
Dagger: Efficient and Fast RPCs in Cloud Microservices with
Near-Memory Reconfigurable NICs

Nikita Lazarev
Cornell University

Ithaca, New York, USA
nl524@cornell.edu

Shaojie Xiang
Cornell University

Ithaca, New York, USA
sx233@cornell.edu

Neil Adit
Cornell University

Ithaca, New York, USA
na469@cornell.edu

Zhiru Zhang
Cornell University

Ithaca, New York, USA
zhiruz@cornell.edu

Christina Delimitrou
Cornell University

Ithaca, New York, USA
delimitrou@cornell.edu

ABSTRACT
The ongoing shift of cloud services from monolithic designs to mi-
croservices creates high demand for efficient and high performance
datacenter networking stacks, optimized for fine-grained work-
loads. Commodity networking systems based on software stacks
and peripheral NICs introduce high overheads when it comes to
delivering small messages.

We present Dagger, a hardware acceleration fabric for cloud
RPCs based on FPGAs, where the accelerator is closely-coupled
with the host processor over a configurable memory interconnect.
The three key design principle of Dagger are: (1) offloading the
entire RPC stack to an FPGA-based NIC, (2) leveraging memory
interconnects instead of PCIe buses as the interface with the host
CPU, and (3) making the acceleration fabric reconfigurable, so it
can accommodate the diverse needs of microservices. We show
that the combination of these principles significantly improves the
efficiency and performance of cloud RPC systems while preserving
their generality. Dagger achieves 1.3 − 3.8× higher per-core RPC
throughput compared to both highly-optimized software stacks,
and systems using specialized RDMA adapters. It also scales up to
84 Mrps with 8 threads on 4 CPU cores, while maintaining state-of-
the-art `s-scale tail latency. We also demonstrate that large third-
party applications, like memcached and MICA KVS, can be easily
ported on Dagger with minimal changes to their codebase, bringing
their median and tail KVS access latency down to 2.8 − 3.5 us and
5.4 − 7.8 us, respectively. Finally, we show that Dagger is beneficial
for multi-tier end-to-end microservices with different threading
models by evaluating it using an 8-tier application implementing a
flight check-in service.

CCS CONCEPTS
• Hardware → Networking hardware; • Networks → Cloud
computing; Programmable networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446696

KEYWORDS
End-host networking, cloud computing, datacenters, RPC frame-
works, microservices, smartNICs, FPGAs, cache-coherent FPGAs

ACM Reference Format:
Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delim-
itrou. 2021. Dagger: Efficient and Fast RPCs in Cloud Microservices with
Near-Memory Reconfigurable NICs. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3445814.3446696

1 INTRODUCTION
Modern cloud applications are increasingly turning to the microser-
vices programming model to improve their agility, elasticity, and
modularity [2, 3, 16, 31–34, 55, 56, 60]. Microservices break complex
monolithic applications, which implement the entire functionality
as a single service, into many fine-grained and loosely-coupled
tiers. This improves design modularity, error isolation, and facili-
tates development and deployment. However, since microservices
communicate with each other over the network, they also intro-
duce significant communication overheads [33, 54]. Given that
individual microservices typically involve a small amount of com-
putation, networking ends up being a large fraction of their overall
latency [33, 55]. Furthermore, since microservices depend on each
other, performance unpredictability due to network congestion
can propagate across dependent tiers and degrade the end-to-end
performance [17, 25, 34, 37, 43].

Microservices typically communicate with each other over Re-
mote Procedure Calls (RPC) [5, 13, 15]. Unfortunately, existing
RPC frameworks were not designed specifically for microservices,
whose network requirements and traffic characteristics differ from
traditional cloud applications, and therefore introduce significant
overheads to their performance. The strict latency requirements,
fine-grained requests, wide diversity, and frequent design cadence
of microservices put a lot of pressure on the network system, and
makes rethinking networking with microservices in mind a press-
ing need. Most of the existing commercial RPC frameworks are
implemented on top of commodity OS networking, such as Linux
TCP/IP. While this ensures generality, such systems suffer from
considerable overheads across all levels of the system stack [23, 54].
These overheads accumulate over deep microservice call paths,

36

https://doi.org/10.1145/3445814.3446696
https://doi.org/10.1145/3445814.3446696

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

and result in end-to-end QoS violations. While this affects all mi-
croservices, it is especially challenging for interactive tiers, which
optimize for low tail latency, instead of average throughput.

The past decade has seen increased interest both from academia
and industry for lower latency and higher throughput networking
systems. One line of work focuses on optimizing transport pro-
tocols [19, 20, 36, 46], while another moves networking to user
space [4, 23, 36, 38], or offloads it to specialized adapters [27, 35, 40,
45, 47]. Network programmability has also gained traction through
the use of SmartNICs [24, 29, 44] to tune the network configuration
to the performance requirements of target applications. Despite the
performance and efficiency benefits of these approaches, they are
limited in the type of interfaces they use between the host CPU
and the NIC. Almost all commercially available NICs are viewed by
the processor as PCIe-connected peripheral devices. Unfortunately,
PCIe interconnects require multiple bus transactions, memory syn-
chronizations, and expensive MMIO requests for every request to
the NIC [18, 30, 39, 49]. As a result, the per-packet overhead in
these optimized systems is still high; this is especially noticeable
for fine-grained workloads with deep call paths, like microservices.

This paper presents Dagger, an FPGA-based reconfigurable RPC
stack integrated into the processor’s memory subsystem over a
NUMA interconnect. Integrated and near-memory NICs have al-
ready shown promise in reducing the overheads of PCIe, and im-
proving networking efficiency [18, 50, 59]. However, prior inte-
grated NICs are based on ASICs that lack reconfigurability, and
require taping out custom chips, which is expensive and time con-
suming for frequently-changing networking configurations at dat-
acenter scale. Widely-used RPC stacks for microservices, such as
Thrift RPC [15], gRPC [13], offer a rich variety of transport options,
(de)serialization methods, and threading models. Hardware-based
RPC stacks can only be practical in the context of microservices if
they allow the same flexibility. To this end, we propose an integrated
and reconfigurable FPGA-accelerated networking fabric, capable of
supporting realistic and end-to-end RPC frameworks.

Dagger is based on three key design principles: (1) The NIC im-
plements the entire RPC stack in hardware, while the software is
only responsible for providing the RPC API. This way, we remove
CPU-related overheads from the critical path of RPC flows, and free
more CPU resources for the high concurrency of microservices. (2)
Dagger leverages memory interconnects to communicate with the
processor. We show that in contrast to PCIe protocols that were
initially designed for the Producer-Consumer dataflow pattern,
memory interconnects offer a better communication model that is
especially beneficial for transferring ready-to-use RPC objects. We
also argue that integrating NICs via memory interconnects is more
practical than previously-proposed methods of closely-coupling
NICs with CPUs, since processors today come with exposed mem-
ory busses, with the next generation of server-class CPUs already
offering dedicated peripheral memory interconnects [12]. (3) Finally,
Dagger is based on an FPGA, so its design is fully programmable.
This allows it to adjust to the performance and resource require-
ments of a given microservice.

We build Dagger on an Intel Broadwell CPU/FPGA hybrid ar-
chitecture, similar to those available in public clouds, such as Intel
HARP. We show that offloading the entire RPC stack to hardware
enables better CPU efficiency, which results in higher per-core

RPC throughput and lower request latency. In addition, we demon-
strate the benefits of closely-coupling hardware RPC stacks with
applications through memory interconnects. Dagger improves the
per-core RPC throughput up to 1.3-3.8× compared to prior work,
based on both optimized software RPC frameworks [38] and spe-
cialized hardware adapters [40]. Dagger reaches 12.4 - 16.5 Mrps
of per core throughput, and it scales up to 42 Mrps with only 4
physical threads on two CPU cores, while achieving state-of-the-art
`s-scale end-to-end latency.

In addition, we show that Dagger can be easily integrated into ex-
isting datacenter applications with minor changes to the codebase.
Our experiments with memcached and MICA KVS using Dagger
as the communication layer show that it achieves median and 99𝑡ℎ
percentile tail latency of 3.2 and 7.8 us respectively for memcached
and 3.5 us and 5.7 us for MICA, while also achieving a throughput
of 5.2 Mrps [6] on a single core. This result is 11.4× lower than
the latency of memcached over a native transport based on the
Linux kernel networking, and 4.4 − 5.2× lower than of MICA over
a highly-optimized, DPDK-based user space networking stack. Fi-
nally, we demonstrate that Dagger can accommodate multi-tier
microservice applications with diverse requirements and threading
models by porting an 8-tier Flight Registration service on top of
Dagger, and showing significant performance benefits compared to
native execution.

2 RELATEDWORK
Designing low-latency networking systems including optimizations
for small requests is not a new problem. Both industry and academia
have contributed various proposals to this end. In this section, we
briefly review prior work on networking acceleration, and discuss
how it resembles and differs from our proposal. We classify related
work into three categories: (1) software solutions, (2) systems lever-
aging specialized commercial hardware adapters, and (3) proposals
of new hardware architectures for efficient networking.
Software-based solutions: At the software level, most research
has focused on transport protocol optimizations for low latency
and/or high throughput [19, 20, 36, 46, 48]. This includes optimizing
the congestion control mechanisms, flow scheduling, connection
management, etc. In addition to transport optimizations, some pro-
posals also suggest moving networking from the kernel to user
space by leveraging, for example, DPDK [11, 23, 36, 41, 46] or raw
NIC driver APIs [38]. Although these proposals demonstrate their
efficiency in improving the performance of datacenter networks,
they are still subject to system overheads due to their software-only
and CPU-based implementation.
Specialized commercial adapters: As an alternative to software/
algorithmic-only optimizations, another line of work proposed to
leverage RDMA hardware to offload network processing to special-
ized adapters, and use the remote memory abstraction to implement
higher-level communication primitives, such as RPCs [27, 40, 57].
This approach improves CPU efficiency, and as a consequence also
incurs lower latency and higher throughput. Despite this, there
are two main issues with existing RDMA-related work. First, prior
work does not implement a fully-offloaded RPC protocol; commod-
ity RDMA adapters only offload the networking part, i.e., up to
the transport layer and RDMA protocols, keeping the execution of

37

Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs ASPLOS ’21, April 19–23, 2021, Virtual, USA

RPC layers on the host CPU. Second, all RDMA NICs are seen as
peripheral devices from the perspective of the host CPUs, and are in-
terconnected with the latter over PCIe busses that have been shown
to be inefficient, especially when the metric of interest is latency
and network packets are small [30, 39, 49]. Therefore, bringing
NICs closer to CPUs and/or memory is required to enable efficient
and fast communication in datacenters.

Client

Load
Balancer NGINX

Media
Frontend

Compose
Post

Unique ID

URL
Shorten

Media

Text

User
Mention

User

Social
Graph

Post
Storage

User
Timeline

Home
Timeline

Memcached

MongoDB

Redis

Memcached

MongoDB

Memcached

MongoDB

Memcached

MongoDB
Memcached MongoDB

Media storage

Social graph
 storage

Home timeline
storage

User timeline
storage

Post storage

User storage

Memcached

MongoDB
URL storage

Frontend

Middle-tier

Caching

Database

Figure 1: Social Network microservice architecture [33] –
client requests first reach a front-end load balancer, which evenly
distributes them across the 𝑁 webserver instances. Then, depend-
ing on the type of user request, mid-tiers will be invoked to create
a post, read a user’s timeline, follow/unfollow users, or receive
recommendations on new users to follow. At the right-most of the
figure, the requests reach the back-end databases, implemented both
with in-memory caching tiers (memcached/Redis), and persistent
databases (MongoDB).

Integrated special-purpose networking hardware: To address
the aforementioned issues, a recent line of research proposed to
tightly integrate NICs with the processor and memory. In particular,
NetDIMM [18] investigates the potential of physical integration of
NICs into DIMM memory hardware. However, NetDIMM does not
focus on RPC stacks, and it requires designing custom ASICs inside
the DIMM hardware, which is hard to achieve at scale in a short
term. Another solution to this end is soNUMA [50], which proposes
to scale-out coherent NUMA memory interconnects at the datacen-
ter level, therefore bringing cluster machines closer to each other.
NeBuLa [59] similarly discusses the implementation of a hardware-
offloaded RPC stack on top of soNUMA. NeBuLa introduces a novel
mechanism for delivering RPC payloads directly into a processor’s
L1 cache, and also proposes an efficient in-LLC buffer management
and load balancing method that reduces network queueing, and im-
proves the tail latency of RPC requests. However, as with NetDIMM,
both NeBuLa and soNUMA require fabrication of custom hardware
that is physically integrated with the processor and memory subsys-
tem, and reorganizing the entire datacenter network architecture,
which is challenging to achieve at datacenter scale, especially given
the frequent design and deployment changes of microservices. An-
other closely-related work, Optimus Prime [54], presents the design
of an RPC data transformation accelerator which reduces the CPU
pressure from expensive (de)serialization operations common in
datacenter communication systems.

Client

Load
Balancer NGINX Compose

Review

MovieId

UniqueId Text

User

Rating

UserReview

Movie
Review

Review
Storage

Plot

MovieInfo

CastInfoVedioPhoto

Memcached

MongoDB
MovieId
storage

Memcached

MongoDB
User

storage

Redis

Redis

MongoDB
UserReview

storage

Redis

MongoDB
MovieReview

storage

Memcached

MongoDB
Review
storage

Rating storage

Memcached

MongoDB

Memcached

MongoDB

Memcached

MongoDB

Memcached

MongoDB

Frontend

Middle-tier

Caching

Database

Media Service
Figure 2: Media Serving microservice architecture [33] –
client requests first reach a front-end load balancer, which evenly
distributes them across the 𝑁 webserver instances. Then, depend-
ing on the type of user request, mid-tiers will be invoked to browse
information about a movie, create a new movie review, or get rec-
ommendations on movies a user may enjoy. At the right-most of
the figure, the requests reach the back-end databases, implemented
both with in-memory caching tiers (memcached and Redis), and
persistent databases (MongoDB).

At a high level, Dagger implements an RPC stack, fully offloaded
to hardware. The FPGA-based design makes it amenable to the fre-
quent updates present in microservices, and customizable to their
diverse needs. In addition, Dagger leverages commercially-available
memory interconnects as the interface between the processor and
the Ethernet NIC, so, in contrast to previous solutions requiring
custom hardware and/or specifically designed datacenter networks,
our proposed system can be integrated into existing cloud infras-
tructures without the need for chip tapeouts. We also demonstrate
that third party applications, such as memcached can be easily
ported to Dagger, with minimal changes to the their codebase.

Even though Dagger’s implementation is based on an FPGA,
it is fundamentally different from other FPGA/SmartNIC-related
proposals [21, 28, 29, 52] and industrial NICs. All existing network-
ing devices are either “Smart” in the way they process packets
but remain PCIe-attached, or are more closely-integrated to the
main CPU but not programmable, only implementing simple packet
delivery functionality. From this perspective, Dagger is the first
attempt to leverage FPGAs which are closely-coupled with pro-
cessors over memory interconnects as programmable networking
devices to implement the networking stack all the way up to the
application layer (RPCs). This new approach opens up many sys-
tem challenges and opportunities to customize networking fabrics
to the frequently-evolving interactive cloud services, in a high-
performance and efficient manner. In addition, our proposal comes
with out-of-the-box support for multi tenancy and co-location. We
show how a single physical FPGA adapter can host multiple inde-
pendent NICs serving different tenants running on the same host.

38

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

3 CHARACTERIZING NETWORKING IN
MICROSERVICES

3.1 Networking Overheads in Microservices
We first study the network characteristics and requirements of in-
teractive, cloud microservices. We use two end-to-end services from
the DeathStarBench benchmark suite [33], shown in Figures 1 and 2;
a Social Network, and a Media Serving application. We first profile
the impact of the RPC stack on the per-tier and end-to-end latency
for Social Network, for a representative subset of its microservices,
shown in Figure 3. 𝑠1 is a Media tier processing embedded images
and videos in user posts, 𝑠2 is the User tier responsible for manag-
ing a user’s account and interfacing with the backend storage tiers,
𝑠3 is the UniqueID tier assigning a unique identifier to a new user
post, 𝑠4 represents the Text service to add text to a new post, 𝑠5
is the UserMention tier to link to another user’s account in a post,
and finally 𝑠6 corresponds to the UrlShorten microservice, which
shortens links embedded in user posts.

Figure 3: Networking as a fraction of median (top) and 99th
prc. tail (bottom) latency – the input load increases progressively
from the left-most to the right-most set of figures. The bars denote
latency breakdown as recorded in the following individual microser-
vices: s1: Media, s2: User, s3: UniqueID, s4: Text, s5: UserMention,
s6: UrlShorten; e2e bar shows the breakdown for the end-to-end
latency.

We break down communication overheads to RPC and TCP/IP
processing, and show both median (top) and tail latency (bottom)
for different load levels, from the left-most to the right-most figures.
Across all tiers, communication accounts for a significant fraction
of a microservice’s latency, 40% on average, and up to 80% for the
light in terms of computation User and UniqueID tiers. This also
translates to a large fraction of end-to-end application latency go-
ing towards networking, despite many microservices overlapping
with each other. The latency breakdown for the end-to-end appli-
cation is shown in the right-most bar of each subfigure in Figure 3;
communication accounts for at least third of the median and tail
end-to-end latency. RPC processing is a large part of communi-
cation, and, for some services it is even larger than the TCP/IP
stack when looking at tail latency, showing that accelerating the
TCP/IP layer alone is not sufficient. A couple of microservices, such
as Text and UserMention are more computationally intense, and
therefore, their processing time is substantially longer than the
communication latency. However, since microservices typically
form deep call graphs, long delays in the upstream services can

cause request queueing in downstream tiers, incurring cascading
QoS violations [34].

The time devoted to networking increases considerably for higher
loads (right plots in Figure 3), especially when looking at tail latency,
due to excessive queueing across the networking stack. Not only
does this degrade application performance, but the multiple lay-
ers of queueing in the network subsystem introduce performance
unpredictability, making it hard for the application to meet its end-
to-end QoS target. Note that since we cannot explicitly break down
the time between queueing and processing at the application layer,
for high loads, e.g., QPS=800, our profiler shows high percentages
for RPC processing time; most of this time corresponds to queue-
ing. We observe that the microservice’s CPU utilization does not
increase proportionally with load, in part because of back pressure
from the downstream services. Such aggressive queueing in the
RPC layer causes significant memory pressure and high memory
interference with other tasks, making tail latency even more unpre-
dictable and high. Overall, Figure 3 shows that networking, both the
RPC layer and transport, in microservices is a major performance
bottleneck, especially for tiers with a small amount of compute.
The results are similar for the other end-to-end services as well

3.2 Network Characteristics of Microservices
We now analyse the network footprint of microservices. We profile
the same Social Network and Media Serving applications [33], and
show the histogram of their RPC sizes in Figure 4. The workload
generator follows request distributions representative of real cloud
services implemented with microservices [33]. Specifically, the re-
quest mix includes queries for users creating new posts (Compose
Post), for reading their own timeline (Read Home Timeline, or an-
other user’s timeline Read User Timeline). Depending on the request
type, a different subgraph of microservices is invoked [1].

Figure 4: Distribution of RPC request and response sizes in
Social Network andMedia Applications (left); breakdown of
RPC sizes for individual microservices (right) – s1 - s6 are the
same as in Figure 3 for Social Network.

Figure 4 (left) shows the cumulative distribution function (CDF)
of RPC sizes for each end-to-end service. 75% of all RPC requests
are smaller than 512B. Responses are even more compact, with
more than 90% of packets being smaller then 64B. Commodity
networking systems experience poor performance when it comes to
transferring small packets due to high per-packet overheads [38, 46].
This highlights the need for rethinking datacenter networking with
the unique properties of microservices in mind.

Additionally, Figure 4 (right) shows that different microservices
in the same application have very different RPC sizes. For example,
the median RPC size in the Text service is 580B, while the Media,

39

Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs ASPLOS ’21, April 19–23, 2021, Virtual, USA

User, and UniqueID services never have RPCs larger than 64B. Such
wide variation in RPC sizes across microservices shows that “one-
size-fits-all” is a poor fit for microservice networking. Balancing
between optimizing for large versus small packets is a long standing
problem in networking. To achieve the best for this trade-off, Dagger
employs reconfigurable hardware acceleration using FPGAs, to
ensure that the networking stack can be tailored to the needs and
characteristics of a given set of active microservices.

3.3 CPU Contention between Logic and
Networking

The small size of microservicesmeans that a server can concurrently
host a large number of microservices, promoting resource efficiency.
On the negative side, multi-tenancy also introduces resource inter-
ference, especially when CPU cores are used for both microservice
logic and network processing. To quantify the resource contention
between application logic and networking, we bind network inter-
rupt service routines for each of the NIC’s queues to a fixed set of
N logical CPU cores (𝑁 = 4 in this experiment). We then run the
Social Network service: (1) on the other 𝑁 CPU cores within the
same NUMA node so that their execution does not interfere with
networking, and (2) on the same 𝑁 cores as networking to observe
the impact of interference. The resulting end-to-end request latency
in each case is shown in Figure 5.

Figure 5: Impact of the CPU resource interference between
networking and application logic on end-to-end tail latency
– solid bars show latency when network processing and application
logic run on different physical cores, while shaded bars show latency
when network processing and application logic threads share the
same CPU cores.

The experiment shows that when both application logic and net-
work processing contend for the same CPU resources, end-to-end
latency (both median and tail) suffers. As expected, interference
becomes worse as the system load increases, especially when it
comes to tail latency, which is more sensitive to performance unpre-
dictability. Note that in addition to the network interrupt handling
layer, RPC processing also interferes with application processing.
Since the RPC stack is technically a part of the application logic
in the service’s default implementation, we are not able to isolate
its impact; however, the high resource contention of Figure 5 al-
ready justifies the need for offloading the networking stack from
the host processor. Dedicating, alternatively, cores specifically for
network processing is not resource efficient, since network load
fluctuates over time, dedicated networking cores are still prone to
CPU-related overheads, and they can introduce interference in the
last level cache (LLC) and main memory subsystems.

This analysis highlights three unique requirements for network-
ing systems aimed at microservice deployments. First, RPC process-
ing should be offloaded to dedicated hardware, to avoid CPU-related
overheads and interference with the application logic. Second, sys-
tems should be optimized for small requests/responses, which dom-
inate the network traffic of microservices. Finally, communication
frameworks should be programmable to handle the diverse needs
of microservices, and adjust to their frequent changes.

4 DAGGER DESIGN
4.1 High-Level Architecture and Design

Principles
We design Dagger with the unique network properties and require-
ments of microservices in mind, discussed in Section 3. Although
Dagger is optimized for microservices, it is still beneficial for tradi-
tional interactive cloud applications, as we will show in Section 5.
Dagger’s top-level architecture is shown in Figure 6. Dagger is
based on three main design principles: i) full hardware offload, ii)
tight coupling, and iii) reconfigurability.

 FPGA

NIC

APP
interface

R
P
C

Transport

P
H
Y

Q
S
F
P

APP
interface
CPU-NIC
Interface

UPI/PCIe

CCI-P

Connection
Manager

Soft-Reconf.
Unit

Transport

H
C
C

C
C
I
P

I
O

L
L
C

 Host CPU

blue bitstream

FIFO

CPU core

CCI-P stackgreen bitstream

Transport

Packet
Monitor

MAC/PHYTransportProtocol Read/WriteApps Stubs

Thrift stack, SW

Thrift stack, HW data path

control path host memory path

Connection
Manager Serializer Protocol

ProtocolDe
-serializer

er Connection
Manager

Load
Balancer

Load
Balancer

net RX

net TX

RPC
in

Flow
ID

RPC data

conn_ id
RPC

out

destination credentials

net RX

net TX

to
HCC

Figure 6: Top-level architecture of Dagger (top) and zoom-in
of the PRC unit (bottom) – the bar on top shows approximate
mapping of the Dagger stack onto the Thrift RPC [15] stack.

First, Dagger offloads the entire RPC stack in hardware, to elimi-
nate all interference between application logic and network process-
ing in the host CPU. The remaining software components of Dagger
running on the host CPU are lightweight, and are only responsible
for the connection set-up and for exposing the RPC API to applica-
tions. The software stack implements the API with zero-copying
and directly places incoming RPC requests and responses to dedi-
cated buffers (queues, rings) accessible by the hardware which is
synthesized on an FPGA (shown by the NIC module in Figure 6).
The rest of the processing is handled by the NIC.

The second design principle of Dagger is tightly coupling the
hardware-accelerated network fabric with the host CPU. In contrast

40

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

to existing high-performance and/or programmable NICs, which
leverage PCIe-based interfaces, Dagger uses NUMA memory inter-
connects as the interface with the host processor to optimize the
transfer of small fine-grained RPCs, by piggybacking on the hard-
ware coherence protocol. The NUMA memory interconnect (Intel
UPI in our current implementation) is encapsulated into the CCI-P
protocol stack, as shown by the triangle in Figure 6. CCI-P [14] is a
protocol stack between the host CPU and the FPGA designed by
Intel, which in addition to UPI, also wraps-up two PCIe links.

Finally, the design of Dagger focuses on reconfigurability by
leveraging an FPGA as the physical medium. Our current design
is based on the Intel OPAE HDK that defines two regions of pro-
grammable logic: the blue and the green bitstreams. The former is
fixed in the FGPA configuration and is not exposed to the FPGA
users. This includes the implementation of system components,
such as the CCI-P interface IP, Ethernet PHY, clock generation
infrastructure, etc. The blue bitstream is managed by the cloud
providers, and undergoes periodic updates. The green bitstream is
used to implement the user logic and is fully programmable, with
a pre-synthesized bitstreams. We implement the Dagger NIC in
the green region, as shown in Figure 6. Our design is modular and
configurable: different hardware parameters and components can
be selected via SystemVerilog macros/parameters and synthesized.
We call this hard configuration, and use it only for coarse-grained
control decisions. For example, Dagger supports multiple different
CPU-NIC interfaces; the choice of the specific scheme is performed
via hard configuration, by selecting the corresponding IP blocks
and configuring the design with them. Similarly, the choice of the
transport layer, sizes of on-chip caches (e.g. connection caches),
flow FIFOs, etc., are also enabled by hard configuration. Since hard
configuration requires preparing dedicated bitstreams, and it in-
curs overheads to reprogram the FPGA, some fine-grained control
decisions are still made via soft configuration. Soft configuration
is based on soft register files accessible by the host CPU via PCIe
MMIOs, and the corresponding control logic (Soft-Reconfiguration
Unit in Figure 6). Dagger uses soft configuration to control the
batch size of CCI-P data transfers, provision the transmit and re-
ceive rings, configure their number and sizes, configure the number
of active RPC flows, choose a load balancing scheme, etc. Soft recon-
figuration comes with certain logic overheads, however, it enables
fast and fine-grained tuning of various parameters of the Dagger
framework at runtime.

The remaining blocks shown in Figure 6 (top) are the Connection
Manager used for setting up connections and storing all connection-
related metadata, the Packet Monitor that collects various network-
ing statistics, and auxiliary components, such as FIFOs, for proper
synchronization of different blocks in the RPC pipeline. The Host
Coherent Cache (HCC) is another important auxiliary unit in Dag-
ger. HCC is a small (128 KB) direct-mapped cache implemented in
the blue bitstream, which is fully coherent with the host’s memory,
via the CCI-P stack. HCC is used to hold cache connection states
and the necessary structures for the transport layer on the NIC,
while the actual data resides in the host memory. This way we avoid
requiring dedicated DRAM hardware for the FPGA. This makes
NIC cache misses cheaper compared to PCIe-based NICs, since
the CCI-P stack provides hardware support for data consistency
between the host DRAM and the HCC.

4.2 Dagger API and Threading Model
The API is designed following the standard client-server architec-
ture of cloud applications, and is inspired by the Thrift RPC [15]
framework as well as the Google Protocol Buffers interface, pri-
marily for compatibility reasons, since many microservices rely
on either of these APIs. Other RPC APIs, such as gRPC [13] or
Finagle [5] can also be supported by the design. Similarly to com-
mercial RPC stacks, Dagger comes with its own Interface Definition
Language (IDL) and code generator. We adopt the Google Protobuf
IDL for Dagger; an example of our interface definition scheme is
shown in Listing 1.

Message GetRequest { Message GetResponse {
int32 timestamp; int32 timestamp;
char [32] key; char [32] value;

} }

Service KeyValueStore {
rpc get(GetRequest) returns(GetResponse);
rpc set(SetRequest) returns(SetResponse);

}

Listing 1: Dagger IDL on an example of a KVS service.

The code generator parses target IDL files and produces client
and server stubs which wrap up the low-level RPC structures be-
ing written/read to/from the hardware into the high-level service
API function calls. The latter defines two main classes: the Rpc-
ThreadedServer and the RpcClientPool for each client-server pair.
The RpcClientPool encapsulates a pool of RPC clients (RpcClient)
that concurrently call remote procedures registered in the corre-
sponding RpcThreadedServer as RpcServerThread objects wrapping
server event loops and dispatch threads. Dagger supports both
asynchronous (non-blocking) and synchronous (blocking) calls.
In the former case, each RpcClient contains the associated Com-
pletionQueue object which accumulates completed requests. The
CompletionQueue might also invoke arbitrary continuation callback
functions upon receiving RPC responses, if so desired.

The Dagger threading model is co-designed across hardware and
software and is fully configurable, as is shown in Figure 7.

Rpc
Client

Rpc
Client

Rpc
Client

Rx flow

Rx flow

Rx flow

Tx flow

Tx flow

Tx flow

Server
Thread

Server
Thread

Server
Thread

Stub

Stub

Stub

R
pcThreadedS

erver

CPU core connection RX/TX ring

Client software Server softwareDagger NIC
(client side) (server side)

Figure 7: Dagger threading model – the green Rx/Tx flows cor-
respond to hardware flows on the NIC (only single direction flows
are shown for brevity; in the real system, each NIC runs both Rx
and Tx flows).

Dagger provisions multiple flows (queues) on the NIC, such that
each flow is 1-to-1 mapped to the corresponding RX/TX ring in
software. The rings themselves are 1-to-1 mapped to RpcClient’s
and RpcServerThread’s. The number of NIC flows, and therefore
RX/TX rings, determines the degree of concurrency in the Dagger

41

Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs ASPLOS ’21, April 19–23, 2021, Virtual, USA

hardware, and is programmable via hard configuration. Note that
the number of flows need not necessarily be equal to the number
of CPU cores. However, in the basic scheme, shown in Figure 7, the
number of NIC flows is decided based on the number of logical CPU
cores, such that each core gets a dedicated parallel flow on the NIC.
Similarly to FaRM, Dagger runs RPC handlers in dispatch threads
to avoid inter-thread communication overheads. Also, with a small
change in software, it can be configured to run RPC handlers in
separate worker threads if required for long-running RPCs; this
does not require any hardware changes.

Our threading model allows opening an arbitrary number of
connections on each RpcClient. In this case, the connections on
a certain RpcClient share the same RX/TX ring, so following the
RDMA terminology, Dagger implements the Shared Receive Queue
(SRQ) model [58]. Note that with the programmable threading
model, Dagger can be configured to run in a single flowmode with a
single RX/TX ring shared between multiple CPU cores. This enables
models similar to [26] which target addressing load imbalance. At
the other extreme, provisioning flows and rings on a per-connection
basis is also possible, although such a scheme scales poorly and
suffers from high load imbalance.

Dagger manages connections entirely in hardware which further
reduces CPU load and improves the look-up of connection infor-
mation for active flows. The NIC includes the Connection Manager
(CM) module, as shown in Figure 6. The connection table inter-
face maps connection IDs (c_id) onto tuples <src_flow, dest_addr,
load_balancer>. The src_flow field specifies the ID of the flow re-
ceiving requests from the client. The NIC reads this information
to ensure that the responses are steered to the same flows where
requests came from. The dest_addr and load_balancer fields define
the address of the destination host and preferred load balancing
scheme for requests withing this connection.

The CM is designed as a simple direct-mapped cachewith specific
memory organization. In order to make the cache access concurrent
and avoid stalls in the RPC flows, the cache breaks the above inter-
face tuple into three tables indexed by the

⌈
𝑙𝑜𝑔(𝑁)

⌉
LSBs (where N

is the table size) of the connection ID providing 1W3R functionality.
This is required because at the same time (cycle), three independent
hardware agents might read from the cache: the RPC outgoing flow
(to get the destination credentials), the incoming flow (to get the
flow or load balancer), and the CM itself (to open and close connec-
tions). The size N of the cache is adjustable with hard configuration
and can be chosen based on the expected number of connections
the application might open. If some application requires many con-
nections, N can be set to a high value giving more connection
cache space to this application in favor of other NIC memory struc-
tures. Given the available size of FPGA on-chip memory (53Mb
total minus 8.8Mb in the green region) and the size of the current
connection tuple (8-12B)x3, the FPGA can be configured to cache
at most 153K connections; sufficient for most application scenarios.
In addition, the connection cache can be easily backed by DRAM
(either externally attached to the FPGA or by the host DRAM) to al-
low more connections with certain performance penalty due to NIC
cache misses. Although this functionality is not yet implemented
in our current design, we plan to integrate it as part of future work
(see the red lines in Figure 6).

4.3 NUMA Interconnects as NIC Interfaces
PCIe links have acted as the default NIC I/O interfaces for the
past several decades. Despite the bus being a standard peripheral
interconnect in any modern processor, a lot of prior work has
shown that PCIe is not efficient as a NIC I/O interface [30, 49]. The
inefficiency is mainly introduced in the transmission path, when
the NIC is fetching network packets from the host memory. In
the simplest case, commercial NICs use DMA transfers initiated
by MMIO doorbell transactions to read packet descriptors and
payloads from the software buffers; an approach known as the
doorbell method [39].

However, the naïve doorbell scheme experiences inefficiencies
when targeting small requests. The MMIO transactions are slow,
mainly because they are implemented as non-cacheable writes,
and expensive: every MMIO request should be explicitly issued by
the processor. To reduce the overhead of MMIOs, modern high-
performance NICs, such as Mellanox RDMA NICs, implement door-
bell batching [39], an optimizations that allows grouping multi-
ple requests into a single DMA transaction initiated with a single
MMIO. While this solution noticeably increases the performance of
doorbells, it still relies on MMIO messages and is only applicable
when requests can be aggressively batched, which is not always
possible for latency-sensitive flows. Another proposal [30] suggests
eliminating DMAs, and transferring data only using MMIOs when
requests fit in the MMIO’s MTU, usually 1 cache line. This improves
latency since data are transferred within a single transaction, how-
ever, performance is still limited by the low throughput of MMIOs,
and during high load, this can overload the processor.

The fundamental limitation of PCIe protocols is that their design
is primarily geared towards Producer-Consumer dataflow mod-
els [12]. The standard doorbell model works well under streaming
flows and large data transfers. However, RPC requests do not always
conform to such patterns. As we showed in Section 3, RPC sizes in
microservices, and in other datacenter applications [46], are small,
ranging from a few bytes and up to few kilo-bytes. In addition, the
strict latency requirements of interactive services often disqualify
batching, forcing NICs to handle fine-grained data chunks rather
than streaming flows. This issue is further exacerbated when RPC
frameworks do not just send requests, but also involve some amount
of data processing. For example, Thrift RPC was designed to work
with complex data objects that are not uniform in memory; for ex-
ample, they might contain nested structures and references to other
objects. In this case, RPCs must be (de)serialized [54], with existing
PCIe models being very inefficient in fetching such non-uniformly
placed objects. The standard doorbells used in all PCIe-attached
NICs require expensive and CPU-inefficient data transformations
before sending data to the NIC [54].

The main insight in leveraging memory interconnects as the
NIC I/O is that they allow data transfers to be handled entirely in
hardware. The memory consistency state machines (NUMA cache
coherence protocols) implemented as a part of the processor’s mem-
ory subsystem are designed to provide efficient and fast data flows
between coherent agents; processors, or more generally, NUMA
nodes. Making the NIC act as another NUMA node would allow it
to closely integrate its I/O into the processor’s memory subsystem,
therefore providing a pure hardware CPU-NIC interface without

42

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

the need for explicit notifications of data updates from the pro-
cessor. This improves the CPU efficiency of sending small RPCs,
since the only operation the processor needs to do is write the RPC
requests/responses to the buffer it shares with the NIC, with the
actual transfer handled entirely by the interconnect state machines.
This increased CPU’s efficiency significantly improves per-core
RPC throughput (Section 5).

The exact scheme of data movements inside coherent busses
depends on the specific NUMA interconnect model. Some speci-
fications, such as the upcoming peripheral memory interconnect
CXL [12], allow non-cacheable writes to the device memory, mean-
ing that the CPU can directly write RPCs to the NIC, so in addition
to improved CPU efficiency, the model also reduces latency, since
only one bus transaction is required to send data to the device.

Note that we do not compare the physical performance of PCIe
with respect to memory busses in this work. The peak bandwidth
of both interconnects is implementation specific and depends on
the number of lanes in the physical layer and the generation of
the interconnect. Moreover, some memory interconnects are based
on PCIe, so they use the same physical medium with the same
bandwidth. All sources of performance gain shown in this work
come from the difference in the logical upper-level communication
models enabled by PCIe vs NUMA protocols. However, the the-
oretical bandwidth of the UPI bus which we use as the memory
interconnect goes up to 19.2 GB/s; slightly higher than the 15.74
GB/s of the PCIe Gen3x16.

4.4 Implementation of the NIC Interface
The NIC I/O interface consists of the receiving and transmitting
paths as seen from the NIC. The CPU-NIC interface diagram is
shown in Figure 8.

TX buf RX buf

Completion
queue

RX FSM TX FSM

R
P

C
 c

on
ne

ct
io

n

H
ar

dw
ar

e
(N

IC
)

5

7

RPC data path

TX free

43

TX controller

12
Interface buffers

bookkeeping

6

 LLC

Software (CPU)

RPC
connection

S
of

tw
ar

e
(C

P
U

)

RPC req.

RPC resp.

RPC req.

RPC resp.

RX free

Figure 8: CPU-NIC interface diagram – RX path: TX controller
writes new RPC requests/responses 2○ to a free entry in the TX
buffer 1○. The RX FSM on the FPGA fetches RPC objects from
the TX buffer over CCI-P 3○; it also does the bookkeeping 4○ to
release previously-fetched entries. TX path: the TX FSM puts newly-
received RPC objects to the RX buffer, and asynchronously fetches
the next free entries during bookkeeping 6○. The RPC payload is
finally copied to the completion queue 7○.

Dagger provisions network buffers (RX/TX rings) on per-NIC
flow basis. Each RX/TX pair reflects the communication channel be-
tween a single RpcClient and the corresponding RpcThreadedServer
wrapping the dispatch thread. Such buffer provisioning enables
lock-free access to the rings from the client and server threads [59].

As stated above, the same RpcClient can run multiple threads (each
within a separate connection) therefore making them to share the
corresponding RX/TX rings. In that case, explicit locking in the
RpcClient RX/TX path is required to ensure consistent data transfer.

The RX/TX ring are used for incoming and outgoing RPCs, re-
spectively. The stack is symmetric, the same architecture serves
both requests and responses, i.e., the same NIC and the software
stack can be used for both RPC clients and servers. Request types
are distinguished by the request type field that is a part of every
RPC packet. RX/TX rings are comprised of RX/TX buffers and free
buffers. The former store RPC payloads for all requests until the
NIC/completion queue acknowledges receiving the data by placing
the ID of the corresponding RX/TX buffer entry into the free buffer.
The size of the TX rings is determined by the rate of incoming RPCs
and the time it takes for the NIC to fetch data and is configured
during the NIC initialization. In our current prototype, the CCI-
P-based memory interconnect, based on Intel UPI, delivers data
from the software buffers to the NIC within 400 ns with another
400 ns required for sending back the bookkeeping information. The
CCI-P bus can support up to 128 outstanding requests before reach-
ing its bandwidth limit, so Dagger sends multiple asynchronous
requests, while the bookkeeping information of in flight requests
is pending. The size in the number of requests of the TX rings per
flow is

⌈
𝑇ℎ𝑟𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤 ∗ 0.8/106

⌉
, where 𝑇ℎ𝑟𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤 is the desired

throughput of the flow. For𝑇ℎ𝑟𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤 = 12.4 Mrps (the maximum
throughput a single CPU core can sustain in our system), the size of
the TX rings should be at least 10× the mean RPC size to avoid flow
blocking. Given the typical sizes of RPCs in microservices, every
flow requires 0.64-12.8 KB of TX buffers.

The RX rings accumulate a batch of requests before sending them
to the completion queue. Therefore, the RX buffer size is equal to
𝐵× the mean RPC size, where 𝐵 is the width of CCI-P batching. In
our experiments, the maximum sustained throughput is achieved
with batching of 𝐵 = 4. Below we detail the hardware design of the
receiving and transmitting paths in Dagger.

4.4.1 Receiving path (RX). We implement three standard PCIe-
based methods for fetching RPC data from the processor: doorbell,
doorbell batching, and MMIO-based transfer, also known as WQE-
by-MMIO in [39], alongside with our proposed method based on
memory interconnects. The doorbell transfer is based on standard
PCIe DMAs initiated via MMIO transactions. We use the DMA en-
gine provided by the Intel OPAEHDK that operates over CCI-P. The
doorbell batching is implemented by grouping CCI-P DMAs into
single transactions and initiating the entire batch with a single door-
bell. In the MMIO-based method, RPC requests and responses are
transferred by writing them to a shared buffer allocated as anMMIO
memory region on the FPGA. A typical MMIO write on most pro-
cessors and NICs is aWrite-Combine transaction. Write-Combine is
used to avoid generating multiple PCIe transactions when writing
data of a cache line size (64B), since processors normally commit
word-aligned store instructions (8B). A Write-Combine buffer accu-
mulates multiple stores and sends cache line-long chunks when the
buffer is full or is being explicitly flushed. We modify this scheme
with parallel store instructions based on the AVX-256 ISA exten-
sion and we do not use Write-Combining; this allows us to further

43

Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs ASPLOS ’21, April 19–23, 2021, Virtual, USA

reduce the MMIO latency. In this mode, Dagger writes every 64B
of RPC requests using two _mm256_store_si256 stores.

The memory interconnect-based interface in Dagger is imple-
mented over the Intel UPI coherent bus. Unfortunately, since CCI-P
is the first commercially-available implementation of the UPI bus
on an FPGA, the corresponding IP core, which is a part of the blue
region of the FPGA bitstream and is therefore not accessible to users,
only allows accessing CPU memory via memory polling. Given this
limitation, Dagger starts by polling its local cache which is coherent
with the processor’s LLC and relies on invalidation messages to
bring new data from software buffers. However, since the FPGA
allocates data in its local cache in this case, it causes the CPU to
lose ownership of the corresponding cache lines therefore hurting
the data transfer’s efficiency. For this reason, Dagger dynamically
switches to direct polling of the processor’s LLC when the load
becomes high, as defined by a programmable threshold. Note that
the current limitation of transferring data through polling is not
fundamental to Dagger’s design, but rather an implementation arti-
fact of the currently-available realization of a memory interconnect
on an FPGA. The next generation of FPGAs (Intel Agilex) already
integrates a more advanced interconnect IP based on the CXL [12]
specification. As mentioned above, the CXL protocol supports di-
rect data writes from CPUs to the FPGA’s memory without the
need for memory polling.

4.4.2 Transmitting path (TX). The transmission path has some
additional complexity compared to the RX path due to the need for
load balancing and scheduling/distribution of flows over the active
queues. Figure 9A shows the architecture of Dagger’s TX path.

Load balancer

Incoming RPCs

CCI-P
transmitter

Flow scheduler

To SW rings

...1 2 3 N

FIFO

Free slots

slot_id RPC data
#1 <RPC data>
#2 <RPC data>

<FREE> NULL
#4 <RPC data>

Flow
schd.

CCI-P
transmitter

RPC data path

control path

Load
balancer

sl
ot

_i
d To SW
rings

<3, 5>

(A) (B)

...

1

2

N

Input
ctl.

slot_id

G
et

 fr
ee

 s
lo

t_
id

R
P

C
 d

at
a

Incoming
RPCs

Fl
ow

 F
IF

O
s

Flow FIFOs

R
et

ur
n

fre
e

sl
ot

_i
d

Figure 9: (A) Architecture and (B) Implementation of TX
path.

Incoming RPCs should be distributed across the available receiv-
ing rings (RX buffers in Figure 8), and within a ring, the requests
can be batched for more efficient data transfer, if a service’s latency
target permits it. Distribution of requests across rings is handled
by the Load Balancer (as a part of the RPC unit, refer to Figure 6
(bottom)) that directs incoming RPCs to the corresponding Flow
FIFOs. Each RX buffer gets a dedicated Flow FIFO on the NIC. The
Load Balancer currently supports two request distribution schemes:
dynamic uniform steering and static load balancing. In the first
case, incoming RPCs are evenly distributed across the available
flows. In the static balancing, the RPCs are distributed based on the

information stored in the corresponding connection tuple on the
server. In addition, we leave some room in the design for implemen-
tation of application-specific load balancers (e.g. the Object-Level
core affinity mechanism in MICA [42]). The Flow Scheduler then
picks a Flow FIFO that already contains enough requests to form a
transmission batch and instructs the CCI-P transmitter to send the
batch to the corresponding ring.

The architecture in Figure 9A is implemented in hardware, as
shown in Figure 9B. Since Dagger’s RPCs are at least 64 Bytes long,
storing them in FIFOs for each flow and then multiplexing the flows
is not practical, and adds complexity to the design. Instead, Dagger
implements a request buffer, shown as the green table in Figure 9,
which stores all incoming RPCs in a lookup table indexed by the
slot_id. The Free Slot FIFO is designed to keep track of free entries
in the request buffer. The Flow FIFOs in this case only contain ref-
erences (slot_ids) to the actual RPC data in the table. When sending
data, the CCI-P transmitter directly reads RPC payloads from the
request table based on the references read from the corresponding
Flow FIFO. The size of the request table is equal to 𝐵 ∗ 𝑁𝑓 𝑙𝑜𝑤𝑠 en-
tries, where B is the CCI-P batching and 𝑁𝑓 𝑙𝑜𝑤𝑠 is the total number
of NIC flows.

4.5 RPC Pipeline
The CPU-NIC interface is the first unit of the RPC pipeline; the
other two being the RPCmodule and Transport layer (Figure 6). The
architecture of the RPC module is zoomed-in in Figure 6 (bottom).
It implements request serialization/de-serialization between ready-
to-use RPC objects, as read from the processor and the network. If
compression/encryption is required, the corresponding logic can
optionally be integrated into the unit. In addition, the RPC module
also contains a set of load balancers that decide which flow to steer
incoming requests. The choice of the load balancer is controlled
at server granularity, i.e. each server can specify the load balancer
it requires when registering connections on it. The Protocol is
the last module of the RPC unit. It is designed to implement RPC-
optimized protocol layers such as congestion control, piggybacking
acknowledgement, transactions built into the RC stack, etc., and
is currently idle. Systems similar to TONIC [21] can be used to
implement the Protocol unit.

The RPC unit is connected (over FIFOs, for synchronization)
with the Transport layer which implements a version of the UD-
P/IP protocol and sends outgoing serialized RPC requests to the
Ethernet network. Since data transformations and RPC transport
protocols are not the focus of this work, we simplify these parts
of the pipeline. Our current implementation only supports RPCs
with continuous arguments that do not contain references to other
objects and application-specific data-structures requiring custom
serialization, and the Protocol unit is currently idle - it simply for-
wards all packets to the network. In the following-up work, we plan
to extend Dagger with reliable transports and with RPC-specific
congestion control mechanisms which has been shown to be more
efficient in datacenter networks than TCP [38].

4.6 Dagger Implementation
We implement Dagger on an Intel Broadwell CPU/FPGA hybrid ar-
chitecture. The host processor is a server-class Intel Xeon E5-2600v4

44

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

Table 1: Implementation specifications of Dagger NIC.
Parameter Value

CPU-NIC interface clock frequency, MHz 200 - 300
RPC unit clock frequency, MHz 200
Transport clock frequency, MHz 200
Max number of NIC flows 1 512
FPGA resource usage, LUT (K) 2 87.1 (20%)
FPGA resource usage, BRAM blocks (M20K)2 555 (20%)
FPGA resource usage, registers (K) 2 120.8
1 Assuming 65K entries in the connection cache and ensuring the FPGA
BRAM and logic utilization do not exceed 50%

2 Including the blue region; UPI-based NIC I/O with 64 NIC flows and 65K
entries in the connection cache

CPU integrated with an Arria 10 GX1150 FPGA. The hardware part
(Dagger NIC) is written in SystemVerilog using the Intel OPAEHDK
library. The software part is designed in C++11 and is compiled by
GCC under under the O3 optimization level. The Dagger IDL code
generator is written in Python 3.7. The software modules of our
RPC stack run in user space, and the NIC buffers are allocated by
the FPGA driver in the application virtual address space. The most
important implementation parameters of the Dagger NIC design
are summarized in Table 1.

4.7 Limitations
An important limitation of the current design is the lack of support
for efficient RPC reassembling to enable transfer of requests larger
than the cache line size. In contrast to PCIe DMA, memory inter-
connects implement relaxed memory consistency models, which is
one of the key reasons behind their efficiency. Therefore, the MTU
of a typical memory interconnect is only a single cache line [59].
A naïve solution to address the issue of sending larger RPCs is to
reassemble requests in software. However, this will introduce CPU
overheads and violate our first design principle. Another solution,
as proposed in NeBuLa, leverages Content Addressable Memory
(CAM) for on-chip reassembling in hardware. Unfortunately, CAMs
are expensive in terms of area and energy, and it is challenging to
implement them with low overheads on an FPGA. Efficient RPC
reassembling in hardware is a challenging issue, and we plan to
address it as part of future work. As of now, Dagger only features
software-based RPC reassembling.

5 EVALUATION
5.1 Methodology
We evaluate Dagger along five dimensions. First, we compare Dag-
ger with prior work on efficient RPC processing based on user-space
networking and RDMA. Second, we evaluate different CPU-NIC
interfaces and show the performance benefits of memory inter-
connects over PCIe. Third, we show how Dagger scales with the
number of CPU threads. In addition, we demonstrate that Dagger
can be easily integrated with existing datacenter applications, such
as memcached and MICA, offering dramatic latency improvement
under realistic workloads. Finally, we run a simple microservice
application on top of Dagger showing that our RPC stack is indeed
suitable for multi-tier systems. Table 2 shows the specification of
the hardware platform used.

Table 2: Hardware specifications of experimental platform.
CPU: Intel Xeon E5-2600v4

Cores 12 cores (OOO), 2 threads per core,
2.4 GHz, 14 nm

LLC 30720 kB, 64 B
Additional features AVX-2, DDIO, VT-x

OS CentOS Linux,
Kernel Linux 3.10.0

Interconnect: CCI-P: 2x PCIe and 1x UPI

PCIe Gen3x8, 7.87 GB/s, 2 links,
total bandwidth 15.74 GB/s

UPI 9.6 GT/s (19.2 GB/s), 1 link,
total bandwidth 19.2 GB/s

FPGA: Arria 10 GX1150
Max frequency 400 MHz

Due to the limitation on the number of FPGA-enabled machines
on the Intel vLab cluster, we instantiate two identical Dagger NICs
on the same FPGA and connect them to each other via a loop-back
network. We then give the NICs fair round-robin access to the CCI-
P bus by multiplexing it. Note that since the main contribution of
Dagger is in CPU-NIC interface and the RPC pipeline, the absence
of physical networking does not affect our findings.

5.2 Performance Comparison across RPC
Platforms

We compare the performance of Dagger’s RPC acceleration fabric
with four related proposals, based on DPDK user-space networking
IX [23], raw user-space networking eRPC [38], RDMA FaSST [40],
and the in-memory integrated NIC NetDIMM [18]. Table 3 shows
the median round trip latency and the throughput achieved by each
system. We also show the TOR (Top of Rack) delay assumed in each
work, the size of the being transferred objects, and their type. Note
that if the object type is “msg”, this means that the system does
not implement the RPC layers of the networking stack, and the
reported results do not include the overhead of RPC processing.

Table 3: Median round trip time (RTT) and through-
put of single-core RPCs compared to related work 1.

IX FaSST eRPC Net-
DIMM Dagger

Objects 64B
msg

48B
RPC

32B
RPC

64B
msg

64B
RPC

TOR
delay N/A 0.3 us 0.3 us 0.1 us 0.3 us

RTT, us 11.4 2.8 2.3 2.2 2.1
Thr.,
Mrps 1.5 4.8 2 4.96 2 N/A 12.4

1 Performance numbers are provided from corresponding papers
2 Recorded in symmetric experimental settings

As seen from Table 3, Dagger shows 1.3 − 2.5× (depending on
experimental settings) higher per-core RPC throughput than the
RDMA-based solution, FaSST, and the DPDK-based eRPC. The gain
partially comes from offloading the entire RPC stack on hardware
and leaving only a single memory write in the critical RPC path

45

Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs ASPLOS ’21, April 19–23, 2021, Virtual, USA

on the processor. In addition, approximately 14% of performance
improvement is enabled by replacing the doorbell batching model
with our memory interconnect-based interface. Note that neither
PCIe’s nor UPI’s physical bandwidth is saturated in this experiment,
so these 14% come from the better messaging model enabled by
memory interconnects. Table 3 also shows that Dagger achieves
the lowest median round trip time of 2.1𝑢𝑠 , while significantly
improving throughput compared to both user-space and kernel-
level networking. This is better than FaSST, and even the integrated
solution NetDIMM, and is comparable with eRPC.

5.3 Comparison of CPU-NIC Interfaces
Figure 10 shows the comparison of Dagger’s end-to-end single-core
latency and throughput for different CPU-NIC interfaces. Unless
otherwise specified, the PCIe CPU-NIC interface is based on a single
PCIe Gen3x8 link. The maximum theoretical (physically bounded)
throughput is 122 Mrps for 64 Byte RPCs on all cores.

2.5

5.0

7.5

10.0

12.5

Si
ng

le
-c

or
e

th
r-p

ut
, M

rp
s

4.2 4.3

7.9

9.9
10.8

8.1

12.4

0

2

4

6

M
ed

ia
n

la
te

nc
y,

 u
s

3.8
4.4 4.4 4.6

5.5

1.8
2.4

0

2

4

6

8

10

99
th

 la
te

nc
y,

 u
s

5.2 5.1
5.8

7.0

9.1

2.0
3.1

MMIO
Doorbell

Doorbell, B = 3
Doorbell, B = 7

Doorbell, B = 11
UPI, B = 1

UPI, B = 4

Figure 10: Dagger’s single-core throughput and latency for
different CPU-NIC interfaces (RX path) when transferring
64 Bytes RPCs – B denotes request batching.

As seen from Figure 10, the lowest median and tail latency over
a PCIe bus is achieved when the RX path uses MMIO writes, which
is reasonable, since in this case all RPCs are being written within a
single PCIe transaction. However, the method fails to deliver high
throughput, with the best reported result being 4.2 Mrps. A similar
throughput of 4.3 Mrps but with higher median latency is reported
when Dagger is using non-batched doorbells showing that their
performance is limited by the rate of initiating MMIOs. The only
way to increase the efficiency of doorbells is to use batching which
enables reaching a throughput of 10.8 Mrps for batch of 𝐵 = 11. The
memory interconnect-based transfer (UPI in Figure 10) achieves
single-core throughput of 12.4 Mrps with 𝐵 = 4, and demonstrates
noticeably lower median and tail latency. Note that the latency
improvement does not exclusively come from the reduced number
of bus transactions for the transfer using the memory interconnect.
We conduct another experiment in which we access an address in
the shared memory over PCIe (using DMA) and over UPI. The PCIe
DMA gives us 450𝑢𝑠 of median one-way latency while the UPI read
achieves 400𝑢𝑠 . This shows that UPI is physically slightly faster than
PCIe. Finally, we measured the maximum single-core throughput of
Dagger at 16.5Mrps, with best-effort request processing by allowing
arbitrary packet drops by the server.

5.4 Latency vs Throughput
Figure 11 (left) shows Dagger’s latency under different loads with
the memory interconnect-based NIC.

2.5 5.0 7.5 10.0
Throughput, Mrps

1
2
3
4
5

M
ed

ia
n

La
te

nc
y,

 u
s

B = auto
B = 1

B = 2
B = 4

2 4 6 8
Number of CPU threads

0
20
40
60
80

Th
ro

ug
hp

ut
, M

rp
s

End-to-end
UPI raw

Figure 11: Latency-Throughput curves for single-core asyn-
chronous round-trip 64BRPCs (left) andmulti-core scalabil-
ity of sending 64B requests (right) – B denotes batching, dotted
lines show the saturation point. The black line shows end-to-end
RPC throughput, the dashed line denotes estimated linear scalabil-
ity, and the red line shows the results of the UPI bus’s scalability
with raw idle requests.

With CCI-P batching 𝐵 = 1, Dagger achieves the lowest median
latency (round trip time) of 1.8𝑢𝑠 , which remains stable across the
entire load range, up to the throughput saturation point of 7.2 Mrps.
When increasing batching to 𝐵 = 4, Dagger’s throughput increases
to 12.4 Mrps with a latency of 2.8𝑢𝑠 . Note that when the load is low,
the request latency is relatively high since the RPC pipeline needs
to wait until the batch is full. Dagger leverages soft configuration
to adjust the batch size dynamically when the load becomes high
so that the throughput advantages of batching do not come at a
latency cost (as shown by the green dashed line in Figure 11 (left)).

5.5 Thread Scalability
Figure 11 (right) plots the scalability of Dagger with the number of
CPU threads (logical cores). The system throughput scales linearly
up to 4 threads (2 physical cores) and remains flat at 42 Mrps. Note
that since we run both the RPC client and server on the same
CPU, this effectively translates to 84 Mrps as seen by the processor.
This result is ≈ 23% higher than the performance reported in the
FaSST paper on the CIB cluster, and is 3.5× better than IX under
the same number of cores. The saturation results signal that the
current bottleneck is not the processor. The NIC itself, which is
capable of processing up to 200 Mrps, is also far from saturated.
To better understand the scalability of Dagger, we run another
experiment in which we send idle memory read requests over the
UPI interconnect, the results of which are shown in Figure 11 (right)
in red. The throughput of idle memory reads also scales linearly up
to 80 Mrps with 7 threads, and stays flat when one more thread is
added. Note that the UPI bus has the total physical bandwidth of
19.2 GB/s (Table 2) which is significantly more than 80Mrps for 64
Byte RPCs. Based on this experiment, we conclude that the current
bottleneck is the implementation of the UPI end-point on the FPGA
in the blue region. Since this region is encrypted, we are not able
to optimize it in the current prototype, however, the upcoming
generation of Intel Agilex FPGAs will have a dedicated hard IP core
for memory interconnects, which should address this scalability
issue.

5.6 End-to-End Evaluation on KVS systems
We evaluate the end-to-end performance of Dagger on two real KVS
systems: memcached [6] andMICA [42]. Memcached is a popular in-
memory key-value store, widely used in microservices [33, 54, 55].

46

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

In this experiment, we run the original version of memcached
over Dagger with the UPI-based I/O instead of the native transport
protocol based on TCP/IP for SET and GET commands. We modify
only ≈50 LOC of the Memcached source code in order to integrate
it with Dagger. We also keep the original memcached protocol to
verify the integrity and correctness of the data.

While memcached is a suitable application because of its wide
adoption in both industry and academia, it is relatively slow (≈12×
slower than Dagger). Therefore, the performance of memcached
over Dagger is bottlenecked by memcached itself, which does not
allow Dagger to achieve its full potential. In order to make the
evaluation more comprehensive, we also port MICA over Dag-
ger, another well-known KVS system in the academic community.
MICA is designed specifically to provide high throughput for small
requests, and, in contrast to memcached, it can be, under certain
workloads, network-bounded. We run MICA over Dagger with no
changes to the original codebase; we simply implement a MICA
server application which integrates it with Dagger with ≈200 LOC.

To evaluate the KVS systems, we generate two types of datasets
similar to the ones used to evaluate MICA [42]: tiny (8B keys and
8B values) and small (16B keys and 32B values). We populate both
memcached and MICA KVS with 10M and 200M unique key-value
pairs respectively, and access them over the Dagger fabric, following
a Zipfian distribution [22] with skewness of 0.99. For MICA, we
use their original benchmark and workload generator [9]. We load
both systems with two types of workloads: write-intense (set/get
= 50%/50%) and read-intense (set/get = 5%/95%). We adjust the
workload generator such that the number of packet drops on the
server is always < 1%. The results of running memcached and MICA
with Dagger on a single core are shown in Figure 12.

mcd-
tiny

mcd-
small

mica-
tiny

mica-
small

2

4

6

8

10

La
te

nc
y,

 u
s

2.8 3.2 3.4 3.5

6.9
7.8

5.4 5.7

Median
99th

mcd-
tiny

mcd-
small

mica-
tiny

mica-
small

0

2

4

6

Th
ro

ug
hp

ut
, M

rp
s

0.6 0.6

4.7 4.3

1.5 1.5

5.2 5.050% GET
95% GET

Figure 12: Performance of memcached and MICA running
over Dagger: request latency (left) and throughput (right) –
latency results recorded under the write-intensive workload and
the peak single-core throughput.

Figure 12 (left) shows the latency of the KVS systems running
over Dagger. Latency is defined as the round-trip time between the
moment when a request is issued by a core and when the result
is received. We measure latency for the write-intensive (set/get =
50%/50%) workload in a similar way to [42] to ensure a fair compar-
ison. Memcached achieves the lowest median latency of 2.8𝑢𝑠 , and
a 99𝑡ℎ percentile latency of 6.9𝑢𝑠 , when running under a 0.6𝑀𝑟𝑝𝑠
load on a single core for tiny requests. For small requests, the re-
sults are slightly higher. The MICA KVS shows a better tail latency
of 5.4𝑢𝑠 and 5.7𝑢𝑠 for tiny and small requests, respectively. It is
4.4 − 5.2× lower than the latency numbers reported in the original
MICA work when running it over the lightweight DPDK-based
networking stack. This result shows that Dagger can offer dramatic
latency reduction in high performance KVS systems compared to
optimized user-space networking.

The KVS throughput results are shown in Figure 12 (right). With
the workload that we use, the systems are still bottlenecked by the
key-value store. Dagger can reach up to 12.4𝑀𝑟𝑝𝑠 of single-core
throughput, where memcached and MICA had a limit of 0.6 − 1.6
and 4.8 − 7.8 Mrps, respectively. For this reason, the single-core
throughput improvement of Dagger remains hidden. At the same
time, these results show that integrating our RPC stack does not
add any additional throughput overhead compared to software-
based networking systems. To better load MICA, we also test it
under a distribution with skewness of 0.9999, which yields even
higher data locality, and therefore better cache utilization. With
such a workload, Dagger achieves a throughput of 10.2 Mrps and 9.8
Mrps for read- and write-intensive workloads with the same latency
numbers, as in Figure 12, therefore bringing the performance of
MICA closer to the peak performance of Dagger.

We do not show results of multi-core scalability for MICA, since
the extensive amount of LLC contention introduces considerable
instability in the results. The contention is caused by running both
client and server on the same CPU, without the possibility to parti-
tion the cache, therefore allowing them to share the same portion
of LLC. The client runs the workload generator which reads 1.49GB
of data at a very high rate from its internal buffer making the LLC
traffic very high. As part of future work, we plan to deploy Dag-
ger to a cluster environment with physically distributed FPGAs to
avoid client-server colocation, and measure more representative
multi-core throughput results.

5.7 End-to-End Evaluation on Microservices
Finally, we evaluate Dagger on an end-to-end application built
with microservices. We design a simple multi-tier service with
8 microservices which implements a Flight Registration service,
shown in Figure 13.

Passenger
frontend

Check-in
service

Flight service

Baggage
service

Passport
serviceAirport $

(MICA)

Citizens $
(MICA)

Store

Staff
frontend

Figure 13: FlightRegistrationmicroservice architecture – the
passenger front-end generates uniformly random passenger regis-
tration requests to the Check-in service. The Check-in service then
consults the Flight service for flight information data, the Baggage
service for the status of the passenger’s baggage, and the Passport
service to check the passenger’s identity. The Passport service is-
sues nested requests to the Citizens database (based on MICA [42]).
Upon receiving all responses, the Check-in service registers the
passenger in the Airport database (also based on MICA cache). The
latter is additionally accessible by the Staff front-end, which is used
to asynchronously check all records in the system.

We design the Flight Registration service such that it exhibits dif-
ferent types of dependencies across tiers (one-to-one, one-to-many,
many-to-one), and includes both chain and fanout dependencies.
All services communicate with each other over RPC calls and run

47

Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs ASPLOS ’21, April 19–23, 2021, Virtual, USA

different threading models to show the flexibility of Dagger. In par-
ticular, the Passenger and Staff Frontend services run non-blocking
RPCs to avoid throughput bottlenecks due to high request propa-
gation times. Similarly, the Check-in service issues non-blocking
requests to the Flight, Baggage, and Passport services, but it later
blocks until it receives all the responses before proceeding with
blocking calls to the Airport service. The Passport service also runs
blocking RPCs to the Citizens database. In our first experiment, each
RPC server processes requests in the dispatch thread to benefit from
its low-latency, zero-copy operation.

Service Dagger
NIC

Service Dagger
NIC

Service Dagger
NIC

Switch

RX/TX ring PCIe/UPI arbiter Virtualized NIC

FPGACPU

CPU core

ToR model

C
C
I
P

Figure 14: Virtualization of theDagger NIC to servemultiple
tiers running on the same physical machine – the PCIe/UPI
arbiter provides fair round-robin sharing of the CCI-P bus between
tenants; the Switch performs simple L2 packet switching based on
the pre-defined static switching table.

Similarly to our previous experiments, and due to the limitations
of the cluster, we run all services on the same machine and over
the same physical FPGA. Such a setup requires virtualization pf
the NIC to ensure that each tier gets an independent Dagger NIC
therefore reflecting the real distributed setup when each tier runs
on a separate physical or virtual machine. By placing all tiers on the
same machine we additionally show how the Dagger NIC can be
virtualized. Our NIC is virtualizable by putting multiple instances
of it on the same FPGA and giving them fair round-robin sharing
of the system bus and memory. Each instance of the NIC is serving
a dedicated microservice tier, i.e., in this experiment, we instantiate
8 copies of the Dagger NIC, as shown in Figure 14. The NICs are
connected with each other over our simple model of a ToR network-
ing switch with a static switching table. In Section 6, we give more
details on virtualization and show how different microservice tiers
can benefit from it.

As previously mentioned, we first run the Flight Registration
service with the Simple threading model in which each service
handles RPC requests directly in dispatch threads along with the
networking I/O. The results of this experiment are summarized in
the first row in Table 4.

Table 4: Summary of performance results for the
Flight Registration service.
Threading
model

Highest load,
Krps 1

Lowest latency, us
Median 90th 99th

Simple 2.7 13.3 20.2 23.8
Optimized 48 23.4 27.3 33.6
1 Recorded when the total number of request drops across all tiers
does not exceed 1%.

As seen from Table 4, the maximum throughput with the Simple
threading model is limited to 2.7𝐾𝑟𝑝𝑠 , however, the system shows
low `s-scale end-to-end latency. In order to profile the application,
we design a lightweight request tracing system and integrate it with
Dagger. Our analysis reveals that the system is bottlenecked by
the resource-demanding and long-running Flight service. Handling
such RPCs in dispatch threads limits the overall throughput since
they block the NIC’s RX rings from reading new requests. One well-
known way [51] to address this issue is to use different dispatch
and worker threads for networking IO and RPC handling. Simi-
lar intuition applies to the Check-in and Passport services. Those
are not resource-intensive, but they issue multiple nested block-
ing RPC calls, and therefore run for a relatively long time. In our
next experiment, we configure the Flight, Check-in, and Passport
service’s RPC servers to run request processing in worker threads
(Optimized threading model). The results in the second row in Ta-
ble 4 show that such a change in the threading model dramatically
increases the overall application throughput by up to 17×. Note
that the latency became larger in this case due to the overhead
of inter-thread communication and additional request queueing
between the dispatch and worker threads. Figure 15 shows a more
comprehensive view onto the system behaviour when running with
the Optimized threading model. The 8-tier Flight Registration ser-
vice running over Dagger achieves a median and tail latency of
23 and 33𝑢𝑠 respectively before the throughput saturation point
of 25𝐾𝑟𝑝𝑠 . When throughput crosses the saturation point, the tail
latency soars sharply, while the median latency stays at the level
of 23 − 26𝑢𝑠 . We do not increase the load further due to the quickly
growing number of request drops after that point.

15 20 25 30
20
23
26
29
32
35
38

La
te

nc
y,

 u
s

15 20 25 30 35 40 45 50
Load, Krps

102

103
Median
90th
99th

Figure 15: Latency/load curves for the Flight Registration
service with the Optimized threading model – the figure on
the left shows a zoomed-in view of the latency over the load up to
30 Kqps in linear scale.

In addition to configuring the software part of Dagger to run
different threading models, we also configure the NICs differently.
All services in our Flight Registration benchmark besides theAirport
and Citizens services are stateless and they do not cache any data.
For this reason, the round-robin dynamic RPC load balancer works
best for them and we configure the corresponding NICs to use it.
In contrast, the two mentioned services are stateful, and they run
the MICA KVS in the backend. However, MICA does not work
correctly with round-robin/random load balancers due to the way
it partitions the object heap across CPU cores/NIC flows. MICA
requires that all requests with the same keys always go to the same
partition, and in the original work, it uses Flow Director to steer
requests to cores/partitions. In this experiment, we implement our
own application-specific Object-Level [42] load balancer for MICA

48

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

tiers by applying the hash function to each request’s key on the
FPGA before steering them to the flow FIFOs, and instantiate it
inside the Dagger NICs serving the corresponding tiers. This shows
how NICs running hardware-offloaded RPCs on FPGAs can be
flexibly programmable to satisfy the needs of different applications.
More hardware parameters of the NICs can be further fine-tuned
for each individual microservice as we briefly discuss in Section 6.

6 DISCUSSION
As shown in Dagger’s evaluation, relying on memory intercon-
nects for high performance datacenter networking is beneficial,
however one might argue that integrating FPGAs/NICs over con-
ventional PCIe busses imposes fewer constraints over the type of
CPU a system can use. Additionally, while PCIe is more widely
adopted as a peripheral interconnect in today’s processors, this
trend is increasingly changing. First, the UPI/QPI interconnect is
natively supported by all modern datacenter processors (e.g., Xeon
family), and any FPGA which implements the UPI/QPI specifica-
tion can be integrated in it. As of today, we are aware of two such
FPGA families: Intel Broadwell Arria 10 (used in this work) and the
new Stratix 10 DX device. A similar technology is also being de-
veloped by IBM. Their OpenCAPI [10] cache-coherent CPU-FPGA
interface is already used in recent research work on disaggregated
memory [53]. Second, there is an ongoing collaborative effort from
multiple hardware vendors to derive a specification for a new pe-
ripheral interface with cache coherency support (CXL) for future
devices. Similar efforts in academia have yielded systems like ETH’s
Enzian [8], which closely couples an FPGA with an ARM-based
datacenter CPU over the Cavium coherent interconnect CCPI [7].
We believe, Enzian can also be a good physical medium for Dagger.

Virtualization of network interfaces is another topic around Dag-
ger’s design. NIC virtualization enables efficient sharing of a single
physical interface between multiple tenants, such as different guest
operating systems. Given that Dagger is based on an FPGA and it
can be tuned for different applications based on their network char-
acteristics and requirements, it provides an excellent framework to
enable virtualization. As seen from Table 1, the Dagger NIC occu-
pies less than 20% of the available FPGA space when synthesized
with a relatively large number of flows and connection cache space.
This demonstrates that the same FPGA device can accommodate
multiple instances of the NIC at the same time as we show in Sec-
tion 5.7. Each instance can be used as a “virtual but physical” NIC
for the corresponding tenant, and it can be configured based on the
network provisioning requirements of each tenant.

Additionally, we note that the BRAM memory of FPGAs is one
of the key resources enabling reconfigurability and efficiency in
Dagger. By leveraging the FPGA to manage on-chip memory one
can flexibly split the available memory capacity (53Mb for the FPGA
used in Dagger) at very fine granularity, therefore improving the
efficiency of NIC caches which is crucial, since NIC cache misses are
one of the main performance bottlenecks in commercial NICs [39].
This is especially important in the aforementioned virtualized envi-
ronment. For example, with FPGAs, it is possible to allocate more
connection cache memory for NIC instances serving tenants with

a large number of connections, or more packet buffer space for ten-
ants experiencing large network footprints. Such on-chip NIC cache
management can be easily done at the NIC instance granularity.

Finally, Dagger-like designs enable efficiently co-designing RPC
stacks with transactions in hardware. For instance, in our example
of the Flight Registration application in Section 5.7, the Airport ser-
vice concurrently processes requests from both the Check-in service
and Staff Frontend. As of now, we implement a lock-based concur-
rency control mechanism in software which comes with certain
overheads in the OS. Alternatively, given the fully programmable
nature of FPGAs, one can run synchronization protocols at the RPC
level, on the Dagger NIC, such that all requests being received by
the service are already serialized. Applications with more compli-
cated transactional semantics (e.g., Paxos, 2PC, etc.) can specifically
benefit from this support.

7 CONCLUSION
Dagger is an efficient and reconfigurable hardware acceleration
platform for RPCs, specifically targeting interactive cloud microser-
vices. In addition to showing the benefits of hardware offload for
RPCs to reconfigurable FPGAs, we also demonstrate that using
memory interconnects instead of PCIe as the NIC I/O interface
offers significant benefits. Most importantly, our work shows that
such close coupling of programmable networking devices with
processors is already feasible today. Dagger achieves 1.3 − 3.8×
better per-core RPC throughput compared to previous DPDK- and
RDMA-based solutions, it provides `-scale latency, and it can be
easily ported to third-party applications, such as memcached and
MICA, significantly improving their median and tail latencies. We
also show the reconfigurability feature of our proposal by running
an example of a multi-tier application and tuning both the software
and hardware parts of the stack for each individual microservice to
get high end-to-end performance.

ACKNOWLEDGMENTS
We sincerely thank Lizy John for her valuable feedback while shep-
herding our paper. We also thank Yu Gan, Yanqi Zhang, Shuang
Chen, Neeraj Kulkarni, Mingyu Liang, Zhuangzhuang Zhou, Mark
Sutherland, and the anonymous reviewers for their feedback on
earlier versions of this manuscript. This work was in part sup-
ported by CRISP, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA, an
NSF CAREER Award CCF-1846046, NSF grant NeTS CSR-1704742,
NSF/Intel CAPA grant CCF-1723715, a Sloan Research Fellowship, a
Microsoft Research Fellowship, an Intel Faculty Rising Star Award,
and a John and Norma Balen Sesquisentennial Faculty Fellowship.

REFERENCES
[1] [n.d.]. DeathStarBench Github Repository. https://github.com/delimitrou/

DeathStarBench.
[2] [n.d.]. Decomposing Twitter: Adventures in Service-Oriented Architecture.

https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-
architecture.

[3] 2016. The Evolution of Microservices. https://www.slideshare.net/
adriancockcroft/evolution-of-microservices-craft-conference.

[4] accessed August, 2020. Cloudius Systems. Seastar. (accessed August, 2020).
http://www.seastarproject.org/.

[5] accessed August, 2020. Finagle RPC. (accessed August, 2020). https://twitter.
github.io/finagle/.

49

https://github.com/delimitrou/DeathStarBench
https://github.com/delimitrou/DeathStarBench
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
http://www.seastarproject.org/
https://twitter.github.io/finagle/
https://twitter.github.io/finagle/

Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs ASPLOS ’21, April 19–23, 2021, Virtual, USA

[6] accessed August, 2020. Memcached source. (accessed August, 2020). https:
//github.com/memcached/memcached.

[7] accessed December, 2020. Cavium CCPI interface. (accessed December, 2020).
https://en.wikichip.org/wiki/cavium/ccpi.

[8] accessed December, 2020. ETH Enzian research computer. (accessed December,
2020). http://www.enzian.systems/.

[9] accessed December, 2020. MICA source code. (accessed December, 2020). https:
//github.com/efficient/mica.

[10] accessed December, 2020. The OpenCAPI consortium. (accessed December, 2020).
https://opencapi.org/.

[11] accessed July, 2020. DPDK. (accessed July, 2020). https://www.dpdk.org/.
[12] accessed May, 2020. Compute Express Link (CXL) specification. (accessed May,

2020). https://www.computeexpresslink.org/.
[13] accessed May, 2020. gRPC. (accessed May, 2020). https://grpc.io/.
[14] accessed May, 2020. Intel Acceleration Stack for Intel Xeon CPU

with FPGAs Core Cache Interface (CCI-P) Reference Manual. (accessed
May, 2020). https://www.intel.com/content/www/us/en/programmable/
documentation/buf1506187769663.html.

[15] accessed May, 2020. Thrift RPC. (accessed May, 2020). https://thrift.apache.org/.
[16] Adrian Cockroft [n.d.]. Microservices Workshop: Why, what, and how to get

there. http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-
conference.

[17] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. 2003. Performance Debugging for Distributed Systems
of Black Boxes. In Proceedings of the Nineteenth ACM Symposium on Operating Sys-
tems Principles (Bolton Landing, NY, USA) (SOSP ’03). Association for Computing
Machinery, New York, NY, USA, 74–89. https://doi.org/10.1145/945445.945454

[18] Mohammad Alian and Nam Sung Kim. 2019. NetDIMM: Low-Latency Near-
Memory Network Interface Architecture. Int’l Symp. on Microarchitecture (MI-
CRO) (2019).

[19] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. 2011. Analysis of
DCTCP: Stability, Convergence, and Fairness. Int’l Conf. on Measurement and
Modeling of Computer Systems (SIGMETRICS) (2011).

[20] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. PFabric: Minimal near-Optimal Dat-
acenter Transport. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM (Hong Kong, China) (SIGCOMM ’13). Association for Computing Ma-
chinery, New York, NY, USA, 435–446. https://doi.org/10.1145/2486001.2486031

[21] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. USENIX Symp. on Networked Systems Design and
Implementation (NSDI) (2020).

[22] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-Scale Key-Value Store. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (London, England, UK) (SIG-
METRICS ’12). Association for Computing Machinery, New York, NY, USA, 53–64.
https://doi.org/10.1145/2254756.2254766

[23] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. [n.d.]. IX: A Protected Dataplane Operating System for
High Throughput and Low Latency. USENIX Symp. on Operating Systems Design
and Implementation (OSDI) ([n. d.]).

[24] Adrian Caulfield, Paolo Costa, and Monia Ghobadi. 2018. Beyond SmartNICs:
Towards a Fully Programmable Cloud: Invited Paper. (2018).

[25] P. Chen, Y. Qi, P. Zheng, and D. Hou. 2014. CauseInfer: Automatic and distributed
performance diagnosis with hierarchical causality graph in large distributed
systems. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.
1887–1895.

[26] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. 2019. RPCValet: NI-
Driven Tail-Aware Balancing of Ms-Scale RPCs. Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (2019).

[27] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. USENIX Symp. on Networked Systems Design
and Implementation (NSDI) (2014).

[28] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.
NICA: An Infrastructure for Inline Acceleration of Network Applications. USENIX
Annual Technical Conf. (ATC) (July 2019).

[29] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation (Renton,
WA, USA) (NSDI’18). USENIX Association, USA, 51–64.

[30] Mario Flajslik and Mendel Rosenblum. 2013. Network Interface Design for Low
Latency Request-Response Protocols. USENIX Annual Technical Conf. (ATC)
(2013).

[31] Yu Gan and Christina Delimitrou. 2018. The Architectural Implications of Cloud
Microservices. In Computer Architecture Letters (CAL), vol.17, iss. 2.

[32] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. 2021.
Sage: Leveraging ML To Diagnose Unpredictable Performance in Cloud Microser-
vices. In Proceedings of the Twenty Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[33] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud and Edge
Systems. International Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2019).

[34] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun Cheng,
and Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navigate the Com-
plexity of Performance Debugging in Cloud Microservices. In Proceedings of the
Twenty Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Providence, RI).

[35] Stephen Ibanez, Muhammad Shahbaz, and Nick McKeown. 2019. The Case for a
Network Fast Path to the CPU. ACM Workshop on Hot Topics in Networks (2019).

[36] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable User-
level TCP Stack for Multicore Systems. USENIX Symp. on Networked Systems
Design and Implementation (NSDI) (2014).

[37] Vimalkumar Jeyakumar, Omid Madani, Ali Parandeh, Ashutosh Kulshreshtha,
Weifei Zeng, and Navindra Yadav. 2019. ExplainIt! – A Declarative Root-Cause
Analysis Engine for Time Series Data. In Proceedings of the 2019 International
Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19).
Association for Computing Machinery, New York, NY, USA, 333–348. https:
//doi.org/10.1145/3299869.3314048

[38] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs
can be General and Fast. USENIX Symp. on Networked Systems Design and
Implementation (NSDI) (2019).

[39] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines
for High Performance RDMA Systems. USENIX Annual Technical Conf. (ATC)
(2016).

[40] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs.
USENIX Symp. on Operating Systems Design and Implementation (OSDI) (2016).

[41] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krish-
namurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration as an OS Service.
In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany)
(EuroSys ’19). Association for Computing Machinery, New York, NY, USA, Article
24, 16 pages. https://doi.org/10.1145/3302424.3303985

[42] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. Symposium
on Networked Systems Design and Implementation (NSDI) (2014).

[43] JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint perfor-
mance issues with causal graphs in micro-service environments. In International
Conference on Service-Oriented Computing. Springer, 3–20.

[44] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. USENIX Annual Technical Conf. (ATC) (2019).

[45] L. Ming, Qiulei Fu, Y. Wan, and T. Zhu. 2012. User-space RPC over RDMA on
InfiniBand.

[46] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Pri-
orities. ACM Special Interest Group on Data Communication (SIGCOMM) (2018).

[47] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and Kyoung-
Soo Park. 2020. AccelTCP: Accelerating Network Applications with State-
ful TCP Offloading. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 77–92.
https://www.usenix.org/conference/nsdi20/presentation/moon

[48] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.
Restructuring Endpoint Congestion Control. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication (Budapest, Hungary)
(SIGCOMM ’18). Association for Computing Machinery, New York, NY, USA,
30–43. https://doi.org/10.1145/3230543.3230553

[49] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. 2018. Understanding PCIe Performance
for End Host Networking. ACM Special Interest Group on Data Communication
(SIGCOMM) (2018).

50

https://github.com/memcached/memcached
https://github.com/memcached/memcached
https://en.wikichip.org/wiki/cavium/ccpi
http://www.enzian.systems/
https://github.com/efficient/mica
https://github.com/efficient/mica
https://opencapi.org/
https://www.dpdk.org/
https://www.computeexpresslink.org/
https://grpc.io/
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html
https://www.intel.com/content/www/us/en/programmable/documentation/buf1506187769663.html
https://thrift.apache.org/
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://doi.org/10.1145/945445.945454
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/3299869.3314048
https://doi.org/10.1145/3299869.3314048
https://doi.org/10.1145/3302424.3303985
https://www.usenix.org/conference/nsdi20/presentation/moon
https://doi.org/10.1145/3230543.3230553

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

[50] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris
Grot. 2014. Scale-out NUMA. Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2014).

[51] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang. 2015. The RAMCloud
Storage System. ACM Trans. Comput. Syst. 33, 3, Article 7 (Aug. 2015), 55 pages.
https://doi.org/10.1145/2806887

[52] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. 2018. Floem: A Programming System
for NIC-Accelerated Network Applications. Symposium on Operating Systems
Design and Implementation (OSDI) (2018).

[53] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Katrinis, and
H. P. Hofstee. 2020. ThymesisFlow: A Software-Defined, HW/SW co-Designed
Interconnect Stack for Rack-Scale Memory Disaggregation. In 2020 53rd Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO). 868–880. https:
//doi.org/10.1109/MICRO50266.2020.00075

[54] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus Prime:
Accelerating Data Transformation in Servers. Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) (2020).

[55] Akshitha Sriraman and Thomas F. Wenisch. 2018. µSuite: A Benchmark Suite for
Microservices. Int’l Symp. on Workload Characterization (IISWC) (2018).

[56] Akshitha Sriraman and Thomas F. Wenisch. 2018. µTune: Auto-Tuned Thread-
ing for OLDI Microservices. USENIX Symp. on Operating Systems Design and
Implementation (OSDI) (2018).

[57] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle. 2014.
DaRPC: Data Center RPC. In Proceedings of the ACM Symposium on Cloud Com-
puting (Seattle, WA, USA) (SOCC ’14). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/2670979.2670994

[58] S. Sur, Lei Chai, Hyun-Wook Jin, and D. K. Panda. 2006. Shared receive
queue based scalable MPI design for InfiniBand clusters. In Proceedings 20th
IEEE International Parallel Distributed Processing Symposium. 10 pp.–. https:
//doi.org/10.1109/IPDPS.2006.1639336

[59] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe, Dionisios
Pnevmatikatos, and Alexandros Daglis. 2020. The NeBuLa RPC-Optimized Ar-
chitecture. Int’l Symp. on Computer Architecture (ISCA) (2020).

[60] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, Ed Suh, and Christina Delim-
itrou. 2021. Sinan: Data-Driven Resource Management for Interactive Microser-
vices. In Proceedings of the Twenty Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

51

https://doi.org/10.1145/2806887
https://doi.org/10.1109/MICRO50266.2020.00075
https://doi.org/10.1109/MICRO50266.2020.00075
https://doi.org/10.1145/2670979.2670994
https://doi.org/10.1109/IPDPS.2006.1639336
https://doi.org/10.1109/IPDPS.2006.1639336

	Abstract
	1 Introduction
	2 Related Work
	3 Characterizing Networking in Microservices
	3.1 Networking Overheads in Microservices
	3.2 Network Characteristics of Microservices
	3.3 CPU Contention between Logic and Networking

	4 Dagger Design
	4.1 High-Level Architecture and Design Principles
	4.2 Dagger API and Threading Model
	4.3 NUMA Interconnects as NIC Interfaces
	4.4 Implementation of the NIC Interface
	4.5 RPC Pipeline
	4.6 Dagger Implementation
	4.7 Limitations

	5 Evaluation
	5.1 Methodology
	5.2 Performance Comparison across RPC Platforms
	5.3 Comparison of CPU-NIC Interfaces
	5.4 Latency vs Throughput
	5.5 Thread Scalability
	5.6 End-to-End Evaluation on KVS systems
	5.7 End-to-End Evaluation on Microservices

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

