
Dagger: Towards E�cient RPCs in Cloud Microservices with
Near-Memory Reconfigurable NICs

Nikita Lazarev, Neil Adit, Shaojie Xiang, Zhiru Zhang, and Christina Delimitrou

Abstract— Cloud applications are increasingly relying on hundreds of loosely-coupled microservices to complete user requests that meet
an application’s end-to-end QoS requirements. Communication time between services accounts for a large fraction of the end-to-end
latency and can introduce performance unpredictability and QoS violations. This work presents our early work on Dagger, a hardware
acceleration platform for networking, designed specifically with the unique qualities of microservices in mind. The Dagger architecture
relies on an FPGA-based NIC, closely coupled with the processor over a configurable memory interconnect, designed to o�oad and
accelerate RPC stacks. Unlike the traditional cloud systems that use PCIe links as the NIC I/O interface, we leverage memory-interconnected
FPGAs as networking devices to provide the e�ciency, transparency, and programmability needed for fine-grained microservices. We show
that this considerably improves CPU utilization and performance for cloud RPCs.
Index Terms—Microservices, programmable NICs, RPC, memory interconnects, FPGA, near-memory processing.

F

1 Introduction

T HE past few years have seen a major shift in the way cloud
applications are designed, from traditional monolithic architectures

to microservices. While microservices improve error isolation and accel-
erate development and deployment iterations, they also introduce non-
negligible communication overheads in terms of networking [8], [19].
Remote Procedure Calls (RPC) are one of the most commonly-used
communication techniques in microservices. There is a variety of com-
mercially available RPC frameworks; however, since these frameworks
were not designed specifically with microservices in mind, they do not
address their unique resource requirements.

As the demand for high-bandwidth and low-latency networking in the
cloud continues to grow, research from both industry and academia has
offered numerous proposals for efficient datacenter network designs. One
set of proposals is based on user-space dataplane architectures pushing a
larger fraction of the networking stack from kernel to user space [4],
[10]. While this approach eliminates the overhead of the user/kernel
boundary crossing, it still implements the entire networking stack in
software, therefore consuming processor resources and being subject to
the generality overheads of CPU-based execution.

Another line of work proposes offloading network processing to
specialized adapters, and leverages RDMA to implement high level
communication primitives, such as RPCs [5], [12]. While prior work has
demonstrated the efficiency benefits of RDMA compared to traditional
networking, since commercially available network adapters are typically
viewed by the processor as peripheral devices over PCIe, such RDMA-
based architectures still suffer from unnecessary overheads from the
interconnect’s messaging model [7], [11], [13]. Moreover, the proposed
solutions do not offload the entire networking stack to hardware, leaving
computationally-intensive application layers (e.g., RPC data transforma-
tion, (de)encryption, (de)compression, etc.) to the host processor.

To address the aforementioned issues, prior work has proposed
closely integrating NICs with CPUs. NetDIMM [2], for example, sug-
gests embedding network interfaces into DIMM memory hardware.
While the idea has merit, implementing it in silicon and performing
an end-to-end evaluation requires taping-out custom memory hardware,
which is problematic given the frequency with which cloud services
change. soNUMA [14] offers a more practical solution by scaling out
coherent NUMA interconnects at the datacenter level, therefore provid-
ing fast and efficient networking. NeBuLa [21] extends soNUMA and
discusses the implementation of a hardware-based RPC stack over scaled
NUMA interconnects, and further proposes to directly deliver the RPC
payload all the way to the L1 cache. The NeBuLa architecture offers dra-
matic network queueing reduction and improved throughput and latency
for RPCs. However, NeBuLa requires changing the processor’s memory
system and fabricating dedicated silicon, a non-trivial undertaking when
targeting datacenter-scale deployments. The same applies for Optimus

• All authors are with the School of ECE, Cornell University, Ithaca, NY.
E-mail: {nl524, na469, sx233, zhiruz, delimitrou}@cornell.edu

Manuscript received June XXX, 2020; revised August XXX, 2020.

Prime [16], which proposes offloading RPC data transformations to a
closely-coupled integrated ASIC accelerator.

In this work, we present Dagger, the first end-to-end FPGA-based
reconfigurable RPC stack integrated with the processor over a NUMA-
like memory interconnect. In contrast to soNUMA [14], Dagger does not
rely on scaling-out complex memory interconnects and implementation
of the RPC stack in custom silicon, but rather follows the standard design
architecture of networking systems where the machines in a cluster are
connected over commodity Ethernet. Similarly to NeBula and Optimus
Prime, we leverage memory interconnects, but only as the interface
between the processor and the NIC as an Ethernet device. We use FPGAs
as the physical medium for Dagger to (1) make the implementation of the
near-memory RPC hardware feasible today without the need for taping-
out custom hardware, and to (2) make the NIC reconfigurable, so the
networking stack can dynamically adjust to the running workload. The
latter is especially important for microservices, which are by design very
diverse and frequently updated [8], [18]. While several prior proposals
have discussed the potential of programmable NICs [3], [6], [17], they
all rely on commodity PCIe technology for the interconnect, and are
not focused on hardware-based RPC systems, therefore, leaving the
application part of the RPC protocol stack running on the host processor.

We characterize the unique properties of microservice network
footprints using the Social Network and Media Service applications
from the DeathStarBench suite [8], and prototype Dagger on the Intel
Broadwell integrated CPU/FPGA architecture available in today’s cloud
systems. We demonstrate in practice that offloading networking to a near-
memory FPGA significantly increases per-core RPC throughput for the
small requests common in microservices up to 2.4− 3.8×, compared
to both specialized hardware platforms [12] and optimized software
protocols [4], [10]. Our solution yields single-thread throughput of 12.4
Mrps; it scales up to 42 Mrps with only four threads on two CPU cores,
and provides state-of-the-art µs-scale end-to-end latency.

2 Network Characteristics in Microservices
Microservices have distinct network requirements and traffic patterns,
compared to monolithic applications and traditional distributed systems.
First, every user request in microservices is propagated through a large
graph of tiers, with per-node processing and communication delays being
accumulated in the end-to-end latency. As a result, the Quality of Service
(QoS), which is usually defined in terms of tail latency under a certain
load in Queries per Second (QPS), critically depends on the performance
of every communication channel between each pair of microservices on
the call path. Hence, even a small latency increase in the networking
stack translates to considerable increases in end-to-end latency, as shown
in Figure 1 which plots the end-to-end fractions of networking and
application time (including queueing) with respect to load.

Second, even though RPC request and response payloads in typical
datacenter applications are already relatively small, ranging from hun-
dreds of bytes to few kBytes [9], [22], in microservices that number is
even smaller, as shown in Figure 2 for the Social Network and Media
Service from DeathStarBench [8].

100 300 600 800 900
QPS

0

5

10
M

ed
ia

n
La

te
nc

y,
 m

s
application
networking

100 300 600 800 900
QPS

0

20

40

90
th

 L
at

en
cy

, m
s

application
networking

Fig. 1: Networking as a fraction of median (left) and tail (right) latency.

0 256 512 768 1024 1280
RPC Size (Bytes)

0
25
50
75

100

%
 o

f M
es

sa
ge

s

SocialNetwork
MediaService

RPC requests
RPC responses

Fig. 2: Distribution of RPC sizes across microservices in [8].
Figure 2 shows that more than 70% of RPC requests are smaller

than 256B, and almost all requests are within 1280B. Responses are
even smaller: nearly 100% of messages are less than 256B with 95% of
messages being under 64B. These tiny messages introduce high pressure
on networking stacks at all levels. In fact, previous work has shown that
commodity networking systems cannot efficiently handle this traffic, due
to high per-packet overheads [4], [10].

Finally, microservices are by design very diverse in terms of their
design patterns and performance requirements [18]. In particular, there
is a rich variety of thread models [20], network queueing architec-
tures [21], and strategies of mapping microservices to the available
hardware resources. Performance requirements also vary, with some
microservices being latency-critical, while others are treated as batch.
Commodity networking systems do not necessarily provide the most
efficient solution for a particular application class. This has caused
programmable networking systems to become more popular [3], [15].
Such systems allow flexibly adjusting networking primitives depending
on the currently-running applications. Even so, all today’s programmable
NICs are based on a fixed CPU-NIC interface.

3 Dagger: A Near-Memory Reconfigurable NIC for Inter-
active Microservices

3.1 Integrating NICs over Memory Interconnects

PCIe is the current de facto standard interface between processors
and NICs or accelerators. Unfortunately, the PCIe protocol has lim-
ited functionality, it requires multiple transactions and explicit memory
synchronization to send data chunks to the device, which increases the
per-packet overheads. The regular way to send data over PCIe is by
using DMA transfers together with expensive notification (initiation)
transactions explicitly issued by the processor as memory-mapped I/O
(MMIO) requests (also known as doorbells [11]). Various optimizations
can be applied to improve the efficiency of doorbells [7], [11], although
none of them can completely avoid the expensive MMIOs.

The fundamental disadvantage of the traditional PCIe model when it
comes to interactive microservices is caused by following the Producer-
Consumer ordering models common in the majority of peripheral de-
vices, which work well on data streams and large continuous objects [1].
However, microservice RPC flows do not conform to such patterns: (1)
their small fine-grained RPCs are normally independent of each other;
(2) they do not necessarily arrive in a streaming fashion; and (3) when
optimizing for low latency, they cannot be efficiently batched to form
large data streams. When using production-level RPC frameworks, such
as Apache Thrift, RPC requests can be discontiguous in memory and
may contain references to nested data structures, requiring expensive and
non-zero-copying serialization [16] on the CPU for commodity doorbells.

The main advantage of using memory interconnects as the CPU-NIC
interface is that the data transfer can be handled entirely in hardware
without the need for explicit notifications from the processor. In the best-
case scenario, the only operation the processor should do in the critical
path is preparing an RPC packet and writing it to the pre-allocated,
coherent memory buffer, which is shared with the NIC. The hardware,
i.e., the NIC and the memory sub-system, then handle the data transfer
without any CPU intervention. This approach has the highest potential
for networking systems of fine-grained workloads and latency-sensitive
flows when aggressive batching is not desirable.

3.2 Design Principles of Dagger
Dagger adheres to the following design principles. First, the platform
implements a hardware-based RPC protocol, i.e., the entire stack is
offloaded to hardware. The software is only responsible for providing
a zero-copy RPC API, alongside with the connection establishment
and performance/statistics monitoring APIs. This improves networking
performance by removing software and systems overheads from the
critical path of RPC flows. In addition, this leaves more CPU resources
available to applications, which is essential given the fine-grained and
concurrent nature of cloud microservices.

Second, the design of Dagger is modular and fully reconfigurable.
The Dagger RPC stack consists of a set of decoupled layers, as shown in
Figure 3, and each layer can be programmed via either a soft register file
(soft reconfiguration) or via FPGA-based reconfiguration of the bitstream
(hard reconfiguration). In addition to programmable transports, Dagger
also provides a reconfigurable CPU-NIC interface that allows fine-tuning
the host-to-device communication model depending on the requirements
and design patterns of target applications.

Third, Dagger leverages commercially-available, general-purpose
memory interconnects instead of PCIe as the NIC I/O interface, which
we showed to be more beneficial for fine-grained RPCs in Section 3.1.
Dagger’s current design is based on the Intel CCI-P interconnect built
on top of the Intel UPI memory bus, as available in today’s server-
class processors. We focus on a readily available underlying system
to implement Dagger on, to enable a near-future acceleration of cloud
microservices without the need for taping-out custom chips and/or re-
designing existing cloud infrastructures. The recent announcement of the
Compute Express Link (CXL) [1], a new coherent interconnect dedicated
specifically to peripheral devices, which is already supported in the
newest generation of server processors and FPGAs shows the industry’s
interest in scaling memory interconnects out to peripherals. Given this
trend, quantifying the performance and efficiency benefits of memory
interconnects in performance-critical operations, such as networking, is
essential to increasing their practicality.

3.3 Dagger System Overview
We implement Dagger using Intel Broadwell CPU/FPGA hybrid archi-
tecture; its top-level system diagram is shown in Figure 3. The host
CPU runs the software part of the Dagger’s RPC stack that includes the
RPC API, transmission and receiving controllers, request buffers, etc., as
shown in the CPU-NIC interface diagram of Figure 4. Dagger’s software
is running entirely in userspace and it communicates with the hardware
via shared memory buffers and dedicated I/O regions over the CCI-P
stack, with the latter encapsulating both UPI and PCIe interconnects.

The hardware component of the networking stack is built on top
of the Intel OPAE HDK that defines two regions of programmable
logic: the encrypted system IPs not exposed to users (blue bitstream),
and the part of the FPGA available to users for implementation of
the application logic (green bitstream). We implement Dagger in the
green bitstream region labeled “NIC” in Figure 3. The NIC contains the
RPC pipeline processing and transferring requests/responses, auxiliary
components, such as the connection manager used to set-up, open, and
close connections, the packet monitor for gathering networking statistics,
and the soft reconfiguration unit for programming the register file of
the RPC pipeline, enabling runtime configuration. The latter includes
selecting the request batching size, the number of software buffers and
their sizes, and the CCI-P messaging scheme, as defined in Section 3.4.

 FPGA

NIC

APP
interface

R
P
C

Transport

P
H
Y

Q
S
F
P

APP
interface
CPU-NIC
Interface

UPI/PCIe

CCI-P

Connection
Manager

Soft-Reconf.
Unit

TransportTransport

Packet
Monitor

C
C
I
P

I
O

L
L
C

 Host CPU

RPC path control path blue bitstream FIFOCPU core CCI-P
stackgreen bitstream

Fig. 3: Top-level diagram of the RPC acceleration fabric.

The RPC pipeline includes three main blocks: the CPU-NIC inter-
face encapsulating CCI-P-based state machines for host-to-device data
transfer, the RPC unit storing request metadata, and doing payload
(de)serialization, and the transport serving as the protocol for transferring
serialized RPCs. Stacked blocks in Figure 3 denote hard reconfigurable

units. We make the transport layer reconfigurable to allow the flexibility
of adjusting different protocol parameters depending on the requirements
of the active applications and the characteristics of their network foot-
print. In our current Dagger prototype, the transport unit implements a
version of the UDP protocol, however, any FPGA-based transport can
be used. The CPU-NIC interface is also designed to be reconfigurable to
adjust to a given running service. We discuss this in detail in the following
section. Note that some parameters of the pipeline are soft-reconfigurable
as explained earlier, allowing accelerating reconfiguration at runtime.
However, since soft reconfiguration comes with logic overheads, the
coarse-grained control decisions, such as the choice of the transport layer,
are handled using hard reconfiguration.

3.4 Implementation of the CPU-NIC Interface
The CPU-NIC interface defines the exact scheme the NIC uses to
communicate with application memory. The scheme includes (1) CCI-P
physical/link medium and protocol messaging model, (2) RPC threading
model, (3) network buffer provisioning, and (4) load balancing. An
example of the Dagger’s CPU-NIC interface is shown in Figure 4.

We first describe Dagger’s CCI-P messaging scheme. The CCI-P
interface supports three modes of host-to-device data transfers: over PCIe
via MMIO, over PCIe via DMA, and over coherent memory interconnect
(UPI). We implement all three modes in Dagger and select the employed
scheme through hard reconfiguration; each scheme can be further fine-
tuned via soft reconfiguration. In the MMIO mode, the processor sends
RPC requests directly to the allocated I/O region of the FPGA via an AVX
parallel store (mm256 store si256) with write combining disabled for
lower latency. The optimization was initially proposed in [7] and is also
known as WQE-by-MMIO in [11]. The DMA mode implements a version
of the doorbell method including the doorbell batching optimization
common in modern high-performance systems, such as Mellanox RDMA
NICs. The third mode, UPI, is based on a memory interconnect and is
the main focus of this work.

A typical memory interconnect defines a large set of different messag-
ing schemes and memory consistency models that can be fine-tuned [1].
Unfortunately, since CCI-P is the first open-specification implementation
of a NUMA interconnect on an FPGA, the current version of the
CCI-P IP has limited functionality, and only allows accessing data via
memory polling. In this mode, Dagger polls buffers shared with the CPU-
running applications and explicitly tracks request updates via the dirty
bit allocated in every entry of the buffer. To reduce CCI-P’s bandwidth
consumption by idle requests when no new data are available in the
buffers, Dagger first polls its local cache, which is coherent with the
processor’s LLC, and relies on invalidation messages sent from the CPU
to bring new data from the software buffers. When the request rate
becomes high, as defined by a programmable threshold, Dagger switches
by changing the caching policy of CCI-P requests to the direct polling
of the CPU LLC, therefore providing higher bandwidth by eliminating
invalidation transactions. Note that the restriction of data transfer to
polling mode is simply an implementation artifact of the current CCI-
P IP core and not a limitation of our design; the specification of the
next generation peripheral memory interconnects (CXL) defines more
optimized host-to-device transfers via invalidation snooping and direct
in-device memory writes (Type 3 devices in [1]). We plan to explore
these modes when the corresponding implementations become available.
The device-to-host path, RX path in Figure 4, always uses CCI-P DMA
since the write path is already optimized, and it contains only a single
NIC-initiated DMA transaction per request in the critical path.

Dagger also defines three NIC buffer provisioning schemes: on
connection basis, where every RPC connection gets the corresponding
queue pair, on CPU core basis where all connections on the same core
share TX and RX buffers, and single-buffer provisioning with only one
TX and one RX buffer per NIC. The current version of Dagger only
supports connection-based provisioning, as shown in Figure 4; the other
schemes are currently under development.

Load balancing is closely related to buffer provisioning. Multiple load
balancing schemes are possible when buffers are distributed across cores.
For simplicity, the current design of Dagger supports fair round-robin
load balancing where all RPC requests are evenly distributed across all
CPU cores allocated on the server. We plan to explore more sophisticated
load balancing schemes as part of future work.

Finally, Dagger implements both synchronous (blocking) and asyn-
chronous (non-blocking) RPC threading models, and the choice of the

exact model can be controlled by hard reconfiguration. The asynchronous
model is shown in Figure 4, as it is the more complex of the two.
The synchronous model is derived by simplifying the design with only
the necessary components, for example, since synchronous RPCs block
connections until the response is received, they do not require TX
completion rings and bookkeeping transactions. As a result, synchronous
RPCs save FPGA resources and further improve latency.

TX buf RX buf

Completion queue

TX FSM RX FSM

RPC
connection

RPC
responses

5

7

Reconfigurable
part

RPC data path

TX cmpl

43

Non-blocking RPC
requests

TX controller

12Interface buffers

bookkeeping

6

Load
Balancer

 LLC

RPC
connection

S
of

tw
ar

e
(C

P
U

)
H

ar
dw

ar
e

(N
IC

)

Fig. 4: CPU-NIC interface diagram for asynchronous RPCs with per-
connection buffer provisioning. TX path: TX controller writes new RPC
requests 2© to a free entry in the TX buffer as read from the TX
completion ring 1©. The TX FSM on the FPGA fetches RPC objects
from the TX buffer using one of the described CCI-P messaging schemes
3©; it also does the bookkeeping 4© to release previously-fetched entries.

RX path: the RX FSM puts newly-received RPC objects to the RX buffer
and asynchronously fetches the next free entries by bookkeeping 6© both
via CCI-P DMA. The RPC payload is then delivered to the completion
queue by AVX-enhanced memcpy 7©.
4 Preliminary Results
We implement Dagger on an Intel Broadwell CPU (Xeon E5-2600,
2.3GHz) integrated with an Arria 10 GX FPGA, as available on Intel
vLab. Due to the hardware limitation of the vLab cluster, we cannot con-
nect machines via physical networking; hence we conduct experiments
on a single machine using the loop-back network on the FPGA. We place
two identical Dagger NICs on one FPGA and give them fair round-robin
access to the CCI-P bus. In our experiments, we run a concurrent P2P
client-server application sending 64B echo RPCs. We analyze different
host-to-device interface modes and compare the end-to-end performance
of Dagger with related work that uses commercial NICs.

We first compare the performance of different CPU-NIC interfaces.
Figure 5 shows that Dagger’s single-core throughput with a simple
doorbell (B = 1) method is 4.3 Mrps. This is already 65% higher than
reported in FaSST’s [12] single-core RPC throughput with the same
doorbells, which indicates that a large fraction of Dagger’s throughput
gain comes from implementing a hardware-based RPC layer. Roughly
the same performance of 4.2 Mrps is reached when Dagger is sending
requests via MMIO, also showing that the throughput of doorbells is
limited by the rate of PCIe MMIO transactions. The doorbell batching
optimization pushes the throughput up to 7.9, 9.9, and 10.8 Mrps with B
= 3, 7, and 11, respectively (same batching as in FaSST and eRPC for a
fair comparison). When leveraging a memory interconnect as the CPU-
NIC interface, Dagger achieves the throughput of 8.1 and 12.4 Mrps for
CCI-P batching 1 and 4, which is 88% and 46% higher than doorbells
with similar batching, shown in “UPI” bars of Figure 5). When pushing
batching further to B = 32, RPC throughput approaches the results of
the memory interconnect; however, it still saturates at 12 Mrps, which is
slightly lower than the best reported performance over UPI.

5

10

Si
ng

le
-c

or
e

 th
ro

ug
hp

ut
, M

rp
s

4.2 4.3

7.9

9.9
10.8

8.1

12.4

0

2

4

6

8

M
ed

ia
n

la
te

nc
y,

 u
s

3.8
4.4 4.4 4.6

5.5

1.8
2.4

0

5

10

99
th

 la
te

nc
y,

 u
s

5.2 5.1 5.8
7.0

9.1

2.0
3.1

MMIO
Doorbell

Doorbell, B = 3
Doorbell, B = 7

Doorbell, B = 11
UPI, B = 1

UPI, B = 4

Fig. 5: Dagger’s single-core throughput and latency (under 4 Mrps) com-
parison with different CPU-NIC interfaces; B denotes request batching.

Figure 5 also compares the median and tail latency of different CPU-
NIC communication modes under the fixed load of 4 Mrps. Under all

settings, Dagger outperforms both PCIe MMIO and all doorbell schemes,
due to reducing the number of bus messages per RPC request, and
replacing the slow MMIOs with faster memory transactions. In particular,
the best recorded median latency of MMIOs is 3.8 us, while UPI allows
latencies of 1.8 - 2.0 us when batching is disabled, and 2.4 - 3.1 us
with B = 4. Since doorbells rely on MMIOs, all doorbell methods show
higher median and tail latency than UPI. Moreover, doorbell batching
has a negative impact on latency when the load is low. While this can be
addressed with opportunistic batching [11], latency will never be lower
than the latency of the simple doorbell; 4.4 us in our experiments.

Table 1 compares Dagger’s best reported median round-trip time and
single-core throughput with the best reported results presented by four
related systems: IX [4], FaSST [12], eRPC [10], and NetDIMM [2]. We
also show the objects being transferred, and the TOR networking delays
assumed by each system for a fair comparison. Dagger significantly
improves single-core RPC throughput for small requests compared to the
four prior system, and it achieves similar latency to the highly-optimized
eRPC system, and better than the DPDK-based IX, the RDMA-based
FaSST, and the in-memory integrated NIC NetDIMM.

Table 1: Median round trip time and throughput of asynchronous single-
core RPCs compared to related work.

IX FaSST eRPC Net-DIMM Dagger

Objects 64B
msgs

48B
RPC

32B
RPC

64B
msgs

64B
RPC

TOR delay N/A 0.3 us 0.3 us 0.1 us 0.3 us
RTT, us 11.4 2.8 2.3 2.2 2.1

Thr., Mrps 1.5 4.8 4.96 N/A 12.4

Figure 6 (left) shows the latency-throughput curves across loads.
Since we run a simple echo microbenchmark, the system immediately
blocks the caller thread when throughput is saturated, shown with vertical
dotted lines. The latency remains stable across the entire load range. The
figure also shows how UPI batching might affect the system performance:
B = 4 allows high throughput, however, it also increases request latency
for low QPS. Since Dagger can adjust the batch size of the interconnect
on-the-fly via soft reconfiguration, it can dynamically change batching
depending on the current load, as shown by the green dashed line.

2.5 5.0 7.5 10.0
Throughput, Mrps

1
2
3
4
5

M
ed

ia
n

La
te

nc
y,

 u
s

B = auto
B = 1

B = 2
B = 4

2 4 6 8
Number of CPU threads

0
20
40
60
80

Th
ro

ug
hp

ut
, M

rp
s

End-to-end
UPI raw

Fig. 6: (Left) Latency-Throughput curves for single-core asynchronous
round-trip 64B RPCs; B denotes batching, dotted lines show the satura-
tion point. (Right) Multi-core scalability of sending 64B requests. The
black line shows end-to-end RPC throughput, the dashed line denotes
estimated linear scalability, and the red line shows the results of UPI bus
scalability with raw idle requests.

Figure 6 (right) shows the throughput scalability of Dagger with the
number of physical threads (logical cores). Dagger achieves 42 Mrps for
end-to-end client-server median throughput with 4 threads (2 cores). This
result is ∼23% better than the best RDMA-based solution, FaSST [12],
and 3.5× better than DPDK-based IX [4]. Since we run both the client
and server on the same CPU, 42 Mrps effectively translates to 84 Mrps
handled by the processor. Dagger’s throughput scales linearly up to
4 threads and remains flat at 40-42 Mrps, showing that the current
bottleneck is not CPU. The UPI bus is also not saturated: 84 Mrps of 64B
requests is 7.74× smaller than the 41.6 GB/s of available UPI bandwidth.
Similarly, the NIC running at 400 MHz is capable of processing up to
200 Mrps, and is therefore far from saturation. We find that the current
bottleneck limiting throughput to 84 Mrps is the implementation of the
UPI end-point on the FPGA that we, unfortunately, have no control
over. To confirm this, we run a simple benchmark sending raw 64B
memory requests over CCI-P and measure the achieved throughput. As
seen from Figure 6 (right, red line), the raw throughput scales linearly up
to 80 Mrps and stays flat when more cores are added. The main reason
behind its poor scalability is that the current version of the OPAE HDK,
implements the memory interconnect as a soft IP core, i.e., using FPGA
LUT resources. The next generation of FPGAs (Intel Agile) implements a

coherent memory interconnect (CXL) in hardware as an integrated ASIC.
This, together with the more efficient host-to-device communication
modes discussed in Section 3.4) will enable a faster CPU-NIC interface,
and higher throughput, lower latency, and better scalability.

5 Conclusion
We presented Dagger, our early work on hardware-accelerated RPCs for
cloud microservices, using a closely-coupled near-memory FPGA con-
nected over a memory interconnect to the host CPU. Dagger significantly
increases the per-core RPC throughput, while achieving state-of-the-art
round-trip latency in comparison with existing RPC frameworks using
commodity PCIe-attached NICs. Our prototype outperforms existing
user-space networking- and RDMA-based solutions based on peripheral
networking devices, and, additionally provides transparent NIC I/O at the
hardware level. Overall, we show that closely-coupling CPUs and FPGAs
can provide efficient and programmable networking that drastically
improves performance for interactive, multi-tier cloud services.

Acknowledgements
We sincerely thank the anonymous reviewers for their feedback on earlier
versions of this manuscript. This work was in part supported by an
NSF CAREER Award CCF-1846046, NSF grant NeTS CSR-1704742,
NSF/Intel CAPA grant CCF-1723715, a Sloan Research Fellowship, a
Microsoft Research Fellowship, and a John and Norma Balen Sesquisen-
tennial Faculty Fellowship.

References
[1] “Compute express link (CXL) specification,” accessed May, 2020, https:

//www.computeexpresslink.org/.
[2] M. Alian and N. S. Kim, “NetDIMM: Low-latency near-memory network

interface architecture,” Int’l Symp. on Microarchitecture (MICRO), 2019.
[3] M. T. Arashloo, A. Lavrov et al., “Enabling programmable transport proto-

cols in high-speed NICs,” USENIX Symp. on Networked Systems Design and
Implementation (NSDI), 2020.

[4] A. Belay, G. Prekas et al., “IX: A protected dataplane operating system for
high throughput and low latency,” USENIX Symp. on Operating Systems
Design and Implementation (OSDI).

[5] A. Dragojević, D. Narayanan et al., “FaRM: Fast remote memory,” USENIX
Symp. on Networked Systems Design and Implementation (NSDI), 2014.

[6] H. Eran, L. Zeno et al., “NICA: An infrastructure for inline acceleration of
network applications,” USENIX Annual Technical Conf. (ATC), Jul. 2019.

[7] M. Flajslik and M. Rosenblum, “Network interface design for low latency
request-response protocols,” USENIX Annual Technical Conf. (ATC), 2013.

[8] Y. Gan, Y. Zhang et al., “An open-source benchmark suite for microservices
and their hardware-software implications for cloud and edge systems,”
ASPLOS, 2019.

[9] Q. Huang, K. Birman et al., “An analysis of facebook photo caching,” ACM
Symp. on Operating Systems Principles (SOSP), 2013.

[10] A. Kalia, M. Kaminsky et al., “Datacenter RPCs can be general and fast,”
USENIX NSDI, 2019.

[11] A. Kalia, M. Kaminsky et al., “Design guidelines for high performance
RDMA systems,” USENIX Annual Technical Conf. (ATC), 2016.

[12] A. Kalia, M. Kaminsky et al., “FaSST: Fast, scalable and simple distributed
transactions with two-sided (RDMA) datagram RPCs,” USENIX Symp. on
Operating Systems Design and Implementation (OSDI), 2016.

[13] R. Neugebauer, G. Antichi et al., “Understanding PCIe performance for
end host networking,” ACM Special Interest Group on Data Communication
(SIGCOMM), 2018.

[14] S. Novakovic, A. Daglis et al., “Scale-out NUMA,” Int’l Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), 2014.

[15] P. M. Phothilimthana, M. Liu et al., “Floem: A programming system for
NIC-accelerated network applications,” Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[16] A. Pourhabibi, S. Gupta et al., “Optimus prime: Accelerating data transfor-
mation in servers,” Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[17] D. Sidler, Z. István et al., “Low-latency TCP/IP stack for data center
applications,” Int’l Conf. on Field Programmable Logic and Applications
(FPL), 2016.

[18] A. Sriraman, A. Dhanotia et al., “SoftSKU: Optimizing server architectures
for microservice diversity at scale,” Int’l Symp. on Computer Architecture
(ISCA), 2019.

[19] A. Sriraman and T. F. Wenisch, “µsuite: A benchmark suite for microser-
vices,” Int’l Symp. on Workload Characterization (IISWC), 2018.

[20] A. Sriraman and T. F. Wenisch, “µtune: Auto-tuned threading for OLDI
microservices,” USENIX Symp. on Operating Systems Design and Imple-
mentation (OSDI), 2018.

[21] M. Sutherland, S. Gupta et al., “The NeBuLa RPC-optimized architecture,”
Int’l Symp. on Computer Architecture (ISCA), 2020.

[22] Y. Xu, E. Frachtenberg et al., “Characterizing facebook’s memcached work-
load,” IEEE Internet Computing, 2014.

