.

Immediately after HiveMind realizes that the red-marked drone
has failed, it repartitions its assigned area equally among its neigh-
boring drones assuming they have sufficient battery, and updates
their routing information. Depending on which device has failed,
this involves reassigning work to a variable number of devices.
Users can also specify fault tolerance policies.

Straggler mitigation: HiveMind has a monitoring system that
tracks function progress, and flags potential stragglers. If a func-
tion takes longer than the 90𝑡ℎ percentile of that job’s functions,
OpenWhisk respawns it on new servers, and uses the results of
whichever task finishes first [51, 102]. The exact percentile that
signals a straggler can be tuned depending on the importance of
a job. If several underperforming tasks all come from the same
physical node, that server is put on probation for a few minutes
until its behavior recovers. OpenWhisk also respawns any failed
tasks by default.

4.7 Implementation
The HiveMind compiler and program synthesis frameworks are
written is 28,000 lines of C++ and Python. The controller is writ-
ten in 18,000 lines of C++, and supports Ubuntu 18.04 and newer
versions. The controller is implemented as a centralized process,
with two hot standby copies that can take over, in case of a fail-
ure. We have also implemented a monitoring system that tracks
application progress and device status, and verified that it has no
meaningful impact on performance; less than 0.1% on tail latency,
and less than 0.15% on throughput. Both hardware acceleration
processes (remote memory and networking) are implemented us-
ing Verilog, System Verilog, and Vivado HLS. HiveMind supports
applications in Python, C++, Scala, and node.js.

4.8 Discussion
HiveMind by default assumes that the platform has full control
over cloud and edge resources to appropriately place functions
on physical machines. However, the techniques in HiveMind are
modular, and could be used separately if full system control is not
available, as is the case in a public cloud. In such a setting, HiveMind
can generate the low-level code of an application from its high
level specification, and identify the best mapping between cloud
and edge resources. If the cloud provider additionally has support
for network-connected FPGAs, HiveMind could harness benefits
from network and remote memory acceleration. It would, however,
lose the advantages of controlling the physical task placement.
Alternatively, if FPGA support is not available, HiveMind would still
offer programmability and task placement benefits, but applications
would be prone to high network overheads and overheads from the
serverless framework’s default data exchange protocol (CouchDB
for OpenWhisk).

5 EVALUATION
5.1 Performance Analysis
We first examine HiveMind’s performance predictability. Fig. 11
shows the performance of all applications with HiveMind com-
pared to the centralized and decentralized platforms. HiveMind’s
performance is consistently better and less variable compared to
both other systems. The applications that benefit the most from
HiveMind’s design are compute- and memory-intensive services,
like maze traversal, image-to-text recognition, and the second end-
to-end scenario (moving people recognition) for which offloading
all data to the cloud incurs high network overheads, and computing
on the drones results in poor and unpredictable performance. Ser-
vices like drone detection (𝑆3) and obstacle avoidance (𝑆4) exhibit
smaller benefits, consistent with out findings in Sec. 3.

We now examine where these benefits come from. Fig. 12 shows
the tail latency breakdown for the centralized system and Hive-
Mind. Network acceleration in HiveMind has a drastic impact on
latency, with time for networking dropping from 33% on average
to 9.3%. Second, the time associated with management operations,
such as container instantiation and scheduling also drops signifi-
cantly. Most benefits come from HiveMind avoiding instantiation
overheads, despite its scheduler incurring slightly higher overheads
than the default OpenWhisk Controller. Third, HiveMind’s remote
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Figure 11: PDFs of task latency with centralized cloud execution, distributed edge execution, and HiveMind across all single-tier
tasks and multi-tier scenarios.
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Figure 12: Latency breakdown compared to fully centralized execution to assess the benefits of HiveMind’s various components.
We show the latency impact from network acceleration, fast management operations (scheduling, instantiation, etc.), reducing
data I/O overheads through remote memory access acceleration, and allowing partial edge task execution. Only the latter
fraction of latency is slower in HiveMind, as edge devices are resource-constrained, but on-board execution reduces network
traffic and improves scalability.

memory access considerably reduces data exchange latency, by
avoiding CouchDB accesses. Finally, the fraction of end-to-end la-
tency devoted to execution time in HiveMind increases compared
to the centralized system. This is not surprising, as HiveMind maps
some tasks on the slower edge devices. However, by eliminating
all other system overheads, HiveMind’s end-to-end performance
is 56% better than Centralized on average, and up to 2.85×, while
also using less battery and bandwidth.

Finally, we examine the incremental benefits of the techniques in
HiveMind. Specifically, we compare HiveMind to a centralized sys-
tem with network acceleration, one that also has remote memory
access acceleration, distributed systems with and without network
acceleration, and Hivemind with no acceleration but hybrid execu-
tion. Fig. 13 shows the comparison in terms of median (bars) and
tail latency (markers) for all ten jobs and two end-to-end scenarios.
In the case of the centralized system with network acceleration, per-
formance benefits from improving networking between edge and
cloud resources, although still remains far from HiveMind. Even
when remote memory access acceleration is enabled, HiveMind still
outperforms the centralized system, as it does not overload cloud
resources, by allowing some edge computation. On the other hand,
the distributed system barely benefits from hardware acceleration,
as most computation happens at the edge, and only final results are

transferred to the cloud. Finally, HiveMind without acceleration
still benefits from hybrid execution, but is prone to high networking
and data transfer overheads. Overall, this analysis shows that no
single technique in HiveMind is sufficient to address the perfor-
mance and power requirements of edge applications in isolation,
and that co-designing the software and hardware stack is critical.

5.2 Power Consumption
Fig. 14a shows the consumed battery, on average, across drones
by the end of execution; each of the 10 jobs runs for 120s, and the
two end-to-end scenarios run to completion; repeated 20 times.
HiveMind consumes much less power compared to the distributed
system, by offloading resource-demanding computation to the cloud.
It also consumes less power than the centralized system, by avoid-
ing excessive data transfer. Even though most power consumption
is due to drone motion, communication can also exhaust the de-
vice’s battery. There are two jobs (𝑆3 and 𝑆4) for which HiveMind
consumes slightly higher power than the centralized system. This
is in line with our previous findings that these jobs do not benefit
from dividing their execution between cloud and edge. Finally, the
efficiency improvement for the end-to-end scenarios is largely due
to HiveMind completing the scenario faster.
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Figure 13: Latency across single-tier tasks and multi-tier scenarios as we disable different aspects of HiveMind. Bars show
median, and markers 99𝑡ℎ percentile latency. The leftmost bars show performance with HiveMind, “Centr-Net Accel” executes
all tasks in the cloud taking advantage of network acceleration, “+Remote Mem” additionally accelerates remote memory access,
“Distr” runs all tasks at the edge without any cloud acceleration, “Distr-Net Accel” runs all tasks at the edge but can leverage
RPC acceleration when transferring the final results, and “HiveMind-No Accel” is HiveMind without hardware acceleration.
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Figure 14: Battery and network bandwidth consumption (bars→median, markers→ 99𝑡ℎ %ile) across the three platforms.

5.3 Network Bandwidth
Fig. 14b shows the network bandwidth usage across the three plat-
forms. Bars show average and markers 99𝑡ℎ percentile bandwidth.
While HiveMind consumes more bandwidth that the distributed
system by offloading a fraction of data to the cloud, its usage is
much lower than the centralized system, and it avoids the network
congestion of offloading all data to the cloud. Note also that the
difference between average and tail bandwidth is less pronounced
for HiveMind, which contributes to its low performance variability.

5.4 Continuous Learning
We now explore the benefit of HiveMind’s centralized backend
in continuously improving the swarm’s decision quality. Fig. 15
shows the swarm’s accuracy in correctly identifying items (tennis
balls) and people in the two end-to-end scenarios. If the recog-
nition models are never retrained, there is a non-trivial number
of false positives and negatives, even when recognition runs in
the cloud. Retraining the models periodically only using feedback
from each device’s decisions improves accuracy, but still exhibits
some incorrect detections. Finally, using the entire swarm’s deci-
sions to globally retrain the models, quickly resolves any remaining
false negatives and false positives, showing that centralized control
enables devices to learn faster than in a decentralized system.

5.5 Applicability to Other Swarms
HiveMind’s design is not specific to drones. We now port Hive-
Mind to a swarm of 14 robotic cars (Fig. 16), each equipped with
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Figure 15: Decision quality without and with retraining, per
drone and swarm-wide.

a high definition front camera, a Raspberry Pi board, and GPS, ac-
celerometer, temperature, and altitude sensors [27]. The serverless
cluster is the same as before. Communication happens over a wire-
less network using TCP/IP. We explore two scenarios; a “Treasure
Hunt”, where, robots navigate a space with panels providing them
instructions on where to move next until they reach a final target,
and a “Maze”, where they have to navigate an unknown maze. The
first scenario involves image-to-text conversion to interpret the
provided instructions. The user again expresses each scenario’s
task graph in HiveMind’s DSL and provides the necessary task
logic, and the system determines how to place tasks. The cars are
less power-constrained than the drones, so obstacle avoidance and
sensor analytics almost always run on-board.
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Figure 16: Latency and battery consumption of robotic cars (bars→median, markers→tail latency or battery consumption),
and subset of car swarm in “Treasure hunt” scenario.
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Figure 17: Bandwidth (bars) and tail latency (markers) as we
increase (a) resolution, and (b) #drones.

Fig. 16a shows the median (bars) and tail (markers) job latency
on HiveMind, and the centralized and distributed systems. Fig. 16b
shows the corresponding average (bars) and worst-case (markers)
battery consumption. Performance is better and more predictable
with HiveMind, especially compared to the distributed system. As
with the drone swarm, the cars significantly benefit from network
acceleration (22% lower latency on average), but they also benefit
from offloading expensive computation to the serverless cluster,
without high instantiation overheads. Finally, because both scenar-
ios have multiple phases, HiveMind’s fast remote memory access
significantly reduces their latency (19% on average).

5.6 Scalability
Fig. 17a shows the bandwidth usage and tail latency for the two
scenarios on the drone swarm, as the image resolution increases.
Even for the maximum resolution and frame rate (32 fps), HiveMind
does not saturate the network links, keeping latency low. In contrast,
in the centralized system, network quickly became congested, only
supporting modest resolutions and low frame rates (Fig. 3).

Since experimenting with hundreds of drones is impractical,
we have also built a validated, event-driven simulator that accu-
rately captures the performance, battery consumption, and network
bandwidth of the real swarm. The simulator is based on queueing
network principles and tracks the processing and queueing time
both on cloud and edge resources. We have used the real drone and
robotic car testbeds to validate the simulator’s accuracy. Fig. 18
shows a snapshot of the simulator’s validation for the 16-drone
swarm in HiveMind, the centralized, and distributed systems. We
show the deviation in tail latency between the real experiments
and simulation. In all cases deviation is less than 5%. The results
are similar for the robotic cars.
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Figure 18: Validation of the simulator in terms of tail latency
for the 16-drone swarm across the three configurations.

We use the simulator to explore HiveMind’s scalability to the
swarm size. Fig. 17b shows the network bandwidth usage and tail
latency for the two scenarios. We scale up the network links pro-
portionately to the real experiments. Although for larger swarms
the bandwidth usage increases, the increase is much slower than
increase rate in devices, compared to a linear increase with the
centralized system, especially for the first scenario, which accom-
modates more computation on-board.

6 CONCLUSION
We have presented HiveMind, a hardware-software system stack
for edge swarms, which bridges the gap between centralized and
distributed coordination. HiveMind implements a DSL to improve
programmability for these systems, automatically handles task map-
ping between cloud and edge resources, and proposes hardware
acceleration fabrics for remote memory access and networking.
On real swarms with 16 drones and 14 robotic cars, HiveMind
significantly outperforms prior systems, reducing overheads and
abstracting away complexity.
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