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Abstract
Compute-in-SRAM architectures o�er a promising approach to
achieving higher performance and energy e�ciency across a range
of data-intensive applications. However, prior evaluations have
largely relied on simulators or small prototypes, limiting the un-
derstanding of their real-world potential. In this work, we present
a comprehensive performance and energy characterization of a
commercial compute-in-SRAM device, the GSI APU, under realistic
workloads. We compare the GSI APU against established architec-
tures, including CPUs and GPUs, to quantify its energy e�ciency
and performance potential. We introduce an analytical framework
for general-purpose compute-in-SRAM devices that reveals funda-
mental optimization principles by modeling performance trade-o�s,
thereby guiding program optimizations.

Exploiting the �ne-grained parallelism of tightly integratedmemory-
compute architectures requires careful data management. We ad-
dress this by proposing three optimizations: communication-aware
reduction mapping, coalesced DMA, and broadcast-friendly data
layouts. When applied to retrieval-augmented generation (RAG)
over large corpora (10GB–200GB), these optimizations enable our
compute-in-SRAM system to accelerate retrieval by 4.8⇥–6.6⇥ over
an optimized CPU baseline, improving end-to-end RAG latency by
1.1⇥–1.8⇥. The shared o�-chip memory bandwidth is modeled us-
ing a simulated HBM, while all other components are measured on
the real compute-in-SRAM device. Critically, this system matches
the performance of an NVIDIA A6000 GPU for RAG while being
signi�cantly more energy-e�cient (54.4⇥-117.9⇥ reduction). These
�ndings validate the viability of compute-in-SRAM for complex,
real-world applications and provide guidance for advancing the
technology.
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1 Introduction
Compute-in-memory (CIM) holds the promise of being a highly
energy-e�cient approach to accelerating data-intensive applica-
tions by reducing memory access overhead through the integration
of compute units within or near memory arrays. Among CIM ap-
proaches, compute-in-SRAM stands out for its compatibility with
standard CMOS technology and potential to achieve high mem-
ory bandwidth. The architectural and full-stack optimization of
compute-in-SRAM systems continues to attract signi�cant research
interest. Recent works propose diverse designs: Compute Caches [1]
repurpose cache elements as vector units using bit-line SRAM,
delivering 1.9⇥ speedup and 2.4⇥ energy savings over a 32-byte
SIMD CPU; EVE [7] uses a bit-hybrid execution mechanism to
accelerate vector operations by nearly 8⇥ versus an out-of-order
CPU; and CAPE [11] o�ers a programmable CMOS associative
engine, averaging 14⇥ speedup with peaks up to 254⇥ over an
area-equivalent CPU. Specialized accelerators such as iMTrans-
former [30], TranCIM [45], PICMA [48], and iMCAT [29] target
deep neural networks (DNNs) and transformer models, highlighting
the potential for domain-speci�c acceleration.

Despite promising results, these architectures are primarily eval-
uated through instructionmodeling and simulation [1, 29, 30, 47, 48]
or small-scale prototypes [45], limiting insights into their practical,
real-world e�ectiveness. This gap underscores the need for perfor-
mance characterization of commercial compute-in-SRAM devices
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Table 1: Comparison of GSI APU [22, 44], Intel Xeon 8280,
NVIDIA A100, and Graphcore IPU.

GSI APU Xeon 8280 NVIDIA A100 Graphcore
Compute Cores 2 million⇥1 bit 28⇥2⇥512 bits 104⇥4,096 bits 1,216⇥64 bits
Tech node 28 nm 14 nm 7 nm 7 nm
Compute Speed 500 MHz 2.7 GHz 1.4 GHz 1.6 GHz
Peak Compute 25 TOPS 10 TOPS 75 TOPS 16 TOPS
On-Chip Memory 12MB L1 38.5MB L3 40MB L2 300MB L1
Mem. Bandwidth 26 TB/s 1 TB/s 7 TB/s 16 TB/s
Power 60W TDP 205W TDP 400W TDP 150W TDP
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Figure 1: General-purpose compute-in-SRAM system model
– CAPE [11], and GSI APU [22, 44] follow the same system
abstraction, with di�erent vector arithmetic unit and SRAM
cell implementations.
under realistic workloads, bridging the divide between theoretical
promise and practical feasibility.

General-purpose compute-in-SRAM systems typically employ a
SIMD vector processor abstraction [1, 11, 47]. As illustrated in Fig. 1,
a common compute-in-SRAM architecture—adopted by systems
like CAPE—abstracts the computation-enabled SRAM array as a
vector processing engine. The GSI APU [22, 44] aligns with this
same abstraction, representing a commercial instance that provides
a unique opportunity to evaluate the potential of compute-in-SRAM
systems under realistic workloads and applications.

The GSI APU integrates 2 million bit processors at 500 MHz,
delivering up to 25 TOPs for 8-bit addition [44]. Table 1 compares
its compute capacity, memory bandwidth, and power e�ciency
against CPUs, GPUs, and ASIC accelerators, showing strong poten-
tial for data-intensive workloads. Fully exploiting this is di�cult:
the APU uses a 32,768-element vector processor with column-wise
integrated compute and storage, o�ering TB/s on-chip bandwidth
but limiting memory access within a vector register (VR). For in-
stance, reductions across a VR are unsupported, and intra-VR group
operations are about 10⇥ slower than inter-VR operations.

Figure 2 shows a roo�ine model of di�erent matrix multiplication
kernels on the GSI APU1. The baseline approach, implementing
a vectorized inner-product algorithm, does not account for data
movement or layout overheads, resulting in suboptimal perfor-
mance. However, with tailored data optimizations, performance
approaches the compute roof with higher operational intensity.

This observation highlights a broader insight about compute-
in-SRAM devices: despite performing computation directly within
memory, these systems can still be bottlenecked by memory band-
width if datamovement is not carefully managed. To further analyze
1The peak computational bound is pro�led for 16-bit unsigned multiplication and
accumulation operations.
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Figure 2: Performance of various matrix multiplication ker-
nels on GSI APU, w/o data movement and data layout opti-
mizations.

this issue, we develop an analytical framework that exposes the
underlying performance limits. In this work, we propose three key
optimizations to realize the potential of the compute-in-SRAM sys-
tems: communication-aware reduction mapping, coalesced DMA
operations, and broadcast-friendly data layouts.

Furthermore, we evaluate compute-in-SRAM systems for Retrieval-
Augmented Generation (RAG) in large language model (LLM) in-
ference, demonstrating its suitability for this workload. We also
compare its performance and energy e�ciency against CPU and
GPU to highlight its advantages. Our contributions are as follows:
• We present the �rst comprehensive evaluation of a commercial
compute-in-SRAM device using realistic workloads. Speci�cally,
we assess the GSI APU—a commercial instance of a general-
purpose compute-in-SRAM device—using the Phoenix bench-
mark, matrix multiplication, and retrieval-augmented generation
(RAG) workloads. We compare its performance and energy e�-
ciency against established architectures, including an Intel Xeon
Gold CPU and an NVIDIA A6000 GPU.

• We develop a �exible analytical framework that identi�es opti-
mization opportunities and supports architectural design space
exploration by enabling the tuning of key design parameters.
This framework informs the design of next-generation in-SRAM
computing architectures.

• We propose three key optimizations targeting data movement
and layout to exploit the unique characteristics of ultra-long vec-
tor compute-in-SRAM architectures. Applied to the RAG work-
load, these optimizations reduce retrieval latency by up to 6.6⇥
compared to an optimized CPU baseline, yielding up to 1.8⇥ end-
to-end speedup and matching the latency of GPU-based systems
while consuming 1% of the energy. On Phoenix, the optimized
APU achieves a 41.8⇥ speedup over CPU.

2 GSI APU Architecture
2.1 Architecture and Microarchitecture
In this section, we provide an overview of the APU’s architecture
and microarchitecture. As shown in Fig. 3(a), the APU platform
comprises a standard x86-64 host CPU and a four-core APU chip,
connected via PCIe and sharing a DDR4 DRAM. Each APU core
functions as a vector engine, processing 32K-element vectors of
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Figure 3: The GSI APU system and APU core logic view, the memory hierarchy is highlighted in blue. The APU consists of a
control processor, four APU cores, and a four-level memory hierarchy. Each core has 24 vector registers (VR), and each VR has
32768 elements.
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(a) APU core physical bank organization. (b) Bit processor architecture.

Figure 4: The physical bank organization of one GSI APU core and the bit processor architecture. The data is stored in a bit-slice
fashion, each column of each bit-slice contains a single-bit read latch and associated read and write logic.

16-bit data, as shown in Fig. 3(b). The 32-bit ARC control processor
(CP) issues vector commands to the Vector Command Unit (VCU),
and the VCU decodes the vector command to microcode operations
to load/store vectors to the Vector Registers (VRs) and perform
arithmetic computations.

The memory hierarchy is highlighted in blue in Fig. 3, which con-
sists of a 16 GB device DRAM, a 1 MB control processor (CP) cache
(L3), a 64KB scratch pad memory (L2), and a 3 MB vector memory
register �le (L1). The DDR memory is shared by four APU cores,
and each core has its private L2 and L1 memory. The L2 scrachpad
memory serves as a DMA bu�er to contain one 32K-element, 16-bit

vector. The L1 memory is organized as 48 "background" registers
as additional storage to the computation-enabled VRs.

Figure 4(a) shows the physical bank organization of the VRs. The
24 VRs are striped across 16 physical banks, and each bank contains
2048 16-bit elements. Within one physical bank, the data is stored
in a bit-slice fashion, where each bit-slice contains one bit for all 24
VRs. Each column of each bit-slice integrates a bit processor with
24 custom 12 T SRAM cells. The bit processor microarchitecture is
shown in Fig. 4(b). The bit processors are collectively equivalent
to the vector arithmetic unit (VXU). The read logic can perform
AND, OR, and XOR on two or more operands, including data from
the read bit-line (RBL), the read latch (RL), the global vertical line,
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Table 2: Microarchitectural state and operations on state.

State Description

RL read latch
GVL global vertical latch
GHL global horizontal latch
VR[8] vector register source 8

Operations Description

RL = VR[EAB0] read VR
RL = VR[EAB0, EAB1] read and bitwise AND of two VRs
RL = ! read value from a source latch
RL = VR[EAB0] >? ! operate on a VR and a latch
RL >? = VR[EAB0] operate on current RL and a VR
RL >? = ! operate on current RL and a latch
RL >? = VR[EAB0] >? ! operate on RL, a VR, and a latch
VR[EAB0] = ! write to VR from source latch

the global horizontal line, and the RLs of bit processors to its north
('!# ), south ('!( ), east ('!⇢ ), or west ('!, ). The global horizontal
line connects all bit processors in the same row, while the global
vertical line connects those in the same column. Each line includes a
1-bit latch: the global horizontal latch (GHL) and the global vertical
latch (GVL). If multiple values are read to GHL simultaneously, an
OR operation is performed before storing the result to the latch.
For GVL, it performs an AND on the multiple values. The write
logic updates the SRAM cells through the write bit-line (WBL) or
its negation (WBLB). By default, bit processors in all bit-slices are
issued the same micro operation. However, a 16-mask can be used
to perform the operations on a subset of the bit slices. The VRs, RL,
GHL, and GVL are the microarchitectural states. The operations on
the microarchitectural states are listed in Table 2.

2.1.1 Arithmetic Operations and Data Types. Unlike bit-serial ar-
chitectures that process only one bit at a time, the APU supports
both bit-serial arithmetic and bit-parallel boolean operations. This
�exibility is achieved through the bit-slice bank organization shown
in Fig. 4(a), allowing all bits of a VR to be accessed simultaneously
by the bit processors. The APU natively supports 16-bit signed and
unsigned integers, 16-bit IEEE �oating point, and a custom GSI
�oating point format with a 6-bit exponent and a 9-bit mantissa.

2.1.2 Data Movement. The APU supports both direct memory ac-
cess (DMA) and programmable I/O (PIO). As shown in Fig. 3(b), each
APU core is equipped with two parallel DMA engines that transfer
contiguous data in 512-byte chunks, enabling high memory band-
width for VR transfers within the memory hierarchy. For random
access or single-element extraction from the VR, the ARC control
processor can perform these operations using PIO. For DRAM$ L3
transfers, both DMA and PIO can be used, whereas for DRAM$ L2,
only DMA is available.
DRAM $ L3, DRAM $ L2: For these types of data movement,
data layout transformations can be applied. With DMA, the source
and target 512-byte chunk addresses can be programmed to enable
contiguous, strided, and duplicated data layout transformations.
PIO enables arbitrary data layout transformations, though with
lower bandwidth compared to DMA.

L2$ L1, L1$ VR: For these types of data movement, data lay-
out transformations are not supported. Data is transferred at the
granularity of an entire vector, meaning only full VR loads/stores
(32K by 16-bit) are possible.
L3$VR: PIO enables direct data transfers between L3 and VRs via
a response FIFO (RSP FIFO). It supports serial retrieval (get) from VR
and parallel insertion (set) into VR. The CP can broadcast scalars or
immediate values to entire VRs or masked elements, while retrieval
from VR is limited to one element at a time.
Inter-VR vs. intra-VR: Due to the bit-slice organization, element-
wise data movement between VRs can be performed e�ciently,
as all elements and bits can be processed in parallel by the bit
processors. However, intra-VR data movements, such as vector
shifts or bank copies, depend on the GHL or RSP FIFO and thus
cannot be fully parallelized.

2.1.3 Implications on Data Layout. The di�ering costs of inter- and
intra-VR data movement impact how data layout in the memory
hierarchy a�ects performance in several ways: (1) For device DRAM
and L3, data layout in�uences the bandwidth of data movement.
When data is contiguous or has a regular stride, DMA o�ers higher
bandwidth than PIO. (2) Data layout within the VR also a�ects
data movement time. If computation results are contiguous within
the VR, DMA can e�ciently transfer them back to L1, L2, and
then device DRAM. However, if they are scattered, PIO must be
used to move them sequentially. (3) Data layout in the VR impacts
computational e�ciency. For instance, a reduction operation can
be mapped to either inter-VR or intra-VR operations, depending on
the data layout in the VR. As discussed in Section 3.2, intra-VR data
movement is more costly than inter-VRmovement, making intra-VR
reductions more expensive due to data movement overhead.

2.2 Programming Model
The APU uses a host-accelerator programming model, where an
x86 host manages kernel execution, shared memory, and kernel in-
vocation on the APU device. Fig. 5 shows this model using a simple
vector addition example to demonstrate host-device interaction.

2.2.1 Host Program. The host program, written in C, manages
kernel invocation, shared DRAM (L4) memory allocation and deal-
location, and data transfers between the host and device memory.
Fig. 5(a) shows a snippet of the host-side code. Initialization of the
calling context and input data is omitted for simplicity. The host
and device communicate through a program command structure,
detailed in lines L1–L9. Memory management, including device
memory allocation, data movement, and kernel invocation, is han-
dled by the GSI GDL library, a memory management library from
GSI.

2.2.2 Device Program. The device program, also in C, runs on
the APU control processor and uses general-purpose control �ow
statements. The system macro GAL_TASK_ENTRY_POINT de�nes the
entry point of the device program, extracts the data structure from
the command, and calls the vec_add function. The device program
manages data transfers from device memory to L1 memory and
performs vector computations using Vector Registers (VRs). Vector
processing uses the GSI Vector Math Library (GVML), which pro-
vides functions for vector operations, including arithmetic, logical,
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(a) APU host code.

(b) APU device code.

Figure 5: Simple vector addition code demonstrating APU
programming model.

bitwise, trigonometric, and min/max operations. Once computa-
tions are complete, the device program transfers data back to device
memory.

The GVML library is implemented using APU microcode in-
structions. APU microcode instructions directly operate on the

Table 3: Notations

Notation Description Notation Description

3 Data size in bytes BW Memory bandwidth
A VR group size B Subgroup size
f Lookup table size ⇠ Constant

microarchitectural states listed in Table. 2. An APU programmer
can implement a di�erent vector abstraction with microcode in-
structions. For example, Golden et al. [19] implemented a RISC-V
vector abstraction using APU microcode. In this work, we use the
abstractions provided by GVML to focus on optimizing performance
through these data movement and computation operations.

3 Analytical Framework
We propose a �exible analytical framework to model performance
characteristics of compute-in-SRAM platforms. This framework
parameterizes critical architectural factors, including computation
latency, data movement bandwidth, and communication patterns
with potentially non-uniform costs. Such generalization enables
applicability across various compute-in-SRAM architectures, aiding
in performance analysis and optimization strategies beyond speci�c
device implementations.

3.1 Applicability and Assumptions
This analytical framework targets compute-in-SRAM system mod-
els as illustrated in Fig. 1. The model assumes a PCIe-based acceler-
ator with a multi-level memory hierarchy and a vector processor
abstraction, where data movement costs are non-uniform across
memory levels and within vector registers. While the framework is
validated using the GSI APU, it is not limited to this device. It can
be extended to other compute-in-SRAM platforms that follow the
same system model by deriving the necessary parameters through
pro�ling.

Table 3 summarizes notations used throughout the framework.
Tables 4 and 5 provide generic models of latency for data movement
and computation operations, respectively. Framework validation
against measured latencies on a real device is discussed in Sec-
tion 5.2.2.

3.2 Data Movement
E�ective data movement is crucial for compute-in-SRAM systems,
particularly in data-intensive applications. Below, we discuss key
data movement paradigms typically supported by these architec-
tures.

3.2.1 DMA Transfers. Direct Memory Access (DMA) operations
facilitate e�cient bulk data transfers within compute-in-SRAM
platforms. DMA latency generally scales linearly with transfer size,
captured by the model )DMA = 3/⌫, +)init, where 3 is data size,
⌫, is bandwidth, and )init is a �xed initialization overhead. While
DMA provides high throughput for continuous data movement,
o�-chip memory bandwidth constraints can limit performance for
very large data sizes.

3.2.2 Programmable I/O (PIO). PIO enables �ne-grained, irregular
data access patterns. The latency of PIO transfers typically scales
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Table 4: Data movement analytical framework

Operation Description Execution Time (cycles)
Analytical Meas.

dma_l4_l3 L4!L3 DMA 3/BW +)init 0.193 + 41164
dma_l4_l2 L4!L2 DMA 3/BW +)init 0.633 + 548
dma_l2_l1 L2!L1 DMA, 16-bit ⇥ 32K )l2!l1 386
dma_l4_l1 L4!L1 DMA, 16-bit ⇥ 32K )l4!l1 22272
dma_l1_l4 L1!L4 DMA, 16-bit ⇥ 32K )l1!l4 22186
pio_ld PIO load, L4!VR = ·)pio_ld 57=
pio_st PIO store, VR!L4 = ·)pio_st 61=
lookup Lookup L3 w/ index VR ⇠ · f +)init 7.15f + 629
load, store VR$L1 load store )ld, )st 29
cpy VR$VR element-wise copy )cpy 29
cpy_subgrp Copy VR subgroup to group )cpy_sgp 82
cpy_imm Broadcast an immediate to VR )cpy_imm 13
shift_e(k) Shift VR entries to head/tail by : ⇠ · : 373:
shift_e(4k) Intra-bank shift VR entries by 4 · : ⇠ + : 8 + :

* In the analytical framework, we refer to the device DRAM as L4 memory.

with the number of individual load or store operations, modeled as
)PIO = = ·)access, where = is the operation count. Though �exible,
PIO incurs higher overhead compared to DMA, making it suited
primarily for non-contiguous or sparse data transfers.

3.2.3 Indexed Lookup and Element-wise Operations. Indexed lookups
handle irregular, scatter-like data transfers from higher memory
levels to local vector registers (VR). The lookup latency grows pro-
portionally with table size (f), formulated as )lookup = ⇠ · f +)init,
highlighting the necessity for careful indexing and data layout
optimization. Element-wise copy operations, such as scalar broad-
casting and VR-to-VR transfers, execute e�ciently due to parallel
hardware mechanisms, typically exhibiting constant-time latencies.
Such operations are essential for data initialization and broadcast-
ing in parallel workloads.

3.2.4 Vector Register (VR) Shi�s. Intra-vector register shifts rear-
range data locally within VRs without accessing external memory,
incurring latency proportional to the shift magnitude, modeled by
)shift_e = ⇠ · : . Minimizing intra-VR shifts through optimized data
layouts can signi�cantly improve overall performance.

3.3 Computation
On compute-in-SRAM platforms, vectorized arithmetic, logical, and
comparison operations typically execute in constant time due to
their inherent parallel execution. Therefore, we summarize their
notation and provide representative latencymeasurements obtained
from the GSI APU in Table 5.

Reduction operations aggregate elements within vector regis-
ters, such as summation or �nding extrema. Such operations of-
ten employ subgroup-based hierarchical reduction strategies to
exploit parallelism. However, due to hardware constraints, inter-
subgroup reductions may have non-linear costs and can be signi�-
cantly higher than intra-subgroup operations. A generic cost model
for subgroup-based reductions can be expressed as:

)sg_add (A , B) = ?3 (log2 B)3 + ?2 (log2 B)2 + ?1 log2 B + ?0,
?3 = U3 · log2 A + V3, ?2 = U2 · log2 A + V2,
?1 = U1 · log2 A + V1, ?0 = U0 · log2 A + V0 .

(1)

Table 5: Computation analytical framework

Operation Description Execution Time (cycles)
Analytical Meas.

and_16 16-bit bit-wise and )and 12
or_16 16-bit bit-wise or )or 8
not_16 16-bit bit-wise not )not 10
xor_16 16-bit bit-wise xor )xor 12
ashift int16 arithmetic shift )ash 15
add_u16 uint16 element-wise addition )uadd 12
add_s16 int16 element-wise addition )sadd 13
sub_u16 uint16 element-wise subtraction )usub 15
sub_s16 int16 element-wise subtraction )ssub 16
popcnt_16 16-bit population count )popcnt 23
mul_u16 uint16 element-wise multiplication )umul 115
mul_s16 int16 element-wise multiplication )smul 201
mul_f16 �oat16 element-wise multiplication )fmul 77
div_u16 uint16 element-wise division )udiv 664
div_s16 int16 element-wise division )sdiv 739
eq_16 16-bit element-wise equal )eq 13
gt_u16 uint16 element-wise greater than )ugt 13
lt_u16 uint16 element-wise less than )ult 13
lt_gf16 gsi �oat16 element-wise less than )�t 45
ge_u16 uint16 greater than or equal )uge 13
le_u16 uint16 less than or equal )ule 13
recip_u16 uint16 element-wise reciprocal )recip 735
exp_f16 �oat16 exponential )exp 40295
sin_fx �xed-point sine )sin 761
cos_fx �xed-point cosine )cos 761
count_m count marked entries )cnt_m 239
add_subgrp_s16 int16 add sub groups in each group Eq. 1 –

Figure 6: An example of modeling application latency with
the analytical framework. We developed a Python function
library with an interface similar to the GSI-provided C++ API.
This example models the latency of the Histogram applica-
tion from the Phoenix benchmark suite [41].

The cubic term emerges due to the multi-level shifting, alignment,
and accumulation operations inherent in hierarchical reductions,
whose complexity grows non-linearly as subgroup size increases.
Using logarithms (log2 B and log2 A ) in the model is natural since
these operations typically organize data aggregation in stages that
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halve the subgroup size at each step, indicating a logarithmic rela-
tionship. The polynomial coe�cients ?0, ?1, ?2, ?3 themselves de-
pend logarithmically on the group size (A ), parameterized by experi-
mentally determined constants U8 , V8 . This generalized formulation
allows modeling of complex, non-linear hardware behavior com-
mon in hierarchical reduction operations.

3.4 Framework Implementation
We have developed a Python function library that mirrors the inter-
face of the GSI-provided C++ API, enabling programmers to model
arbitrary APU programs. The analytical framework interprets these
programs and reports the total latency. Fig. 6 shows a code snippet
modeling the Histogram application from the Phoenix benchmark
suite [41].

3.5 Framework Implications
Our analytical framework highlights general performance trends
across compute-in-SRAM architectures. Speci�cally, element-wise
computations exhibit low latency and e�ciently exploit parallel
hardware. Conversely, large-scale reduction operations and certain
intra-vector data movements can become signi�cant bottlenecks.
DMA transfers outperform PIO for bulk movements but lack �ex-
ibility for sparse data access. Thus, achieving high e�ciency on
compute-in-SRAM platforms requires careful optimization of data
movement strategies, data layouts, and computational structures
aligned with underlying hardware characteristics.

4 Optimizing Realistic Workloads on
Compute-in-SRAM

Compute-in-SRAM provides substantial advantages in data paral-
lelism and energy e�ciency. However, it also introduces speci�c
challenges and opportunities for optimization. Here, we use binary
matrix multiplication as a motivating example to illustrate three
key optimizations for compute-in-SRAM devices.

4.1 Motivating Example
Binary matrix multiplication is a crucial kernel for e�cient ma-
chine learning, supporting workloads such as binary neural net-
works [50, 51] and binarized transformers [31, 46]. Compute-in-
SRAM platform is a natural �t for this kernel due to its e�ciency
and speed in logical operations and integer addition. However, it is
not easy to achieve high performance without careful consideration
of data layout and data movement.

In the motivating example shown in Fig. 7, the input matrices
A (", ) and B ( ,# ) are bit-packed into uint16 types along the
 -axis. The binary matrix multiplication produces an output matrix
C (",# ) in int16 type. The algorithm is depicted in Fig. 7(a). To
implement this inner-product algorithm on an ultra-long vector
processor, the baseline approach unrolls loop 9 , leading to the data
layout illustrated in Fig. 7(c). We refer to this loop mapping scheme
as spatial reduction vector mapping, as the reduction sum occurs
spatially within the VR. Let the VR length be ; = 32768. We consider
the device DRAM as o�-chip memory, assuming matrix ⌫ �ts in L1,
the baseline operational intensity (OI) is:

$� =
" · # ·  · U

(" · b;/ c +  # +"# ) · sf(u16) , (2)

where b;/ c is the duplication factor of matrix � due to loop 9
unrolling, U is the number of logical and arithmetic operations
on each scalar, and sf() denotes size_of(). Matrix � rows are
duplicated in DRAM!L2 and moved to L1, with a run-time cost of:

)� =
✓
 · sf(u16)

BW
+)init

◆
·
�
;

 

⌫
·" +" ·)l2!l1 . (3)

We assume matrix ⌫ is stored in a column-major layout in the
device DRAM, and it �ts in L1, then the run time cost of moving
matrix ⌫ is given by:

)⌫ =
#

b;/ c ·)l4!l1 . (4)

For non-contiguous results in VR ⇠ , PIO transfers each element to
L4, with a cost of:

)⇠ = " · # ·)pio_st (5)
The compute run-time cost is:

)MAC =
#

b;/ c · ()xor +)popcnt +)ash +)ssub +)sg_add ( , 1)) (6)

and the total run-time cost is the sum of the data movement costs
and the compute cost.

4.2 Communication-Aware Reduction Mapping
As outlined in the analytical framework: (1) intra-VR operations are
more costly than inter-VR operations, and (2) using DMA to trans-
fer the same amount of data is signi�cantly cheaper than using PIO.
Guided by these observations, we implement binary matrix multi-
plication as scalar-vector product (SVP) [13]. As shown in Fig. 8, the
reduction axis is mapped to the more e�cient element-wise opera-
tions at each : loop iteration. We refer to this loop mapping scheme
as temporal reduction vector mapping. Additionally, the output
data layout becomes contiguous, enabling fast DMA. Therefore, the
compute run-time cost and matrix C movement cost reduce to:

)MAC = ()xor +)popcnt +)ash +)ssub +)sadd) ·
"

b;/# c ·  , (7)

)⇠ =
"

b;/# c ·)l4!l1 . (8)

Since all bit processors operate in parallel, higher VR occupancy
translates to improved computational e�ciency. To achieve this, we
unroll loop 8 to fully utilize the VR, as shown in Fig. 9(a). Loop 8 is
speci�cally chosen for unrolling to maintain the temporal mapping
of loop : . Consequently, this approach results in two levels of data
duplication in the VR layout, as shown in Fig. 9(b): the scalars from
� are duplicated due to the spatial unrolling of loop 9 , and rows
from ⌫ are duplicated due to the spatial unrolling of loop 8 . This
data layout enables opportunities for data reuse and memory access
coalescing. We implement the scalar duplication of matrix � as a
lookup operation from L3. Therefore, the OI for the scalar-vector
product becomes

7



MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Niansong Zhang, Wenbo Zhu, Courtney Golden, Dan Ilan, Hongzheng Chen, Christopher Ba�en, and Zhiru Zhang

A = uint16 [M, K]
B = uint16 [K, N]
C = int16  [M, N]

for i in range(M):
for j in range(N):

for k in range(K):
v0 = A[i, k] ^ B[k, j]
v1 = popcount(v0)
C[i, j] += 16 – v1 << 1

A B C
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middle loop jinner loop k
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middle loop j

VR A

VR B

VR C

(a) Binary matrix multiply. (b) Inner-product data access. (c) Data layout on vector registers.

Figure 7: Motivating example: binary matrix multiply implemented as an inner-product algorithm on APU.
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(a) Inner-product maps reduction to intra-VR operations (spatial)  

(b) Scalar-vector product maps reduction to inter-VR operations (temporal)

Figure 8: Reduction axis spatial vs. temporal mapping.
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(a) Spatially unroll loop i.

(b) VR data layout for SVP with spatially unrolled loop i.

Figure 9: Spatially unrolling 8-axis fully utilizes the VR, en-
ables inter-VR reduction, and achieves a contiguous layout
of results.

$� =
" · # ·  · U

(" + # · b;/# c +"# ) · sf(u16) (9)

Assuming matrix � is stored in row-major order, the run-time
cost of moving it involves transferring from L4 to L3, followed by
duplication via lookup:

)� = " ·  /BW +)init +)lookup (# ·  ) · "

b;/# c ·  (10)

For B, loop 8 spatial unrolling incurs duplication of factor b;/# c,
the run-time cost of moving matrix ⌫ becomes

)⌫ =
✓
# · sf(u16)

BW
+)init

◆
·
�
;

#

⌫
·  +  ·)l2!l1 (11)

4.3 DMA Coalescing
Once we optimize the data layout, a new bottleneck of data dupli-
cation emerges. As seen in Fig. 9, one form of data duplication is
that of duplicating a chunk of data across an entire VR. In Fig. 10(a),
we see that DMA transactions can be used for data duplication.
However, this approach is bandwidth-ine�cient since accessing
o�-chip memory incurs high latency, and multiple DMA transac-
tions add initiation overhead. Because the same chunk of data from
⌫ is accessed in each iteration of loop : , we can coalesce these
DMA accesses to avoid redundant data movement. Speci�cally, we
combine DMA transactions on multiple rows of ⌫ into a single
transaction, minimizing initiation overhead.

To implement this, we introduce a reuse VR to store the initial
DMA result. Using the subgroup copy capability, each row of ⌫ is
arranged in a subgroup and copied to �ll the VR at each iteration of
loop : . Notably, subgroup copy can also target a portion of the VR,
providing �exibility when duplicating only part of the data. This
optimization results in a lower run-time cost of moving matrix ⌫:

)⌫ =
⇠
 · #
;

⇡
·)l4!l1 +  ·)cpy_sgp (12)

Since DMA coalescing also removes duplicate data movement from
L4, the OI is also improved:

$� =
" · # ·  · U

(" + # +"# ) · sf(u16) . (13)

4.4 Broadcast-Friendly Data Layout
After removing the redundant DMA operations, the bottleneck
shifts to the lookup operation used to broadcast scalars in A. As
shown in Table 4, the lookup latency increases with the size of
the lookup table, prompting us to reduce its size. Fig. 11 illustrates
the lookup operation, where three scalars are broadcast each time,
highlighted by the blue-�lled boxes. In the row-major layout shown
in Fig. 11(a), the broadcast window initially covers indices 0, 6, and
12, and then moves to indices 1, 7, and 13 in the next iteration. Since
the lookup table must be a contiguous chunk of memory, the lookup
table size is at least 18 to broadcast the �rst three rows. To reduce
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B VR B at k=0

B

VR B at k=0

Reuse
VR

VR B at k=1

L4 DDR

L4 DDR

DMA DMA DMA DMA DMA

DMA

Subgroup Copy

Subgroup Copy

(a) Without DMA coalescing.

VR B at k=1

DMA DMA DMA DMA DMA

(b) With DMA coalescing.

Figure 10: Coalescing DMA – leverage subgroup copy to re-
move redundant data access and increase data reuse.

the lookup table size, we change the data layout to a broadcast-
friendly format, shown in Fig. 11(b). The broadcast window initially
covers indices 0, 1, 2, and then moves on to 3, 4, 5. Therefore, the
lookup table sizes can be reduced to 3. We express this data layout
as dimension sizes and strides, where decomposed sizes and strides
are expressed as tuples, as shown in Fig. 11. This format is proposed
by Graphene [23]. For the motivating example, this optimization
reduces the lookup table size for broadcasting matrix A from  · #
to # , thereby reducing the cost of data movement to:

)� = " ·  /BW +)init +)lookup (# ) · "

b;/# c ·  . (14)

In summary, we demonstrate how these three key optimizations
for data layout and movement reduce both input/output transfer
costs and computation costs for compute-in-SRAM devices.

5 Evaluation
Using the GSI APU as a commercial example, this section validates
the analytical framework and evaluates the real-world performance
of compute-in-SRAM with the proposed optimizations. First, a la-
tency breakdown of binary matrix multiplication highlights the
individual contributions of each optimization. Next, a benchmark
study validates the analytical framework and identi�es workload
characteristics well-suited for in-SRAM computing. Finally, an end-
to-end retrieval-augmented generation study on large corpora com-
pares the performance and energy e�ciency of compute-in-SRAM
against CPU and GPU platforms.

We use the GSI Leda-E APU (500 MHz clock frequency), an In-
tel Xeon Gold 6230R CPU (2.1 GHz, 1.6 MB L1 cache, 52 MB L2
cache, 71.5 MB L3 cache), and an NVIDIA A6000 GPU for compar-
ison. Latency measurements on the GSI APU are obtained using
control processor cycle counts. Energy pro�ling is performed us-
ing a Texas Instruments UCD9090 voltage monitor and Renesas

ISL8273M power modules on board, which provide point-of-load
regulation and current telemetry.

5.1 Binary Matrix Multiplication
We use a 1024 ⇥ 1024 binary matrix multiplication kernel as a
microbenchmark to analyze and demonstrate the impact of the
proposed optimizations.

Fig. 12 illustrates the latency breakdown from the baseline im-
plementation to the optimized versions. Key operations include: LD
LHS / RHS, loading matrices from o�-chip memory to L1 via DMA,
PIO, or lookup; VR Ops, on-chip operations like subgroup copies
and computations; and ST, storing results back to o�-chip memory.

We use an inner-product algorithm as the baseline implementa-
tion (described in Section 3.2), which is bottlenecked by result data
movement due to costly PIO stores for non-contiguous outputs.
Applying communication-aware reduction mapping (opt1) reduces
this overhead by enabling e�cient DMA transfers, though it in-
creases RHS matrix loading time due to data duplication. Adding
DMA coalescing (opt2) further improves LHS loading by replacing
PIO with faster DMA, at the cost of additional vector register oper-
ations for subgroup copies. Introducing a broadcast-friendly data
layout (opt3) also accelerates LHS loading, but the overall bottle-
neck remains in the result write back. When all three optimizations
are combined, results become contiguous and can be transferred
using DMA. We also apply DMA coalescing for the RHS matrix
using :-axis data packing and adopt a broadcast-friendly format⇥ (32, 32) 64
(1, 2048) 32

⇤
for the LHS matrix broadcasting, which yields an end-

to-end latency of 12.0ms, an 18.9⇥ improvement over the baseline
latency of 226.3ms.

This result demonstrates that while individual optimizations
may yield modest speedups, they enable opportunities for further
improvements. For example, communication-aware reduction map-
ping enables DMA coalescing to RHS matrix loading and facilitates
the use of a broadcast-friendly layout for the LHSmatrix. Ultimately,
combining all optimizations leads to substantial performance gains.

5.2 Phoenix Benchmarks
We evaluate the optimized GSI APU performance using the Phoenix
Benchmark suite [41], comparing it against two baselines: single-
threaded andmulti-threaded CPU implementations.We select Phoenix
for its data-intensive benchmarks and its prior use in compute-in-
SRAM studies such as CAPE [11]. The o�cial Phoenix benchmark
provides optimized CPU implementations, either single-threaded
or multi-threaded. We use the o�cial repository2, with the multi-
threaded version con�gured for up to 16 threads using the MapRe-
duce programming model. Table 6 summarizes the eight applica-
tions in the suite, including their CPU instruction count (measured
with Valgrind) and APU `Code instruction count (reported by the
Vector Command Unit). Input sizes range from 10 MB to 1.5 GB.
We measure the total APU kernel latency, covering data move-
ment from device memory to L1 and back. We achieve optimized
performance on these benchmarks by applying all proposed data
movement and data layout optimizations.

2https://github.com/kozyraki/phoenix
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(a) Row-major data layout. (b) A broadcast-friendly data layout

Figure 11: Broadcast-friendly data layout example – (a) a row-major data layout requires a lookup table of size 18. (b) A
broadcast-friendly data layout only requires a lookup table size of 3.
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Figure 12: Binary matrix multiplication runtime breakdown
with di�erent optimizations. Opt1: communication-aware
reduction mapping. Opt2: DMA Coalescing. Opt3: broadcast-
friendly data layout.

Table 6: Statistics of the phoenix benchmark suite.

Application Input Size #Inst. on CPU #Inst. of APU `Code

Histogram 1.5GB 4.8 billion 110.7 million
Linear Regression 512MB 3.8 billion 1.6 million
Matrix Multiply 1,024⇥1,024 22.6 billion 69.7 million
Kmeans 128k 0.4 billion 0.04 million
Reverse Index 100MB 4.8 billion 11.0 million
String Match 512MB 101.8 billion 0.09 million
Word Count 10MB 0.7 billion 0.17 million

Figure 13 compares the latency of the APU implementations
against CPU baselines. Relative to the single-threaded CPU, the
APU implementation with all optimizations applied achieves an
average speedup of 41.8⇥ (mean), 14.4⇥ (geometric mean), and
a peak speedup of 128.3⇥. Compared to the multi-threaded CPU
execution, the APU achieves an average speedup of 12.5⇥ (mean),
2.6⇥ (geometric mean), and a maximum speedup of 68.1⇥.

5.2.1 Results Analysis. The APU implementations shown in Fig. 13
include a baseline with no optimizations, as well as versions ap-
plying only communication-aware reduction mapping (Opt1), only
DMA coalescing (Opt2), only broadcast-friendly data layout (Opt3),
and all three optimizations together (APU all opts). Individually,

Table 7: Phoenix benchmark suite latency measured vs. ana-
lytical framework.

Application Meas. Latency (ms) Predicted (ms) Error

Histogram 1644.8 1650.1 +0.32%
Linear Regression 92.3 94.5 +2.3%
Matrix Multiply 421.3 402.5 -4.5%
Kmeans 1.6 1.4 -6.2%
Reverse Index 182.0 181.1 -0.49%
String Match 90.9 92.6 +1.8%
Word Count 3.2 3.1 -3.1%

communication-aware reduction mapping provides large gains in
workloads involving comparison or distance computation over
large volumes of data, such as kmeans, reverse index, string
match, and word count. DMA coalescing reduces data movement
costs in cases where data duplication is required (e.g., matmul) or
where input data can be packed to improve vector register utiliza-
tion (e.g., linear regression, string match). Broadcast-friendly
data layout is bene�cial when scalar values are broadcast via lookup
operations, such as in kmeans, although these opportunities often
emerge only after other optimizations have been applied. Over-
all, we observe that applying all three optimizations consistently
yields greater performance improvements than applying any single
optimization in isolation.

The fully optimized results on the benchmark suite suggest that
compute-in-SRAM platforms are best suited for a speci�c subset of
applications. The optimized APU implementation outperforms a
multi-threaded CPU on linear regression, k-means, string match,
and word count: applications characterized by high data parallelism
and minimal intra-VR computation. With the proposed optimiza-
tions, most arithmetic operations are e�ciently mapped to inter-VR
element-wise instructions, and data duplication overhead is reduced.
In contrast, other applications including histogram, matrix multiply,
reverse index, still involve frequent intra-VR operations and �ne-
grained element access due to their algorithmic nature, limiting the
performance bene�ts from compute-in-SRAM acceleration.

5.2.2 Analytical framework validation. We validate the analytical
framework using the Phoenix Benchmark suite by comparing the
measured latency with the predicted latency. Table 7 summarizes
the results across the eight benchmarks. On average, the analytical
framework achieves 97.3% accuracy, with a maximum error of 6.2%.
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Figure 13: Latency comparison across workloads from the Phoenix Benchmark Suite, normalized to the single-threaded Intel
Xeon Gold CPU baseline. Opt1: communication-aware reduction mapping. Opt2: DMA Coalescing. Opt3: broadcast-friendly
data layout.

The primary source of error arises from the model’s inability to
account for memory subsystem details or cache behavior.

5.3 Retrieval-Augmented Generation (RAG)
Retrieval-Augmented Generation (RAG) improves language model
responses by retrieving relevant knowledge during generation [16,
34]. It embeds queries and documents, then performs vector simi-
larity search [42]. Large corpora often require CPUs/GPUs to use
Approximate Nearest Neighbor Search (ANNS), trading accuracy
for latency and memory. This can cause signi�cant accuracy loss
(22%–53% for Llama-8B and Llama-80B [40]) compared to Exact
Nearest Neighbor Search (ENNS). Compute-in-SRAM platforms,
with massive parallelism, can accelerate ENNS e�ciently, avoiding
this compromise. We study optimized compute-in-SRAM ENNS for
RAG, focusing on latency and energy bene�ts.

5.3.1 Experimental Setup. We implement the ENNS RAG retrieval
process on the GSI APU. However, the device’s limited DDR band-
width (23.8 GB/s) would unequivocally create an o�-chip memory
bottleneck, hindering a fair performance comparison. To mitigate
this, we model a more representative o�-chip memory system by
simulating HBM2e memory (16 GB, 2 ranks, 8 channels, 1.6 GHz,
yielding 380–420 GB/s peak bandwidth) using Ramulator 2 [35] and
DRAMPower 5.0 [12]. The compute-in-SRAM performance results
presented incorporate these simulated o�-chip memory timings,
while all other components—including on-chip data movement,
computation, and system overheads are measured directly on the
GSI APU hardware.

We use Llama3.1-8B [20] with 16-bit number format as the
generation model and sample questions from the Natural Questions
(NQ) dataset [28]. The evaluation system comprises two GPUs (one
dedicated to generation and the other to retrieval), a CPU, and a GSI
APU. Generation runs on a single GPU, and retrieval is performed
using ENNS across three corpus sizes: 10GB, 50GB, and 200GB,
on CPU, GPU, and a compute-in-SRAM accelerator. Each corpus
is chunked into segments of 16,384 tokens. As a result, the 10GB
corpus contains 163K chunks (120MB embedding size), the 50GB
corpus contains 819K chunks (600MB embedding size), and the
200GB corpus contains 3.3M chunks (2.4 GB embedding size).

For both the GPU and compute-in-SRAM accelerator, corpus
embeddings are transferred to device memory once at the start of
the workload. All subsequent queries are served without reloading
the embeddings. Meanwhile, the corpus chunks reside in the CPU’s
main memory. In the results that follow, we report the time-to-
interactive latency on each platform—also referred to as time-to-
�rst-token latency—which serves as the primary metric for eval-
uating the interactivity of the LLM inference system. All latency
results are averaged across 10 queries.

5.3.2 So�ware Configurations. We evaluate RAG performance on
the CPU and GPU using FAISS [14], a widely adopted library for
e�cient similarity search and clustering of dense vectors at scale.
Our experiments use FAISS v1.7.2 to run ENNS inner product search
with IndexFlat, leveraging AVX512 intrinsics and OpenMP-based
multithreading on the CPU.
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Figure 14: Inference time breakdown of CPU, GPU, vs.
compute-in-SRAM with and without optimizations. The
Llama3.1-8B generativemodel runs on a dedicatedGPU. Opt1:
communication-aware reduction mapping. Opt2: DMA Coa-
lescing. Opt3: broadcast-friendly data layout.

5.3.3 End-to-End RAG Performance. As shown in Fig. 14, retrieval
accounts for an increasing portion of end-to-end inference time
as corpus size scales (CPU-based retrieval: 4.3% at 10 GB! 50.5%
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Figure 15: Top-5 retrieval process energy comparison with
GPU. Results are measured on GSI Leda-E APU and NVIDIA
A6000 GPU.
at 200 GB). We optimize inner-product search on the compute-in-
SRAM accelerator via communication-aware reduction mapping
and a broadcast-friendly query layout, mapping reductions to inter-
VR instructions. Retrieval speedups over CPU are 6.3⇥/4.8⇥/6.6⇥
at 10/50/200 GB, yielding 1.05⇥/1.15⇥/1.75⇥ end-to-end gains. Ver-
sus an unoptimized compute-in-SRAM baseline, retrieval latency
reduces up to 6.4⇥. The optimized system attains GPU-level end-
to-end latency, underscoring the e�ectiveness of retrieval-side ac-
celeration.

5.3.4 Optimization Impact and Retrieval Latency Breakdown. APU
retrieval latency for RAG at 10/50/200 GB is 21.8/129.5/539.2ms
without optimization, comparable to CPU performance but slower
than GPU. Communication-aware reduction mapping (opt1) ad-
dresses output data movement bottlenecks, cutting retrieval latency
to 4.0/21.0/86.1ms. DMA coalescing (opt2) and a broadcast-friendly
layout (opt3) give modest standalone gains but compound with
opt1; with all three, latency drops to 3.9/20.6/84.2ms. Figure 14
shows that while opt2 and opt3 have limited standalone e�ect, they
enhance opt1 by improving data movement and vector utilization.

As shown in Table 8, most of the optimized compute-in-SRAM
retrieval speedup comes from the distance calculation stage. The key
is communication-aware reduction mapping—which maps inner-
product reductions to inter-VR ops to reduce intra-VR movement
and improves alignment (e.g., embedding-load time drops from
8.2ms to 6.1ms at 200 GB). A broadcast-friendly layout further
lowers query-broadcast overhead and boosts vector reuse, adding
additional compute-time savings.

5.3.5 Energy E�iciency Comparison with GPU. We benchmark top-
5 retrieval on our optimized compute-in-SRAM accelerator against
an NVIDIA A6000 GPU, measuring GPU energy with nvidia-smi.
As shown in Fig. 15, the APU is 54.4⇥–117.9⇥more energy-e�cient
than the GPU. At 200 GB, APU energy is dominated by static (71.4%),
followed by compute (24.7%), DRAM (2.7%), other (1.1%), and cache
(0.005%); smaller corpora show similar distributions, indicating
static power dominates while compute scales modestly with work-
load size.

6 Related Work
Compute-in-Memory architectures hold the promise of being a
highly energy-e�cient approach for data-intensive applications by
reducing data movement between memory and compute units. The
Intelligent RAM (IRAM) [36–38] was one of the earliest e�orts to

Table 8: Compute-in-SRAM retrieval latency breakdown
across corpus size with and without optimizations.

Compute-in-SRAM No Opt Compute-in-SRAM All Opts
Corpus Size 10 GB 50 GB 200 GB 10 GB 50 GB 200 GB
Load Embedding* 0.4 ms 2.0 ms 8.2 ms 0.3 ms 1.5 ms 6.1 ms
Load Query 10 �s 11 �s 10 �s 62 �s 62 �s 65 �s
Calc Distance 21.0 ms 126.5 ms 527.9 ms 3.1 ms 18.0 ms 74.6 ms
Top-K Aggregation 69 �s 325 �s 1.30 ms 72 �s 317 �s 1.24 ms
Return Top-K 14 �s 14 �s 14 �s 15 �s 16 �s 16 �s
Total 21.8 ms 129.5 ms 539.2 ms 3.9 ms 20.6 ms 84.2 ms

* Load embedding latency re�ects simulated HBM2e performance; all other values are
measured on GSI APU hardware.

integrate computational logic directly into DRAM, demonstrating
the potential of coupling memory with vector processing. Build-
ing on this idea, VIRAM [17] introduced a full vector processor
with embedded DRAM to accelerate bandwidth-bound workloads.
DIVA [4] brought SPMD (single-program multiple-data) models to
Processing-in-Memory (PNM), enabling more �exible parallelism,
while FlexRAM [5, 10] extended thismodel within embeddedDRAM
systems, highlighting the importance of programmable abstractions
for general-purpose compute-in-memory platforms.
Compute-in-SRAM architectures has been explored to realize
boolean [2, 3, 8, 26], multiply-and-accumulate (MAC) [6, 9, 24, 25,
29, 30, 32, 45, 48], and associative computing [15, 21, 39, 43] mech-
anisms. Jeloka et al. [26] introduced bit-line compute techniques in
SRAMs, enabling bitwise logical operations between rows. Compute
caches [1] applied bit-line compute to transform chip multiproces-
sor (CMP) caches into logical compute engines. SRAM-based tech-
nologies have also proven e�ective for in-situ MAC operations due
to the high on/o� impedance ratio of SRAM bit cells [9, 27, 32, 49].
Associative computing, which uses primitives like search and multi-
write to achieve in-memory compute [15, 43], has seen renewed
interest with modern technologies. CAPE [11], for example, demon-
strates a CMOS-based associative engine with high programmabil-
ity and low area cost.
APU Microbenchmarking. Prior work mapped RISC-V vector
abstractions to the APU [19], accelerated genomics kernels [18], and
implemented cryptographic primitives [33], but these handtuned
microkernels highlight architectural features rather than system-
level behavior. In contrast, we evaluate end-to-end Phoenix and
RAG workloads, providing detailed performance characterization,
and analysis of realistic compute and memory demands.

7 Conclusion
This work provides a comprehensive evaluation of compute-in-
SRAM devices under realistic workloads. Our analytical framework
highlights key optimizations for general-purpose in-SRAM com-
puting. With communication-aware reduction mapping, coalesced
DMA, and broadcast-friendly data layouts, we accelerated RAG re-
trieval stage by 4.8⇥–6.6⇥ and reduced time-to-interactive latency
by 1.1⇥–1.8⇥ over an optimized CPU baseline. Our system matched
the performance of an NVIDIAA6000 GPUwhile consuming 54.4⇥–
117.9⇥ less energy, underscoring the practicality and e�ciency of
compute-in-SRAM architectures.
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A Artifact Appendix
A.1 Abstract
This artifact contains GSI APU programs, pro�ling results, HBM
simulation traces, and the analytical framework described in Sec. 3.4.
It reproduces the key results presented in the paper through six
experiments, each corresponding to a speci�c �gure or table:

• Binary matrix multiplication (Fig. 12)
• Phoenix benchmark (Fig. 13)
• Analytical framework validation (Table 6)
• End-to-end RAG inference (Fig. 14)
• RAG energy analysis (Fig. 15)
• RAG latency breakdown (Table 8)

A.2 Artifact Check-list (Meta-information)
• Program: GSI LedaG Tools, Version 100.12.0.1.1000.25
• Compilation: GSI Device Library (GDL), GSI APU Library (GAL),
GSI Vector Math Library (GVML), gcc, meson

• Hardware: GSI Gemini APU Leda-E PCIe board
• Execution: bash, python3
• Metrics: Measured latency, speedup against CPU/GPU baselines,
analytical prediction error, energy consumption

• Output: Reproduces Fig. 12, Fig. 13, Fig. 14, Fig. 15, Table 6, and
Table 8

• Experiments: Six automated experiments matching the paper’s
�gures and tables

• Disk space required: 20 GB
• Setup time: None. Evaluators access the artifact via JupyterHub on
our server

• Runtime: 10 minutes
• Publicly available: Yes, code hosted on GitHub 3

• License: Apache License 2.0
• Work�ow automation: Jupyter Notebook
• Archived (DOI): 10.5281/zenodo.16730562

A.3 Description
A.3.1 How to Access. While the artifact is publicly available, the
experiments require access to a specialized APU accelerator. We
provide access to our research server via JupyterHub at zhang-
capra-xcel.ece.cornell.edu. For login credentials, the artifact evalu-
ator should contact the authors. Access is restricted and valid only
during the artifact evaluation period.

A.4 Installation
No installation is necessary. All dependencies and data are pre-
installed and accessible via the provided JupyterHub server.

A.5 Experiment Work�ow
The experiments are fully automated through a Jupyter Notebook.
After logging into the JupyterHub, the evaluator will �nd the
main notebook at artifact_evaluation.ipynb. This notebook
includes detailed instructions for each experiment.

The evaluator may run individual experiments using Run > Run
Selected Cells, or execute all experiments at once using Run >
Run All Cells. Each experiment invokes APU kernels, pro�les

3https://github.com/cornell-zhang/apu-micro25-artifact

execution, parses outputs, and generates �gures or tables matching
those in the paper.

The six included experiments are:
(1) BinaryMatrixMultiplication (1-bmatmul): Performance

breakdown across optimization levels
(2) Phoenix Benchmark Suite (2-phoenix): Speedup com-

parison across CPU, GPU, and APU backends
(3) Analytical Model Validation (3-analytical): Comparison

of model predictions and measured performance
(4) RAG End-to-End Inference (4-rag-e2e): Inference time

analysis for retrieval-augmented generation
(5) RAGEnergyAnalysis (5-rag-energy): Energy comparison

between GPU and compute-in-SRAM
(6) RAG Latency Breakdown (6-rag-latency-breakdown):

Latency analysis across RAG components

A.6 Evaluation and Expected Results
The artifact reproduces the key �gures and tables with minor vari-
ations due to hardware and runtime e�ects:

• Fig. 12 — Binary matrix multiplication
• Fig. 13 — Phoenix benchmark speedup
• Table 6 — Analytical model validation
• Fig. 14 — RAG end-to-end inference
• Fig. 15 — Energy analysis
• Table 8 — Latency breakdown

A.7 Notes
A demo video 4 is provided to assist the evaluator in reproducing
the results. It walks through the entire process step by step.

4https://youtu.be/A_By1ShFXbc
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