
Leveraging Approximation to Improve Resource Efficiency in the Cloud

Neeraj Kulkarni, Feng Qi, Glyfina Fernando, and Christina Delimitrou
Cornell University

{nsk49, fq26, gsf52, delimitrou}@cornell.edu

Abstract
Although cloud computing has increased in popularity, data-
center utilization has remained for the most part low. This is
in part due to the interference that comes as a result of appli-
cations sharing hardware and software resources. When in-
terference occurs, the resources of at least one co-scheduled
application need to be reduced forcing it to take a perfor-
mance penalty. In current proposals, the penalized appli-
cation is typically a low-priority, best-effort workload. Ap-
proximate computing applications present an opportunity to
improve datacenter efficiency without performance degrada-
tion, since they can absorb the enforced resource reduction
as a loss in output quality.

In this paper we present Pliant, a runtime system that
improves datacenter utilization by co-scheduling interactive
services with approximate computing applications. When
the runtime detects QoS violations in the interactive ser-
vice, it employs approximation to reduce interference, and
absorbs the resource reduction as a loss in output accuracy.

1. Introduction
Cloud computing has reached proliferation by offering re-
source flexibility and cost efficiency [2, 1, 8]. Cost-efficiency
is achieved through multi-tenancy, i.e., by co-scheduling
multiple jobs on the same physical platform. Unfortunately
multi-tenancy also leads to unpredictable performance due
to interference [12, 4, 13]. When the applications suffer-
ing from interference are high priority, interactive services,
like websearch and social networking, multi-tenancy is dis-
allowed hurting utilization, or - at best - interactive services
are co-scheduled with low priority, best-effort applications
whose performance can be sacrificed [16, 9, 5]. Approxi-
mate computing applications offer the potential to break this
utilization versus performance trade-off.

In this work we present Pliant, a cloud runtime system
that achieves both high quality of service (QoS) and high
utilization by leveraging the ability of approximate comput-
ing applications to tolerate some loss of output quality. Pli-
ant enables aggressive co-scheduling of interactive, latency-
critical services with - also high priority - approximate com-
puting applications. It consists of a lightweight performance
monitoring system based on adaptive sampling [15, 10] that
continuously checks for QoS violations, and a dynamic com-
pilation system that adjusts the level of accuracy the approx-
imate computing application can sustain in an online man-
ner. When interference surfaces due to resource sharing, Pli-
ant employs suitable approximation techniques that allevi-
ate contention without penalizing the execution time of the
approximate computing application. Specifically, Pliant de-

termines the appropriate approximation technique(s) needed
based on the type of interference measured in the system,
e.g., memory, compute, network, storage I/O, and incremen-
tally increases the degree of approximation until the interac-
tive service can once again meet its QoS constraints.

We evaluate Pliant with a distributed in-memory low la-
tency caching service, memcached [7], and two benchmark
suites with applications that can tolerate approximation [3,
17]. In server platforms with 20 physical (40 logical) cores,
Pliant enables 90-95% CPU utilization, while ensuring that
memcached achieves the same throughput (QPS) and tail la-
tency as when run in isolation, and the approximate com-
puting applications achieve 18.3% lower execution time on
average, with a maximum of 15% loss in accuracy.
2. Pliant Design & Evaluation
Pliant consists of three components. First, a lightweight per-
formance monitor continuously samples the throughput and
end-to-end latency (average and tail) of the interactive ser-
vice, and notifies the runtime system in the event of a QoS
violation. Second, an interference monitor runs on the server
and collects performance counter information that identifies
the resource(s) suffering from contention. Third, a runtime
system that enforces a degree and method of approxima-
tion based on the output of the performance and interfer-
ence monitors. The system uses DynamoRIO [6] to switch
between the precise and different approximate versions of
the approximate computing applications. Figure 1 shows
an overview of the runtime system. The interactive service
shares physical cores with the approximate computing ap-
plications, although an individual hyperthread (or vCPU) is
dedicated to a single application, which is common practice
in public clouds [1]. A different client machine is used to
drive the load of the interactive service.
Performance monitor: This module is integrated in our
workload generator and runs on the client side to capture
apart from processing time, the network latency of the round
trip of a request. It relies on adaptive sampling of requests
(based on request rate) to maintain monitoring overheads
negligible (< 0.01% in throughput and < 0.1% in 99th per-
centile latency) and leverages systemtap to provide a break-
down of execution time and identify latency bottlenecks.
Dynamic recompilation: Pliant relies on DynamoRIO [6]
to switch between the precise and different approximate
versions of an application; the trigger for a switch is one
of several Linux signals (e.g., SIGTERM, SIGQUIT). We
examine the following approximation techniques:

• Loop perforation: Reducing the number of executed
loops by (i) only executing the first (maxiter/p) itera-



Client

Server

Performance 
monitor

Interference
monitor

Core Core Core Core

L1 L1 L1 L1

L2 L2 L2 L2

LLC

Main Memory

C C C C

…
…

Workload 
generator

LLC

Main Memory

Pliant 
runtime

interactive 
cloud service

approximate 
computing app

DynamoRIO

Source of interference

Increase/Decrease approximation

QoS violation1

2

3

Figure 1: Pliant overview.

0 20 40 60 80 100 120

Time (s)

0

100

200

300

400

500

600

99
th

%
ile

La
te

nc
y

(u
se

c)

0 20 40 60 80 100 120

Time (s)

0
2
4
6
8

10
12
14
16

A
pp

ro
xi

m
.

C
al

ls
in

U
se

Figure 2: (a) Tail latency for memcached, (b)
number of approximate ”functions” in use.

tions, (ii) executing every pth iteration, or not executing
every pth iteration to reduce memory pressure.

• Data type precision: Reducing memory footprint by low-
ering the precision of suitable data types. To identify eli-
gible data types we use the ACCEPT framework [14].

• Algorithmic exploration: Using different algorithms,
such as search, sort, graph traversal, that optimize for
reduced resource usage instead of performance.

• Synchronization elision: Optimistically executing paral-
lel regions of the code without acquiring a lock avoids
long serialization delays for a penalty in output accuracy.

Incremental approximation: Pliant only uses the minimum
degree of approximation necessary to restore the perfor-
mance of the interactive service. This means that for each
of the techniques above there are several approximate ver-
sions, each with different resource requirements and quality
loss, for example, loop perforation by a factor of /2, /4, etc.
When Pliant receives a QoS violation signal it first switches
to approximate versions with small quality loss, and progres-
sively moves to more aggressive methods until QoS recov-
ers. Similarly when the interactive service’s performance is
better than needed, Pliant reverts back to the precise version
of the application (also incrementally).
Interference-aware approximation: Pliant also uses the
output of the interference monitor to guide its selection of
approximation techniques. For example, if the monitor sig-
nals high last level cache interference, Pliant will prioritize
loop perforation to alleviate memory contention. Similarly
with CPU contention and synchronization elision. The in-
terference monitor also tracks contention in network and
storage I/O, and although our current applications are con-
tained in single-machine setups, the same methodology can
extend to distributed workloads, e.g., machine learning and
data mining that can also tolerate approximation.

2.1 Evaluation
We use two servers with 20 physical (40 hyperthreaded)
cores each, and 128GB of RAM, one as server and one as
client. We use memcached as the latency-critical application,
and PARSEC and SPLASH-2 as the approximate computing
applications. We also set QoS for memcached to 200usec
for the 99th percentile latency and the throughput to 1.5mil

QPS (memcached’s throughput close to saturation when it’s
running on the same platform in isolation). A QoS viola-
tion is signaled when either tail latency or throughput devi-
ate from their required values. On each physical core we also
pin a thread of an approximate computing application. Fig-
ure 2a shows the tail latency of memcached (throughput be-
haves similarly) as it runs alongside PARSEC and SPLASH-
2 benchmarks with Pliant. Initially (t = 0) memcached runs
alone. Every time latency increases, Pliant employs approx-
imation to restore it. Figure 2b shows how many approxima-
tion techniques (or functions) Pliant employed throughout
the duration of the experiment. t = 40sec shows how incre-
mental approximation works, with an increasing number of
approximate functions being called to reduce contention. In
the specific example contention was in the memory system,
so the method of approximation chosen was loop perfora-
tion. CPU utilization is 90-95% and output quality loss is at
most 15% (6% on average).
2.2 Limitations & Active Work
First, while DynamoRIO provides an easy way for recom-
pilation it can add considerable overheads in execution time
(on average 9% and up to 18%). We are actively developing
an LLVM-based compiler [11, 9] that enables online code
transformations by diverting the program’s control flow at a
set of virtualized points, with < 1% overhead.

Second, we currently do not use isolation beyond not
sharing a single hyperthread. Modern platforms offer sev-
eral isolation techniques, including containers, thread pin-
ning, memory capacity partitioning, and network and stor-
age bandwidth, and last level cache partitioning. These can
further reduce resource interference, and we are exploring
how they can assist Pliant’s decisions.

3. Conclusions
We have presented Pliant, a practical runtime system that
leverages approximate computing applications to increase
datacenter utilization. Pliant co-schedules interactive ser-
vices with approximate applications and employs incremen-
tal and interference-aware approximation, selecting the ap-
propriate type of approximation based on the level and cause
of the QoS violation of the interactive application.



References
[1] Amazon ec2. http://aws.amazon.com/ec2/.

[2] Luiz Barroso and Urs Hoelzle. The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-Scale Ma-
chines. MC Publishers, 2009.

[3] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. The parsec benchmark suite: Characterization and ar-
chitectural implications. In Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT). Toronto, CA, October, 2008.

[4] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters. In Pro-
ceedings of the Eighteenth International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems (ASPLOS). Houston, TX, USA, 2013.

[5] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In Proceed-
ings of the Nineteenth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS). Salt Lake City, UT, USA, 2014.

[6] Dynamorio: Dynamic instrumentation tool platform. http:
//www.dynamorio.org.

[7] Brad Fitzpatrick. Distributed caching with memcached. In
Linux Journal, Volume 2004, Issue 124, 2004.

[8] Google container engine. https://cloud.google.
com/container-engine.

[9] Michael A. Laurenzano, Yunqi Zhang, Lingjia Tang, and Ja-
son Mars. Protean code: Achieving near-free online code
transformations for warehouse scale computers. In Proceed-
ings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-47, pages 558–570, Washing-
ton, DC, USA, 2014. IEEE Computer Society.

[10] Jacob Leverich and Christos Kozyrakis. Reconciling high
server utilization and sub-millisecond quality-of-service. In
Proceedings of EuroSys. Amsterdam, The Netherlands, 2014.

[11] The llvm compiler infrastructure. http://llvm.org.

[12] Jason Mars and Lingjia Tang. Whare-map: heterogeneity in
”homogeneous” warehouse-scale computers. In Proceedings
of ISCA. Tel-Aviv, Israel, 2013.

[13] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-
clouds: Managing performance interference effects for qos-
aware clouds. In Proceedings of EuroSys. Paris,France, 2010.

[14] Adrian Sampson, Andre Baixo, Benjamin Ransford, Thierry
Moreau, Joshua Yip, Luis Ceze, and Mark Oskin. Accept:
A programmer-guided compiler framework for practical ap-
proximate computing. Technical Report UW-CSE-15-01-01,
University of Washington.

[15] Benjamin H. Sigelman, Luiz Andr Barroso, Mike Burrows,
Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan,
and Chandan Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report, Google, Inc.,
2010.

[16] Lingjia Tang, Jason Mars, Wei Wang, Tanima Dey, and
Mary Lou Soffa. Reqos: Reactive static/dynamic compilation
for qos in warehouse scale computers. In Proceedings of the
Eighteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
ASPLOS ’13, pages 89–100, New York, NY, USA, 2013.
ACM.

[17] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The splash-2 programs: characteri-
zation and methodological considerations. In Proceedings of
the 22nd International Symposium on Computer Architecture
(ISCA). Santa Margherita Ligure, Italy, 1995.

http://aws.amazon.com/ec2/
http://www.dynamorio.org
http://www.dynamorio.org
https://cloud.google.com/container-engine
https://cloud.google.com/container-engine
http://llvm.org

	Introduction
	Pliant Design & Evaluation
	Evaluation
	Limitations & Active Work

	Conclusions

