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Abstract—Cloud multi-tenancy is typically constrained to a single inter-
active service colocated with one or more batch, low-priority services,
whose performance can be sacrificed. Approximate computing appli-
cations offer the opportunity to enable tighter colocation among mul-
tiple applications whose performance is important. We present Pliant,
a lightweight cloud runtime that leverages the ability of approximate
computing applications to tolerate some loss in output quality to boost
the utilization of shared servers. During periods of high contention, Pliant
employs incremental and interference-aware approximation to reduce
interference in shared resources. We evaluate Pliant across different
approximate applications, and show that it preserves QoS for all co-
scheduled workloads, while incurring at most a 5% loss in output quality.

Index Terms—Super (very large) computers, Scheduling and task par-
titioning, Support for dynamic compilation

F

1 INTRODUCTION

Cloud computing has reached proliferation by offering resource
flexibility and cost efficiency [3]. Cost efficiency is achieved through
multi-tenancy, i.e., by co-scheduling multiple jobs on the same physi-
cal platform. Unfortunately multi-tenancy also leads to unpredictable
performance due to interference [6]. When the applications that suffer
from interference are high priority and interactive services, multi-
tenancy is disallowed, hurting utilization, or interactive services are
co-scheduled with low priority, best-effort workloads. The perfor-
mance of these workloads can be sacrificed at any point to avoid
performance degradation for the high priority service [7, 12, 19].
Unfortunately this limits the colocation options cloud providers have.
Approximate computing offers the potential to break this utilization
versus performance trade-off in shared clouds.

Approximate computing applications include workloads from sev-
eral fields, such as computer vision, machine learning, analytics,
and scientific applications, and have the common feature that they
can tolerate some loss in output accuracy in return for improved
performance and/or energy efficiency [5, 9, 14, 15, 18]. Several cloud
workloads fall under this category, such as ML analytics, where
achieving the highest output quality is often less important than
latency and/or throughput. Exposing the knob of approximation to
the cloud scheduler allows the system to sacrifice some accuracy to
preserve the services’ quality-of-service (QoS) constraints.

We present Pliant, a cloud runtime system that achieves both high
QoS and high utilization by leveraging the ability of approximate
computing applications to tolerate some loss in their output quality.
Unlike prior cluster schedulers, Pliant does not directly sacrifice the
performance of applications co-scheduled with interactive services.
Instead, a user expresses a tolerable approximation threshold to the
scheduler, and Pliant dynamically adjusts the level of approximation
to the minimum amount needed to satisfy the tail latency QoS of the
interactive service, without exceeding this inaccuracy threshold.

Pliant consists of a lightweight performance monitor and a dy-
namic compilation system. The monitor uses adaptive sampling to
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continuously check for QoS violations, while the compilation tool is
based on DynamoRIO [2], and adjusts the degree of approximation
online. When the interactive service violates its QoS, Pliant reclaims
cores from the approximate computing applications, yields them to
the interactive service, and adjusts the approximation degree to ensure
the execution time of the approximate application does not degrade.
Pliant reclaims cores incrementally to guarantee that the approximate
application only sacrifices the minimum amount of accuracy needed.

We evaluate Pliant on server platforms with 44 physical (88
logical) cores, with memcached, a distributed in-memory caching
service [1], as the interactive application, and a set of scientific
workloads from PARSEC and SPLASH2 [4, 20] as the approximate
applications. We show that Pliant is able to preserve both the tail
latency QoS of the interactive service, and the nominal execution time
of the approximate applications, with a 2.8% loss of output quality
on average, and 5% loss in the worst case. In comparison, running
the applications in precise mode results in a 2-3x increase in the tail
latency of memcached, a dramatic degradation for latency-sensitive,
interactive services. Finally, we explore the sensitivity of Pliant to the
granularity of decisions, across load levels.

2 RELATED WORK

We now review relevant work in interference-aware scheduling, ap-
proximate computing, and dynamic instrumentation.
Contention-aware scheduling: Sharing cloud resources results in
performance degradation [6, 7, 16], and in some cases security vulner-
abilities [8]. Several systems disallow colocation of interfering jobs to
begin with [6, 7, 16], or partition resources to improve isolation [8, 10,
11, 13]. For example, DeepDive identifies the interference colocated
VMs experience, and manages it transparently to the user [16].
Paragon [6] and Quasar [7] are cluster managers that leverage
practical online data mining techniques to determine the resource
requirements of incoming cloud applications, and schedule them in
a way that minimizes contention. On the isolation front, Lo et al. [13]
study the sensitivity of Google applications to different sources of
interference, and combine hardware and software isolation techniques
to preserve QoS for interactive applications. Similarly Kasture et al.
implement fine-grain cache partitioning [11] and power allocation
with RAPL [10] to guarantee QoS for latency-critical services. In all
cases, a server hosts at most one high-priority interactive application;
any remaining workloads are best effort, and their performance can
be sacrificed when needed.
Dynamic recompilation: Open-source tools like DynamoRIO [2]
enable online code transformations which can be used to reduce
the contention the instrumented application incurs in a multi-tenant
system. For example, Protean Code [12] is a co-designed compiler
and runtime built over LLVM that enables code transformations with
less than 1% overhead. The runtime is then used to dynamically
mitigate cache pressure by disabling prefetching for low-priority
applications during periods of high resource contention.
Software approximate computing techniques: Finding the ap-
proximation potential of popular application classes, and generating
language constructs to express and verify approximation has gen-
erated a large amount of related work. Carbin et al. [5] present
constructs for specifying acceptability properties in approximate pro-
grams. Sampson et al. [18] propose annotating data types that can
be approximated, and automatically mapping such variables to ap-
proximate storage that uses low-power operations. The same authors
develop ACCEPT [17], a programmer-guided compiler framework
that identifies approximable code, and automatically chooses the best
approximation strategies. Finally, Misailovic et.al [15] present Chisel,
an optimization framework that automatically generates instructions
and data that can be stored in approximate memory to improve effi-
ciency, and compiler-level transformations that automatically generate
approximate versions of applications [14].
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Fig. 1: Approximate design space exploration for canneal, streamcluster, water_nqsuared, raytrace.

3 PLIANT

3.1 Overview

Pliant exposes approximation to the cluster scheduler, which the latter
uses to ensure interactive services meet their QoS during periods
of high resource contention. The interface between an application
and Pliant involves expressing an interactive service’s QoS, and
an approximate application’s nominal execution time, and tolerable
quality loss. Having this information, the runtime can dynamically
determine the type and degree of approximation needed for QoS to
be met. Approximation can be used to restore an interactive service’s
performance in two ways. First, approximation can be used to directly
reduce the interference generated by the approximate application. In
this case, the runtime employs one or more approximation techniques
that reduce contention, without hurting the execution time of the
approximate workload. Second, approximation can be used as a means
to improve the performance of the approximate application when its
resources have been reclaimed and given to the interactive service.

Pliant consists of two components, the performance monitor and
the actuator. Both components are designed to incur minimal runtime
overheads, be transparent to the user, and assign high priority to the
performance of both interactive and approximate applications.

The performance monitor is a lightweight tracing module that in-
struments the interactive applications, and continuously samples their
latency (average and tail). Since QoS reflects the end-to-end latency of
a service, the monitor resides at the entry point to the datacenter, and is
designed to not incur any measurable performance overhead, either in
terms of throughput or latency. Upon detecting a QoS violation for the
interactive workload, the monitor informs Pliant, which takes action
via its actuator module. The actuator is responsible for i) determining
an appropriate approximation variant and resource allocation based
on the monitored tail latency, and ii) enforcing the chosen degree of
approximation. Below, we first discuss how approximation variants
are chosen, and then how dynamic recompilation works in Pliant.

3.2 Approximation Design Space Exploration

We explore several approximation strategies, such as loop perforation,
synchronization elision, and low precision data types.

• Loop Perforation: This technique omits a fraction of itera-
tions in a loop. Typical approximate computing applications,
like analytics, machine learning, and scientific workloads are
iterative in nature, making loop perforation a good candidate
for approximation. There are multiple ways to perforate a loop.
For example, to reduce a loop by a factor p, we can a) execute
only (MAX IT ER/p) consecutive iterations, or b) execute every
pth iteration. We can also reduce the loop by a factor (p−1)/p
by not executing every pth iteration. We explore each of these
strategies.

• Synchronization Elision: Synchronization constructs, like locks
and barriers, can be elided. Removing locks reduces the memory
traffic that acquiring locks incurs, which can be significant for

highly contended locks. Apart from memory traffic, synchroniza-
tion elision also benefits performance, as threads do not wait to
synchronize, shortening execution time.

• Lower Precision: This technique replaces variables like “dou-
ble” with lower precision types, such as “float” and “int”,
reducing memory traffic and execution time for some penalty
in output quality.

Pruning the design space: We now study the relation between
accuracy and execution time for approximate applications, and se-
lect approximate variants close to the pareto optimal curve. Typical
applications have a large number of loops, multiple of which can
be perforated. Considering all approximation possibilities makes the
design space intractable, in the order of 1000s of approximation
versions. We use two ways to prune this space. First, we employ
an “almost” exhaustive exploration that leverages hints from the
ACCEPT framework [17]. ACCEPT lists a maximum of 10 loops
that can be perforated for each application. We perforate each loop
by different factors and examine the resulting execution time and
inaccuracy. We only preserve approximate versions with inaccuracies
lower than 5%. Second, we use gprof, an application profiling tool, to
determine which functions contribute the most to execution time. In all
examined applications, there are 2-3 functions that dominate execution
time. We perforate these functions to determine the potential of
approximation on execution time and inaccuracy. This approach also
resulted in a manageable number of favorable approximation variants,
consistent with those obtained using ACCEPT. Figure 1 shows the
inaccuracy-execution time for four representative applications from
PARSEC and SPLASH-2. The blue dots represent the examined
approximation variants, the green dot represents the precise version
of the application, and the red dots represent approximation variants
that reside close to the pareto-optimal frontier, and are hereafter used
by Pliant. The number of selected approximate versions varies across
applications. The marker labels in Fig. 1 correspond to the tail latency
of an interactive service, memcached in this case, when it is co-
scheduled with the different approximate and precise variants.

The approximate variants extracted from the design space ex-
ploration above are used to construct a single application binary.
Different versions of functions that house the approximated primitives
are incorporated in the original application source code, including one
version that corresponds to precise execution.

3.3 Dynamic Recompilation

DynamoRIO, a dynamic recompilation tool is used to adjust an
application’s degree of approximation at runtime. The DynamoRIO
API provides the ability to control applications at the granularity of
individual instructions, as well as at a coarser granularity of functions.
To avoid high instrumentation overheads, we use DynamoRIO to con-
trol applications at coarse granularity. DynamoRIO reads the program
addresses of precise and approximate versions of each approximated
function at the start of the program, and based on the output of
the performance monitor, replaces the corresponding functions with
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Fig. 2: Control flow of Pliant’s runtime algorithm.

the appropriate precise/approximate variants. When DynamoRIO is
triggered (using a set of Linux signals), drwrap_replace() replaces
the pointers to the original precise version of a function to the
appropriate approximate version, using the program addresses read
at start-up time. drwrap_replace() is also used to switch between
approximate variants, or to revert back to precise execution.

Running an application over DynamoRIO can incur significant
runtime overheads. We only use DynamoRIO at a coarse, function-
level granularity to minimize the impact on application performance.
We have quantified the overheads of dynamic recompilation and
ensured they are below 8% in practice for all examined applications.
In comparison, when fine-grained code transformations are necessary,
there may be need for a new compiler [12].

3.4 Pliant Runtime Algorithm
Fig. 2 shows the control flow of Pliant’s runtime algorithm. Initially,
execution starts at precise mode, and in the event of a QoS violation
Pliant switches the co-scheduled application to its most approximate
version to avoid prolonged degraded performance for the interactive
service. If QoS is met, Pliant examines the amount of latency slack the
interactive service experiences. If slack exceeds 10% - set empirically
- Pliant incrementally reverts back to less approximate versions, and
potentially precise execution, to avoid unnecessarily penalizing the
approximate application’s output quality. If QoS is not met, Pliant
additionally reclaims cores from the approximate application, one
at a time until QoS is met. In that case approximation allows the
co-scheduled workload to preserve its nominal execution time. If at
a later point the interactive service has enough latency slack, these
cores are returned to the approximate application, and its degree of
approximation is reduced. The slack threshold is empirically set at
10% of QoS; lowering it results in frequent ping-ponging between
approximate versions and higher overheads from DynamoRIO, while
increasing it leads to resource underutilization by the interactive
service. When multiple approximate applications are co-scheduled
with an interactive service, approximation and core reclamation is
applied via a round-robin arbiter to optimize for fairness. More
sophisticated policies, including incorporating priorities between ap-
proximate applications, are deferred to future work.

4 EVALUATION

4.1 Experimental Setup
Applications: We use memcached, an in-memory key-value store as
the interactive service; the input load is generated using an open-
loop workload generator. The QoS target of memcached is set at
200usec for the 99th percentile latency, consistent with prior work [7,
13]. Unless otherwise specified, we run memcached at high load,
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Fig. 3: Pliant’s dynamic behavior when memcached is colocated with
canneal (left) and raytrace (right). The left y-axes show mem-
cached’s tail latency over time, and the right y-axes the cores Pliant
reclaims from the colocated application and yields to memcached.

approximately 80-85% of saturation. We also use three workloads
(fluidanimate, canneal, streamcluster) from the PARSEC benchmark
suite, and three workloads (water spatial, water nsquared, raytrace)
from the SPLASH2x suite as examples of approximate computing
applications. The results are similar for the remaining workloads of
both suites and are omitted due to space constraints.
Systems: We use a dual-socket, 44-physical core (88 logical core)
platform, with 128GB of RAM as the server. To avoid NUMA
effects, we only use one of the sockets for memcached and the
approximate applications. memcached and the approximate workloads
are instantiated in separate Docker containers, and pinned to different
physical cores of the same socket. The containers share the 56MB
last level cache (LLC), the main memory, and the NIC. An additional
6 physical cores are dedicated to network interrupts (soft_irq) to
avoid interference with application threads. The remaining physical
cores are fairly shared across the two Docker containers.

We first evaluate Pliant’s dynamic behavior for two representa-
tive approximate computing applications, then show its performance
and efficiency across all studied applications, and finally show the
runtime’s sensitivity to various configuration parameters.

4.2 Dynamic Behavior
Figures 3a and 3b show Pliant’s dynamic behavior when memcached

is colocated with canneal and raytrace respectively. Pliant uses
a one second decision interval at the end of which, it makes a
decision on the degree of approximation and core allocation for the
two applications. In Section 4.4 we study the impact of varying
the decision granularity on application performance. When a QoS
violation for memcached is detected, the runtime switches the colo-
cated application to its most approximate variant, and if that is not
sufficient, it additionally reclaims physical cores and yields them to
memcached, one core per decision interval. To avoid penalizing the
approximate application when memcached’s latency slack is high,
Pliant also relinquishes cores from memcached when tail latency has
> 10% slack. Due to the high memory traffic canneal introduces,
Pliant has to operate in its most approximate variant, and rely on core
reclamation to meet QoS. On the other hand, raytrace generates
high interference in some phases and almost negligible in others,
allowing it to leverage both its precise operation and its multiple
approximate versions over the duration of its execution.

4.3 Aggregate Results
We now evaluate Pliant for all examined applications. The decision
interval is again one second. Figure 4a) shows the 99th − ile tail
latency, execution time, and inaccuracy for the baseline system (pre-
cise), and Pliant. In the baseline, memcached and the precise version
of the colocated application each receive a fair core allocation. In the
case of Pliant, the initial allocation is fair, and the runtime adjusts
it when needed online. Running in precise mode always results in
severe QoS violations for memcached. Pliant meets memcached’s
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Fig. 4: a) Comparison of Pliant against the baseline precise runtime, b) Performance of Pliant across QPS, c) Performance of Pliant
for varying decision intervals across applications The tail latency of memcached is shown in bars, while markers represent the execution
time of approximate applications. The marker labels denote the % inaccuracy. The whiskers in a) indicate the overhead of DynamoRIO.

QoS for all colocations. Additionally, all approximate applications,
except for water spatial maintain their previous execution times, and
in several cases shorten them. Their accuracy loss is also within
the 5% tolerable limit. In the case of water spatial, the selected
approximate variants do not significantly reduce its execution time,
and its reduced core allocation results in slightly higher execution time
than in precise mode. water spatial also experiences an unusually high
instrumentation overhead from DynamoRIO (seen from the whisker
in Fig 4a), which also adds to its execution time.

4.4 Sensitivity Experiments

Input load: Figure 4b shows tail latency for memcached, and
execution time and inaccuracy for colocated workloads, as we vary
memcached’s input load (QPS). memcached’s QoS is satisfied for
QPS below 500K when co-located with any of the examined ap-
plications. For QPS below 350K, colocation does not impact tail
latency enough to cause QoS violations, resulting in execution mostly
in precise mode for the colocated workloads. As a result, there is
zero accuracy loss for all applications except streamcluster (Fig 4b).
For QPS above 400K, applications leverage approximation for the
most part, and thus their execution time is lower. As QPS increases
further, approximation alone is not enough to counteract the severely
limited core allocation for the approximate applications, causing their
execution time to increase.

Decision interval: Finally, we vary Pliant’s decision interval (Fig. 4c).
When the decision interval is too coarse (above one second), mem-
cached experiences prolonged QoS violations until Pliant takes action.
Decision intervals of 1 second or less always allow Pliant to satisfy
memcached’s QoS without penalizing the colocated application’s
execution time or accuracy. In theory, very short decision intervals can
result in higher execution times for the approximate applications due
to frequent switching between precise and approximate versions. In
practice, due to the lightweight design of Pliant, no such degradation is
observed. In fact in the case of raytrace there is the reverse trend; the
application has higher execution time with longer decision intervals,
because the runtime allows it to run with a smaller number of cores
than needed for the interactive application to satisfy its QoS.

5 CONCLUSIONS

We presented Pliant, a lightweight runtime that leverages the ability
of approximate applications to tolerate some loss of output quality, to
preserve the QoS of co-scheduled interactive services. We demon-
strated that approximation exposes a wide spectrum of operating
points in terms of performance and inaccuracy, and showed that Pliant

can navigate this space effectively and maintain the services’ QoS,
while using the lowest degree of approximation needed.
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