
STANFORD UNIVERSITY

COMPUTER SCIENCE TECHNICAL REPORT

CSTR 2014-05 11/25/2014

Tarcil: High Quality and Low Latency Scheduling in
Large, Shared Clusters

Christina DELIMITROU Daniel SANCHEZ Christos KOZYRAKIS

November 25, 2014

Tarcil: High Quality and Low Latency Scheduling in Large, Shared Clusters

Abstract
Scheduling diverse applications in large, shared clusters

is particularly challenging. Recent research on cluster man-
agement focuses either on scheduling speed, using sampling
techniques to quickly assign tasks to resources, or on schedul-
ing quality, using centralized algorithms that examine the
cluster state to find the most suitable resources that improve
both task performance and cluster utilization.

We present Tarcil, a distributed scheduler that targets both
scheduling speed and quality, making it appropriate for large,
highly-loaded clusters running both short and long jobs. Tarcil
uses an analytically derived sampling framework that dynami-
cally adjusts the sample size based on load and provides guar-
antees on the quality of scheduling decisions with respect to
resource heterogeneity and workload interference. It also im-
plements admission control when sampling is unlikely to find
suitable resources for a task. We evaluate Tarcil on clusters
with hundreds of servers on EC2. For highly-loaded clusters
running short jobs, Tarcil improves task execution time by 41%
over a distributed, sampling-based scheduler. For more gen-
eral workload scenarios, Tarcil increases the fraction of tasks
that achieve near ideal performance by 4x and 2x compared
to sampling-based and centralized scheduling respectively.

1. Introduction
An increasing and diverse set of applications is now hosted
in private and public datacenters [4, 10, 18]. The large size
of these clusters (up to tens of thousands of servers) and
the high arrival rate of jobs (up to millions of tasks per sec-
ond) make cluster scheduling quite challenging. The cluster
scheduler must determine which hardware resources, e.g., spe-
cific servers and cores, should be used by each job. Ideally,
scheduling decisions lead to three desirable properties. First,
each workload receives resources that enable it to achieve pre-
dictably high performance. Second, jobs are packed tightly
on available servers, achieving high cluster utilization. Third,
decisions introduce minimal scheduling overheads, allowing
the scheduler to handle large clusters and high job arrival rates.

Recent research on cluster scheduling can be examined
along two dimensions; scheduling concurrency (throughput)
and scheduling speed (latency).

With respect to scheduling concurrency, there are two
groups of work. In the first scheduling is serialized, with
a centralized scheduler making all decisions [14, 20]. In the
second group, decisions are parallelized through two-level,
distributed or shared-state designs. Two-level schedulers, such
as Mesos and YARN, use a centralized coordinator to divide
resources between frameworks like Hadoop and MPI [19, 34].
Each framework uses its own scheduler to assign resources to

0 20 40 60 80 100
Performance norm. to Ideal (%)

0.00

0.05

0.10

0.15

0.20

F
ra

ct
io

n
of

 J
ob

s Short
Medium
Long

Fig. 1a: Sampling-based scheduling.

0 20 40 60 80 100
Performance norm. to Ideal (%)

0.00

0.05

0.10

0.15

0.20

F
ra

ct
io

n
of

 J
ob

s Short
Medium
Long

Fig. 1b: Centralized scheduling.

0 20 40 60 80 100
Performance norm. to Ideal (%)

0.00

0.05

0.10

0.15

0.20

F
ra

ct
io

n
of

 J
ob

s Short
Medium
Long

Fig. 1c: Tarcil.

Figure 1: Distribution of job performance on a 200-server
cluster with concurrent, sampling-based [28] and centralized
greedy [13] schedulers and Tarcil for three scenarios: 1) short,
homogeneous Spark [40] tasks (100ms average duration), 2)
Spark tasks of medium duration (1s–10s), and 3) long Hadoop
analytics tasks (10s–10min). The ideal performance (100%) as-
sumes no scheduling overheads and no performance degra-
dation due to interference. The cluster utilization is 80%.

incoming tasks. Since neither the coordinator nor the frame-
work schedulers have a complete view of the cluster state and
all task characteristics, scheduling is suboptimal [31]. Shared-
state schedulers like Omega [31] allow multiple schedulers to
concurrently access the whole cluster state using atomic trans-
actions. Finally, Sparrow uses multiple concurrent, stateless
schedulers to sample and allocate resources [28].

With respect to the speed at which scheduling decisions
happen, there are again two groups of work. The first group
examines most of (or all) the cluster state to determine the
most suitable resources for incoming tasks, in a way that ad-
dresses the performance impact of hardware heterogeneity
and interference in shared resources [13, 17, 24, 26, 39, 42].
For instance, Quasar [14] uses classification to determine the
resource preferences of incoming jobs. Then, it uses a greedy
scheduler to search the cluster state for resources that meet
the application’s demands on servers with minimal contention.
Similarly, Quincy [20] formulates scheduling as a cost opti-

1

mization problem that accounts for preferences with respect
to locality, fairness and starvation-freedom. Such schedulers
make high quality decisions that lead to high application per-
formance and high cluster utilization. Unfortunately, they
need to greedily inspect the cluster state on every scheduling
event. Their decision overhead can be prohibitively high for
large clusters, and in particular for the very short jobs of real-
time analytics (100ms - 10s) [28, 40]. Using multiple greedy
schedulers improves scheduling throughput but not latency,
and terminating the greedy search early typically lowers the
decision quality, especially at high cluster loads.

The second group improves the speed of each scheduling
decision by only examining a small number of machines.
Sparrow reduces scheduling latency through resource sam-
pling [28]. The scheduler examines the state of two randomly-
selected servers for each required core and selects the one that
becomes available first. While Sparrow improves scheduling
speed, its decisions can be poor because it ignores the hetero-
geneity and interference preferences of jobs. Typically concur-
rent schedulers follow sampling schemes, while centralized
systems are paired with sophisticated scheduling algorithms.

Figure 1 illustrates the tradeoff between scheduling speed
and quality. Figure 1a shows the probability distribution func-
tion (PDF) of application performance for three scenarios of
variable job duration using Sparrow [28] on a 200-server EC2
cluster. For very short jobs (100ms), fast scheduling allows
most workloads to achieve 80% to 95% of the ideal perfor-
mance on this cluster. In contrast, jobs with medium (1s–10s)
or long duration (10s–1min) suffer significant degradation and
achieve 50% to 30% of ideal performance. As duration in-
creases, jobs become more heterogeneous in their resource
requirements (e.g., preference for high-end cores), and inter-
ference between jobs sharing a server matters. In contrast, the
scheduling decision speed is not as critical.

Figure 1b shows the PDF of job performance using the
Quasar scheduler that accounts for heterogeneity and inter-
ference [14]. The centralized scheduler leads to near-optimal
performance for long jobs. In contrast, medium and short jobs
are penalized by the latency of scheduling decisions, which
can exceed the execution time of the shortest jobs. Even if
we use multiple schedulers to increase the scheduling through-
put [31], the per-job overhead remains prohibitively high.

We propose Tarcil, a scheduler that achieves the best of both
worlds: high quality and high speed decisions, making it ap-
propriate for large, highly-loaded clusters that host both short
and long jobs. Similar to Quasar [13, 14], Tarcil starts with
rich information on the resource preferences and interference
sensitivity of incoming jobs. Similar to Sparrow [28], it uses
sampling to avoid examining the whole cluster state on every
decision. However, there are two key differences in Tarcil’s
architecture. First, Tarcil uses sampling not merely to find
available resources but to identify resources that best match a
job’s resource preferences. The sampling scheme is derived
using analytical methods that provide statistical guarantees

on the quality of scheduling decisions. Tarcil additionally
adjusts the sample size dynamically based on the quality of
available resources. Second, Tarcil uses admission control
to avoid scheduling a job that is unlikely to find appropriate
resources. To handle the tradeoff between long queueing de-
lays and suboptimal allocations, Tarcil uses a small amount of
coarse-grain information on the quality of available resources.

We use two clusters of 100 and 400 servers on Amazon
EC2 to show that Tarcil leads to low scheduling overheads and
predictably high performance for a wide range of workload
scenarios. For a heavily-loaded, heterogeneous cluster running
short Spark jobs, Tarcil improves average performance by 41%
over Sparrow [28], with some jobs running 2-3x faster. For a
cluster running a wide range of applications from short Spark
tasks to long Hadoop jobs and low-latency services, Tarcil
achieves near-optimal performance for 92% of jobs, in contrast
with only 22% of jobs with a distributed, sampling-based
scheduler and 48% with a centralized greedy scheduler [14].
Finally, Figure 1c, shows that Tarcil enables close to ideal
performance for the vast majority of jobs of the three scenarios.

2. Background
Our work draws from related efforts to improve scheduling
speed and quality in large, shared datacenters:
Concurrent scheduling: Scheduling becomes a bottleneck
for clusters with thousands of servers and high workload
churn. An obvious solution is to schedule multiple jobs in
parallel [19, 31]. We assume a structure similar to Google’s
Omega [31], where multiple scheduling agents can access the
whole cluster state. As long as these agents rarely attempt to
assign work to the same servers (infrequent conflicts), they
proceed concurrently without additional delays. Section 5
discusses conflict resolution.
Sampling-based scheduling: Based on results from random-
ized load balancing [25, 29], we can design sampling-based
cluster schedulers [8, 15, 28]. Sampling the state of just a few
servers reduces the latency of scheduling decisions and the
probability of conflicts between concurrent scheduling agents,
and is likely to find available resources in lightly- or medium-
loaded clusters. The recently-proposed Sparrow scheduler
uses batch sampling and late binding [28]. Batch sampling
examines the state of two servers for each of m required cores
by an incoming job and selects the m best cores. If the selected
cores are busy, tasks are queued locally in the sampled servers
and assigned to the machine where resources become available
first. In our evaluation we compare Tarcil with Sparrow.
Heterogeneity & interference-aware scheduling: Hard-
ware heterogeneity occurs in large clusters because servers
are populated and replaced over time [13, 39]. Moreover, the
performance of tasks sharing a server may degrade signifi-
cantly due to interference on shared resources such as caches,
memory and I/O channels [13, 17, 24, 27]. A scheduler can
improve task performance significantly by taking into con-
sideration its resource preferences. For instance, a particular

2

task may perform much better on 2.3GHz Ivy-Bridge cores
compared to 2.6GHz Nehalem cores, while another task may
be particularly sensitive to interference from cache-intensive
workloads executing on the same server.

The key challenge in heterogeneity and interference-aware
scheduling is knowing the preferences of incoming jobs. We
start with a system like Quasar that automatically estimates re-
source preferences and interference sensitivity [13,14]. Quasar
profiles each incoming job for a few seconds on two server
types, while two microbenchmarks place pressure on two
shared resources. The sparse profiling signal on resource pref-
erences is transformed into a dense signal using collaborative
filtering [6, 21, 30, 37]. Collaborative filtering projects the
signal against all information available from previously-run
jobs, identifying similarities in resource and interference pref-
erences. These include examples such as the preferred core
frequency and cache size for a job or the memory and network
contention it generates. Quasar performs profiling and collab-
orative filtering online. We perform this analysis offline, given
that workloads like real-time analytics are repeated multiple
times, potentially over different data (e.g., daily or hourly).

3. The Tarcil Scheduler

3.1. Overview

Tarcil is a shared-state scheduler that allows multiple, concur-
rent agents to operate on the cluster state [31]. In this section,
we describe the operation of a single agent.

The scheduler processes incoming workloads as follows.
Upon submission, Tarcil first looks up the job’s resource and
interference sensitivity preferences [13, 14]. This information
provides estimates of the relative performance on the differ-
ent server platforms, as well as estimates of the interference
the workload can tolerate and generate in shared resources
(caches, memory, I/O channels). Next, Tarcil performs admis-
sion control. Given statistics on the cluster state, it determines
whether the scheduler is likely to quickly find resources of
satisfactory quality for a job, or whether it should queue it for
a while. Admission control is useful when the cluster is highly
loaded. A queued application waits until it has a high proba-
bility of finding appropriate resources or until a queueing-time
threshold is reached. Tarcil maintains coarse-grained statistics
on available resources for admission control decisions. These
statistics are updated as jobs begin and end execution.

For admitted jobs, Tarcil performs sampling-based schedul-
ing with the sample size adjusted to satisfy statistical guaran-
tees on the quality of allocated resources. The scheduler also
uses batch sampling if a job requests multiple cores. Tarcil
examines the quality of sampled resources to select those best
matching the job’s preferences. It additionally monitors the
performance of running jobs. If a job runs significantly below
its expected performance, the scheduler adjusts the scheduling
decisions. This is useful for long-running workloads; for short
jobs, the initial scheduling decision determines performance

0.0 0.2 0.4 0.6 0.8 1.0
Q

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
Q

ua
lit

y
C

D
F

TW = 0.3

Poor

Good P
er

fe
ct

0.0 0.2 0.4 0.6 0.8 1.0
Q

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
Q

ua
lit

y
C

D
F

TW = 0.8

G
oo

d

Poor

P
er

fe
ct

Figure 2: Distribution of resource quality Q for two workloads
with TW = 0.3 (left) and TW = 0.8 (right).

with little space for adjustments.

3.2. Analytical Framework

We use the following framework to design and analyze
sampling-based scheduling in Tarcil.
Resource unit (RU): Tarcil manages resources at RU granu-
larity using Linux containers [11]. Each RU consists of one
core and an equally partitioned fraction of the server’s memory
and storage capacity and the provisioned network bandwidth.
For example, a server with 16 cores, 64GB DRAM, 480GB of
Flash and a 10GE NIC has 16 RUs, each with 1 core, 4 GB
DRAM, 30GB of Flash and 625ME of network bandwidth.
Because all our experiments are on public cloud providers
where the network topology is unknown, in our evaluation we
do not partition network bandwidth.
RU quality: The utility an application can extract from an
RU depends on the hardware type (e.g., 2GHz vs 3GHz core)
and the interference on shared resources from other jobs on
the same server. Classification [13, 14] obtains the interfer-
ence preferences of an incoming job using a small set of
microbenchmarks to inject pressure of increasing intensity
(from 0 to 99%) on one of ten shared resources of interest [12].
Interference preferences capture, first, the amount of pressure
ti a job can tolerate in each shared resource i (i ∈ [1,N]), and
second, the amount of pressure ci it itself will generate in the
same resource. High values of ti or ci imply that a job will
tolerate or cause a lot of interference on resource i. ti and ci
take values in [0,99]. In most cases, jobs that cause a lot of
interference in a resource are also sensitive to interference on
the same resource. Hence, to simplify the rest of the analysis
we assume that ti = 99− ci and express resource quality as a
function of caused interference in an RU.

Let W be an incoming job and VW the vector of interference
it will cause in the N shared resources, VW = [c1,c2, ...,cN]. To
capture the fact that different jobs are sensitive to interference
on different resources [24], we reorder the elements of VW by
decreasing value of ci and get V ′W = [c j,ck, ...,cn], with c j >
ck > ... > cn. Finally, we obtain a single value for the resource
requirements of W using an order-preserving encoding scheme
that transforms V ′W to a concatenation of its elements:

VWenc = c j ·10(2·(N−1))+ ck ·10(2·(N−2))+ ...+ cn (1)

For example if V ′W = [84,31] then VWenc = 8431. The expres-

3

n=8 n=16 n=32 n=64

0.0 0.2 0.4 0.6 0.8 1.0
Q

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
Q

ua
lit

y
C

D
F

0.0 0.2 0.4 0.6 0.8 1.0
Q

10-6

10-5

10-4

10-3

10-2

10-1

100

R
es

ou
rc

e
Q

ua
lit

y
C

D
F

Figure 3: Resource quality CDFs under the uniformity assumption in linear and log scale for sample size R=8, 16, 32 and 64.

0.0 0.2 0.4 0.6 0.8 1.0
Q

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
Q

ua
lit

y
C

D
F unif.(8)

unif.(16)
unif.(32)
unif.(64)

n=8
n=16
n=32
n=64

0.0 0.2 0.4 0.6 0.8 1.0
Q

10-6

10-5

10-4

10-3

10-2

10-1

100

R
es

ou
rc

e
Q

ua
lit

y
C

D
F

Figure 4: Comparison of resource quality CDFs under the uni-
formity assumption, and as measured in a 100-server cluster.

sion above is provably the most dense encoding that preserves
the full entropy of the values of vector V ′W and their ordering,
for general V ′W . Finally, for simplicity we normalize VWenc in
[0,1] and derive the target resource quality for job W :

TW =
VWenc

102N−1
, TW ∈ [0,1] (2)

A high value for the quality target TW implies that job W is
resource-intensive. Its performance will depend a lot on the
quality of the scheduling decision.

We now need to find RUs that closely match this target
quality. To determine if an available resource unit H is ap-
propriate for job W , we calculate the interference caused on
this RU by all other jobs occupying RUs on the same server.
Assuming M resource units in the server, the total interference
H experiences on resource i is:

Ci =
∑m 6=H ci

M−1
(3)

Starting with vector VH = [C1,C2, ...,CN] for H and using
the same reordering and order-preserving encoding as for TW ,
we calculate the quality of resource H as:

UH = 1− VHenc

102N−1
, UH ∈ [0,1] (4)

The higher the interference from co-located tasks, the lower
UH will be. Resources with low UH are more appropriate for
jobs that can tolerate a lot of interference and vice versa.

Comparing UH for an RU against TW allows us to judge the
quality of resource H for incoming job W :

Q =

{
1− (UH −TW) , if UH ≥ TW
TW −UH , if UH < TW

(5)

If Q equals 1, we have an ideal assignment with the server
tolerating as much interference as the new job generates. If Q
is within [0,TW], selecting RU H will degrade the job’s perfor-
mance. If Q is within [TW ,1), the assignment will preserve the
workload’s performance but is suboptimal. It would be better
to assign a more demanding job on this resource unit.
Resource quality distribution: Figure 2 shows the distribu-
tion of Q for a 100-server cluster with ∼800 RUs (see Sec-
tion 6 for cluster details) and one hundred, 10-min Hadoop
jobs as resident load (50% cluster utilization). For a non-
demanding new job with TW = 0.3 (left), there are many appro-
priate RUs at any point in time. In contrast, for a demanding
job with TW = 0.8, only a small number of resources will lead
to good performance. Obviously, the scheduler must adjust
the sample size for incoming jobs based on TW .

3.3. Sampling-based Scheduling with Guarantees

We can now derive the sample size that provides statistical
guarantees on the quality of scheduling decisions.
Assumptions and analysis: To make the analysis indepen-
dent of cluster load, we make Q an absolute ordering of RUs
in the cluster. Starting with equation (5), we sort RUs based
on Q for incoming job W , breaking any ties in quality with a
fair coin, and distribute them uniformly in [0,1], i.e., for NRU
total RUs, Q(i) = i/(NRU −1), i ∈ [0,NRU −1]. Because Q is
now a probability distribution function of resource quality, we
can derive the sample size in the following manner.

Assume that the scheduler samples R RU candidates for
each RU needed by an incoming workload. If we treat
the qualities of these R candidates as random variables Qi
(Q1,Q2, ...,QR ∼ U [0,1]) that are uniformly distributed by
construction and statistically independent from each other
(i.i.d), we can derive the distribution of quality Q after sam-
pling. The cumulative distribution function (CDF) of the
resource quality of each candidate is: FQi(x) = Prob(Qi ≤
x) = x, x ∈ [0,1]1. Since the candidate with the highest quality

1This assumes Qi to be continuous variables, although in practice they are
discrete. This makes the analysis independent of the cluster size NRU . The
result holds for the discretized version of the equation.

4

is selected from the sampled set, its resource quality is the
random variable A = max{Q1,Q2, ...,QR}, and its CDF is:

FA(x) = Prob(A≤ x) = Prob(Q1 ≤ x∧ ...∧QR ≤ x)
= Prob(Qi ≤ x)R = xR, x ∈ [0,1] (6)

This implies that the distribution of quality after sampling
only depends on the sample size R. Figure 3 shows CDFs of
resource quality distributions under the uniformity assumption,
for sample sizes R = {8,16,32,64}. The higher the value of
R, the more skewed to the right the distribution is, hence the
probability of finding only candidates of low quality quickly
diminishes to 0. For example, for R = 64 there is a 10−6

probability that none of the sampled RUs will have resource
quality of at least Q = 80% (Prob(Q < 0.8| ∀ RU) = 10−6).

Figure 4 validates the uniformity assumption on a 100-
server EC2 cluster running short Spark tasks (100msec ideal
duration) and longer Hadoop jobs (1-10min). The cluster load
is 70-75% (see methodology in Section 6). In all cases, the
deviation between the analytically derived and measured distri-
butions of Q is minimal, which shows that the analysis above
holds in practice. In general, the larger the cluster, the more
closely the quality distribution approximates uniformity.
Large jobs: For jobs that need multiple RUs, Tarcil uses
batch sampling [28, 29]. For m requested units, the scheduler
samples R ·m RUs and selects the m best among them as shown
in Figure 5a. Some applications experience locality between
sub-tasks or benefit from allocation of all resources in a small
set of machines (e.g., within a single rack). In such cases, for
each sampled RU, Tarcil examines its neighboring resources
and makes a decision based on their aggregate quality as shown
in Figure 5b. Alternatively, if a job prefers distributing its
resources across machines the scheduler will allocate RUs in
different machines, racks and/or cluster switches, assuming
knowledge of the cluster’s topology. Placement preferences
for reasons such as security [32] can also be specified in the
form of attributes at submission time by the user.
Sampling at high load: Equation (6) estimates the probability
of finding near-optimal resources accurately when resources
are not scarce. When the cluster operates at high load, we must
increase the sample size to guarantee the same probability of
finding a candidate of equally high quality, as when the system
is unloaded. Assume a system with NRU = 100 RUs. Its
discrete CDF is FA(x) = P[A≤ x] = x , x = 0, 0.01, 0.02, ..., 1.
For sample size R, this becomes: FA(x) = xR, and a quality
target of Pr[Q < 0.8] = 10−3 is achieved with R = 32. Now
assume that 60% of the RUs are already busy. If, for example,
only 8 of the top 20 candidates for this task are available at
this point, we need to set R s.t. Pr[Q < 0.92] = 10−3, which
requires a sample size of R = 82. Hence, the sample size for a
highly loaded cluster can be quite high, degrading scheduling
latency. In the next section, we introduce an admission control
scheme that bounds sample size and scheduling latency, while
still allocating high quality resources.

…

…
…

RUA

 Job A B

RUB

(R = 4)

x x
x

x

x
x

x x

x

x
x

x
x

x x

x
x x

x

x

x
x

x

x

x
x

Scheduler

Scheduler

…

x
x

Scheduler

…

x x
x

x

x
x

x x

x x

x

x
A1 A2

x
x

x

x
x

 Job

(R = 4)

Scheduler

Scheduler
…

Scheduler
…

…

x

x
x

x
x

x x
x

x

x
x

Figure 5: Batch sampling in Tarcil with sample size R = 4
for (a) a job with two independent tasks A and B, and (b) a job
with two subtasks A1 and A2 that exhibit locality. x-marked
RUs are already allocated, striped RUs are sampled, and solid
black RUs are allocated to the incoming job after sampling.

4. Admission Control

4.1. Pre-scheduling Queueing

When available resources are plentiful, jobs are immediately
scheduled using the sampling scheme described in Section
3. However, when load is high, the number of resources
of sufficient quality may be very small and the sample size
needed to find them can become quite large. Tarcil employs
a simple admission control scheme that queues jobs until
resources of proper quality become available and estimates
how long an application should wait at admission control.

A simple indication to trigger job queueing is the count of
available RUs in the cluster. This, however, does not yield
sufficient insight into the quality of available RUs. If most
RUs have poor quality for an incoming job, it may be better
for it to wait. Unfortunately, a naïve quality check involves
accessing the state of the whole cluster, which would introduce
prohibitive overheads. Instead, we maintain a small amount
of coarse-grain information which allows for a fast check. We
leverage the information on contention scores that is already
maintained for each RU to construct a contention score vector
[C1 C2 ...CN] from the resource contention Ci it experiences
in each of its resources, due to interference from neighbor-
ing RUs. We use locality sensitive hashing (LSH) based on
random selection to hash these vectors into a small set of
buckets [1, 9, 30]. LSH computes the cosine distance between
vectors and assigns RUs with similar contention scores in the
respective resources to the same bucket. We also separate RUs
by platform type to account for heterogeneity. We only keep a
single count of available RUs for each bucket. The hash for
an RU (and the counter of the corresponding bucket) needs to
be recalculated upon instantiation or completion of a job in an
RU. Updating the per-bucket counters is a fast operation, out
of the critical path for scheduling. Note that excluding updates

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

P
r[
∃

ap
pr

op
ria

te
 R
U

]

Bucket A
Bucket B
Bucket C

Figure 6: Actual and estimated (dot) probability for a target
RU to exist as a function of waiting time for three buckets.

in RU status, LSH is only performed once.
Admission control works as follows. We check the bucket(s)

that correspond to the resources with quality that matches the
incoming job’s preferences. If these buckets have counters
close to the number of RUs the job needs, the application is
queued. Queued applications wait until the probability that
resources are freed increases or until an upper bound for wait-
ing time is reached. To estimate waiting time, Tarcil records
the rate at which RUs of each bucket became available in re-
cent history. Specifically, it uses a simple feedback loop to
estimate when the probability that an appropriate RU exists
approximates 1 for a target bucket. The distribution is updated
every time an RU from that bucket is freed. Tarcil also sets an
upper bound for waiting time at µ +2 ·σ , where µ and σ are
the mean and standard deviation of the corresponding “time-
until-free” PDF. If the estimated waiting time is less than the
upper bound, the job waits for resources to be freed; otherwise
it is scheduled to avoid excessive queueing. Although admis-
sion control adds some complexity, in practice it only delays
workloads at very high cluster utilizations (over 80%-85%).
Validation of waiting time estimation: Fig. 6 shows the
probability that a desired RU will become available within
time t for different buckets for a heterogeneous 100-server
EC2 cluster running short Spark tasks and longer Hadoop jobs.
The cluster utilization is approximately 85%. We show the
probabilities for r3.2xlarge (8 vCPUs) instances with CPU
contention (A), r3.2xlarge instances with network contention
(B), and c3.large (2 vCPUs) instances with memory contention
(C). The distributions are obtained from recent history and
vary across buckets. The dot in each line shows the estimated
waiting time by Tarcil, which closely approximates the mea-
sured time for an appropriate RU to be freed (less than 8%
deviation on average). In all experiments, we use 20 buckets,
and history of the past 2 hours, which was sufficient to make
accurate estimations of available resources. The number of
buckets and/or history length may vary for different systems.

4.2. Post-scheduling Queueing

A job that exceeds the upper bound on queueing may still
require a high sample size. To avoid excessive scheduling
overheads, we cap the sample size at 32 and instead use late
binding on the sampled servers until resources become avail-
able [28]. If the best two of the 32 sampled RUs are currently
busy, the job is locally queued in both until the first RU is freed

and is subsequently removed from the queue of the second
RU. Note that local queueing is unlikely in practice.

5. Tarcil Implementation

5.1. Tarcil Components

Figure 7 shows the components of the scheduler. Tarcil is a dis-
tributed, shared-state scheduler and, unlike Quincy or Mesos,
it does not have a central coordinator [19, 20]. Scheduling
agents work in parallel, are load-balanced by the cluster front-
end, and each agent has a local copy of the shared server state,
which contains the list and status of all RUs in the cluster.

Since all schedulers have full access to the cluster state,
conflicts are possible. Conflicts between agents are resolved
using lock-free optimistic concurrency as discussed in [31].
The system maintains one resilient master copy of state. Each
scheduling agent has a local copy of this state which is updated
frequently. When an agent makes a scheduling decision it at-
tempts to update the master copy of the state using an atomic
write operation. While an agent performs this action no other
agent can update these resources in the master copy. Once the
commit is successful the resources are yielded to the corre-
sponding agent. Any other agent with conflicting decisions
needs to resample resources. The local copy of state of each
agent is periodically synced (every 5-10sec) with the master.
The timing of the updates includes a small random seed such
that not all agents update their state at exactly the same time,
making the master the bottleneck. When the sample size is
small, decisions of scheduling agents rarely overlap and each
scheduling action is fast (∼ 10−20ms, for a 100-server cluster
and R = 8, over an order of magnitude faster than centralized
approaches). When the number of sampled RUs increases
beyond R = 32 for very large jobs, conflicts can become more
frequent, which we resolve using incremental transactions on
the non-conflicting resources [31]. In the event where one
scheduling agent crashes, an idle cluster server resumes its
role, once it has obtained a copy of the master state.

Each worker server has a local monitor module that handles
scheduling requests, federates resource usage in the server,
and updates the quality of RUs. When a new task is assigned
to a server by a scheduling agent, the monitor updates the
status of the RU in the master copy and notifies the scheduling
agent and admission control. Finally, a per-RU load monitor
evaluates performance in real time. When the monitor detects
that a job’s performance deviates from its expected target, it
notifies the proper agent for a possible allocation adjustment.
The load monitor also notifies agents of CPU or memory
saturation, which triggers resource autoscaling (see Sec. 5.2).

We currently use Linux containers to partition servers into
RUs [3]. Containers enable CPU, memory and I/O isolation.
Each container is configured to a single core and a fair share
of the memory and storage subsystem, and the network band-
width. Containers can be merged to accommodate multicore
workloads, using cgroups. Virtual machines (VMs) can also be

6

Worker Worker Worker Worker

…

…

Local monitor Local monitor Local monitor Local monitor

Load monitor

Admission control

Legend

Local task queue

Resource unit RU

Worker server

Scheduler

cluster state copy

Scheduling agent

cluster state copy

Scheduling agent

cluster state copy

Scheduling agent

Master cluster state

Server

Figure 7: The different components of the scheduler and their interactions.

used to enable workload migration [27, 35, 36, 38], but would
incur higher overheads.

Figure 8 traces a scheduling event. Once a job is submitted,
admission control evaluates whether it should be queued or
not. Once the assigned scheduling agent sets the sample size
according to the job’s constraints, it samples the shared clus-
ter state for the required number of RUs. Sampling happens
locally in each agent. The agent computes the resource qual-
ity of sampled resources and selects the ones that should be
allocated to the job. The actual selection takes into account
the resource quality and platform preferences, as well as any
locality preferences of a task. The agent then attempts to up-
date the master copy of the state. Upon a successful commit
the agent notifies the local monitor of the selected server(s)
over RPC and launches the task in the target RU(s). The local
monitor notifies admission control, and the master copy to
update their state. Once the task completes, the local monitor
issues RPCs that update the master state and notify the agent
and admission control; the scheduling agent then informs the
cluster front-end.

5.2. Adjusting Allocations

For short-running tasks, the quality of the initial assignment is
particularly important. For long-running tasks, we must also
consider the different phases the program can go through [22].
Similarly, we must consider cases where Tarcil makes a sub-
optimal allocation due to inaccurate classification, deviations
from fully random selection in the sampling process, or a
compromise in resource quality at admission control. Tarcil
uses the per-server load monitor, i.e., a local daemon running
in each RU, to measure the performance of active workloads
in real time. This can correspond to instructions per second
(IPS), packets per second or a high-level application metric,
depending on the application type. Tarcil compares this metric
to any performance targets the job provides or are available
from previous runs of the same application. If there is a large
deviation, the scheduler takes action. Since we are using con-
tainers, the primary action we take is to avoid scheduling other
jobs on the same server. For scale-out workloads, the system
also employs a simple autoscale service which allocates more
RUs (locally or not) to improve the job’s performance.

Time

Admission
Control

Scheduling
Agent

Local
Monitor

Resource
Unit/s

Cluster
Frontend

sampleRU()

exe
cTask()

computeQ()

selectRU()

Master
State Copy

Figure 8: Trace of a scheduling event in Tarcil.

5.3. Fairness

Users can submit jobs with priorities. Jobs with higher priority
will bypass others at admission control and preempt lower-
priority jobs during resource selection. Tarcil also allows the
user to select between incremental scheduling, where tasks
from a job get progressively scheduled as resources become
available and all-or-nothing gang scheduling, where either all
or no task from a job is scheduled. We leave the experimental
evaluation of priorities and other policies to future work.

6. Evaluation

6.1. Tarcil Analysis

We first evaluate Tarcil’s scalability and its sensitivity to pa-
rameters such as the sample size and task duration.
Sample size: Fig. 9 shows the sensitivity of sampling over-
heads and response times to the sample size for homogeneous
Spark jobs with 100msec duration and cluster loads varying
from 10% to 90% on the 110-server EC2 cluster. All machines
are r3.2xlarge memory-optimized instances (61GB of RAM).
10 servers are used by the scheduling agents, and the remain-
ing 100 machines serve incoming load. The boundaries of the
boxplots depict the 25th and 75th percentiles, the whiskers
the 5th and 95th percentiles and the horizontal line in each
boxplot shows the mean. As sample size increases, the over-
heads increase. Until R = 32 overheads are marginal even at

7

2 4 8 16 32 64
Sample Size R

0

50

100

150

200

250

S
am

pl
in

g
T

im
e

(m
se

c) load=10%

load=20%

load=50%

load=80%

load=90%

2 4 8 16 32 64
Sample Size R

50

100

150

200

250

300

350

R
es

po
ns

e
T

im
e

(m
se

c) load=10%

load=20%

load=50%

load=80%

load=90%

Figure 9: Sensitivity of sampling overheads and response times to sample size.

0 20 40 60 80 100
Utilization (%)

0

200

400

600

800

1000

R
es

po
ns

e
T

im
e

(m
se

c) Target
Mean
95th %ile

10-2 10-1 100 101 102 103

Job Duration (sec)

10-2

10-1

100

101

102

103

R
es

po
ns

e
T

im
e

(s
ec

)

Target
Mean
95th %ile

Figure 10: Response times when (a) increasing cluster load,
and (b) when decreasing task duration with constant load.

high loads, but they increase substantially for R≥ 64, primar-
ily due to the overhead of resolving conflicts between the 10
scheduling agents used. Hence, we cap sample size to R = 32
even under high load. Response times are more sensitive to
sample size. At low load, high quality resources are plentiful
and increasing R makes little difference to performance. As
load increases, sampling with R = 2 or R = 4 is unlikely to
find good resources. Sample size of R = 8 is optimal for both
low and high cluster loads, in this scenario.
Cluster load: Fig.10a shows the average and 95th percentile
response times when we scale the cluster load in the 110-
server EC2 cluster. The incoming jobs are homogeneous
Spark tasks with 100msec target duration. We increase the task
arrival rate to increase cluster load. The target performance
of 100msec includes no scheduling overheads or degradation
due to suboptimal scheduling. The reported response times
include the task execution time and all overheads. The mean
of response times with Tarcil remains almost constant until
loads over 85%. At very high loads, admission control and the
large sample size increase the scheduling overheads, affecting
performance. The 95th percentile is more volatile at high
loads, but only exceeds 250msec at cluster loads of 80% or
higher. Tasks with very high response times are typically those
delayed by admission control until the wait-time threshold is
reached. Sampling itself adds marginal overheads until 90%
load. At very high loads scheduling overheads are dominated
by queueing time and increased sample sizes.
Task duration: Fig. 10b shows the average and 95th per-
centile response times as a function of task duration, which
ranges from 10msec to 600sec. The cluster load is 80% in
all cases. For long tasks the mean and 95th percentile closely
approximate the target performance. When task duration is
below or close to 100msec, the scheduling overhead domi-
nates. Despite this, the mean and 95th percentile remain very

close, which shows that performance unpredictability is lim-
ited. For long jobs, configuring and allocating large amounts
of resources dominates the scheduling overheads, while for
large numbers of short tasks, queueing delay dominates.

6.2. Comparison with Other Schedulers

Methodology: We compare Tarcil to Sparrow [28] and
Quasar [14]. Sparrow uses multiple scheduling agents and
sampling ratio of R = 2 servers for every core required, as rec-
ommended in [28]. Quasar has a centralized greedy scheduler
that searches the cluster state with a scheduling timeout of 2
seconds. Sparrow does not take into account heterogeneity
or interference preferences for incoming jobs, while Tarcil
and Quasar do. We evaluate these schedulers on the same
110-server EC2 cluster with r3.2xlarge memory-optimized
instances (61GB of RAM). 10 servers are dedicated to the
scheduling agents for Tarcil and Sparrow and a single server
for Quasar. While we could replicate Quasar’s scheduler for
fault tolerance, it would not help with the latency of each
scheduling decision. Additionally, Quasar schedules applica-
tions at job, not task, granularity (when applicable), which
reduces its scheduling load. Unless otherwise specified, Tarcil
uses sample sizes of R = 8 during low load.
6.2.1. TPC-H workload

We compare the three schedulers on the TPC-H decision
support benchmark. TPC-H is a standard proxy for ad-hoc,
low-latency queries that comprise a large fraction of load
in shared clusters. We use a similar setup as the one used
to evaluate Sparrow [28]. TPC-H queries are compiled into
Spark tasks using Shark [16], a distributed SQL data ana-
lytics platform. The Spark plugin for Tarcil is 380 lines of
code in Scala. Each task triggers a scheduling request for
the distributed schedulers (Tarcil and Sparrow), while Quasar
schedules jointly all tasks from the same computation stage.
We constrain tasks in the first stage of each query to the ma-
chines holding their input data (3-way replication). All other
tasks are unconstrained. We run each experiment for 30 min-
utes, with multiple users submitting randomly-ordered TPC-H
queries to the cluster. The results discard the initial 10 min-
utes (warm-up) and capture a total of 40k TPC-H queries and
approximately 134k jobs. Utilization at steady state is 75-82%.
Unloaded cluster: We first examine the case where TPC-H
is the only workload present in the cluster. Figure 11a shows
the response times for seven representative query types [41].

8

Centralized Sparrow Tarcil Ideal

q1 q3 q4 q6 q9 q10 q120

500

1000

1500

2000

2500

3000

3500

R
es

po
ns

e
T

im
e

(m
se

c)

0 500 1000 1500 2000
Scheduling Time (msec)

0

20

40

60

80

100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Centralized
Sparrow
Tarcil

(a) Initially unloaded cluster.

q1 q3 q4 q6 q9 q10 q120

500

1000

1500

2000

2500

3000

R
es

po
ns

e
T

im
e

(m
se

c)

0 500 1000 1500 2000
Scheduling Time (msec)

0

20

40

60

80

100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Centralized
Sparrow
Tarcil

(b) Cluster with initial resident load.

q1 q3 q4 q6 q9 q10 q120

500

1000

1500

2000

2500

3000

3500

R
es

po
ns

e
T

im
e

(m
se

c)

0 500 1000 1500 2000
Scheduling Time (msec)

0

20

40

60

80

100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Centralized
Sparrow
Tarcil

(c) Heterogeneous cluster with initial resident load.

Figure 11: Response times for different query types (left) and CDFs of scheduling overheads (right).

Response times include all scheduling overheads from sam-
pling or the greedy selection, and queueing. Boundaries show
25th and 75th percentiles and whiskers the 5th and 95th per-
centiles. The ideal scheduler corresponds to a system that
identifies the resources of optimal quality (including hetero-
geneity and interference preferences) with zero delay. Fig. 11a
shows that the centralized scheduler experiences the highest
variability in performance. Although some queries complete
very fast because they receive high quality resources, most ex-
perience high scheduling delays. To verify this, we also show
the scheduling time CDF on the right of Fig. 11a. While Tarcil
and Sparrow have tight bounds on scheduling overheads, the
centralized scheduler adds up to 2 seconds of delay (timeout
threshold). Comparing the query performance using Sparrow
and Tarcil, we see that the difference is small, 8% on aver-
age. Tarcil approximates the ideal scheduler more closely, as
it accounts for each task’s resource preferences. Addition-
ally, Tarcil constrains performance unpredictability. The 95th
percentile is reduced by 80%-2.4x compared to Sparrow.
Cluster with resident load: The difference in schedul-
ing quality becomes more clear when we introduce cross-
application interference. Figure 11b shows a setup where 40%
of the cluster is busy servicing background applications, in-
cluding other Spark jobs for machine learning processing, long
Hadoop workloads, and latency-critical services like mem-

cached. These jobs are not being scheduled by the examined
schedulers. While the centralized scheduler still adds consid-
erable overhead to each job (Fig.11b, right), its performance is
now comparable to Sparrow. Since Sparrow does not account
for sensitivity to interference, the response time of queries that
experience resource contention is high. Apart from average
response time, the 95th percentile also increases significantly
(poor predictability). In contrast, Tarcil accounts for resource
preferences and only places tasks on machines with accept-
able interference levels. It maintains an average performance
only 6% higher compared to the unloaded cluster across query
types. More importantly, it preserves the low performance
jitter by bounding the 95th percentile of response times.
Heterogeneous cluster with resident load: Next, in addi-
tion to interference, we also introduce hardware heterogeneity.
The cluster size remains constant but 75% of the worker ma-
chines are replaced with less or more powerful servers, ranging
from general purpose medium and large instances to quadruple
compute- and memory-optimized instances. Fig.11c shows
the new performance for the TPC-H queries. As expected,
response times increase, since some of the high-end machines
are replaced by less powerful servers. More importantly, per-
formance unpredictability increases when the resource prefer-
ences of incoming jobs are not accounted for. In some cases
(q9, q10), the centralized scheduler now outperforms Sparrow

9

0 20 40 60 80 100
Tasks (%)

0

500

1000

1500

2000
R

es
po

ns
e

T
im

e
(m

se
c) Centralized

Sparrow
Tarcil

100
0 20 40 60 80 100

Requests (%)
0

500

1000

1500

2000

2500

3000

3500

La
te

nc
y

(u
se

c)

Centralized
Sparrow
Tarcil

0 100 200 300 400 500 600 700 800 900
Time (sec)

0

500

1000

1500

2000

2500

3000

99
th

 %
ile

 L
at

en
cy

 (
us

ec
)

Centralized
Sparrow
Tarcil

Figure 12: Performance of scheduled Spark tasks and resident memcached load (aggregate and over time).

despite its much higher scheduling overheads. Tarcil preserves
response times close to those in the unloaded cluster and very
close to those achieved with the ideal scheduler.

6.2.2. Impact on Resident Memcached Load
Finally, we examine the impact of scheduling decisions

on resident cluster load. In the same heterogeneous cluster
(110 nodes on EC2, 100 workers and 10 schedulers), we place
long-running memcached instances as resident load. These
instances serve read and write queries following the Facebook
etcworkload characteristics [2]. etc is the large memcached
deployment in Facebook, has a 3:1 read:write ratio, and a value
distribution between 1B and 1KB. Memcached occupies about
40% of the total system capacity and has a QoS target of
200usec for the 99th percentile of response latency.

The incoming jobs are homogeneous, short Spark tasks
(100msec ideal duration, 20 tasks per job) that perform logis-
tic regression. A total of 300k jobs are submitted over 900
seconds. Fig. 12a shows the response times of the Spark tasks
for the three schedulers. The centralized scheduler adds sig-
nificant overheads, while Sparrow and Tarcil lead to small
overheads and behave similarly for 80% of the tasks. For
the remaining tasks, Sparrow increases response times signifi-
cantly, as it is unaware of the interference induced by mem-
cached. Tarcil maintains low response times for most tasks.

It is also important to consider the impact on the mem-
cached load. Fig.12b shows the latency CDF of the mem-
cached requests. The black diamond depicts the QoS con-
straint of 200usec for the 99th request percentile. With Tarcil
and the centralized scheduler, memcached does not suffer
as both schedulers attempt to minimize interference. Spar-
row, however, leads to large latency increases for memcached.
Even though the performance of the short tasks is satisfactory,
not accounting for resource preferences has an impact on the
longer jobs in the cluster. Finally, Fig.12c shows how the
99th percentile of memcached requests changes throughout
the execution of the experiment. Initially memcached meets
its QoS for all three schedulers. As the cluster becomes more
loaded the tail latency increases significantly for Sparrow.

Note that a naïve coupling of Sparrow – for short jobs –
with Quasar – for long jobs – is inadequate for three rea-
sons. First, Tarcil achieves higher performance for short tasks
because it accounts for their resource preferences. Second,
even if the long-running resident load was scheduled using
Quasar, scheduling short tasks with Sparrow would degrade

its performance. Third, while the difference in execution time
achieved by Quasar and Tarcil for long jobs is small, schedul-
ing overheads are significantly reduced, without sacrificing
the scheduling decision quality.

6.3. Large-Scale Evaluation

Methodology: We also evaluated Tarcil on a 400-server
EC2 cluster with 10 server types ranging from 4 to 32 cores.
The total core count in the cluster is 4,178. All servers are
dedicated and managed only by the examined schedulers and
there is no external interference from other workloads.

We use applications including short Spark tasks, longer
Hadoop jobs, streaming Storm jobs [33], latency-critical ser-
vices (memcached [23] and Cassandra [7]), and single-server
benchmarks (SPECCPU2006, PARSEC [5], etc.). In total,
7,200 workloads are submitted with 1 second inter-arrival
times. These applications stress different resources, including
CPU, memory and I/O (network, storage). We measure job
performance (from submission to completion), cluster utiliza-
tion, scheduling overheads and quality of allocation decisions.

We compare Tarcil, Quasar and Sparrow. Because this sce-
nario includes long-running jobs, such as memcached, that are
not supported by the open-source implementation of Sparrow,
we use Sparrow when applicable (e.g., Spark) and a Sampling-
based scheduler that follows Sparrow’s principles (sample size
2, batch sampling and late binding) for the remaining jobs.
Performance: Fig. 13a shows the performance (time between
submission and completion) of the 7,200 workloads ordered
from worst to best-performing, and normalized to their optimal
performance in this cluster. Optimal corresponds to the per-
formance on the best available resources and zero scheduling
delay. The Sampling-based scheduler degrades performance
for more than 75% of jobs. While Centralized behaves better,
achieving an average of 82% of optimal, it still violates QoS
for a large fraction of applications, particularly short-running
workloads (0-3900 for this scheduler). Tarcil outperforms both
schedulers, leading to 97% average performance and bounding
maximum performance degradation to 8%.
Cluster utilization: Figure 13b shows the system utilization
across the 400 servers of the cluster when incoming jobs are
scheduled with Tarcil. CPU utilization is averaged across the
cores of each server, and sampled every 2 sec. Utilization
is 70% on average at steady-state (middle of the scenario),
when there are enough jobs to keep servers load-balanced.

10

0 1000 2000 3000 4000 5000 6000 7000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ed
up

 n
or

m
 to

 Id
ea

l

Ideal Performance
Distr. Sampling
Centralized Greedy
Tarcil

0 6000 12000 18000 24000 300000

50

100

150

200

250

300

350

400

S
er

ve
rs

0
10
20
30
40
50
60
70
80
90
100

S
er

ve
r

U
til

iz
at

io
n

(%
)

Time (s)
0 2 4 6 8 10 12 14 16

0

50

100

150

200

250

300

350

400

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
so

ur
ce

 Q
ua

lit
y

(Q
R

)

Resource Units (RUs)

S
er

ve
rs

0 500 10001500200025003000
Workloads

0.0

0.5

1.0

1.5

2.0

S
ch

ed
ul

in
g

T
im

e
(s

ec
)

Queueing (Tarcil)
Sampling (Tarcil)
Centralized

Figure 13: (a) Performance across 7,200 jobs on a 400-server EC2 cluster for the Sampling-based and Centralized schedulers
and Tarcil, normalized to optimal performance, (b) cluster utilization achieved by Tarcil throughout the duration of the experiment,
(c) quality of resource allocation across all RUs, and (d) scheduling overheads in Tarcil and the Centralized scheduler.

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
Q

ua
lit

y

0
10
20

30
40

50
60
70
80
90
100

A
llo

ca
te

d
R

U
 F

ra
ct

io
n

(%
)

Time (s)
7000 14000 21000 28000 35000 0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
Q

ua
lit

y

0
10
20

30
40

50
60
70
80
90
100

A
llo

ca
te

d
R

U
 F

ra
ct

io
n

(%
)

Time (s)
7000 14000 21000 28000 35000

Figure 14: Resource quality CDFs for: (a) Sampling-based,
(b) Tarcil.

0 20 40 60 80 100
Q

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Sampling-based

Uniform
Permutation 1
Permutation 2
Permutation 3
Permutation 4
Permutation 5

0 20 40 60 80 100
Q

0.0

0.2

0.4

0.6

0.8

1.0 Tarcil, 8 RU candidates

Uniform
Permutation 1
Permutation 2
Permutation 3
Permutation 4
Permutation 5

0 20 40 60 80 100
Q

0.0

0.2

0.4

0.6

0.8

1.0 Tarcil, 16 RU candidates

Uniform
Permutation 1
Permutation 2
Permutation 3
Permutation 4
Permutation 5

Figure 15: Resource quality distributions for the Sampling-
based scheduler and Tarcil with R = 8 and 16 RUs across dif-
ferent permutations of the EC2 scenario.

The maximum in the x-axis is set to the time it takes for the
Sampling-based scheduler to complete the scenario (∼ 35,000
sec). The additional time corresponds to jobs that run on
suboptimal resources and take longer to complete.
Core allocation: Figure 13c shows a snapshot of the RU qual-
ity across the cluster as observed by the job that is occupying
each RU when using Tarcil. The snapshot is taken at 8,000s
when all applications have arrived and the cluster operates at
maximum utilization. White tiles correspond to unallocated re-
sources. Dark blue tiles denote jobs with resources very close
to their target quality. Lighter blue RUs correspond to jobs
that received good but suboptimal resources. The graph shows
that the majority of jobs are given appropriate resources. Note
that high Q does not imply low server utilization. Utilization
at the time of the snapshot is approximately 75%.
Scheduling overheads: Figure 13d shows the scheduling
overheads for the Centralized scheduler and Tarcil. The results
are consistent with the TPC-H experiment in Section 6.2. The
overheads of the Centralized scheduler increase significantly
with scale, adding approximately 1 sec to most workloads.
Tarcil keeps overheads low, adding less than 150msec to more
than 80% of workloads. This is essential for scalability. At
high load, Tarcil increases the sample size to preserve the

statistical guarantees and/or resorts to local queueing. The
overheads for the Sampling-based scheduler are similar to
Tarcil and are omitted from the graph for clarity.
Predictability: Figure 14 shows the fraction of allocated RUs
that are over a certain resource quality at each point of the dura-
tion of the scenario. Results are shown for the Sampling-based
scheduler (left) and Tarcil (right). Darker colors towards the
bottom of the graph denote that a larger fraction of allocated
RUs have poor quality. At time 16,000sec, when the cluster is
highly-loaded, the Sampling-based scheduler leads to 70% of
allocated cores having quality less than 0.4. For Tarcil, only
18% of cores have less than 0.9 quality. Also note that, as
the scenario progresses, the Sampling-based scheduler starts
allocating resources of worse quality, while Tarcil maintains
almost the same quality throughout the experiment.

Figure 15 explains this dissimilarity. It shows the CDF of
resource quality for this scenario, and 5 random permutations
of it (different job submission order). We show the CDF
for the Sampling-based scheduler and Tarcil with 8 and 16
candidates. We omit the centralized scheduler which allocates
resources of high quality most of the time. The sampling-based
scheduler deviates significantly from the uniform distribution,
since it does not account for the quality of allocated resources.
In contrast, Tarcil closely follows the uniform distribution,
improving the predictability of scheduling decisions.

7. Conclusions

We have presented Tarcil, a cluster scheduler that improves
both scheduling speed and quality, making it appropriate for
large, highly-loaded clusters running both short and long jobs.
Tarcil uses an analytically-derived sampling framework that
provides guarantees on the quality of allocated resources, and
adjusts the sample size to match application preferences. It
also employs admission control to avoid excessive sampling
and poor scheduling decisions at high load. We have compared
Tarcil to existing parallel and centralized schedulers for a
variety of workload scenarios on 100- to 400-server clusters on
Amazon EC2. We have showed that it provides low scheduling
overheads, high application performance, and high cluster
utilization. Moreover, it reduces performance jitter, improving
predictability in large, shared clusters.

11

References
[1] Alexandr Andoni and P. Indyk. Near-optimal hashing algo-

rithms for approximate nearest neighbor in high dimensions. In
Communications of the ACM 51 (1): 117-122.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and
Mike Paleczny. Workload analysis of a large-scale key-value
store. In Proc. of SIGMETRICS. London, UK, 2012.

[3] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource
containers: a new facility for resource management in server
systems. OSDI, 1999.

[4] Luiz Barroso and Urs Hoelzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
Morgan and Claypool Publishers, 2009.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai
Li. The parsec benchmark suite: Characterization and architec-
tural implications. In Proc. of the 17th International Conference
on Parallel Architectures and Compilation Techniques (PACT).
Toronto, CA, October, 2008.

[6] Leon Bottou. Large-scale machine learning with stochastic
gradient descent. In Proc. of the International Conference on
Computational Statistics (COMPSTAT). Paris, France, 2010.

[7] Apache cassandra. http://cassandra.apache.org/.
[8] Hyeong Soo Chang, Robert Givan, and Edwin Chong. On-line

scheduling via sampling. In Proc. of Artificial Intelligence
Planning and Scheduling (AIPS). 2000.

[9] Moses S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proc. of the 34th Annual ACM Sympo-
sium on Theory of Computing 2002.

[10] McKinsey & Company. Revolutionizing data center efficiency.
In Uptime Institute Symposium, 2008.

[11] Linux containers. http://lxc.sourceforge.net/.
[12] Christina Delimitrou and Christos Kozyrakis. iBench: Quanti-

fying Interference for Datacenter Workloads. In Proceedings of
the 2013 IEEE International Symposium on Workload Charac-
terization (IISWC). Portland, OR, September 2013.

[13] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters. In Proc.
of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). Houston, TX, USA, 2013.

[14] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-Efficient and QoS-Aware Cluster Management. In
Proc. of the Nineteenth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS). Salt Lake City, UT, USA, 2014.

[15] Xicheng Dong, Ying Wang, and Huaming Liao. Scheduling
mixed real-time and non-real-time applications in mapreduce
environment. In Proc. of the IEEE 17th International Confer-
ence on Parallel and Distributed Systems (ICPADS). Tainan,
2011.

[16] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. Franklin,
S. Shenker, and I. Stoica. Shark: Fast data analysis using
coarse-grained distributed memory. In Proc. of the 2012 ACM
SIGMOD. Scottsdale, Arizona, 2012.

[17] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubra-
maniam. Cuanta: quantifying effects of shared on-chip resource
interference for consolidated virtual machines. In Proc. of the
2nd ACM Symposium on Cloud Computing, pages 22:1–22:14,
2011.

[18] J Hamilton. Cost of power in large-scale data centers. http:
//perspectives.mvdirona.com.

[19] Ben Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A platform
for fine-grained resource sharing in the data center. In Proc. of
the 8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). Boston, MA, 2011.

[20] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg. Quincy: Fair scheduling for distributed computing
clusters. In Proc. of the ACM Symposium on Operating Systems
Principles (SOSP). Big Sky, MT, 2009.

[21] K.C. Kiwiel. Convergence and efficiency of subgradient meth-
ods for quasiconvex minimization. In Mathematical Program-
ming (Series A) (Berlin, Heidelberg: Springer) 90 (1): pp. 1-25,
2001.

[22] Christos Kozyrakis, Aman Kansal, Sriram Sankar, and Kusha-
gra Vaid. Server engineering insights for large-scale online
services. IEEE Micro, 30(4):8–19, July 2010.

[23] Jacob Leverich and Christos Kozyrakis. Reconciling high server
utilization and sub-millisecond quality-of-service. In Proc. of
EuroSys. Amsterdam, The Netherlands, 2014.

[24] Jason Mars and Lingjia Tang. Whare-map: heterogeneity in
"homogeneous" warehouse-scale computers. In Proc. of the
40th Annual International Symposium on Computer Architec-
ture (ISCA). Tel-Aviv, Israel, 2013.

[25] M. Mitzenmacher. The power of two choices in randomized
load balancing. In Journal IEEE Transactions on Parallel and
Distributed Systems, Volume 12 Issue 10, 2001.

[26] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Manag-
ing performance interference effects for qos-aware clouds. In
Proc. of EuroSys France, 2010.

[27] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan
Kostic, and Ricardo Bianchini. Deepdive: Transparently iden-
tifying and managing performance interference in virtualized
environments. In Proc. of the USENIX Annual Technical Con-
ference (ATC’13). San Jose, CA, 2013.

[28] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica.
Sparrow: Distributed, low latency scheduling. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13. Farminton, PA, 2013.

[29] Gahyun Park. A generalization of multiple choice balls-into-
bins. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC ’11.
San Jose, CA, 2011.

[30] A. Rajaraman and J. Ullman. Textbook on Mining of Massive
Datasets. 2011.

[31] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek,
and John Wilkes. Omega: flexible, scalable schedulers for
large compute clusters. In Proc. of the 8th ACM European
Conference on Computer Systems (EuroSys). Prague, Czech
Republic, April 2013.

[32] Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein,
Rasekh Rifaat, and Chita R. Das. Modeling and synthesiz-
ing task placement constraints in google compute clusters. In
Proc. of the 2nd ACM Symposium on Cloud Computing (SOCC).
Cascais, Portugal, 2011.

[33] Storm. https://github.com/nathanmarz/storm/.
[34] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas,

Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas
Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha,
Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed,
and Eric Baldeschwieler. Apache hadoop yarn: Yet another
resource negotiator. In Proc. of the Symposium on Cloud Com-
puting. Santa Clara, CA, 2013.

[35] Virtualbox. https://www.virtualbox.org/.
[36] Vmware virtual machines. http://www.vmware.com/.
[37] Ian H. Witten, Eibe Frank, and Geoffrey Holmes. Data Mining:

Practical Machine Learning Tools and Techniques. 3rd Edition.
[38] The xen project. http://www.xen.org/.

12

http://cassandra.apache.org/
http://lxc.sourceforge.net/
http://perspectives.mvdirona.com
http://perspectives.mvdirona.com
https://github.com/nathanmarz/storm/
https://www.virtualbox.org/
http://www.vmware.com/
http://www.xen.org/

[39] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang.
Bubble-flux: precise online qos management for increased uti-
lization in warehouse scale computers. In Proc. of the 40th
Annual International Symposium on Computer Architecture
(ISCA). Tel-Aviv, Israel, 2013.

[40] Matei Zaharia, M Chowdhury, T Das, A Dave, J Ma, M Mc-
Cauley, M.J Franklin, S Shenker, and I Stoica. Spark: Cluster
computing with working sets. In Proc. of the 9th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI). San Jose, CA, 2012.

[41] Jianyong Zhang, Anand Sivasubramaniam, Hubertus Franke,
Natarajan Gautam, Yanyong Zhang, and Shailabh Nagar. Syn-
thesizing representative i/o workloads for tpc-h. In Proc. of the
10th International Symposium on High Performance Computer
Architecture (HPCA). Madrid, Spain, 2004.

[42] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo
Gokhale, and John Wilkes. Cpi2: Cpu performance isolation
for shared compute clusters. In Proc. of the 8th ACM European
Conference on Computer Systems (EuroSys). Prague, Czech
Republic, 2013.

13

	Introduction
	Background
	The Tarcil Scheduler
	Overview
	Analytical Framework
	Sampling-based Scheduling with Guarantees

	Admission Control
	Pre-scheduling Queueing
	Post-scheduling Queueing

	Tarcil Implementation
	Tarcil Components
	Adjusting Allocations
	Fairness

	Evaluation
	Tarcil Analysis
	Comparison with Other Schedulers
	TPC-H workload
	Impact on Resident Memcached Load

	Large-Scale Evaluation

	Conclusions

