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Abstract—Cloud multi-tenancy is typically constrained to a
single interactive service colocated with one or more batch, low-
priority services, whose performance can be sacrificed when
deemed necessary. Approximate computing applications offer
the opportunity to enable tighter colocation among multiple
applications whose performance is important. We present Pli-
ant, a lightweight cloud runtime that leverages the ability of
approximate computing applications to tolerate some loss in their
output quality to boost the utilization of shared servers. During
periods of high resource contention, Pliant employs incremental
and interference-aware approximation to reduce contention in
shared resources, and prevent QoS violations for co-scheduled
interactive, latency-critical services. We evaluate Pliant across
different interactive and approximate computing applications,
and show that it preserves QoS for all co-scheduled workloads,
while incurring a 2.1% loss in output quality, on average.

I. INTRODUCTION

Cloud computing has reached proliferation by offering re-
source flexibility and cost efficiency [1]–[4]. Resource flexibility
is achieved by users elastically scaling their resources on-
demand, and releasing them when they no longer need them.
Cost efficiency is achieved through multi-tenancy, i.e., by co-
scheduling multiple jobs on the same physical platform to
increase server utilization. Unfortunately multi-tenancy also
leads to unpredictable performance, due to interference in
shared resources [5]–[20]. When the applications that suffer
from interference are high priority, interactive services, such as
websearch and social networking, multi-tenancy is disallowed
altogether, hurting utilization, or - at best - interactive services
are co-scheduled with low priority, best-effort workloads [9],
[20], [21]. The performance of these workloads can be
sacrificed at runtime to avoid performance degradation for
the high priority service [7]–[9], [21]–[25]. Unfortunately this
limits the options cloud providers have in terms of applications
they can co-schedule with interactive, latency-critical services.
Approximate computing offers the potential to break this
utilization versus performance trade-off in shared clouds.

Approximate computing applications include workloads from
several fields, such as computer vision, machine learning,
analytics, and scientific applications, and have the common
feature that they can tolerate some loss in output accuracy in
return for improved performance and/or energy efficiency [26]–
[30]. Several cloud workloads fall under this category, such
as big data analytics and ML applications, where achieving
the highest output quality is often less important than latency
and/or throughput. Exposing the knob of approximation to the

cloud scheduler allows the system to sacrifice some accuracy
in applications that can tolerate it, to preserve the services’
quality-of-service (QoS) constraints.

We present Pliant, an online cloud runtime system that
achieves both high QoS and high utilization by leveraging
the ability of approximate computing applications to tolerate
some loss in their output quality. Pliant enables aggressive co-
scheduling of interactive, latency-critical services with approx-
imate applications. Unlike prior cluster schedulers, Pliant does
not consider applications co-scheduled with interactive services
as low-priority, and preserves their nominal performance [9],
[18], [21]. Instead, a user expresses an application’s tolerable
inaccuracy threshold to the scheduler, and Pliant dynamically
adjusts approximation to the minimum amount needed to satisfy
the tail latency QoS of the interactive service over time, without
exceeding this threshold.

Pliant consists of a lightweight performance monitor, an
online dynamic compilation system, and a runtime resource
controller. The monitor uses adaptive sampling of end-to-
end latency to continuously check for QoS violations in the
interactive service, while the compilation system is based on
DynamoRIO [31], and adjusts the approximation degree of an
application online to reduce interference in shared resources.
When approximation alone is not enough to counter the
performance impact of interference, the resource controller
additionally reclaims resources from the approximate applica-
tion(s), yields them to the interactive service, and adjusts the
approximation degree to ensure that the execution time of the
approximate application(s) does not degrade. Pliant reclaims
resources incrementally to guarantee that the approximate
application only sacrifices the minimum amount of accuracy
needed at each point in time, and selects the type of resource to
be reclaimed based on the utilization of different subsystems.
Finally Pliant leverages a set of lightweight Linux signals
to switch between approximation degrees, and only uses
DynamoRIO at coarse - function - granularity, to avoid the
high overheads of dynamic compilation.

We evaluate Pliant on servers with 44 physical cores, with
three popular open-source interactive services; memcached,
a distributed in-memory cache [32], NGINX, a front-end web
server [33], and MongoDB, a stateful persistent database [34].
We additionally use a set of 24 scientific applications from PAR-
SEC [35], SPLASH2 [36], BioPerf [37], and Minebench [38]
as the approximate applications. We show that Pliant is able to
preserve both the tail latency QoS of the interactive services,



and the nominal execution time of the approximate applications,
with a 2.1% loss of output quality on average, and 5% loss
in the worst case. In comparison, running the applications in
precise mode results in a 2−10x increase in the tail latency
of the interactive services, a dramatic degradation for latency-
sensitive, interactive services. Finally, we explore the sensitivity
of Pliant to input load, decision granularity, and worst-case
inaccuracy threshold for each interactive service.

II. RELATED WORK

We now review relevant work in interference-aware schedul-
ing, approximate computing, and dynamic instrumentation.
Contention-aware scheduling: Sharing resources to increase
utilization results in performance degradation [5], [6], [8],
[13], and in some cases security vulnerabilities [11], [39]–
[42]. Several systems that aim to minimize destructive in-
terference disallow colocation of jobs that contend in the
same resources [5]–[8], [13], [43], or partition resources to
improve isolation [9], [11], [24], [25]. For example, BubbleFlux
determines how the memory sensitivity of applications evolves
over time, and prevents multiple memory-intensive services
from sharing the same platform [6]. Similarly, DeepDive
identifies the interference colocated VMs experience, and
manages it transparently to the user [13]. Paragon [5] and
Quasar [8] are cluster managers that leverage a set of practical
online data mining techniques to determine the resource
requirements of incoming cloud applications, and schedule
them in a way that minimizes resource contention. In the
same spirit, Nathuji et al. [7] develop Q-Clouds, a QoS-aware
control framework that dynamically adjusts resource allocations
to mitigate interference in virtualized clouds.

On the isolation front, Lo et al. [9] study the sensitivity of
Google applications to different sources of interference, and
combine hardware and software isolation techniques to preserve
the QoS of latency-critical applications running alongside batch,
low-priority workloads. Similarly, Kasture et al. [24] implement
fine-grained cache partitioning, and power allocation with
RAPL [25] on servers that host one interactive, and one or more
best-effort services. In all cases, a server hosts at most one high
priority application; any remaining workloads are best-effort,
and their performance can be sacrificed when needed.
Approximate computing techniques: Finding the approxi-
mation potential of popular application classes, and generating
language constructs to express and verify approximation
has generated a large amount of related work. Carbin et
al. [30] present language constructs for specifying acceptability
properties in approximate programs, and develop a system
that enables developers to obtain fully machine-checked
verifications of their approximate applications. Sampson et
al. [44] propose annotating data types that can be approximated,
and automatically mapping such variables to low-power storage,
and using low-power operations on them. They extend this work
to map such variables to approximate storage devices in [26].
The same authors develop ACCEPT [45], a programmer-guided
compiler framework that identifies approximable code, and
automatically chooses the best approximation strategies for it.

Finally, Misailovic et.al [28] present Chisel, an optimization
framework that automatically generates approximate instruc-
tions and data that can be stored in approximate memory to
improve energy efficiency, at the cost of some reliability and
accuracy loss. They also propose compiler-level, accuracy-
aware transformations that automatically generate approximate
versions of programs [29]. A lot of this prior work focuses
on improving the programmability and ease of development
of approximate applications, to avoid tasking the user with
generating approximate variants manually [28], [29], [44].
Dynamic recompilation: Open-source tools such as Dy-
namoRIO [31] enable online code transformations that can
be used, among other reasons, to reduce the amount of
resource contention the instrumented application incurs in
a multi-tenant system. For example, Protean Code [22] is
a co-designed compiler and runtime built on top of LLVM
that enables compiler transformations at runtime with less
than 1% overhead. The runtime dynamically mitigates cache
pressure via fine-grained code transformations that disable
prefetching for the low-priority application during periods
of high resource contention. There are also several dynamic
optimization systems that do not directly aim to reduce
resource contention, but focus on code transformations that
optimize application performance. Mojo [46] was the first
tool to facilitate dynamic software optimizations on an x86
architecture, while ADAPT [47] is a compiler-supported, high-
level, adaptive optimization system, which leverages user-
provided optimizations and heuristics to efficiently explore
the application design space at runtime. Finally, ADORE [48],
[49] is a dynamic optimization runtime that monitors perfor-
mance counters during application execution to detect hotspots,
and leverages online compilation using a system similar to
DynamoRIO, to tune data cache prefetching. Trident [50] builds
on ADORE, and uses hardware support to reduce the overhead
of online application profiling.

III. APPROXIMATION DESIGN SPACE EXPLORATION

We first examine the potential that approximation offers
in trading off quality for performance and efficiency in
multi-tenant cloud settings. We explore several approximation
strategies whose performance and efficiency benefits have
been previously shown [28], [44], including loop perforation,
synchronization elision, lower precision data types, and tiling.
• Loop perforation: This technique omits a fraction of the

iterations of a loop. Typical approximate computing appli-
cations, like analytics and machine learning workloads are
iterative in nature, making loop perforation a good candidate
for approximation. There are multiple ways to perforate
a loop. For example, to reduce a loop by a factor p, we
can execute only a chunk of (MAX ITER/p) iterations, or
execute every pth iteration. We can also reduce the loop by
a factor of (p− 1)/p by not executing every pth iteration.
Perforating a loop lowers the accuracy of the output, however
at the same time it also leads to lower execution time,
and reduced memory traffic by avoiding the data accesses
of the omitted iterations. Note that the decrease in output
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Fig. 1: Approximation design space exploration for a subset of our 24 PARSEC, SPLASH-2, MineBench, and BioPerf applications.
Odd rows show the trade-off between execution time and inaccuracy for different approximate variants of each application. The
green dot corresponds to precise execution, blue dots correspond to all examined approximate variants, and red dots to the selected
variants close to the pareto-optimal curve. The vertical line corresponds to the max permissible loss of output quality. Even rows
show the impact each of the selected approximate variants has on the tail latency of the three examined interactive applications.

quality is not always proportional to the decrease in execution
time. This is because, depending on each application’s logic,
different loop iterations may contribute differently to output
quality. For example, in the simulated annealing algorithm
used in canneal [35], if the cost of the randomly chosen
neighboring solution is not greater than the current solution,
the current solution is retained and no useful work is done.
Omitting such iterations decreases execution time without
any observable impact on quality.

• Synchronization elision: Synchronization constructs, like
locks and barriers, which are used to guarantee correctness can
be elided at the cost of some inaccuracy in the final result [51].
Removing locks reduces the memory traffic that acquiring
locks incurs, which can be significant, especially for highly
contended locks. Apart from memory traffic, synchronization
elision also benefits performance, as threads do not wait to
synchronize, shortening execution time.

• Lower precision data types: This technique leverages the
ability of certain applications to operate with lower precision
to replace high-precision variables, such as “double”, with
lower precision data types, like “float” and “int”. Reducing
data type precision reduces both memory traffic, especially
in data-intensive jobs, and execution time.

• Tiling: Tiling computes a single output and projects it onto
the surrounding elements to create a tile, instead of computing

an output for each individual element [52]. The larger the
size of the tile, the more aggressive the approximation.

Pruning the design space: We now study the trade-off be-
tween accuracy and execution time for approximate computing
applications, and select approximate variants close to the pareto
optimal curve.

Typical applications have a large number of loops which
can be perforated, or elements which can be tiled in several
ways, as well as synchronization primitives that can be elided,
and data types whose precision can be lowered. Consider-
ing all approximation possibilities makes the design space
intractable, in the order of 1000s of approximation versions
for typical applications [35]–[38]. We use two ways to prune
the approximation design space. First, we employ an “almost”
exhaustive exploration that leverages programmer hints from
the ACCEPT framework [45]. ACCEPT lists approximately 10
loops that can be perforated for each examined application,
as well as data types whose precision can be lowered and
locks/barriers that can be elided. We perforate each loop by
different factors, and only preserve variants with inaccuracies
lower than 5%. We follow the same process for synchronization
elision, and high-precision data types. Second, for applications
not supported by ACCEPT we use gprof, an application
profiling tool to determine which functions contribute the most
to execution time. In all examined applications, this corresponds
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to 2-4 functions, which we perforate by varying degrees. This
approach also resulted in a manageable number of favorable
approximate variants, consistent with those obtained using the
hints from ACCEPT.

Figure 1 shows the application design space exploration for
a subset of all examined applications. We use three popular
cloud services, NGINX, memcached, and MongoDB as the
latency-critical interactive applications, and 24 data mining,
bioengineering, and scientific workloads as the approximate
applications. We show the exploration for 12 representative
approximate applications; the behavior of the remaining work-
loads is similar. For now we co-schedule each interactive
service with one of the approximate applications at a time
on a high-end two-socket server platform. More details on the
applications and systems can be found in Section V.

Odd rows in the figure show the tradeoff between execution
time and inaccuracy across approximate variants for each
approximate application. The blue dots in the scatter plots repre-
sent all examined approximate variants, the green dot represents
precise execution, and the red dots represent approximate
variants close to the pareto-optimal frontier, and hereafter used
by Pliant. Both the number of selected approximate versions
and their relative impact on performance and inaccuracy varies
across applications. For example, canneal has four versions
close to the pareto curve, while raytrace only has two.
Similarly, while increasing inaccuracy has an almost inversely
proportional impact to execution time, all approximate versions
of water_nsquared reside in an almost vertical line.

Even rows in the figure correspond to the impact precise
execution and each of the selected approximate variants
(red dots) have on the tail latency (99th percentile) of
the three interactive services. Approximate variants are
ordered from left to right in the way that they appear in
the scatter plot. Different colors correspond to different
methods of approximation. Loop perforation (at various
degrees) corresponds to the majority of selected approximate
variants, especially for PARSEC and SPLASH-2, while
synchronization elision, tiling, and data type precision are
more prevalent for Minebench and BioPerf applications, whose
synchronization primitives and high-precision data types incur
high levels of resource contention. First, we observe that
precise execution almost always leads to considerable QoS
violations across interactive and approximate applications.
Second, approximation has a different impact on each of the
three interactive services. While switching from precise to
the least approximate variant is enough for the I/O-bound
MongoDB to meet its QoS in many cases, both NGINX and
memcached exhibit higher sensitivity to resource contention.
This translates to requiring the approximate application to
run at its most approximate variant for QoS to be met. Even
so, there are approximate applications where, despite the
reduction in latency from employing approximation, the latter
alone is not enough to meet QoS, e.g., kmeans-NGINX,
PLSA-Memcached, and SEMPHY-NGINX. Conversely,
there are cases, e.g., canneal-Memcached, and
water_nsquared-Memcached where approximation

does not have a substantial impact on tail latency. These
correspond to approximate versions that do not significantly
decrease contention in shared resources. In these cases
reclaiming resources from the approximate application is
necessary to meet QoS; approximation is then used as a
means to avoid prolonging the application’s execution time.
Finally applications like Bayesian and PLSA offer a very
rich design space with 8 approximate variants on the pareto
curve each; this allows the runtime to sacrifice the minimum
amount of quality necessary to meet QoS at each point.

IV. PLIANT

A. Overview

Pliant consists of an instrumentation system that explores the
approximation design space offline, and an online runtime that
monitors performance and adjusts the degree of approximation
during periods of high resource contention. Pliant’s user
interface involves expressing an interactive service’s QoS target,
and an approximate application’s nominal execution time, its
output quality metric, and its worst-case allowable quality loss.

The instrumentation system explores the various approxima-
tion techniques described in Sec. III, and obtains an ordered
list of approximate variants close to the pareto frontier seen
in Fig. 1. This process only needs to happen once, unless
the application changes. In Sec. IV-E, we describe how Pliant
handles the impact that different input datasets have on the
selected approximate variants. Having the pareto frontier, the
runtime can dynamically determine the degree of approximation
needed to meet QoS at each point in time. The runtime in
Pliant consists of a performance monitor and an actuator based
on dynamic recompilation, as seen in Figure 2.

The performance monitor is a lightweight tracing runtime
that instruments the interactive applications, and continuously
samples their end-to-end latency (average and tail). Since QoS
metrics capture the end-to-end latency, the monitor resides
on the client, and is designed to not incur any measurable
overhead to the interactive service, either in terms of throughput
or latency. Upon detecting a QoS violation for the interactive
workload, the monitor informs Pliant, which takes action via
the actuator. The actuator is responsible for determining and
enforcing the appropriate approximation variant and resource
allocation at each point in time, based on the monitored tail
latency. Both components are designed to incur minimal runtime
overheads from monitoring and dynamic recompilation, to be
transparent to the user, and to preserve the performance of
both the interactive and approximate application, with the
minimum loss in quality.

B. Dynamic Recompilation

The Pliant actuator relies on DynamoRIO [31], a dynamic
recompilation tool, to adjust an application’s degree of ap-
proximation at runtime. The DynamoRIO API provides the
ability to control applications at the granularity of individual
instructions, as well as at the coarser granularity of functions.
To avoid performance overheads from instrumentation, we
use DynamoRIO at coarse granularity. Specifically, we use
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Fig. 3: Pliant’s runtime when using both approximation and resource reclamation.

the drwrap_replace() interface to dynamically replace
functions in the program with their approximate variants.
Additionally, Pliant uses DynamoRIO’s ability to trap Linux
signals received by the application, to signal when a switch
to/from an approximate function must occur.

Pliant first uses the approximate variants extracted from
the design space exploration in Section III to construct a
single application binary. This aggregates one version that
corresponds to precise execution, as well as all the different
versions of the functions that house the perforated loops, and
versions of functions with lower precision data types, tiling, and
elided synchronization primitives. Each approximate variant
is then mapped to a unique Linux signal; upon receiving the
specific signal, DynamoRIO switches the application to the
corresponding approximate variant.

Approximate applications are executed over DynamoRIO
as follows. First, DynamoRIO reads the program addresses of
the precise and approximate versions for each approximated
function at the start of the program. Second, during runtime,
DynamoRIO traps the mapped Linux signals sent to the
approximate application by the actuator. Third, when a signal
is received at runtime, drwrap_replace() replaces the
pointers to the original precise version of a function, to the
corresponding approximate version using the program addresses
read at start-up time. drwrap_replace() is also used to
switch between approximate variants, or to revert back to
precise execution.

Running an application over DynamoRIO can introduce
overheads for the approximate applications. Across the 24
approximate applications we study, the execution time overhead
is 3.8% on average, and up to 8.9% in the worst case (see
Section VI for details). Prior work, such as ProteanCode [22]
has shown that the overheads from tools like DynamoRIO
are often prohibitively high for online code transformations,
such as inserting non-temporal cache hints before the execution
of certain loads to avoid cache contention. In that case, the
high overhead of DynamoRIO comes from requiring code
transformations to happen at the granularity of individual
instructions. Because Pliant only switches between precise
and approximate variants at coarse granularity, it can leverage
dynamic recompilation with marginal overheads. Additionally,

the overhead of dynamic recompilation in Pliant is almost
always hidden by the shorter execution time of applications
employing approximation to reduce resource contention.

C. Runtime Algorithm

Pliant uses the output of the performance monitor to
determine the degree of approximation and resource allocation
at runtime. Fig. 3 shows the control flow of Pliant’s runtime
algorithm. Initially execution starts at precise mode, and
with a fair allocation of resources. In the event of a QoS
violation, Pliant switches the co-scheduled application to
its most approximate version to avoid prolonged degraded
performance for the interactive service. If QoS is met in
the next decision interval (1s by default), Pliant checks the
latency slack of the interactive service. If the latency slack is
greater than 10%, the runtime incrementally reverts back to
less approximate versions - and potentially precise execution -
to avoid unnecessarily penalizing the approximate application’s
output quality. If QoS is met, but there is not sufficient latency
slack, Pliant remains in the same state (approximate or precise)
for the next decision interval.

As shown in Fig. 1, there are cases where approximation
alone is not enough to meet the interactive service’s QoS. If
the application runs in its most approximate variant and QoS
is not met, Pliant additionally reclaims resources from the
approximate application, incrementally until QoS is met. Pliant
uses resource utilization as a trigger for the type of resource
to be reclaimed. For example, if CPU utilization is saturated,
Pliant reclaims cores, one per interval, until QoS is met, or
until another resource is saturated. Similarly, if the memory
utilization of the interactive service is saturated, Pliant resizes
memory allocation of the approximate application’s container,
and yields the reclaimed memory to the interactive service.
Finally, if the LLC experiences high miss rates, Pliant leverages
cache partitioning via Intel’s Cache Allocation Technology
(CAT) to resize the LLC partition of the interactive and
approximate applications. Once QoS is met, Pliant checks again
for latency slack. If slack is greater than 10%, the runtime
reverts to the previous state by returning the reclaimed resource
to the approximate application. If slack remains high, the
runtime additionally decreases approximation to the minimum
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Fig. 4: Approximation design space exploration using canary
inputs and input similarity.

needed to meet QoS. Finally, if during runtime, the application
is operating at an approximation degree other than the highest
and a QoS violation occurs, it immediately reverts to its most
approximate variant.

Varying the slack threshold affects Pliant’s agility in adjusting
resource allocations and approximation degrees. Lowering the
threshold further results in frequent ping-ponging between
states, and higher overheads from DynamoRIO. Relaxing the
threshold does not have an impact on the interactive service, but
can degrade the performance and/or quality of the approximate
application, when running with a higher approximation degree,
or fewer resources than necessary. Unless otherwise specified,
we use a 10% latency slack threshold.

D. Multi-Application Colocations
So far we have assumed that an interactive service is

colocated with a single approximate application. To increase
utilization, servers often co-schedule multiple jobs per physical
host, especially when each task is short [53]. We now extend
Pliant to handle more than one approximate application
per machine. The system starts again from a fair resource
allocation, and all approximate applications operating in precise
mode. When a QoS violation is detected, Pliant manages the
approximate applications in a round-robin fashion, to avoid
penalizing any of the applications in a disproportionate way.
It first switches one workload (selected randomly) to its most
approximate variant, and if QoS is not restored it moves to
the next. If all applications operate in their most approximate
variants and QoS is still not met, Pliant reclaims resources from
the approximate applications, one application at a time until
QoS is met, following the runtime algorithm discussed in Fig. 3.
The round-robin arbiter is simple, scalable, and preserves all co-
scheduled applications’ performance in practice (see Sec. VI);
in Section VI-E we discuss alternative policies to manage
multiple approximate jobs.

E. Robustness to Input Datasets
Changing the characteristics of an application’s input dataset

can impact the shape of its performance-accuracy pareto

TABLE I: Platform Specification

Model Intel Xeon E5-2699 v4
OS Ubuntu 16.04 (kernel 4.14)

Sockets 2
Cores/Socket 22
Threads/Core 2

Base/Max Turbo Frequency 2.2GHz / 3.6GHz
L1 Inst/Data Cache 32 / 32 KB

L2 Cache 256KB
L3 (Last-Level) Cache 55 MB, 20 ways

Memory 16GBx8, 2400MHz DDR4
Disk 1TB, 7200RPM HDD

Network Bandwidth 10Gbps

frontier, and the selected approximate variants. In such cases,
the exploration would need to happen for each different type of
input dataset, which can incur higher management overheads.

Recent work has shown that the approximation trade-offs
of an application’s input dataset can be accurately captured
by smaller, canary inputs, which accelerate the exploration
process [54]. Canaries are created using regular, strided subsets
of the full input of size N/16, N/32, N/64, N/128 and N/256
where N is the size of the full input. For example, for inputs
in the form of 1D lists of numbers or structs, we pick every
16th element for an input of size N/16. For 2D inputs, we pick
every (1/

√
t,1/
√

t) element for size N/t.

We implement a similar approach to accelerate the design
space exploration in Pliant. Fig. 4 shows an overview of this
process. We initially create a set of diverse input datasets for
each approximate application. Datasets differ with respect to
their size, locality, and other application-specific parameters.
We then create canary inputs for each original inputs, and
perform the design space exploration using the canaries.

At runtime, when a previously-seen application runs with a
new, unknown input dataset, Pliant computes the similarity of
the new dataset with all existing canaries using the methodology
proposed in [54], and selects the approximate variants of the
canary with the highest similarity to the new input. We use the
F-test for equality of variances to find the similarity between
the full input and the canaries. We select random samples
from the canaries and the new input and compute the test
statistic (t-value) for each canary, i.e., the ratio of variance of
the data from the canary to the full input. Finally, we calculate
p-values using the F-distribution over the test statistic and
the Holm-Bonferroni [55] method to find the canaries that
are most similar to the input. As in [54], we use canary error
bounds α = β = 0.05. This eliminates the need for design space
exploration when at least one canary captures the features of
the input dataset. If no existing canary accurately reflects the
new dataset, Pliant creates canaries for this input, and conducts
the design space exploration on the most similar canary. To
avoid repeating this process in the future, the new input is
added to the repository of previously-seen datasets for the given
application, as is the set of its canaries, and the output of their
characterization. This allows Pliant to learn a wider spectrum
of input behaviors over time, and progressively decreases the
need for online design space exploration.
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Fig. 5: Pliant’s dynamic behavior when each of the three interactive services (one per row) are colocated with selected approximate
computing workloads. The left y-axes show the tail latency of the interactive service over time (dashed blue line), and the right
y-axes the cores Pliant reclaims from the colocated approximate application for the 4 left-most workloads (red line). For the last
memory-intensive approximate workload, we show LLC ways reclaimed and given to the interactive service using CAT. The black
horizontal line corresponds to the QoS constraint of each interactive service. The colored background reflects the approximate
version Pliant employs at each point in time. Darker colors correspond to versions closer to precise execution, and lighter colors
implement more aggressive approximation, within the 5% permitted inaccuracy threshold.

V. EXPERIMENTAL METHODOLOGY

Interactive services: We use three latency-sensitive applica-
tions, NGINX, memcached, and MongoDB.
• NGINX [33] is a high-performance HTTP webserver, and is

currently responsible for 38% of all live websites as of April
2018 [56]. We use NGINX as a front-end webserver to display
static HTML files. The input dataset consists of one million
unique HTML files of 1KB each. The QoS target for NGINX
is determined as the 99th percentile latency before the knee
of the latency-throughput curve when the application runs in
isolation, and is set at 10ms, consistent with related work [8],
[57]–[60].

• Memcached [32] is an in-memory key-value store, often
used as an object caching tier in cloud services [59], [61], [62].
We configure its dataset to hold 5 million items, each with
30B key, and 200B value. The QoS target for memcached is
defined using the same process as above, and set to 200us,
consistent with prior work [8], [9].

• MongoDB [34] is one of the most popular NoSQL databases,
and is widely used in industry for back-end data storage [60],
[63]. We use MongoDB 3.2.16 compiled from source, and
compose a dataset with 160 million records, each with 10
fields and 100B per field. The dataset is 178GB, including
indices and metadata, and the QoS is 100ms.
All interactive services are driven by open-loop load gen-

erators. We instantiate enough clients to avoid client-side

saturation, and ensure that most latency is due to server-
side delay. Unless otherwise specified, we run the interactive
services at high load, approximately 75-80% of saturation.

Approximate computing applications: We use 24 data
mining, bioengineering, and high performance comput-
ing applications from four suites as the approximate
computing applications. Specifically, we use three work-
loads (fluidanimate, canneal, streamcluster)
from PARSEC [35], three workloads (water_spatial,
water_nsquared, raytrace) from SPLASH-2 [36],
ten applications (Naive Bayesian, K-means, SEMPHY,
Fuzzy-K-means, BIRCH, SNP, GeneNet, SVM-RFE and
PLSA, ScalParC) from the Minebench benchmark suite [38]
and 8 applications (Hmmer, Blast, Fasta, GRAPPA,
ClustaLW, T-Coffee, Glimmer, CE) from the Bioperf
benchmark suite [64]. All selected applications have metric(s)
to quantify the quality of their output, and have been previously
shown to tolerate some loss in their quality for improved
performance and/or efficiency [26], [28], [45]. We select
workloads from several fields to ensure good coverage of the
approximate computing space, and to show how Pliant behaves
under different application characteristics.

Systems: We use a dual-socket, 44-physical core (88 logical
core) platform, with 128GB of RAM as the server. Table I
summarizes the specification of our experimental platform.
To avoid NUMA effects, we only use one of the sockets
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for the interactive service, and the approximate applications.
The interactive service, and the approximate workloads are
instantiated in separate Docker containers, and pinned to
different physical cores of the same socket. The containers
share the 56MB last level cache (LLC), the main memory,
and the NIC. Additional six physical cores are dedicated to
network interrupts (soft_irq) to avoid interference with
application threads. The remaining physical cores are fairly
shared across the two Docker containers. For now we assume a
single approximate workload co-scheduled with an interactive
service. In Section IV-D we also discuss how Pliant treats
multiple approximate applications colocated with a latency-
critical service. In that case the total available resources are
again fairly shared among all applications at start up time.

VI. EVALUATION

We first evaluate Pliant’s behavior for a few representative
approximate applications, then show its performance and
efficiency across all studied applications, and finally show
the runtime’s sensitivity to configuration parameters.

A. Dynamic Behavior

Figure 5 shows Pliant’s dynamic behavior when each of
the three interactive services is colocated with one of four
selected approximate workloads. We select workloads that
exhibit diverse characteristics with respect to their resource
requirements, performance sensitivity, and number and effec-
tiveness of approximate variants. By default Pliant uses a one
second decision interval at the end of which, it makes a decision
on the degree of approximation and resource allocation needed
for the two applications. In Section VI-D we study the impact
of varying the decision granularity. When a QoS violation
is detected, the runtime switches the colocated application
to its most approximate variant, and if that is not sufficient,
it additionally reclaims resources and yields them to the
interactive service, incrementally once per decision interval.
To avoid penalizing the approximate application when the
interactive service has a lot of latency slack, Pliant also returns
resources to the approximate workload when slack exceeds
10%. The four left-most approximate applications in Fig. 5
only experience core reclamation, while k-means also has
its LLC partition resized.

We first examine applications in the same column. When
canneal is co-scheduled with NGINX it almost immediately
has to switch to the most approximate of its four versions,
due to high compute and cache contention, and additionally
relinquish 1-2 cores to the interactive service. As the tail
latency of NGINX drops, canneal reclaims these cores,
and additionally switches to an implementation variant closer
to precise towards the end of its execution. memcached
experiences even higher sensitivity to resource contention,
forcing canneal to operate in its most approximate variant
for the majority of execution, and yield up to 3 cores to
address short bursts of high tail latency. In contrast, the I/O-
bound MongoDB needs no additional cores to meet its QoS
target, and even enables canneal to run at precise mode for

significant periods of its execution. We observe similar trends
for the three interactive services, across the other approximate
applications shown in Fig. 5. For example, only raytrace
and Bayesian have to yield cores for brief periods of time
when co-scheduled with MongoDB.

We now examine applications in the same row of the figure.
Compared to canneal, raytrace only has two possible
approximate variants. Because raytrace only introduces
high compute and LLC interference in certain execution
phases, it is able to leverage both its approximate variants,
as well as precise execution across all three interactive services.
bayesian offers a much richer design space with eight
approximate variants close to the performance-quality pareto
curve (Fig. 1). This allows Pliant to make frequent, fine-grained
decisions that only sacrifice the minimum amount of output
quality needed at each point in time. The figure shows that
when bayesian is running with NGINX and it has not yielded
any cores to the interactive service, tail latency is closely
correlated with the approximate variant bayesian uses, e.g.,
as bayesian switches to decreasingly approximate versions
in t ∈ [26,34], tail latency increases until it exceeds QoS,
at which point bayesian returns to its more approximate
version (lightest background color in the graph). SNP is the only
of the four approximate applications pictured that enables both
memcached and MongoDB to meet their QoS throughout
the duration of the experiment using approximation alone.
This happens because SNP’s approximate variants employ
synchronization elision and perforation, and are particularly
effective at reducing the amount of contention in the shared
LLC. SNP only has to relinquish up to two cores when co-
scheduled with NGINX.

Finally, k-means initially only employs approximation to
meet the interactive service’s QoS. As the scenario progresses
and cache contention increases, it additionally yields several of
its last-level cache ways to the interactive workload. NGINX
and memcached experience the highest sensitivity to cache
resources, with MongoDB only requiring k-means to run
in approximate mode to meet its QoS requirements, without
changing the initial fair cache allocation.

Constraining the allocated resources does not translate to a
performance penalty for the approximate applications, with all
five of them achieving equal or better performance compared to
precise execution, and a 2.7% average loss in output accuracy.

B. Pliant Generality

We now evaluate Pliant across all 24 examined approximate
applications and 3 interactive services. The decision interval
is again one second. Figure 6 shows the 99th− ile tail latency,
execution time, and inaccuracy for the baseline system (Precise),
a runtime that enforces precise execution but uses resource
reclamation, and Pliant. The bars show tail latency for both
runtimes, and the markers execution time for the approximate
applications. The black bars show the tail latency of each
interactive service, when running in isolation. The marker
labels show the loss of output quality as a result of employing
approximation with Pliant. The baseline precise system always
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Fig. 6: Comparison of Pliant against the Precise runtime, and the Precise runtime with resource reclamation for all interactive
and approximate applications. The tail latency of the interactive services is shown in bars, while markers represent the execution
time of approximate applications. The marker labels denote the % inaccuracy. The error bars denote tha variance across 10 runs
of each experiment. The QoS targets for NGINX, memcached, and MongoDB are 10ms, 200us, and 100ms respectively. The single
black bars in each plot show the tail latency of the interactive application when running in isolation.

operates with nominal accuracy. Additionally, in the baseline
system, both the interactive service and the approximate
application receive a fair resource allocation. Running in
precise mode always results in severe QoS violations for
the interactive service, 2.1−9.8x for NGINX, 1.46−3.8x for
memcached, and 2.08−5.91x for MongoDB. In comparison,
Pliant meets QoS for each of the interactive services across the
24 colocated approximate applications. Additionally, all approx-
imate workloads, except for water_spatial, maintain their
nominal performance (precise execution), and in several cases
improve it. In the case of water_spatial, the selected
approximate variants do not significantly reduce its execution
time, and its decreased resource allocation results in higher
execution time than in precise mode. water_spatial also
experiences an unusually high instrumentation overhead from
DynamoRIO (seen from the whisker in Fig 6), which also
contributes to its execution time. The precise execution with
resource reclamation meets the interactive service’s QoS for
the most part, but heavily penalizes the performance of the
approximate application. Furthermore, in some cases QoS is
not met, since precise execution can result in higher contention

in resources like memory bandwidth and cache capacity, even
with a reduced resource allocation. Such applications typically
employ synchronization elision and reduced data type precision
in Pliant to reduce the incurred interference.

The overhead from DynamoRIO is 3.8% in execution time on
average, and up to 8.9%. The reason behind the low overhead
is that dynamic instrumentation is invoked at coarse granularity,
as opposed to instruction-level transformations [22]. Finally,
the loss in output quality is 2.1% on average, and within the
5% tolerable limit for all applications, except for canneal
when colocated with memcached. In that case inaccuracy is
5.4%, due to some non-determinism caused by synchronization
elision.

C. Multi-Application Colocations

We now evaluate the case where Pliant handles more
than one approximate applications sharing a physical host
with an interactive service. In that case Pliant examines
approximate applications in a round-robin fashion to ensure
that no approximate application is penalized disproportionately.
Selected colocations: Figure 7 shows examples of two
approximate applications at a time sharing a server with each

9



Precise Approx v1 Approx v2 Approx v3 Approx v4 Approx v5 Approx v6 Approx v7 Approx v8

0 5 10 15 20 25 30 35 40 45 50 55
Time (sec)

0
10
20
30
40
50
60

0
1
2
3
4

0
1
2
3
4

0 5 10 15 20 25 30 35 40 45 50 550
10
20
30
40
50
60NGINX/Canneal (top)/Bayesian (bottom)

99
th

 %
-il

e 
Ta

il 
La

te
nc

y 
(m

se
c)

Re
cl

ai
m

ed
 C

or
es

0 5 10 15 20 25 30 35 40 45 50 55
Time (sec)

100
200
300
400
500

0
1
2
3
4

0
1
2
3
4

0 5 10 15 20 25 30 35 40 45 50 55100
200
300
400
500Memcached/Canneal(top)/Bayesian(bot)

99
th

 %
-il

e 
Ta

il 
La

te
nc

y 
(u

se
c)

Re
cl

ai
m

ed
 C

or
es

0 5 10 15 20 25 30 35 40 45 50 55
Time (sec)

50

100

150

200
0
1
2
3
4

0
1
2
3
4

0 5 10 15 20 25 30 35 40 45 50 5550

100

150

200MongoDB/Canneal (top)/Bayesian (bot)

99
th

 %
-il

e 
Ta

il 
La

te
nc

y 
(m

se
c)

Re
cl

ai
m

ed
 C

or
es

Fig. 7: Pliant managing colocations with multiple approximate applications at a time (canneal, and bayesian in this case). The
top graph shows the approximate variants and resources reclaimed from canneal, while the bottom graph shows the same for
bayesian.
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Fig. 8: Violin plots of tail latency for the interactive service
(purple), execution time (blue) and inaccuracy (orange) for
the approximate workload across colocations with 1, 2, and 3
approximate applications for the three interactive services. Tail
latency is normalized to QoS, and execution time normalized to
precise execution. The limits of the violins show the min and max
value of each metric.

interactive service. For simplicity, we focus on cases where
cores are reclaimed from the approximate application; the
process is the same for other reclaimed resources. The top figure
shows the approximate variants of canneal over time, and
the cores Pliant reclaims and yields to the interactive service.
The bottom figure shows the same metrics for bayesian.
The interactive service’s tail latency is shown in both figures.
Unlike when canneal or bayesian alone were colocated
with NGINX, in which case multiple cores had to be reclaimed
for NGINX to meet its QoS, now each application at most
yields one core. Therefore for a large fraction of execution,
approximation alone is sufficient to meet QoS. This enables
both applications to keep their quality loss low, and preserve
their nominal performance.

As before, memcached is more sensitive to interference
than the other interactive services. This results in employing
more aggressive approximate variants, and reclaiming more
cores from both approximate workloads. In contrast, MongoDB
rarely needs additional cores, while towards the end of the
scenario it can meet its QoS while canneal operates in

precise, and bayesian in near-precise mode. Note that
there is no case where a single application sacrifices a
disproportionate amount of its accuracy or resources.
Aggregate results: We now generalize the previous experi-
ment across all studied interactive and approximate applications.
Figure 8 shows violin plots of tail latency for the interactive
service (purple), and execution time (blue) and loss of output
quality (orange) for the approximate workloads, when we
colocate each interactive service with one, two, and three
approximate applications at a time. The limits of the violins
capture the min and max value of each metric. We examine all
2- and 3-way application combinations of the 24 approximate
workloads. Across all three interactive services, as we increase
the number of colocated applications the violins of inaccuracy
become more centralized. This is consistent with Fig. 7 which
shows that all colocated approximate applications sacrifice
comparable amounts of their output quality. In comparison,
when a single approximate application shares a node with
an interactive workload it may have to sacrifice considerable
quality to meet the interactive service’s QoS, although without
exceeding its 5% allowed threshold. The execution time violin
plots for the approximate workloads reveal a similar trend of
less diverse performance as consolidation increases.

Across interactive services, MongoDB incurs the lowest
impact on the approximate workloads, both in execution time
and inaccuracy, since in many cases applications operate in
precise mode, without impacting MongoDB’s tail latency.

D. Pliant Sensitivity

Input load: Fig. 9 shows tail latency for each interactive ser-
vice, and execution time and inaccuracy for each approximate
workload, as we vary the input load (QPS) of the interactive
service. We focus on colocations with a single approximate
workload for clarity, and examine loads between 40% to 100%
of saturation in increments of 10%. Lowering the load further
has no impact on either tail latency or execution time. When
load is below 60% each of the interactive services can satisfy
its QoS, while the approximate workload operates mostly in
precise mode. MongoDB is an especially amenable co-runner,
allowing colocated applications to operate in precise mode
until it reaches 80-85% load.
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Fig. 9: Performance of Pliant across load levels (QPS) for each
interactive service. The tail latency of each interactive service
is shown in bars (in ms for NGINX and MongoDB, and us for
memcached), while markers represent the execution time of
approximate applications.

For NGINX and memcached, when load is between 60-
70% approximation alone is often enough to meet QoS,
with memcached requiring some applications to additionally
yield 1-2 cores, or 1-3 cache ways. When load is 70-80%,
approximation together with reclamation is needed to meet QoS,
while increasing the load beyond 90% results in significant
QoS violations regardless of the use of approximation. When
the same applications operate in precise-only mode, QoS
can only be met until 340K QPS for NGINX (48% load),
280K QPS for memcached (46% load), and 310 QPS for
MongoDB (77% load). The execution time of the approximate
workloads exhibits two trends. First, there are applications
like water_spatial for which increasing the load of
NGINX results in progressively shorter execution time because
the degree of approximation increases, without the need for
resource reclamation. On the other hand, there are applications
like PLSA, where increasing the load results in a slight
increase in execution time because in addition to approximation,
resources must be reclaimed to meet QoS. Most applications
experience both trends with execution time first decreasing,
while approximation alone is used, and then increasing when
resources are reclaimed.

Decision interval: Figure 10 shows the tail latency and relative
execution time when we vary Pliant’s decision interval. The
marker labels show the loss of output quality for the approx-
imate workload. For brevity, we show a few representative
approximate applications co-scheduled with memcached; the
trend is the same for the remaining workloads. When the
decision interval is too coarse (above 1s), the interactive service
experiences prolonged QoS violations until Pliant takes action.

Decision intervals of 1s or less allow Pliant to satisfy QoS
without penalizing the colocated application’s execution time
or accuracy beyond its allowed threshold. In theory, very short
decision intervals can result in higher execution times for the
approximate applications, due to frequent switching between
precise and approximate versions. In practice, because Pliant is
lightweight, no such degradation is observed. In fact in the case
of raytrace there is the reverse trend; the application has
higher execution time with longer decision intervals, because
the runtime forces it to run with a smaller amount of resources
than needed to satisfy QoS.
Inaccuracy threshold: For simplicity, we have so far assumed
that the inaccuracy threshold is 5% for all applications. In
practice, this threshold is specified by the user, and can
differ per application. Fig. 11a shows Pliant’s sensitivity to
the inaccuracy threshold. Throughput is in kQPS for NGINX
and memcached, and in QPS for MongoDB. Changing the
threshold affects the selected approximate variants used at
runtime. The x-axis shows the inaccuracy threshold, while the
box plots show the distribution of maximum sustained load
for each interactive service without QoS violations. The lower
the threshold, the less flexibility Pliant has when employing
approximation. This results in lower sustained QPS for the
interactive service, with NGINX and memcached experiencing
the highest throughput degradation, while MongoDB remains
mostly unchanged for thresholds above 2%. As the inaccuracy
threshold increases beyond 5%, Pliant has more leeway when
trading off accuracy for performance. In this case, all three
interactive applications reclaim more resources from the
approximate workloads, which translates to higher QPS.
Breakdown of effectiveness: Finally, Figure 11b shows the
fraction of colocations for which approximation alone was
sufficient to meet the QoS of each interactive service, versus
cases where different resources have to be reclaimed, across the
application’s runtime. Cases where multiple types of resources
have to be reclaimed at a time, are shown in the stacked bar
chart. This includes 1-, 2-, and 3-approximate application mixes
co-scheduled with an interactive service. When approximation
alone is not sufficient, resources (cores, cache, or memory
capacity) are reclaimed from the approximate workloads. The
“0 cores” bars correspond to cases where only memory resources
(cache and main memory) are reclaimed. The “only” bars
correspond to cases where only N cores are reclaimed, where
N is shown in the x-labels. In the case of NGINX, for 33% of
experiments, approximation was sufficient to resolve any QoS
violations, without constraining the resource allocation of the
approximate applications. The majority of these experiments
correspond to single approximate application scenarios, since
in that case the interactive service starts with a larger fraction
of system resources.

A smaller fraction of experiments results in 1-2 cores
being reclaimed from the approximate applications, especially
for applications where approximation itself does not reduce
resource contention. Cache and memory reclamation is rare
for NGINX; similarly reclaiming 3 or more cores is unlikely
in practice. The results differ for memcached and MongoDB.
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workload(s).

Unlike NGINX, memcached almost always requires at least
one core to be reclaimed from the approximate applications,
and often cache and memory capacity as well, primarily due to
its strict QoS which makes it sensitive to resource interference.
MongoDB, on the other hand, is the most amenable of the
three interactive services, and can meet its QoS leveraging
approximation alone, or one reclaimed core or cache way in
the majority of cases. This information can be incorporated
in the cluster scheduler when deciding which applications to
place on the same physical node.

E. Limitations

Pliant can be extended in several ways. First, even though
considering multiple approximate applications in a round-
robin fashion provides a simple form of arbitration and is
effective in practice, more sophisticated policies can offer
better performance and/or resource efficiency. For example,
considering the relative performance impact of approximation
across co-scheduled applications can prioritize adjusting the
quality and/or resources of the application that will be hurt the
least. Second, even though Pliant uses canary inputs to reduce
the overhead of the design space exploration, there are still
cases where this process needs to occur for a new application.
This may not always be possible, especially in the context of
public clouds, where the cloud provider does not have source
code access to the end user’s applications. In that case, the user
can provide the approximate variants, or hints on primitives
that can be approximated using a framework like ACCEPT,
and the relative impact of approximate versions can be learned
at runtime [29], [45]. In contrast, in Software-as-a-Service
(SaaS) and serverless cloud settings where the user leverages
the cloud’s applications via fine-grained functions, the provider
has source code access to perform the exploration Pliant needs.

VII. CONCLUSIONS

We presented Pliant, a practical and lightweight cloud
runtime that leverages the ability of approximate computing
applications to tolerate some loss of output quality, to preserve
the QoS of co-scheduled interactive services. Pliant relies on
a lightweight performance monitor to track QoS violations,
and a dynamic recompilation system to adjust the degree of
approximation online. We showed that approximation exposes
a wide spectrum of operating points in terms of execution time

and inaccuracy, and demonstrated that Pliant can navigate
this space effectively, and preserve QoS, while using the
lowest degree of approximation needed across a diverse set of
interactive and approximate applications.
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