
STANFORD UNIVERSITY

COMPUTER SCIENCE TECHNICAL REPORT

CSTR 2014-06 11/25/2014

Optimizing Resource Provisioning in Shared Cloud
Systems

Christina DELIMITROU Christos KOZYRAKIS

November 25, 2014

Optimizing Resource Provisioning in Shared Cloud Systems

Abstract
Cloud computing promises flexibility and high performance

for users and cost efficiency for operators. To achieve this
premise, cloud providers offer several provisioning strategies
including long-term reserved resources and short-term on-
demand resources. Determining the most appropriate provi-
sioning strategy is a complex, multi-dimensional problem that
depends on the load fluctuation, interference sensitivity and
duration of incoming jobs and the performance unpredictabil-
ity and cost of the provisioned resources.

We first compare the two main provisioning strategies (re-
served and on-demand resources) on Google Compute Engine
(GCE) using three representative workload scenarios with
mixes of batch and latency-critical applications and increas-
ing levels of load variability. We show that either approach
is suboptimal from the performance or cost perspective. We
then explore hybrid provisioning strategies with both reserved
and on-demand resources. We design policies that account
for the resource preferences of incoming jobs to automatically
determine which jobs should be mapped to reserved versus
on-demand resources based on overall load, and resource
unpredictability. We demonstrate that hybrid configurations
improve both performance and cost-efficiency compared to
fully reserved and fully on-demand systems. Specifically they
improve performance by 2.1x compared to fully on-demand
provisioning, and reduce cost by 46% compared to fully re-
served systems. We also show that hybrid strategies are robust
to variation in system and job parameters, such as cost, and
system load.

1. Introduction
An increasing amount of computing is now hosted in public
clouds, such as Amazon’s EC2 [1], Windows Azure [63] and
Google Compute Engine [20], or in private clouds managed
by frameworks such as VMware vCloud [61], OpenStack [46],
and Mesos [26]. Cloud platforms provide two major advan-
tages for end-users and cloud operators: flexibility and cost
efficiency [7, 8, 25]. Users can quickly launch jobs without
the overhead of setting up a new infrastructure every time.
Cloud operators can achieve economies of scale by building
large-scale datacenters (DCs) and by sharing their resources
between multiple users and workloads.

Users can provision resources for their applications in two
basic manners; using reserved and on-demand resources. Re-
served resources consist of servers reserved for long periods of
time (typically 1-3 years [1]) and offer consistent service, but
come at a significant upfront cost for the purchase of the long-
term resource contract. In the other extreme are on-demand
resources, which can be full servers or smaller instances and
are progressively obtained as they become necessary. In this

case, the user pays only for resources used at each point in
time, but the per hour cost is 2-3x higher compared to re-
served resources. Moreover, acquiring on-demand resources
induces instantiation overheads and depending on the type of
instance, the variability in the quality of service obtained can
be significant.

Since provisioning must determine the necessary resources,
it is important to understand the extent of this unpredictability.
Performance varies both across instances of the same type
(spatial variability), and within a single instance over time
(temporal variability) [6, 19, 28, 30, 34, 38, 47, 48, 50, 53, 62].
Figure 1 shows the variability in performance for a Hadoop
job running a recommender system using Mahout [37] on
various instance types on Amazon EC2 [1] and on Google
Compute Engine (GCE) [20]. Analytics such as Hadoop and
Spark [65] are throughput-bound applications, therefore per-
formance here corresponds to the completion time of the job.
The instances are ordered from smallest to largest, with respect
to the number of virtual CPUs and memory allocations they
provide. We show 1 vCPU micro, 1-8 vCPU standard (stX)
and 16 vCPU memory-optimized instances (mX) [1, 20]. Each
graph is the violin plot of completion time of the Hadoop job
over 40 instances of the corresponding type. The dot shows
the mean performance for each instance type. It becomes
clear that especially for instances with less than 8 vCPUs
unpredictability is significant, while for the micro instances
in EC2 several jobs fail to complete due to the internal EC2
scheduler terminating the VM. For the larger instances (m16),
performance is more predictable, primarily due to the fact that
these instances typically occupy a large fraction of the server,
hence they have a much lower probability of suffering from
interference from co-scheduled workloads, excluding potential
network interference. Between the two cloud providers, EC2
achieves higher average performance than GCE, but exhibits
worse tail performance (higher unpredictability).

Figure 2 shows a similar experiment for a latency-critical
service (memcached) on the same instance types. Note that
the number of memcached clients is scaled by the number
of vCPUs of each instance type, to ensure that all instances
operate at a similar system load. Unpredictability is even
more pronounced now, as memcached needs to satisfy tail
latency guarantees [14], as opposed to average performance.
The results from above hold, with the smaller instances (less
than 8 vCPUs) experiencing significant variability in their tail
latency. Performance jitter decreases again for the 8-16 vCPU
VMs, especially in the case of the memory-optimized instances
(m16). Additionally GCE now achieves better average and tail
performance compared to EC2.

The goal of this work is to optimize performance over cost
for cloud systems, similarly to the way work on system design

1

micro st1 st2 st8 m16 micro st1 st2 st8 m16
0

50

100

150

200

250

300

E
xe

cu
tio

n
T

im
e

(m
in

)

Hadoop

EC2
GCE

Figure 1: Performance unpredictability on Amazon EC2 and
Google Compute Engine for a Hadoop job.

micro st1 st2 st8 m16 micro st1 st2 st8 m160

200

400

600

800

1000

1200

1400

99
th

 %
ile

 L
at

en
cy

 (
us

ec
) memcached

EC2
GCE

Figure 2: Performance unpredictability on Amazon EC2 and
Google Compute Engine for memcached.

Configuration Cost Perf. unpredictability Spin-up Flexibility Typical usage
Reserved High upfront, low per hour no no no long-term

On-demand No upfront, high per hour yes yes yes short-term
Hybrid Medium upfront, medium per hour low some yes long-term

Table 1: Comparison of system configurations with respect to: cost, performance unpredictability, overhead and flexibility.

and resource management optimized performance per Watt
for small- and large-scale systems [32, 33, 57, 58, 69]. We
first explore the implications of the two main provisioning
approaches (reserved and on-demand resources), with respect
to performance variability and cost efficiency. We perform
this analysis on Google Compute Engine (GCE) [20] using
three representative workload scenarios with mixes of batch
and latency-critical applications, and increasing levels of load
variability. We assume no a priori knowledge of the appli-
cations in each scenario, except for the minimum and maxi-
mum aggregate load for each scenario, which is needed for a
comparison with an idealized statically-reserved provisioning
strategy. Our study reveals that while reserved resources are
superior with respect to performance (2.2x on average over
on-demand), they require a long-term commitment, and are
therefore beneficial for use cases over extended periods of
time. Fully on-demand resources, on the other hand, are more
cost-efficient for short-term use cases (2.5x on average), but
are prone to performance unpredictability, especially when us-
ing smaller instances. They also incur instantiation overheads
to spin-up new VMs. Our study also shows that to achieve
reasonable performance predictability with either strategy, it is
crucial to understand the resource preferences and sensitivity
to interference of individual applications [18, 39, 51]. Recent
work has shown that a combination of lightweight profiling
and classification-based analysis can provide accurate estima-
tions of job preferences with respect to the different instance
types, the sensitivity to interference in shared resources and the
amount of resources needed to satisfy each job’s performance
constraint [18].

Next, we consider hybrid provisioning strategies that use
both reserved (long-term) and on-demand (short-term) re-
sources. A hybrid provisioning strategy has the potential to
offer the best of both worlds by allowing users to leverage
reserved resources for the steady-state long-term load, and
on-demand resources for short-term resource needs. The main

challenge with hybrid provisioning strategies is determining
how to schedule jobs between the two types of resources. We
show that leveraging the knowledge on resource preferences
and accounting for the characteristics of on-demand resources,
and the system load enables correct mapping of jobs to re-
served and on-demand resources. Table 1 shows the differ-
ences between the three main provisioning strategies with
respect to cost, performance unpredictability, instantiation
overheads and provisioning flexibility.

We demonstrate that hybrid provisioning strategies achieve
both high resource efficiency and QoS-awareness. They maxi-
mize the usage of the already-provisioned reserved resources,
while ensuring that applications that can tolerate some per-
formance unpredictability will not delay the scheduling of
interference-sensitive workloads. We also compare the perfor-
mance, cost and provisioning needs of hybrid systems against
the fully reserved and fully on-demand strategies examined
before over a wide spectrum of workload scenarios. Hybrid
provisioning strategies achieve within 8% of the performance
of fully reserved systems (and 2.1x better than on-demand sys-
tems), while improving their cost efficiency by 46%. Reserved
resources are utilized at 80% on average during steady-state.
Finally, we perform a detailed sensitivity analysis of perfor-
mance and cost with job parameters, such as duration, and
system parameters such as resource pricing, spin-up overhead,
and external load.

2. Cloud Workloads and Systems

2.1. Workload Scenarios

We examine the three workload scenarios shown in Figure 3
and summarized in Table 2. Each scenario consists of a mix
of batch applications (Hadoop workloads running over Ma-
hout [37] and Spark jobs) and latency-critical workloads (mem-
cached). The batch jobs are machine learning and data mining
applications, including recommender systems, support vector

2

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

R
eq

ui
re

d
C

or
es

Static
Low Variability
High Variability

Figure 3: The three workload scenarios.

machines, matrix factorization, and linear regression. mem-
cached is driven with loads that differ with respect to the
read:write request ratio, the size of requests, the inter-arrival
time distribution, the client fanout and the size of the dataset.

The first scenario has minimal load variability (Static). In
steady-state the aggregate resource requirements are 854 cores
on average. Approximately 55% of cores are required for batch
jobs and the remaining 45% for the latency-critical services.
The difference between maximum and minimum load is 10%
and most jobs last several minutes to a few tens of minutes.

Second, we examine a scenario with mild, long-term load
variability (Low Variability). The steady-state minimum load
requires on average 605 cores, while in the middle of the sce-
nario the load increases to 900 cores. The surge is mostly
caused by an increase in the load of the latency-critical appli-
cations. On average 55% of cores are needed for batch jobs
and the remaining 45% for the latency-critical services.

Finally, we examine a scenario with large, short-term load
changes (High Variability). The minimum load drops at 210
cores, while the maximum load reaches up to 1226 cores for
short time periods. Approximately 60% of cores are needed for
batch jobs and 40% for the latency-critical services. Because
of the increased load variability, each job is shorter (8.1 min
duration on average).

The ideal duration for each scenario, with no scheduling
delays or degradation due to interference between workloads,
is approximately 2 hours.

2.2. Cloud Instances

We use servers on Google Compute Engine (GCE) for all
experiments. For provisioning strategies that require smaller
instances we start with the largest instances (16 vCPUs) and
partition them using Linux containers [5, 13]. The reason
for constructing smaller instances as server slices as opposed
to directly requesting various instance types is to introduce
controlled external interference which corresponds to typical
load patterns seen in cloud environments, rather than the ran-
dom interference patterns present at the specific time we ran
each experiment. This ensures repeatable experiments and
consistent comparisons between provisioning strategies.

We model external interference by imposing external load
that fluctuates ± 10% around a 25% average utilization [8,18].
The external load is generated using both batch and latency-
critical workloads. Section 5.1 includes a sensitivity study to
the intensity of external load.

Workload Scenarios
Static Low Var High Var

max:min resources ratio 1.1x 1.5x 6.2x
batch:low-latency – in jobs 4.2x 3.6x 4.1x

– in cores 1.4x 1.4x 1.5x
inter-arrival times (sec) 1.0 1.0 1.0

ideal completion time (hr) 2.1 2.0 2.0

Table 2: Workload scenario characteristics.

We only partition servers at the granularity of existing GCE
instances, e.g., 1,2,4,8 and 16 vCPUs. Whenever we refer to
the cost of an on-demand instance, we quote the cost of the
instance that would be used in the real environment, e.g., a 2
vCPU instance. Similarly, we account for the spin-up over-
head of the instance of the desired size, wherever applicable.
Finally, all scheduling actions such as autoscale and migration
performed by GCE are disabled.

2.3. Cloud Pricing

Google Compute Engine currently only offers on-demand
instances. To encourage high instance usage, it provides sus-
tained usage monthly discounts [20]. Although sustained
usage discounts reduce the prices of on-demand instances,
they do not approximate the price of long-term reserved re-
sources. The most popular alternative pricing model is the
one used by AWS, which includes both long-term resource
reservations and short-term on-demand instances. Because
this pricing model offers more provisioning flexibility and
captures the largest fraction of the cloud market today, we use
it to evaluate the different provisioning strategies and adapt it
to the resource prices of GCE. Specifically, we approximate
the cost of reserved resources on GCE based on the reserved to
on-demand price ratio for EC2, adjusted to the instance prices
of GCE. In Section 5.3 we discuss how our results translate to
different pricing models, such as the default GCE model and
the pricing model used by Windows Azure.

3. Provisioning Strategies
The two main types of resource offerings in cloud systems
are reserved and on-demand resources. Reserved instances
require a high upfront capital investment, but have 2-3x lower
per-hour cost than on-demand resources, offer better service
availability (1-year minimum), and provide consistent perfor-
mance. On-demand resources are charged in a pay-as-you-go
manner, but incur spin-up overheads and experience perfor-
mance unpredictability due to interference from external load.
We ignore spot instances for the purpose of this work, since
they do not provide any availability guarantees.

The provisioning strategy must acquire the right type and
number of resources for a workload scenario. Ideally, a pro-
visioning strategy achieves three goals: (1) high workload
performance, (2) high resource utilization (minimal overprovi-
sioning), and (3) minimal provisioning and scheduling over-
heads. We initially study the three obvious provisioning strate-

3

gies described in Table 3: a statically-provisioned strategy
using only reserved resources (SR); an on-demand strategy
(OdF) that only uses full servers (16 vCPU instances); and an
on-demand strategy (OdM) that uses instances of any size and
type.

3.1. Statically Reserved Resources (SR)

This strategy statically provisions reserved resources for a
1 year period, the shortest contract for reserved resources
on cloud systems such as EC2. Reserved resources require
significant capital investment upfront, although the per-hour
charge is 2-3x lower than for the corresponding on-demand
instances. Moreover, reserved resources are readily available
as jobs arrive, eliminating the overhead of spinning up new
VMs on-demand. Because SR only reserves large instances
(16 vCPU), there is limited interference from external load,
except potentially for some network interference.

Because of its static nature, SR must provision resources
for the peak requirements of each workload scenario, plus
a small amount of overprovisioning. Overprovisioning is
needed because all scenarios contain latency-critical jobs, that
experience tail latency spikes when using nearly saturated re-
sources [7,8,14,31]. We explain the insight behind the amount
of overprovisioning in Section 3.3. Peak requirements can be
easily estimated for mostly static workload scenarios. For
scenarios with load variability, static provisioning results in
acquiring a large number of resources which remain underuti-
lized for significant periods of time.

3.2. Dynamic On-Demand Resources (OdF, OdM)

We now examine two provisioning strategies that acquire re-
sources as they become necessary to accommodate the incom-
ing jobs of each workload scenario. In this case there is no
need for a large expenditure upfront, but the price of each in-
stance per hour is 2-3x higher compared to the corresponding
reserved resources. Moreover, each new instance now incurs
the overhead needed to spin up the new VMs. This is typically
12-19 seconds for GCE, although the 95th percentile of the
spin-up overhead is up to 2 minutes. Smaller instances tend to
incur higher spin-up overheads.

Because of spin-up overheads, these two strategies must
also decide how long they should retain the resources for after
a job completes. If, for example, a workload scenario has no or
little load variability, instances should be retained to amortize
the spin-up overhead. On the other hand, retaining instances
when load variability is high can result in underutilized re-
sources. We determine retention time by drawing from related
work on processor power management. The challenge in that
case is to determine when to switch to low power modes that
enable power savings but incur overheads to revert to an active
mode [36, 41, 56]. Given that the job inter-arrival time in our
scenarios is 1 second, we set the retention time to 10x the spin-

SR OdF OdM HF HM
Reserved

Yes No No Yes Yes
resources

On-demand
No

Yes (full
Yes

Yes (full
Yes

resources servers) servers)

Table 3: Resource provisioning strategies.

up overhead of an instance. 1 Section 5.1 shows a sensitivity
analysis to retention time. Only instances that perform in a
satisfactory manner are retained past the completion of their
jobs.

We examine two variants of on-demand provisioning strate-
gies. On-demand Full (OdF) only uses large instances (16 vC-
PUs), which are much less prone to external interference (see
Section 1). On-demand Mixed (OdM) acquires on-demand
resources of any instance type, including smaller instances
with 1-8 vCPUs. While OdM offers more flexibility, it in-
troduces the issue that performance unpredictability due to
external interference now becomes substantial. There are ways
to improve performance predictability in fully on-demand pro-
visioning strategies, e.g., by sampling multiple instances for
each required instance and only keeping the better-behaved
instances [19]. Although this approach addresses the perfor-
mance variability across instances, it is still prone to temporal
variation within a single instance. Additionally, it is only ben-
eficial for long-running jobs that can afford the overhead of
sampling multiple instances. Short jobs, such as real-time ana-
lytics (100msec-10sec) cannot tolerate long scheduling delays
and must rely on the initial resource assignment.

3.3. The Importance of Resource Preferences

So far, we have assumed that the provisioning strategy has lim-
ited knowledge about the resource preferences of individual
jobs within a workload scenario. Traditionally, the end-users
have to specify how many resources each job should use; un-
fortunately this is known to be error-prone and to frequently
lead to significant resource overprovisioning [8, 11, 18, 35, 51].
Moreover, this offers no insight on the sensitivity of each
job to interference from other jobs, external or not, running
on the same physical server. This is suboptimal for both the
statically-reserved and on-demand strategies, which will ac-
quire more/less resources than what is truly needed by an
application. The lack of interference understanding is equally
problematic. SR will likely colocate jobs that interfere nega-
tively with each other on the same instance. OdF and OdM
will likely acquire instance types that are prone to higher inter-
ference than what certain jobs can tolerate.

The recently-proposed Quasar system provides a method-
ology to quickly determine the resource preferences of new
jobs [18]. When a job is submitted to the system, it is first pro-
filed on two instance types, while injecting interference in two
shared resources, e.g., last level cache and network bandwidth.

1The benefit of longer retention time varies across instance sizes due to
differences in spin-up overheads.

4

with profiling info without profiling info

SR OdF OdM
0

20

40

60

80

100

120

140
E

xe
cu

tio
n

T
im

e
(m

in
)

Static Scenario

SR OdF OdM
0

50

100

150

200

E
xe

cu
tio

n
T

im
e

(m
in

)

Low Variability Scenario

SR OdF OdM
0

50

100

150

200

250

300

350

E
xe

cu
tio

n
T

im
e

(m
in

)

High Variability Scenario

(a) Performance of batch applications for the three scenarios.

SR OdF OdM
0

500

1000

1500

2000

2500

R
eq

ue
st

 L
at

en
cy

 (
us

ec
)

Static Scenario

SR OdF OdM
0

500

1000

1500

2000

2500

R
eq

ue
st

 L
at

en
cy

 (
us

ec
)

Low Variability Scenario
5962 7501

SR OdF OdM
0

1000

2000

3000

4000

5000

6000

R
eq

ue
st

 L
at

en
cy

 (
us

ec
)

High Variability Scenario
15564 15980 19611 20213

(b) Performance of latency-critical applications for the three scenarios.

Figure 4: Performance of jobs of the three workload scenarios with the three provisioning strategies. The boundaries of the
boxplots depict the 25th and 75th percentiles, the whiskers the 5th and 95th percentiles and the horizontal line in each boxplot
shows the mean.

SR OdF OdM0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

C
os

t

Static Scenario

SR OdF OdM0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

C
os

t

Low Variability Scenario

SR OdF OdM0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

C
os

t

High Variability Scenario

Figure 5: Cost of fully reserved and on-demand systems.

This profiling signal is used by a set of classification tech-
niques which find similarities between the new and previously-
scheduled jobs with respect to instance type preferences and
sensitivity to interference. A job’s sensitivity to interference
in resource i is denoted by ci, where i ∈ [1,N], and N = 10
the number of examined resources [16, 18]. Large values of ci
mean that the job puts a lot of pressure in resource i. To capture
the fact that certain jobs are more sensitive to specific resources
we rearrange vector C = [c1,c2, ...,cN] by order of decreasing
magnitude of ci, C′ = [c j,ck, ...,cn]. Finally, to obtain a single
value for C′, we use an order preserving encoding scheme
as follows: Q = c j ·10(2·(N−1)) + ck ·10(2·(N−2)) + ...+ cn,
and normalize Q in [0,1]. Q denotes the resource quality
a job needs to satisfy its QoS constraints. High Q denotes a
resource-demanding job, while low Q a job that can tolerate
some interference in shared resources.

We use Quasar’s estimations of resource preferences and
interference sensitivity to improve resource provisioning. For
SR, we use these estimations to find the most suitable re-
sources available in the reserved instances with respect to re-
source size and interference using a simple greedy search [18].
Accounting for the information on resource preferences re-

duces overprovisioning to 10-15%. For OdF, the estimations
are used to select the minimum amount of resources for a
job, and to match the resource capabilities of instances to
the interference requirements of a job. For OdM, this addi-
tionally involves requesting an appropriate instance size and
type (standard, compute- or memory-optimized). Note that
because smaller instances are prone to external interference,
provisioning decisions may have lower accuracy in this case.

Finally, we must detect suboptimal application performance
and revisit the allocation decisions at runtime [3, 4, 12, 18, 52].
Once an application is scheduled its performance is monitored
and compared against its expected QoS. If performance drops
below QoS we take action [18]. At a high level, we first try
to restore performance through local actions, e.g., increas-
ing the resource allocation, and then through rescheduling.
Rescheduling is very unlikely in practice.

3.4. Provisioning Strategies Comparison

Performance: We first compare the performance impact of
the three provisioning strategies, with and without Quasar’s
information on individual job preferences. Figure 4 shows
the performance achieved by each of the three provisioning
strategies for the three workload scenarios. We separate batch
(Hadoop, Spark) from latency-critical applications (mem-
cached), since their critical performance metric is different:
completion time for the batch jobs and request latency distri-
bution for memcached. The boundaries in each boxplot depict
the 25th and 75th percentiles of performance, the whiskers
the 5th and 95th percentile and the horizontal line shows the
mean. When the information from Quasar is not used, the re-

5

P1: Random P2: Q > 80% to reserved P3: Q > 50% to reserved P4: Q > 20% to reserved
P5: Reserved load < 50% P6: Reserved load < 70% P7: Reserved load < 90% P8: Dynamic Policy

P1 P2 P3 P4 P5 P6 P7 P8
75

80

85

90

95

100

P
er

f.
no

rm
 to

 Is
ol

at
io

n
(%

) Reserved Resources

HF
HM

P1 P2 P3 P4 P5 P6 P7 P8
55
60
65
70
75
80
85
90
95

100

P
er

f.
no

rm
 to

 Is
ol

at
io

n
(%

) On-Demand Resources

HF
HM

Figure 6: Sensitivity to the policy of mapping jobs to reserved versus on-demand resources for HF and HM.

P1: Random P2: Q > 80% to reserved P3: Q > 50% to reserved
P4: Q > 20% to reserved P5: Reserved load < 50% P6: Reserved load < 70%
P7: Reserved load < 90% P8: Dynamic Policy

P1 P2 P3 P4 P5 P6 P7 P8
0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

Reserved Resources

P1 P2 P3 P4 P5 P6 P7 P8
0

1

2

3

4

5

C
os

t

Figure 7: Utilization of reserved resources and cost with dif-
ferent application mapping policies for HF and HM.

sources for each job are sized based on user-defined resource
reservations. For batch jobs (Hadoop and Spark) this trans-
lates to using the default framework parameters (e.g., 64KB
block size, 1GB heapsize for Hadoop), while for memcached
resources are provisioned for peak load [51]. OdM requests
the smallest instance size that satisfies the resource demands
of a job. SR allocates resources for workloads on the reserved
instances with the most available resources (least-loaded).

It is clear from Figure 4 that all three provisioning strategies
benefit significantly from understanding the jobs’ resource
preferences and interference sensitivity. Specifically for SR,
there is a 2.4x difference in performance on average across sce-
narios. The differences are even more pronounced in the case
of latency-critical applications, where the performance metric
of interest is tail, instead of average performance. Omitting
the information on interference sensitivity in this case sig-
nificantly hurts request latency. In all following results, we
assume that provisioning takes job preferences into account,
unless otherwise stated.

We now compare the performance achieved by the three pro-
visioning strategies. The static strategy SR achieves the best
performance for all three scenarios, both for batch and latency-
critical workloads. OdF behaves near-optimally for the static
scenario, but worsens for the scenarios where variability is
present. The main reason is the spin-up overhead required
to obtain new resources as they become necessary. Strategy
OdM achieves the worst performance of all three provisioning
strategies for every scenario (2.2x worse than SR on average),
in part because of the spin-up overhead, but primarily because
of the performance unpredictability it experiences from exter-

nal load in the smaller instances. Memcached suffers a 24x
and 42x increase in tail latency in the low- and high-variability
scenarios, as it is more sensitive to resource interference.
Cost: Figure 5 shows the relative cost of each strategy for
the three scenarios. All costs are normalized to the cost of the
static scenario with SR. Although strategy SR appears to have
the lowest cost for a 2 hour run (2-3x lower per hour charge
than on-demand), it requires at least a 1-year commitment
with all charges happening in advance. Therefore, unless a
user plans to leverage the cluster for long periods of time, on-
demand resources are dramatically more cost-efficient. More-
over, SR is not particularly cost effective in the presence of
high workload variability, since it results in significant over-
provisioning. Between the two on-demand strategies, OdM
incurs lower cost, since it uses smaller instances, while OdF
only uses the largest instances available. Note however that
the cost savings of OdM translate to a significant performance
degradation due to resource unpredictability (Figure 4).

4. Hybrid Provisioning Strategies
The previous section showed that neither fully reserved nor
fully on-demand strategies are ideal. Hybrid provisioning
strategies that combine reserved and on-demand resourc-es
have the potential to achieve the best of both worlds. This
section presents two hybrid provisioning strategies that intelli-
gently assign jobs between reserved and on-demand resources
and compares their performance and cost against the strate-
gies of Section 3. Again, we make use of the information on
resource preferences and interference sensitivity of individual
jobs, as estimated by Quasar.

4.1. Provisioning Strategies

We design two hybrid strategies that use both reserved and
on-demand resources. The first strategy (HF) only uses large
instances for the on-demand resources, to reduce performance
unpredictability. The second strategy (HM), uses a mix of
on-demand instance types to reduce cost, including smaller
instances that experience interference from external load. The
retention time policy of on-demand resources is the same
as for the purely on-demand strategies OdF and OdM. The
reserved resources in both cases are large instances, as with the

6

~65%

~80%

System Load (reserved)

0%

Sensitive & insensitive jobs

 reserved

No load

Soft limit

Hard limit

Saturation

Sensitive jobs  reserved

Insensitive jobs  on-demand

Sensitive  queued or larger on-demand

Insensitive jobs  on-demand

90th %ile
Q90

C
D

F

Resource Quality

QT

QT

Target

resource

quality

QT < Q90 On-demand

St. 4

90th %ile
Q90

C
D

F

QT

QT > Q90 Reserved

Mem. 2

Resource Quality

Figure 8: Application mapping scheme between reserved and on-demand instances for HF and HM.

..

Queue Length
.

Tim
e

.

0

.

20

.

40

.

60

.

80

.

100

.

30

.

36

.

42

.

48

.

54

.

60

.

66

.

72

.

78

.

So
ft
Li
m
it
(%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

[∃
 in

st
an

ce
 X

]

A
B
C

Figure 9: Determining the soft utilization limit (left) and the
expected waiting time (right) in HF and HM.

statically-provisioned strategy (SR). We configure the number
of reserved instances to accommodate the minimum steady-
state load, e.g., 600 cores for the low variability scenario to
avoid overprovisioning of reserved resources. For scenarios
with low steady-state load but high load variability the majority
of resources will be on-demand.

Since HF uses large instances with limited performance
unpredictability for both reserved and on-demand resources,
it mostly uses on-demand instances to serve overflow load.
In contrast, with HM on-demand instances may be smaller
and can experience resource interference from external load.
Therefore, for hybrid strategies it is critical to determine
which jobs should be mapped to reserved versus on-demand
resources, based on their interference sensitivity and the avail-
ability of reserved resources.

4.2. Application Mapping Policies

We first consider a baseline policy that maps applications be-
tween the reserved and on-demand resources randomly using
a fair coin. Figure 6 shows the performance of applications
mapped to the reserved (left) and on-demand resources (right)
for the two hybrid provisioning strategies in the case of the
high variability scenario. Performance is normalized to the
performance each job achieves if it runs with unlimited re-
sources alone in the system (in isolation). Figure 7 also shows
the utilization of the reserved instances and the total cost to
run the 2 hour scenario normalized to the cost of the static
scenario with SR. Because of the large number of scheduled
applications, approximately half of them will be scheduled on
reserved and half on on-demand resources [23]. The random
policy hurts performance for jobs mapped to either type of
resources. In the reserved resources, performance degrades
as more workloads than the instances can accommodate are
assigned to them, and are therefore queued. In the on-demand
resources, performance degrades for two reasons. First, be-

cause of the inherent unpredictability of resources, especially
in the case of HM, and, more prominently, because jobs that
are sensitive to interference and should have been mapped to
reserved resources slow down due to external load.

Ideally, the mapping policy should take into account the
sensitivity of jobs to performance unpredictability. The fol-
lowing three policies shown in Figure 6 set a limit to the jobs
that should be mapped to reserved resources based on the qual-
ity of resources they need. P2 assigns jobs that need quality
Q > 80% to the reserved instances to protect them from the
variability of on-demand resources. P3 and P4 set stricter
limits, with P4 only assigning very tolerant to unpredictability
jobs to the on-demand resources. As we move from P2 to P4
the performance of jobs in the on-demand instances improves,
as the number of applications mapped to them decreases. In
contrast, the performance of jobs scheduled to reserved re-
sources worsens due to increased demand and queueing for
resources. In general, performance is worse for HM in the
on-demand resources, due to the increased performance vari-
ability of smaller instances.

It is clear that there needs to be an upper load limit for the
reserved resources. The next three policies P5−P7 set pro-
gressively higher, static limits. For low utilization limits, e.g.,
50-70% the performance of jobs on reserved resources is near-
optimal. In contrast, jobs assigned to on-demand resources
suffer substantial performance degradations, since application
mapping is only determined based on load and not based on
resource preferences. For a utilization limit of 90%, the per-
formance of jobs in the reserved resources degrades due to
excessive load. Low utilization in the reserved resources also
significantly increases the cost, as additional on-demand re-
sources have to be obtained. Therefore a policy using a static
utilization limit that does not distinguish between the resource
preferences of jobs is also suboptimal.

Based on these findings we design a dynamic policy to sep-
arate jobs between reserved and on-demand resources. The
policy adheres to three principles. First, it utilizes reserved re-
sources before resorting to on-demand resources. Second, ap-
plications that can be accommodated by on-demand resources
should not delay the scheduling of jobs sensitive to resource
quality. Third, the system must adjust the utilization limits
of reserved instances to respond to performance degradations
due to excessive queueing.

Figure 8 explains the dynamic policy. We set two utilization

7

with profiling info without profiling info

SR HF HM
0

20

40

60

80

100

120
E

xe
cu

tio
n

T
im

e
(m

in
)

Static Scenario

SR HF HM
0

20

40

60

80

100

120

140

E
xe

cu
tio

n
T

im
e

(m
in

)

Low Variability Scenario

SR HF HM
0

50

100

150

200

E
xe

cu
tio

n
T

im
e

(m
in

)

High Variability Scenario

(a) Performance of batch applications for the three scenarios.

SR HF HM
0

500

1000

1500

2000

2500

R
eq

ue
st

 L
at

en
cy

 (
us

ec
)

Static Scenario

SR HF HM
0

500

1000

1500

2000

2500

R
eq

ue
st

 L
at

en
cy

 (
us

ec
)

Low Variability Scenario

SR HF HM
0

1000

2000

3000

4000

5000

6000

R
eq

ue
st

 L
at

en
cy

 (
us

ec
)

High Variability Scenario

(b) Performance of latency-critical applications for the three scenarios.

Figure 10: Performance of the three scenarios with the statically-reserved and hybrid provisioning strategies. The boundaries
of the boxplots depict the 25th and 75th percentiles, the whiskers the 5th and 95th percentiles and the horizontal line in each
boxplot shows the mean.

Reserved Cost On Demand Cost

SR HF HM0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

C
os

t

Static Scenario

SR HF HM0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

C
os

t

Low Variability Scenario

SR HF HM0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

C
os

t

High Variability Scenario

Figure 11: Cost comparison between SR, HF and HM.

limits for the reserved resources. First, a soft limit (experimen-
tally set at 60-65% utilization), below which all incoming jobs
are allocated reserved resources. Once utilization exceeds this
limit, the policy differentiates between applications that are
sensitive to performance unpredictability and insensitive ones.
The differentiation is done based on the resource quality Q
a job needs to satisfy its QoS constraints and the knowledge
on the quality of previously-obtained on-demand instances.
Once we determine the instance size a job needs (number of
cores, memory and storage), we compare the 90th percentile
of quality of that instance type (monitored over time) against
the target quality (QT) the job needs. If Q90 > QT the job is
scheduled on the on-demand instance, otherwise it is sched-
uled on the reserved instances. Examining the 90th percentile
is sufficient to ensure accurate decisions for the majority of
jobs.

Second, we set a hard limit for utilization, when jobs need to
get queued before reserved resources become available. At this
point, any jobs for which on-demand resources are satisfactory
are scheduled in the on-demand instances and all remaining
jobs are locally queued [49]. An exception occurs for jobs

whose queueing time is expected to exceed the time it would
take to spin up a large on-demand instance (16 vCPUs); these
jobs are instead assigned to on-demand instances. Queueing
time is estimated using a simple feedback loop based on the
rate at which instances of a given type are being released over
time. For example, if out of 100 jobs waiting for an instance
with 4 vCPUs and 15GB of RAM, 99 were scheduled in less
than 1.4 seconds, the system will estimate that there is a 0.99
probability that the queueing time for a job waiting for a 4
vCPU instance will be 1.4 seconds. Figure 9b shows a valida-
tion of the estimation of waiting time for three instance types.
The lines show the cumulative distribution function (CDF)
of the probability that an instance of a given type becomes
available. The dots show the estimated queueing time for jobs
waiting to be scheduled on instances with 4 (A), 8 (B) and 16
vCPUs (C) in the high variability scenario. In all cases the
deviation between estimated and measured queueing time is
minimal.

Third, we adjust the soft utilization limit based on the rate
at which applications get queued. If the number of queued
jobs increases sharply, the reserved instances should become
more selective in the workloads they accept, i.e., the soft
limit should decrease. Similarly, if no jobs get queued for
significant periods of time, the soft limit should increase to
accept more incoming jobs. We use a simple feedback loop
with linear transfer functions to adjust the soft utilization limit
of the reserved instances as a workload scenario progresses.
Figure 9a shows how the soft limit changes with execution
time and queue length.

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
On-Demand:Reserved Price per hr

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
os

t

Static Scenario

SR
OdF
OdM
HF
HM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
On-Demand:Reserved Price per hr

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
os

t

Low Variability Scenario

SR
OdF
OdM
HF
HM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
On-Demand:Reserved Price per hr

0

1

2

3

4

5

6

C
os

t

High Variability Scenario

SR
OdF
OdM

HF
HM

Figure 12: Sensitivity to on-demand:reserved cost.

0 10 20 30 40 50
Duration (weeks)

0

100

200

300

400

500

600

C
os

t (
x1

00
0$

)

Static Scenario

SR
OdF
OdM

HF
HM

0 10 20 30 40 50
Duration (weeks)

0

100

200

300

400

500

600

C
os

t (
x1

00
0$

)

Low Variability Scenario

SR
OdF
OdM

HF
HM

0 10 20 30 40 50
Duration (weeks)

0

100

200

300

400

500

C
os

t (
x1

00
0$

)

High Variability Scenario

SR
OdF
OdM

HF
HM

Figure 13: Sensitivity to scenario duration.

4.3. Provisioning Strategies Comparison

Performance: Figure 10 compares the performance achie-
ved by the static strategy SR and the two hybrid strategies
(HF and HM), with and without the profiling information
for new jobs. Again we separate batch from latency-critical
jobs. As expected, having the profiling information improves
performance significantly for the hybrid strategies, for the ad-
ditional reason that it is needed to decide which jobs should
be scheduled on the reserved resources (2.4x improvement on
average for HF and 2.77x for HM). When using the profiling
information, strategies HF and HM come within 8% of the
performance of the statically reserved system (SR), and in
most cases outperform strategies OdF and OdM, especially
for the scenarios with significant load variability. The main
reason why HF and HM achieve good performance is that
they differentiate between applications that can tolerate the
unpredictability of on-demand instances, and jobs that need
the predictable performance of a fully controlled environment.
Additionally hybrid strategies hide some of the spin-up over-
head of on-demand resources by accommodating part of the
load in the reserved instances.
Cost: Figure 11 shows the relative cost of strategies SR, HF
and HM for the three scenarios. While the static provision-
ing strategy (SR) is more cost-efficient in the static scenario
where provisioning is straight-forward, the hybrid strategies
incur significantly lower costs for both scenarios with load
variability. Therefore, unless load is almost completely static,
statically-provisioned resources is not cost-efficient both due
to long-term reservations, and significant overprovisioning.
Additionally, because of the lower per-hour cost of reserved
resources in HF and HM, the hybrid strategies have lower
per-hour cost than fully on-demand resources as well. For HF
and HM, most of the cost per hour comes from on-demand
resources, since reserved instances are provisioned for the
minimum steady-state load. Finally, between the two hybrid
strategies, HM achieves higher cost-efficiency since it uses
smaller instances.

5. Discussion

5.1. Sensitivity to Job/System Parameters

We first evaluate the sensitivity of the previous findings to
various system and workload parameters. Unless otherwise
specified, we use the same strategies as before to provision
reserved and/or on-demand resources.

0 20 40 60 80 100 120
Spin up Overhead (sec)

0

20

40

60

80

100

95
th

 %
ile

 o
f P

er
f n

or
m

 to
 S

R
 (

%
) High Variability Scenario

SR
OdF

OdM
HF

HM

0 20 40 60 80 100
External Load (%)

0

20

40

60

80

100

95
th

 %
ile

 P
er

f n
or

m
 to

 Is
ol

at
io

n
(%

)

High Variability Scenario

SR
OdF

OdM
HF

HM

Figure 14: Sensitivity to spin-up time and external load.

Resource cost: The current average cost ratio of on-demand
to reserved resource per hour is 2.74. Figure 12 shows how the
relative cost of the three scenarios varies for each of the five
strategies when this ratio changes. The current ratio is shown
with a vertical line at 2.74. All costs are normalized to the cost
for the static scenario using SR. We change the ratio by scaling
the price of reserved resources. We vary the ratio in [0.01,4];
beyond that point the cost of SR per hour becomes practically
negligible. Initially (0.01), strategies using only on-demand
resources (OdF, OdM) are significantly more cost-efficient,
especially for the scenarios with load variability. For the static
scenario, even when on-demand resources are much cheaper
than reserved, SR, HF and HM incur similar charges as the
fully on-demand systems. For each scenario, there is a price
ratio for which SR becomes the most cost-efficient strategy.
As variability increases, this value becomes larger (e.g., for
the high variability scenario the ratio needs to become 3 for
SR to be more cost-efficient per hour than HM). Note that SR
still requires at least a 1-year commitment, in contrast to the
on-demand strategies. Finally, the hybrid strategies achieve
the lowest per-hour cost for significant ranges of the price
ratio, especially for scenarios with load variability.
Scenario duration: Figure 13 shows how cost changes for
each strategy, as the scenario duration increases. Because
we compare aggregate costs (instead of per-hour), this figure
shows the absolute cost in dollars for each strategy. For the
static scenario, from a cost perspective, strategy HM is optimal
only if duration is [20−25] weeks. For durations less than 20
weeks, strategy OdM is the most cost-efficient, while for dura-
tions more than 25 weeks the statically-reserved system (SR)
is optimal. This changes for scenarios with load variability.
Especially in the case of high variability, for durations larger
than 18 weeks, strategy HM is the most cost-efficient, with
the significantly overprovisioned reserved system (SR) never
being the most efficient. Note that the charge for SR doubles
beyond the 1 year (52 weeks) mark.

9

Spin-up overhead: Figure 14a shows how the 95th per-
centile of performance changes as the overhead to spin-up
new resources changes for the high variability scenario. The
statically-reserved strategy (SR) is obviously not affected by
this change. Because in this scenario resources are frequently
recycled, increasing the spin-up overhead significantly affects
performance. This is more pronounced for the strategies us-
ing exclusively on-demand resources (OdF, OdM). The ad-
ditional degradation for OdM comes from the performance
unpredictability of smaller on-demand instances.
External load: Figure 14b shows the sensitivity of perfor-
mance to external load (load in machines due to jobs beyond
those provisioned with our strategies). SR provisions a fully-
controlled environment, therefore there is no external load
to affect performance. OdF and HF are also tolerant to ex-
ternal load, as they only use the largest instances, which are
much less prone to external interference. For HM performance
degrades minimally until 50% load, beyond which point the
estimations on resource quality become inaccurate. OdM suf-
fers most of the performance degradation as all of its resources
are susceptible to external interference.
Retention time: Figure 15 shows the 95th percentile of per-
formance and the cost of each strategy, as the time for which
idle instances are maintained changes for the high variabil-
ity scenario. As expected, releasing well-behaved instances
immediately hurts performance, as it increases the overheads
from spinning-up new resources. This is especially the case
for this scenario, where load changes frequently. With respect
to cost, higher retention time increases the cost of strategies us-
ing only on-demand resources (OdF, OdM), while SR remains
unchanged; the difference for hybrid strategies is small. An
unexpected finding is that excessive resource retention slightly
hurts performance for OdM and HM. The primary reason is
the temporal variability in the quality of on-demand resources,
which degraded by the time new applications were assigned
to these instances.

5.2. Provisioning Overheads

In the presented strategies, the provisioning overheads include
job profiling and classification (Quasar), provisioning deci-
sions, spin-up of new on-demand instances (where applicable),
and rescheduling actions. The profiling that generates the in-
put signal for the classification engine takes 5-10 sec, but only
needs to happen the first time a job is submitted. Classification
itself takes 50msec on average. Decision overheads include
the greedy scheduler in the statically-reserved strategy (SR)
and the overhead of deciding whether to schedule a new job
on reserved versus on-demand resources in the hybrid strate-
gies. In all cases decision overheads do not exceed 20msec,
three orders of magnitude lower than the spin-up overheads
of on-demand instances (10-20sec on average). Finally, job
rescheduling due to suboptimal performance is very infrequent
for all strategies except OdM, where it induces 6.1% overheads

0 100 200 300 400 500
Retention Time (x Spin up Overhead)

0

20

40

60

80

100

95
th

 %
ile

 P
er

f n
or

m
 to

 S
R

 (
%

) High Variability Scenario

SR
OdF
OdM

HF
HM

0 100 200 300 400 500
Retention Time (x Spin up Overhead)

0

2

4

6

8

10

12

14

C
os

t

High Variability Scenario

SR
OdF
OdM

HF
HM

Figure 15: Sensitivity to resource retention time.

to the execution time of jobs on average.

5.3. Different Pricing Models

So far we have assumed a pricing model for reserved and
on-demand instances similar to the one used by Amazon’s
AWS. This is a popular approach followed by many smaller
cloud providers. Nevertheless, there are alternative approa-
ches. GCE does not offer long-term reservations. Instead it
provides sustained usage monthly discounts to encourage high-
utilization of on-demand resources. The higher the usage of a
set of instances of a type for a fraction of the month, the lower
the per-hour instance price for the remainder of the month.
This approach does not differentiate whether one uses a single
instance of type A for 3 weeks or 3 instances of type A for 1
week each. Microsoft Azure only offers on-demand resources
of different types.

Even without reserved resources, the problem of selecting
the appropriate instance size and configuration, and deter-
mining how long to keep an instance for before releasing it
remains. Figure 16 shows how cost changes for the three
workload scenarios, under the Azure (on-demand only) and
GCE (on-demand + usage discounts) pricing models, com-
pared to the AWS pricing model (reserved + on-demand). We
assume that the resources will be used at least for a one month
period, so that GCE discounts can take effect. Cost is nor-
malized to the cost of the static workload scenario under the
SR provisioning strategy using the reserved & on-demand
pricing model. Even with these alternative pricing models
using the hybrid strategies and accounting for the resource
preferences of incoming applications to optimize provisioning
significantly benefits cost. For example, for the high variabil-
ity scenario HM achieves 32% lower cost than OdF with the
Windows Azure pricing model; similarly for the GCE model
with discounts, HM achieves 30% lower cost than OdF.

GCE decouples the level of usage from the specific instance
used. For example, monthly usage is considered the same
between a single instance used for 50% of the month, and N
instances of the same type used for (50/N)% of the month
each. This introduces new opportunities to optimize resource
provisioning by maximizing the time a certain instance type is
used during a month. We defer such considerations to future
work.

10

SR OdF OdM HF HM

Reserved & On-demand On-demand &
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

C
os

t

Static Scenario

on-demand only usage discounts
Reserved & On-demand On-demand &

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

C
os

t

Low Variability Scenario

on-demand only usage discounts
Reserved & On-demand On-demand &

0

1

2

3

4

5

C
os

t

High Variability Scenario

on-demand only usage discounts

Figure 16: Sensitivity to the cloud pricing model for the three workload scenarios.

5.4. Additional Provisioning Considerations

Spot instances: Spot instances consist of unallocated re-
sources that cloud providers make available to users through
a bidding interface. Spot instances do not have availability
guarantees, and may be terminated at any point in time if the
bidding price is lower than the market price for an instance
type. Incorporating spot instances in provisioning strategies
for non-critical tasks or jobs with very relaxed performance
requirements can further improve the system’s cost-efficiency.
Reducing unpredictability: Resource partitioning (e.g.,
cache or network bandwidth partitioning) has the potential
to improve isolation between instances sharing one or more
resources, thus reducing performance unpredictability in fully
on-demand provisioning strategies. We plan to investigate how
resource partitioning complements provisioning decisions in
future work.
Data management: In our current infrastructure both re-
served and on-demand resources are in the same cluster. When
reserved resources are deployed as a private facility, the pro-
visioning strategy must also consider how to minimize and
manage data transfers and replication across the private and
on-demand resources.

6. Related Work
Cluster management: The increase in the size and number
of large-scale DCs has motivated several designs for clus-
ter management. Systems like Mesos [26], Torque [59] and
Omega [54] all address the problem of allocating resources and
scheduling applications in large, shared clusters. Mesos is a
two-level scheduler. It has a central coordinator that makes re-
source offers to application frameworks, and each framework
has an individual scheduler that handles its assigned resources.
Omega on the other hand, follows a shared-state approach,
where multiple concurrent schedulers can view the whole
cluster state, with conflicts being resolved through a trans-
actional mechanism [54]. Dejavu identifies a few workload
classes and reuses previous resource allocations for each class,
to minimize reallocation overheads [60]. CloudScale [55],
PRESS [22], AGILE [44] and the work by Gmach et al. [21]
predict future resource needs online, often without a priori
workload knowledge. Finally, auto-scaling systems, such as
Rightscale [52], automatically scale the number of physical or
virtual instances used by webserving workloads, to accommo-

date changes in user load.
A second line of work tries to identify the specific resources

that are appropriate for incoming tasks [17,40,42,64]. Paragon
uses classification techniques to determine the impact of plat-
form heterogeneity and workload interference on an unknown,
incoming workload [17]. It then uses this information to sched-
ule each workload in a way that enables high performance for
the job and high utilization for the cluster. Paragon, assumes
that the cluster manager has full control over all resources,
which is often not the case in public clouds. Nathuji et al.
developed a feedback-based scheme that tunes resource as-
signments to mitigate interference effects [43]. Yang et al.
developed an online scheme that detects memory pressure and
finds colocations that avoid interference on latency-sensitive
workloads [64]. Similarly, DeepDive detects and manages in-
terference between co-scheduled workloads in a VM environ-
ment [45]. Finally, CPI2 [68] throttles low-priority workloads
that induce interference to important services. In terms of
managing platform heterogeneity, Nathuji et al. [42] and Mars
et al. [39] quantified its impact on conventional benchmarks
and Google services, and designed schemes to predict the most
appropriate server type for each workload.
Hybrid clouds: Hybrid clouds consist of both privately-
owned and publicly-rented machines and have gained in-
creased attention over the past few years for several reasons,
including cost-efficiency, as well as security and privacy con-
cerns [2,10,27,29,67]. Breiter et al. [10] describe a framework
that allows service integration in hybrid cloud environments,
including actions such as overflowing in on-demand resources
during periods of high load. Farahabady et al. [27] present
a resource allocation strategy for hybrid clouds that attempts
to predict the execution times of incoming jobs and based on
these predictions generate Pareto-optimal resource allocations.
Finally, Annapureddy et al. [2] and Zhang et al. [67] discuss
the security challenges of hybrid environments, and propose
ways to leverage the private portion of the infrastructure for
privacy-critical computation. The provisioning strategies dis-
cussed here are also applicable to hybrid clouds.
Cloud economics: The resource pricing of cloud providers
has been extensively analyzed. Ben-Yehuda et al. [9] contest
whether the pricing strategy of spot instances on EC2 is in-
deed market-driven, and discuss alternative pricing strategies.
Deelman et al. [15] discuss provisioning strategies for a sin-
gle astronomy application on a cloud provider. Li et al. [34]

11

compare the resource pricing of several cloud providers to
assist users provision their applications. Finally, Guevara et
al. [24] and Zahed et al. [66] incorporate the economics of
heterogeneous resources in market-driven and game-theoretic
strategies for resource allocation in shared environments.

7. Conclusions
We have discussed the different provisioning strategies avail-
able on cloud providers today and showed their advantages
and pitfalls with respect to cost, performance predictability
and initialization overheads. We have also designed two new
hybrid provisioning strategies, that use both reserved and on-
demand resources, and leverage the information on resource
preferences of incoming jobs and the quality of previously-
obtained on-demand instances, to map jobs to reserved versus
on-demand resources. We showed that hybrid provisioning
strategies can provide the best of both worlds in terms of
performance and cost-efficiency; they preserve QoS for the
majority of jobs, improve performance by 2.1x compared to
fully on-demand resources, and reduce cost by 46% compared
to fully reserved resources.

References
[1] Amazon ec2. http://aws.amazon.com/ec2/.
[2] K. Annapureddy. Security challenges in hybrid cloud infras-

tructures. In Aalto University, T-110.5290 Seminar on Network
Security. 2010.

[3] Autoscale. https://cwiki.apache.org/cloudstack/
autoscaling.html.

[4] Aws autoscaling. http://aws.amazon.com/
autoscaling/.

[5] G. Banga, P. Druschel, and J. Mogul. Resource containers: a
new facility for resource management in server systems. In
Proc. of OSDI. New Orleans, 1999.

[6] S. K. Barker and P. Shenoy. Empirical evaluation of latency-
sensitive application performance in the cloud. In Proc. of
MMsys. Scottsdale, AR, 2010.

[7] L. Barroso. Warehouse-scale computing: Entering the teenage
decade. ISCA Keynote, SJ, June 2011.

[8] L. Barroso and U. Hoelzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. MC
Publishers, 2009.

[9] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir.
Deconstructing amazon ec2 spot instance pricing. In ACM
TEAC, 1(3), September 2013.

[10] G. Breiter and V. Naik. A framework for controlling and manag-
ing hybrid cloud service integration. In Proc. of IC2E. Redwood
City, CA, 2013.

[11] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes. Long-
term slos for reclaimed cloud computing resources. In Proc. of
SOCC. Seattle, WA, 2014.

[12] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle.
Managing energy and server resources in hosting centers. In
Proc. of SOSP. Banff, CA, 2001.

[13] Linux containers. http://lxc.sourceforge.net/.
[14] J. Dean and L. A. Barroso. The tail at scale. In CACM, Vol. 56

No. 2, Pages 74-80.
[15] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good.

The cost of doing science on the cloud: The montage example.
In Proc. of SC. Austin, TX, 2008.

[16] C. Delimitrou and C. Kozyrakis. iBench: Quantifying Inter-
ference for Datacenter Workloads. In Proceedings of the 2013
IEEE International Symposium on Workload Characterization
(IISWC). Portland, OR, September 2013.

[17] C. Delimitrou and C. Kozyrakis. Paragon: QoS-Aware Schedul-
ing for Heterogeneous Datacenters. In Proc. of ASPLOS. Hous-
ton, TX, 2013.

[18] C. Delimitrou and C. Kozyrakis. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. In Proc. of ASPLOS. Salt
Lake City, UT, 2014.

[19] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers,
and M. M. Swift. More for your money: Exploiting perfor-
mance heterogeneity in public clouds. In Proc. of SOCC. San
Jose, CA, 2012.

[20] Google compute engine. https://developers.google.
com/compute/.

[21] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Work-
load analysis and demand prediction of enterprise data center
applications. In Proc. of IISWC. Boston, MA, 2007.

[22] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource
scaling for cloud systems. In Proc. of CNSM. Niagara Falls,
ON, 2010.

[23] G. R. Grimmett and D. R. Stirzaker. Probability and random
processes. 2nd Edition. Clarendon Press, Oxford, 1992.

[24] M. Guevara, B. Lubin, and B. Lee. Navigating heterogeneous
processors with market mechanisms. In Proc. of HPCA. Shen-
zhen, China, 2013.

[25] J. Hamilton. Cost of power in large-scale data centers. http:
//perspectives.mvdirona.com.

[26] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Proc. of NSDI.
Boston, MA, 2011.

[27] M. Hoseinyfarahabady, H. Samani, L. Leslie, Y. C. Lee, and
A. Zomaya. Handling uncertainty: Pareto-efficient bot schedul-
ing on hybrid clouds. In Proc. of ICPP. Lyon, 2013.

[28] A. Iosup, N. Yigitbasi, and D. Epema. On the performance
variability of production cloud services. In Proc. of CCGRID.
Newport Beach, CA, 2011.

[29] V. Khadilkar, K. Y. Oktay, B. Hore, M. Kantarcioglu, S. Mehro-
tra, and B. Thuraisingham. Risk-aware data processing in
hybrid clouds. TR-UTDCS-31-11, 2011.

[30] Y. E. Khamra, H. Kim, S. Jha, and M. Parashar. Exploring the
performance fluctuations of hpc workloads on clouds. In Proc.
of CloudCom. Indianapolis, IN, 2010.

[31] L. Kleinrock. Queueing systems volume 1: Theory. pp. 101-
103, 404.

[32] E. Lau, J. E. Miller, I. Choi, D. Yeung, S. Amarasinghe, and
A. Agarwal. Multicore performance optimization using partner
cores. In Proc. of HotPar. Berkeley, CA, 2011.

[33] J. Laudon. Performance/watt: the new server focus. In ACM
SIGARCH Computer Architecture News: dasCMP. Vol. 33
Issue 4, p. 5-13, November 2005.

[34] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: Com-
paring public cloud providers. In Proc. of IMC. Melbourne,
Australia, 2010.

[35] Host server cpu utilization in amazon ec2
cloud. http://huanliu.wordpress.com/2012/02/17/
host-server-cpu-utilization-in-amazon-ec2-cloud/.

[36] J. Lorch and A. Smith. Reducing processor power consump-
tion by improving processor time management in a single-user
operating system. In Proc. of MOBICOM. New York, NY, 1996.

[37] Mahout. http://mahout.apache.org/.

12

http://aws.amazon.com/ec2/
https://cwiki.apache.org/cloudstack/autoscaling.html
https://cwiki.apache.org/cloudstack/autoscaling.html
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://lxc.sourceforge.net/
https://developers.google.com/compute/
https://developers.google.com/compute/
http://perspectives.mvdirona.com
http://perspectives.mvdirona.com
http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/
http://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/
http://mahout.apache.org/

[38] D. Mangot. Ec2 variability: The numbers revealed.
http://tech.mangot.com/roller/dave/entry/ec2_
variability_the_numbers_re%vealed.

[39] J. Mars and L. Tang. Whare-map: heterogeneity in "homoge-
neous" warehouse-scale computers. In Proc. of ISCA. Tel-Aviv,
Israel, 2013.

[40] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-up: increasing utilization in modern warehouse scale
computers via sensible co-locations. In Proc. of MICRO. Porto
Alegre, Brazil, 2011.

[41] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined
dynamic voltage scaling and adaptive body biasing for lower
power microprocessors under dynamic workloads. In Proc. of
ICCAD. 2002.

[42] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform het-
erogeneity for power efficient data centers. In Proc. of ICAC,
FL, 2007.

[43] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Manag-
ing performance interference effects for qos-aware clouds. In
Proc. of EuroSys France, 2010.

[44] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. Ag-
ile: Elastic distributed resource scaling for infrastructure-as-a-
service. In ICAC. 2013.

[45] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bian-
chini. Deepdive: Transparently identifying and managing per-
formance interference in virtualized environments. In Proc. of
ATC. San Jose, CA, 2013.

[46] Openstack cloud software. http://www.openstack.org/.
[47] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,

and D. Epema. A performance analysis of ec2 cloud computing
services for scientific computing. In Lecture Notes on Cloud
Computing. Volume 34, p.115-131, 2010.

[48] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui.
Exploiting hardware heterogeneity within the same instance
type of amazon ec2. In HotCloud. 2012.

[49] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Spar-
row: Distributed, low latency scheduling. In Proc. of SOSP.
Farminton, PA, 2013.

[50] M. Rehman and M. Sakr. Initial findings for provisioning varia-
tion in cloud computing. In Proc. of CloudCom. Indianapolis,
IN, 2010.

[51] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozych.
Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In Proc. of SOCC. 2012.

[52] Rightscale. https://aws.amazon.com/
solution-providers/isv/rightscale.

[53] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime mea-
surements in the cloud: Observing, analyzing, and reducing
variance. Proc. VLDB Endow., 3(1-2):460–471, Sept. 2010.

[54] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for large com-
pute clusters. In Proc. of EuroSys. 2013.

[55] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic
resource scaling for multi-tenant cloud systems. In Proc. of
SOCC. Cascais, Portugal, 2011.

[56] T. Simunic and S. Boyd. Managing power consumption in
networks on chips. In Proc. of DAC. Paris, France, 2002.

[57] S. Swanson, A. Putnam, M. Mercaldi, K. Michelson, A. Pe-
tersen, A. Schwerin, M. Oskin, and S. J. Eggers. Area-
performance trade-offs in tiled dataflow architectures. In Proc.
of ACM SIGARCH Computer Architecture News, v.34 n.2,
p.314-326, May 2006.

[58] K. Therdsteerasukdi, G. Byun, J. Cong, F. Chang, and G. Rein-
man. Utilizing rf-i and intelligent scheduling for better through-
put/watt in a mobile gpu memory system. In TACO 8(4). 2012.

[59] Torque resource manager. http://www.
adaptivecomputing.com/products/open-source/
torque/.

[60] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bian-
chini. Dejavu: accelerating resource allocation in virtualized
environments. In ASPLOS. 2012.

[61] Vmware vcloud suite. http://www.vmware.com/
products/vcloud.

[62] G. Wang and T. S. E. Ng. The impact of virtualization on
network performance of amazon ec2 data center. In Proc. of
INFOCOM. San Diego, CA, 2010.

[63] Windows azure. http://www.windowsazure.com/.
[64] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: precise

online qos management for increased utilization in warehouse
scale computers. In Proc. of ISCA. 2013.

[65] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. In Proc. of NSDI. San Jose, CA,
2012.

[66] S. M. Zahed and B. C. Lee. Ref: Resource elasticity fairness
with sharing incentives for multiprocessors. In Proc. of ASPLOS.
Salt Lake City, UT, 2014.

[67] J. Y. Zhang, P. Wu, J. Zhu, H. Hu, and F. Bonomi. Privacy-
preserved mobile sensing through hybrid cloud trust framework.
In Proc. of ICCC. 2013.

[68] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes. Cpi2: Cpu performance isolation for shared compute
clusters. In Proc. of EuroSys. Prague, 2013.

[69] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni, and
D. Newell. Exploring large-scale cmp architectures using
manysim. In IEEE Micro, vol.27 n.4, July 2007.

13

http://tech.mangot.com/roller/dave/entry/ec2_variability_the_numbers_re%vealed
http://tech.mangot.com/roller/dave/entry/ec2_variability_the_numbers_re%vealed
http://www.openstack.org/
https://aws.amazon.com/solution-providers/isv/rightscale
https://aws.amazon.com/solution-providers/isv/rightscale
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.vmware.com/products/vcloud
http://www.vmware.com/products/vcloud
http://www.windowsazure.com/

Required Reserved On-Demand

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

C
or

es

Configuration: SR

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

C
or

es

Configuration: OdF

0 20 40 60 80 100 120 140 160
Time (min)

0

200

400

600

800

1000

1200

1400

C
or

es

Configuration: OdM

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

C
or

es

Configuration: HF

0 20 40 60 80 100 120
Time (min)

0

200

400

600

800

1000

1200

1400

C
or

es

Configuration: HM

Figure 17: Resource allocation graphs for the five provisioning strategies in the case of the high variability scenario.

0 20 40 60 80 100 120
Time (min)

0

20

40

60

80

100

120

S
er

ve
rs

Strategy SR

0
10
20
30
40
50
60
70
80
90
100

S
er

ve
r

U
til

iz
at

io
n

(%
)

0 20 40 60 80 100 120
Time (min)

0

20

40

60

80

100

120

140

S
er

ve
rs

Strategy OdF

0
10
20
30
40
50
60
70
80
90
100

S
er

ve
r

U
til

iz
at

io
n

(%
)

0 20 40 60 80 100 120 140 160
Time (min)

0

50

100

150

200

In
st

an
ce

s

Strategy OdM

0
10
20
30
40
50
60
70
80
90
100

In
st

an
ce

 U
til

iz
at

io
n

(%
)

0 20 40 60 80 100 120
0

10
20
30
40
50
60
70

S
er

ve
rs

Strategy HF

0
10
20
30
40
50
60
70
80
90
100

0 20 40 60 80 100 120
0

20
40
60
80

100
120

In
st

an
ce

s

Strategy HM

0
10
20
30
40
50
60
70
80
90
100

0 20 40 60 80 100 120
Time (min)

0
5

10
15
20
25
30

S
er

ve
rs

0
10
20
30
40
50
60
70
80
90
100

0 20 40 60 80 100 120
Time (min)

0
5

10
15
20
25
30

S
er

ve
rs

0
10
20
30
40
50
60
70
80
90
100

Figure 18: Resource utilization for the high variability scenario across the five provisioning strategies. For strategies HF and HM
we separate reserved (bottom) from on-demand (top) resources.

Allocated Hadoop Spark memcached

0 20 40 60 80 100 120
Time (min)

0

100

200

300

400

500

600

C
or

es

Reserved Resources

0 20 40 60 80 100 120
Time (min)

0

50

100

150

200

250

300

350

400

450

C
or

es

On-Demand Resources

Figure 19: Breakdown of allocation per application type.

APPENDIX
We now present results that provide more in-depth understand-
ing of the trade-offs of the different strategies.

A. Resource Efficiency

Apart from lowering cost, we also want to ensure that a provi-
sioning strategy is not wasteful in terms of resources. Figure 17
shows the resource allocation by each strategy throughout the
duration of the high variability scenario. The reserved sys-
tem (SR) is provisioned statically for the peak requirements
plus a 15% overprovisioning as described in Section 3.1. Be-
cause all instances are private (limited external interference)
and all resources are readily available, the scenario achieves
near-ideal execution time (∼2hr). However, because there
is high load variability, utilization is rarely high, resulting in
poor resource efficiency. Strategy OdF obtains resources as
they become necessary and because it induces spin-up over-
heads frequently due to the constant load change, it results
in longer execution time (132 min). It also introduces some
overprovisioning, as it only requests the largest instances to
constrain performance unpredictability. OdM does not over-
provision allocations noticeably since it uses smaller instances,
however, it significantly hurts performance, resulting in the

scenario completing in 48% more time. Performance degra-
dation is partially the result of variability in the quality of an
instance, and of the high instance churn (releasing instances
immediately after use), due to their poor behavior. 43% of
obtained instances were released immediately after use. The
hybrid strategies (HF and HM) provision reserved resources
for the minimum, steady-state load and use on-demand re-
sources beyond that. Spin-up overheads induce some delay
in the completion of the scenario, although this only amounts
to 2.6% over SR. With HM, this delay is primarily due to in-
stances that misbehaved and were immediately released after
the completion of their jobs, requiring resources to be obtained
anew (about 11% of instances). This issue is less pronounced
when all on-demand resources are large instances (HF).

Figure 18 shows the CPU utilization of each instance throu-
ghout the execution of the high variability scenario for the five
provisioning strategies. CPU utilization is sampled every 2
seconds and averaged across the cores of an instance. For the
hybrid strategies we separate the reserved from the on-demand
resources. For the on-demand resources, instances are ranked
in the order in which they are obtained.

In the case of the fully reserved provisioning strategy (SR),
a small fraction of the instances operate at high utilization
as we try to co-schedule as many applications as possible,
however, the majority of instances are greatly underutilized.
This is consistent with the findings of Figure 17a; because
resources are provisioned for peak load most of the machines
operate at low utilization when load is lower than the maxi-
mum. The majority of resources are used only during the two
load surges at 32 and 60 minutes. Strategies OdF and OdM
obtain resources as they become necessary (shown by the fact
that not all instances exist at time 0). Although the total num-
ber of instances used during the execution of the scenario with
OdF is similar to SR, most instances are released when no

14

with profiling info without profiling info

SR OdF OdM HF HM
0
1
2
3
4
5
6
7
8
9

C
os

t

Static Scenario

SR OdF OdM HF HM
0

2

4

6

8

10

12

C
os

t

Low Variability Scenario

SR OdF OdM HF HM
0

2

4

6

8

10

C
os

t

High Variability Scenario

Figure 20: Cost of the three workload scenarios with and without the profiling information from Quasar.

0 20 40 60 80 100
Sensitive Apps (%)

0

20

40

60

80

100

95
th

 %
ile

 P
er

f.
no

rm
 to

 Is
ol

at
io

n
(%

)

High Variability Scenario

SR
OdF
OdM

HF
HM

0 20 40 60 80 100
Sensitive Apps (%)

0

1

2

3

4

5

6

C
os

t

High Variability Scenario

SR
OdF
OdM

HF
HM

Figure 21: Sensitivity to application characteristics.

longer needed, hence the number of active instances during
off-peak load is significantly lower. In the case of the OdM
strategy instances are additionally released when they behaved
poorly for a given application. Note that because of the high
instance churn, the total number of instances used throughout
the execution of the scenario is higher for OdM than for OdF.
The scenario also takes longer to complete for OdM (178 as
opposed to 120 minutes).

Finally the hybrid strategies maintain the utilization of re-
served resources high throughout the execution of the work-
load scenario, and obtain on-demand resources as needed. HF
needed in total 72 on-demand instances, although only 34
of those are used on average. More than 60 on-demand in-
stances are only used during load surges. HM needs a higher
number of on-demand resources, because it also uses smaller
instances, and because poorly-performing instances are re-
leased and replaced by new ones. Note that the fraction of
released instances due to poor performance is lower for HM
than for OdM, since only jobs that can tolerate some per-
formance unpredictability are mapped to smaller on-demand
instances. Both hybrid strategies complete the scenario in the
same time as SR.

Figure 19 breaks down the allocation of the low variability
scenario by application type, for strategy HM. Initially the
reserved resources are used for most applications, until load
reaches the soft utilization limit. Beyond that, the interference-
sensitive memcached occupies most of the reserved resources,
while the batch workloads are mostly scheduled on the on-
demand side. When the increase in the memcached load ex-
ceeds the capabilities of the reserved resources, part of the
latency-critical service is scheduled on on-demand resources
to avoid long queueing delays, although it is often allocated
larger on-demand instances to meet its resource quality re-

quirements.

B. Sensitivity to Workload Characteristics

We now evaluate how the performance and cost results change
as the characteristics of the applications change with respect
to how sensitive they are to interference. Figure 21 shows
the 95th percentile of performance for the five strategies as
the percentage of jobs that are sensitive to interference in-
creases. We modify the high variability scenario used before,
such that the number of jobs that cannot tolerate performance
unpredictability increases. In the left-most part of the graph,
most jobs are batch Hadoop applications, which can tolerate
some resource contention; as we move to the right part of
the graph the majority of jobs are latency-critical memcached
applications and real-time Spark jobs.

The statically-provisioned strategy (SR) behaves well even
when most applications need resources of high quality, as it is
provisioned for peak load, and there is no external load. The
two hybrid strategies also behave well, until the fraction of
sensitive applications increases beyond 80%, at which point
queueing in the reserved resources becomes significant. The
purely on-demand strategies are the ones that suffer the most
from increasing the fraction of sensitive applications. OdF
and especially OdM significantly degrade the performance of
scheduled applications, both due to increased spin-up over-
heads, and because more applications are now affected by
external contention.

With respect to cost, increasing the fraction of applications
that are sensitive to interference impacts all strategies except
for SR. Since HF and HM can use the reserved resources for
the sensitive jobs, their cost increases only beyond the 30%
mark, at which point more on-demand resources have to be pur-
chased to avoid increased queueing in the reserved resources.
The two on-demand strategies experience a significant cost
surge, as increasing the fraction of sensitive applications re-
sults in a lower degree of co-scheduling and the need for new
resources.

C. Cost Impact of Information from Quasar

Finally, we examine how removing the information on the
resource preferences of new jobs affects the cost of the five
provisioning strategies. In this case, latency-critical applica-

15

tions, such as memcached are provisioned for their peak load,
and batch jobs (Hadoop and Spark) use the default framework
parameters, for example for the number of tasks per core,
heapsize, etc. Figure 20 shows the cost with and without the
information from Quasar for the three workload scenarios.
Since overprovisioning is now much more prominent both the
statically-reserved and the on-demand strategies incur signifi-

cantly higher costs. The differences become more pronounced
for scenarios with load variability, where overprovisioning is
higher. For most cases the relative ordering between strategies
remains the same; for example in the high variability scenario
even without the information from Quasar the hybrid strate-
gies have lower cost than SR and significantly lower than the
on-demand strategies.

16

	Introduction
	Cloud Workloads and Systems
	Workload Scenarios
	Cloud Instances
	Cloud Pricing

	Provisioning Strategies
	Statically Reserved Resources (SR)
	Dynamic On-Demand Resources (OdF, OdM)
	The Importance of Resource Preferences
	Provisioning Strategies Comparison

	Hybrid Provisioning Strategies
	Provisioning Strategies
	Application Mapping Policies
	Provisioning Strategies Comparison

	Discussion
	Sensitivity to Job/System Parameters
	Provisioning Overheads
	Different Pricing Models
	Additional Provisioning Considerations

	Related Work
	Conclusions
	Resource Efficiency
	Sensitivity to Workload Characteristics
	Cost Impact of Information from Quasar

