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Abstract

Compute-in-SRAM architectures offer a promising approach to
achieving higher performance and energy efficiency across a range
of data-intensive applications. However, prior evaluations have
largely relied on simulators or small prototypes, limiting the un-
derstanding of their real-world potential. In this work, we present
a comprehensive performance and energy characterization of a
commercial compute-in-SRAM device, the GSI APU, under realistic
workloads. We compare the GSI APU against established architec-
tures, including CPUs and GPUs, to quantify its energy efficiency
and performance potential. We introduce an analytical framework
for general-purpose compute-in-SRAM devices that reveals funda-
mental optimization principles by modeling performance trade-offs,
thereby guiding program optimizations.

Exploiting the fine-grained parallelism of tightly integrated memory-

compute architectures requires careful data management. We ad-
dress this by proposing three optimizations: communication-aware
reduction mapping, coalesced DMA, and broadcast-friendly data
layouts. When applied to retrieval-augmented generation (RAG)
over large corpora (10GB-200GB), these optimizations enable our
compute-in-SRAM system to accelerate retrieval by 4.8X-6.6X over
an optimized CPU baseline, improving end-to-end RAG latency by
1.1x-1.8X. The shared off-chip memory bandwidth is modeled us-
ing a simulated HBM, while all other components are measured on
the real compute-in-SRAM device. Critically, this system matches
the performance of an NVIDIA A6000 GPU for RAG while being
significantly more energy-efficient (54.4X-117.9% reduction). These
findings validate the viability of compute-in-SRAM for complex,
real-world applications and provide guidance for advancing the
technology.
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1 Introduction

Compute-in-memory (CIM) holds the promise of being a highly
energy-efficient approach to accelerating data-intensive applica-
tions by reducing memory access overhead through the integration
of compute units within or near memory arrays. Among CIM ap-
proaches, compute-in-SRAM stands out for its compatibility with
standard CMOS technology and potential to achieve high mem-
ory bandwidth. The architectural and full-stack optimization of
compute-in-SRAM systems continues to attract significant research
interest. Recent works propose diverse designs: Compute Caches [1]
repurpose cache elements as vector units using bit-line SRAM,
delivering 1.9% speedup and 2.4X energy savings over a 32-byte
SIMD CPU; EVE [7] uses a bit-hybrid execution mechanism to
accelerate vector operations by nearly 8X versus an out-of-order
CPU; and CAPE [11] offers a programmable CMOS associative
engine, averaging 14x speedup with peaks up to 254X over an
area-equivalent CPU. Specialized accelerators such as iMTrans-
former [30], TranCIM [45], PICMA [48], and iMCAT [29] target
deep neural networks (DNNs) and transformer models, highlighting
the potential for domain-specific acceleration.

Despite promising results, these architectures are primarily eval-
uated through instruction modeling and simulation [1, 29, 30, 47, 48]
or small-scale prototypes [45], limiting insights into their practical,
real-world effectiveness. This gap underscores the need for perfor-
mance characterization of commercial compute-in-SRAM devices


https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756132
https://doi.org/10.1145/3725843.3756132

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea  Niansong Zhang, Wenbo Zhu, Courtney Golden, Dan Ilan, Hongzheng Chen, Christopher Batten, and Zhiru Zhang

Table 1: Comparison of GSI APU [22, 44], Intel Xeon 8280,
NVIDIA A100, and Graphcore IPU.

GSI APU Xeon 8280  NVIDIA A100 Graphcore
2 millionx1 bit  28x2x512 bits  104x4,096 bits  1,216X64 bits

Compute Cores

Tech node 28 nm 14 nm 7 nm 7 nm
Compute Speed 500 MHz 2.7 GHz 1.4 GHz 1.6 GHz
Peak Compute 25 TOPS 10 TOPS 75 TOPS 16 TOPS

On-Chip Memory 12MB L1 38.5MB L3 40MB L2 300MB L1
Mem. Bandwidth 26 TB/s 1TB/s 7 TB/s 16 TB/s
Power 60W TDP 205W TDP 400W TDP 150W TDP
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Figure 1: General-purpose compute-in-SRAM system model
— CAPE [11], and GSI APU [22, 44] follow the same system
abstraction, with different vector arithmetic unit and SRAM
cell implementations.

under realistic workloads, bridging the divide between theoretical
promise and practical feasibility.

General-purpose compute-in-SRAM systems typically employ a
SIMD vector processor abstraction [1, 11, 47]. As illustrated in Fig. 1,
a common compute-in-SRAM architecture—adopted by systems
like CAPE—abstracts the computation-enabled SRAM array as a
vector processing engine. The GSI APU [22, 44] aligns with this
same abstraction, representing a commercial instance that provides
a unique opportunity to evaluate the potential of compute-in-SRAM
systems under realistic workloads and applications.

The GSI APU integrates 2 million bit processors at 500 MHz,
delivering up to 25 TOPs for 8-bit addition [44]. Table 1 compares
its compute capacity, memory bandwidth, and power efficiency
against CPUs, GPUs, and ASIC accelerators, showing strong poten-
tial for data-intensive workloads. Fully exploiting this is difficult:
the APU uses a 32,768-element vector processor with column-wise
integrated compute and storage, offering TB/s on-chip bandwidth
but limiting memory access within a vector register (VR). For in-
stance, reductions across a VR are unsupported, and intra-VR group
operations are about 10x slower than inter-VR operations.

Figure 2 shows a roofline model of different matrix multiplication
kernels on the GSI APU. The baseline approach, implementing
a vectorized inner-product algorithm, does not account for data
movement or layout overheads, resulting in suboptimal perfor-
mance. However, with tailored data optimizations, performance
approaches the compute roof with higher operational intensity.

This observation highlights a broader insight about compute-
in-SRAM devices: despite performing computation directly within
memory, these systems can still be bottlenecked by memory band-
width if data movement is not carefully managed. To further analyze

The peak computational bound is profiled for 16-bit unsigned multiplication and
accumulation operations.
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Figure 2: Performance of various matrix multiplication ker-
nels on GSI APU, w/o data movement and data layout opti-
mizations.

this issue, we develop an analytical framework that exposes the
underlying performance limits. In this work, we propose three key
optimizations to realize the potential of the compute-in-SRAM sys-
tems: communication-aware reduction mapping, coalesced DMA
operations, and broadcast-friendly data layouts.

Furthermore, we evaluate compute-in-SRAM systems for Retrieval-
Augmented Generation (RAG) in large language model (LLM) in-
ference, demonstrating its suitability for this workload. We also
compare its performance and energy efficiency against CPU and
GPU to highlight its advantages. Our contributions are as follows:

e We present the first comprehensive evaluation of a commercial

compute-in-SRAM device using realistic workloads. Specifically,

we assess the GSI APU—a commercial instance of a general-
purpose compute-in-SRAM device—using the Phoenix bench-
mark, matrix multiplication, and retrieval-augmented generation

(RAG) workloads. We compare its performance and energy effi-

ciency against established architectures, including an Intel Xeon

Gold CPU and an NVIDIA A6000 GPU.

We develop a flexible analytical framework that identifies opti-

mization opportunities and supports architectural design space

exploration by enabling the tuning of key design parameters.

This framework informs the design of next-generation in-SRAM

computing architectures.

e We propose three key optimizations targeting data movement
and layout to exploit the unique characteristics of ultra-long vec-
tor compute-in-SRAM architectures. Applied to the RAG work-
load, these optimizations reduce retrieval latency by up to 6.6x
compared to an optimized CPU baseline, yielding up to 1.8 end-
to-end speedup and matching the latency of GPU-based systems
while consuming 1% of the energy. On Phoenix, the optimized
APU achieves a 41.8x speedup over CPU.

2 GSI APU Architecture

2.1 Architecture and Microarchitecture

In this section, we provide an overview of the APU’s architecture
and microarchitecture. As shown in Fig. 3(a), the APU platform
comprises a standard x86-64 host CPU and a four-core APU chip,
connected via PCle and sharing a DDR4 DRAM. Each APU core
functions as a vector engine, processing 32K-element vectors of
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Figure 3: The GSI APU system and APU core logic view, the memory hierarchy is highlighted in blue. The APU consists of a
control processor, four APU cores, and a four-level memory hierarchy. Each core has 24 vector registers (VR), and each VR has

32768 elements.
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(a) APU core physical bank organization.

(b) Bit processor architecture.

Figure 4: The physical bank organization of one GSI APU core and the bit processor architecture. The data is stored in a bit-slice
fashion, each column of each bit-slice contains a single-bit read latch and associated read and write logic.

16-bit data, as shown in Fig. 3(b). The 32-bit ARC control processor
(CP) issues vector commands to the Vector Command Unit (VCU),
and the VCU decodes the vector command to microcode operations
to load/store vectors to the Vector Registers (VRs) and perform
arithmetic computations.

The memory hierarchy is highlighted in blue in Fig. 3, which con-
sists of a 16 GB device DRAM, a 1 MB control processor (CP) cache
(L3), a 64KB scratch pad memory (L2), and a 3 MB vector memory
register file (L1). The DDR memory is shared by four APU cores,
and each core has its private L2 and L1 memory. The L2 scrachpad
memory serves as a DMA buffer to contain one 32K-element, 16-bit

vector. The L1 memory is organized as 48 "background” registers
as additional storage to the computation-enabled VRs.

Figure 4(a) shows the physical bank organization of the VRs. The
24 VRs are striped across 16 physical banks, and each bank contains
2048 16-bit elements. Within one physical bank, the data is stored
in a bit-slice fashion, where each bit-slice contains one bit for all 24
VRs. Each column of each bit-slice integrates a bit processor with
24 custom 12 T SRAM cells. The bit processor microarchitecture is
shown in Fig. 4(b). The bit processors are collectively equivalent
to the vector arithmetic unit (VXU). The read logic can perform
AND, OR, and XOR on two or more operands, including data from
the read bit-line (RBL), the read latch (RL), the global vertical line,
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Table 2: Microarchitectural state and operations on state.

State Description

RL read latch

GVL global vertical latch

GHL global horizontal latch

VR[] vector register source i
Operations Description

RL = VR[ors0] read VR

RL = VR[ors0,vrs1] read and bitwise AND of two VRs

read value from a source latch
operate on a VR and a latch

RL op = VR[ors0] operate on current RL and a VR
RLop=1L operate on current RL and a latch
RL op = VR[ors0] op L operate on RL, a VR, and a latch
VR[ours0] =L write to VR from source latch

RL=L
RL = VR[ors0] op L

the global horizontal line, and the RLs of bit processors to its north
(RLy), south (RLg), east (RLg), or west (RLyy). The global horizontal
line connects all bit processors in the same row, while the global
vertical line connects those in the same column. Each line includes a
1-bit latch: the global horizontal latch (GHL) and the global vertical
latch (GVL). If multiple values are read to GHL simultaneously, an
OR operation is performed before storing the result to the latch.
For GVL, it performs an AND on the multiple values. The write
logic updates the SRAM cells through the write bit-line (WBL) or
its negation (WBLB). By default, bit processors in all bit-slices are
issued the same micro operation. However, a 16-mask can be used
to perform the operations on a subset of the bit slices. The VRs, RL,
GHL, and GVL are the microarchitectural states. The operations on
the microarchitectural states are listed in Table 2.

2.1.1 Arithmetic Operations and Data Types. Unlike bit-serial ar-
chitectures that process only one bit at a time, the APU supports
both bit-serial arithmetic and bit-parallel boolean operations. This
flexibility is achieved through the bit-slice bank organization shown
in Fig. 4(a), allowing all bits of a VR to be accessed simultaneously
by the bit processors. The APU natively supports 16-bit signed and
unsigned integers, 16-bit IEEE floating point, and a custom GSI
floating point format with a 6-bit exponent and a 9-bit mantissa.

2.1.2  Data Movement. The APU supports both direct memory ac-
cess (DMA) and programmable I/O (PIO). As shown in Fig. 3(b), each
APU core is equipped with two parallel DMA engines that transfer
contiguous data in 512-byte chunks, enabling high memory band-
width for VR transfers within the memory hierarchy. For random
access or single-element extraction from the VR, the ARC control
processor can perform these operations using PIO. For DRAM « L3
transfers, both DMA and PIO can be used, whereas for DRAM < L2,
only DMA is available.

DRAM & L3, DRAM < L2: For these types of data movement,
data layout transformations can be applied. With DMA, the source
and target 512-byte chunk addresses can be programmed to enable
contiguous, strided, and duplicated data layout transformations.
PIO enables arbitrary data layout transformations, though with
lower bandwidth compared to DMA.

L2 < L1, L1 < VR: For these types of data movement, data lay-
out transformations are not supported. Data is transferred at the
granularity of an entire vector, meaning only full VR loads/stores
(32K by 16-bit) are possible.

L3 < VR: PIO enables direct data transfers between L3 and VRs via
aresponse FIFO (RSP FIFO). It supports serial retrieval (get) from VR
and parallel insertion (set) into VR. The CP can broadcast scalars or
immediate values to entire VRs or masked elements, while retrieval
from VR is limited to one element at a time.

Inter-VR vs. intra-VR: Due to the bit-slice organization, element-
wise data movement between VRs can be performed efficiently,
as all elements and bits can be processed in parallel by the bit
processors. However, intra-VR data movements, such as vector
shifts or bank copies, depend on the GHL or RSP FIFO and thus
cannot be fully parallelized.

2.1.3 Implications on Data Layout. The differing costs of inter- and
intra-VR data movement impact how data layout in the memory
hierarchy affects performance in several ways: (1) For device DRAM
and L3, data layout influences the bandwidth of data movement.
When data is contiguous or has a regular stride, DMA offers higher
bandwidth than PIO. (2) Data layout within the VR also affects
data movement time. If computation results are contiguous within
the VR, DMA can efficiently transfer them back to L1, L2, and
then device DRAM. However, if they are scattered, PIO must be
used to move them sequentially. (3) Data layout in the VR impacts
computational efficiency. For instance, a reduction operation can
be mapped to either inter-VR or intra-VR operations, depending on
the data layout in the VR. As discussed in Section 3.2, intra-VR data
movement is more costly than inter-VR movement, making intra-VR
reductions more expensive due to data movement overhead.

2.2 Programming Model

The APU uses a host-accelerator programming model, where an
x86 host manages kernel execution, shared memory, and kernel in-
vocation on the APU device. Fig. 5 shows this model using a simple
vector addition example to demonstrate host-device interaction.

2.2.1 Host Program. The host program, written in C, manages
kernel invocation, shared DRAM (L4) memory allocation and deal-
location, and data transfers between the host and device memory.
Fig. 5(a) shows a snippet of the host-side code. Initialization of the
calling context and input data is omitted for simplicity. The host
and device communicate through a program command structure,
detailed in lines L1-L9. Memory management, including device
memory allocation, data movement, and kernel invocation, is han-
dled by the GSI GDL library, a memory management library from
GSL

2.2.2  Device Program. The device program, also in C, runs on
the APU control processor and uses general-purpose control flow
statements. The system macro GAL_TASK_ENTRY_POINT defines the
entry point of the device program, extracts the data structure from
the command, and calls the vec_add function. The device program
manages data transfers from device memory to L1 memory and
performs vector computations using Vector Registers (VRs). Vector
processing uses the GSI Vector Math Library (GVML), which pro-
vides functions for vector operations, including arithmetic, logical,
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// define APU program data and command
struct program_data {

uint64_t mem_hndl_vecl, mem_hndl_vec2, mem_hndl_out;
} __attribute__((packed));

struct program_cmd {
char* program_name;
struct program_data data;
} __attribute__((packed));

11 const uint64_t vecl_size = sizeof(uint16_t) * LENGTH;
12 const uint64_t vec2_size = sizeof(uint16_t) * LENGTH;
13 const uint64_t out_size = sizeof(uint16_t) * LENGTH;
14 const uint64_t total_io_size = vecl_size + vec2_size + out_size;

16 // Allocate device DRAM memory

17 gdl_mem_handle_t L4_buf = gdl_mem_alloc_aligned(total_io_size);
18 // Add device DRAM ptrs to the program command

19 struct program_cmd cmd = {

20 .data.mem_hndl_vecl = L4_buf,

21 .data.mem_hndl_vec2 = L4_buf + vecl_size,

22 .data.mem_hndl_out = L4_buf + vecl_size + vec2_size
23 Y

24 // Copy data from host to device DRAM

25 gd1l_mem_cpy_to_dev(&cmd.data.mem_hndl_vecl, vecl_host, vecl_size);
26 gdl_mem_cpy_to_dev(&cmd.data.mem_hndl_vec2, vec2_host, vec2_size);
27 // Copy program cmd to device DRAM

28 gdl_mem_handle_t L4_cmd = gdl_mem_alloc_aligned(sizeof(cmd));

29 gd1l_mem_cpy_to_dev(L4_cmd, cmd, sizeof(cmd));

31 // Invoke APU code
32 gdl_run_task_timeout(

33 ctx_id,
34 GDL_TASK(vec_add_task),
35 L4_cmd);

37 // Copy output from device DRAM to host
38 gd1l_mem_cpy_from_dev(out, cmd.data.mem_hndl_out, out_size);

(a) APU host code.

1 static int vec_add(struct program_data xdata) {

2 // convert mem handles to device DRAM pointers

3 void *vecl_L4ptr =

4 gal_mem_handle_to_apu_ptr(data->mem_hndl_vec1);
5 uint16_t *vec2_L4ptr =

6 (uint16_t *)gal_mem_handle_to_apu_ptr(

7 data->mem_hndl_vec2);

8 uint16_t *out_L4ptr =

9 (uint16_t *)gal_mem_handle_to_apu_ptr(

10 data->mem_hndl_out);

1 // move data from device DRAM to L1

12 direct_dma_l4_to_11_32k(GVML_VM_@, vecl_L4ptr);
13 direct_dma_l4_to_11_32k(GVML_VM_1, vec2_L4ptr);
14 // load to VR, perform addition, store to L1

15 gvml_load_32(vecl_vr, GVML_VM_0);

16 gvml_load_32(vec2_vr, GVML_VM_1);

17 gvml_add_u16(result_vr, vecl_vr, vec2_vr);

18 gvml_store_16(GVML_VM_3, result_vr);

19 // move data from L1 to device DRAM

20 direct_dma_11_to_14_32k(out_L4ptr, GVML_VM_3);
21 return 0;

22 }

24 GAL_TASK_ENTRY_POINT(vec_add_task, in) {

25 struct program_cmd *cmd = (struct program_cmd *)in;
26 gvml_init_once();
27 return vec_add(&cmd->data);
28 }
(b) APU device code.

Figure 5: Simple vector addition code demonstrating APU
programming model.

bitwise, trigonometric, and min/max operations. Once computa-
tions are complete, the device program transfers data back to device
memory.

The GVML library is implemented using APU microcode in-
structions. APU microcode instructions directly operate on the

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Table 3: Notations

Notation Description Notation Description
d Data size in bytes BW Memory bandwidth
r VR group size s Subgroup size
o Lookup table size C Constant

microarchitectural states listed in Table. 2. An APU programmer
can implement a different vector abstraction with microcode in-
structions. For example, Golden et al. [19] implemented a RISC-V
vector abstraction using APU microcode. In this work, we use the
abstractions provided by GVML to focus on optimizing performance
through these data movement and computation operations.

3 Analytical Framework

We propose a flexible analytical framework to model performance
characteristics of compute-in-SRAM platforms. This framework
parameterizes critical architectural factors, including computation
latency, data movement bandwidth, and communication patterns
with potentially non-uniform costs. Such generalization enables
applicability across various compute-in-SRAM architectures, aiding
in performance analysis and optimization strategies beyond specific
device implementations.

3.1 Applicability and Assumptions

This analytical framework targets compute-in-SRAM system mod-
els as illustrated in Fig. 1. The model assumes a PCle-based acceler-
ator with a multi-level memory hierarchy and a vector processor
abstraction, where data movement costs are non-uniform across
memory levels and within vector registers. While the framework is
validated using the GSI APU, it is not limited to this device. It can
be extended to other compute-in-SRAM platforms that follow the
same system model by deriving the necessary parameters through
profiling.

Table 3 summarizes notations used throughout the framework.
Tables 4 and 5 provide generic models of latency for data movement
and computation operations, respectively. Framework validation
against measured latencies on a real device is discussed in Sec-
tion 5.2.2.

3.2 Data Movement

Effective data movement is crucial for compute-in-SRAM systems,
particularly in data-intensive applications. Below, we discuss key
data movement paradigms typically supported by these architec-
tures.

3.2.1 DMA Transfers. Direct Memory Access (DMA) operations
facilitate efficient bulk data transfers within compute-in-SRAM
platforms. DMA latency generally scales linearly with transfer size,
captured by the model Tppa = d/BW + Tipit, where d is data size,
BW is bandwidth, and Tj,;; is a fixed initialization overhead. While
DMA provides high throughput for continuous data movement,
off-chip memory bandwidth constraints can limit performance for
very large data sizes.

3.2.2  Programmable I/0 (PIO). PIO enables fine-grained, irregular
data access patterns. The latency of PIO transfers typically scales
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Table 4: Data movement analytical framework

Table 5: Computation analytical framework

Execution Time (cycles)

Execution Time (cycles)

Operation Description Analytical Meas. Operation Description Analytical Meas.
dma_14_13 L4—L3 DMA d/BW + Tiir  0.19d + 41164 and_16 16-bit bit-wise and Tand 12
dma_14_12 L4—L2 DMA d/BW + Tinit 0.63d + 548 or_16 16-bit bit-wise or Tor 8
dma_12_11 L2—L1 DMA, 16-bit x 32K Tia—n1 386 not_16 16-bit bit-wise not Thot 10
dma_14_11 L4—L1 DMA, 16-bit x 32K Tt 22272 xor_16 16-bit bit-wise xor Txor 12
dma_11_14  L1—L4 DMA, 16-bit x 32K T4 22186 ashift int16 arithmetic shift Tash 15
pio_ld PIO load, L4—VR 1 Toio 14 57n add_u16 uint16 element-wise addition Tuadd 12
pio_st PIO store, VR—L4 n- Tpioist 61n add_s16 int16 element-wise addition Tsadd 13
Tookup Lookup L3 w/ index VR C-o +7Tinit 7.150 + 629 sub_u16 uint16 element-wise subtraction Tusub 15
Toad, store VRoLI load store T Tot 29 sub_s16 intl? element-'wise subtraction Tssub 16
cpy VROVR element-wise copy Tepy 29 popcnt_16 1.6-b1t population Fount o Tpopent 23
cpy_subgrp  Copy VR subgroup to group Tepy sap 82 mul_ul6 'umtlé element-\ylse mul.tlphca‘twn Tumul 115
cpy_imm Broadcast an immediate to VR Tepy imm 13 mul_s16 int16 element-w15§ multlp}lcfitlofl Tsmul 201
shift_e(k)  Shift VR cntries to head/tailby k.~ C -k 373k mul_f16 floatl6 element-wise multiplication - Timul 7
shift_e(4k) Intra-bank shift VR entriesby 4-k C+k 8+k d}v,m 6 }nnth element-v}rlse fily{51on Tudiv 664
div_s16 int16 element-wise division Tsdiv 739

*In the analytical framework, we refer to the device DRAM as L4 memory. eq_16 16-bit element-wise equal Teq 13
gt_ul6 uint16 element-wise greater than Tugt 13

1t_ul6 uint16 element-wise less than Tult 13

1t_gf16 gsi float16 element-wise less than Tit 45

with the number of individual load or store operations, modeled as ge_ul6 uint16 greater than or equal Tuge 13
Tp10 = n + Tyccess» where n is the operation count. Though flexible, le_u16 uint16 less than or equal Tule 13
PIO incurs higher overhead compared to DMA, making it suited recip-ute uint16 element-wise reciprocal Treetp 735
exp_f16 float16 exponential Texp 40295

primarily for non-contiguous or sparse data transfers. sin_fx fixed-point sine Tyin 761
cos_fx fixed-point cosine Teos 761

3.2.3  Indexed Lookup and Element-wise Operations. Indexed lookups count_m count marked entries Tent_m 239

handle irregular, scatter-like data transfers from higher memory
levels to local vector registers (VR). The lookup latency grows pro-
portionally with table size (), formulated as Tiookup = C - 0 + Tinit,
highlighting the necessity for careful indexing and data layout
optimization. Element-wise copy operations, such as scalar broad-
casting and VR-to-VR transfers, execute efficiently due to parallel
hardware mechanisms, typically exhibiting constant-time latencies.
Such operations are essential for data initialization and broadcast-
ing in parallel workloads.

3.24  Vector Register (VR) Shifts. Intra-vector register shifts rear-
range data locally within VRs without accessing external memory,
incurring latency proportional to the shift magnitude, modeled by
Tihift e = C - k. Minimizing intra-VR shifts through optimized data
layouts can significantly improve overall performance.

3.3 Computation

On compute-in-SRAM platforms, vectorized arithmetic, logical, and
comparison operations typically execute in constant time due to
their inherent parallel execution. Therefore, we summarize their
notation and provide representative latency measurements obtained
from the GSI APU in Table 5.

Reduction operations aggregate elements within vector regis-
ters, such as summation or finding extrema. Such operations of-
ten employ subgroup-based hierarchical reduction strategies to
exploit parallelism. However, due to hardware constraints, inter-
subgroup reductions may have non-linear costs and can be signifi-
cantly higher than intra-subgroup operations. A generic cost model
for subgroup-based reductions can be expressed as:

Ty add(r,5) = p3(logy 5)* + pa(logy, 5)° + p1 log, s + po,
p3=as- logz r+ ﬁg, p2=az- logz r+ ﬁz, (l)
p1:a1'10g2r+ﬁ1, p0:a0~10g2r+ﬂ0.

add_subgrp_s16 int16 add sub groups in each group Eq.1 -

1 framework = LatencyEstimator() # Initialize analytical framework

2 with framework.ctx():

3 total_data_size = 1024 * 1024 % 256 % 3

4 tile_data_size = 8 * 1024 % 48 # Size of one tile across 48 VMRs
5 tile_num = int(total_data_size / tile_data_size)

6 for tile in range(tile_num):

7 for vmr in range(48):

8 for t in range(2):

9 fast_dma_l4_to_12(32 * 512) # L4 to L2 DMA

10 direct_dma_12_to_11_32k() # L2 to L1 DMA
11

12 for vmr in range(48):

13 gvml_load_16()

14 for subgrp in range(8):

15 gvml_cpy_subgrp_16_grp(8192, 1024)

16 gvml_create_grp_index_u16()

17 gvml_cpy_imm_16()

18 for hist_grp in range(8):

19 gvml_cpy_16_msk() # Masked copy
20 gvml_sr_imm_16() # Shift right by immediate
21 gvml_eq_16()

22 gvml_cpy_from_mrk_16_msk()

23 .

24

25 for res_vr in range(8):

26 gvml_store_16()

27 direct_dma_l1_to_14_32k()

28 latency = framework.report_latency() # Estimate total latency
29 print(f"Latency: {latency} us")

Figure 6: An example of modeling application latency with
the analytical framework. We developed a Python function
library with an interface similar to the GSI-provided C++ API.
This example models the latency of the Histogram applica-
tion from the Phoenix benchmark suite [41].

The cubic term emerges due to the multi-level shifting, alignment,
and accumulation operations inherent in hierarchical reductions,
whose complexity grows non-linearly as subgroup size increases.
Using logarithms (log, s and log, r) in the model is natural since
these operations typically organize data aggregation in stages that
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halve the subgroup size at each step, indicating a logarithmic rela-
tionship. The polynomial coefficients po, p1, p2, p3 themselves de-
pend logarithmically on the group size (r), parameterized by experi-
mentally determined constants «;, f;. This generalized formulation
allows modeling of complex, non-linear hardware behavior com-
mon in hierarchical reduction operations.

3.4 Framework Implementation

We have developed a Python function library that mirrors the inter-
face of the GSI-provided C++ AP, enabling programmers to model
arbitrary APU programs. The analytical framework interprets these
programs and reports the total latency. Fig. 6 shows a code snippet
modeling the Histogram application from the Phoenix benchmark
suite [41].

3.5 Framework Implications

Our analytical framework highlights general performance trends
across compute-in-SRAM architectures. Specifically, element-wise
computations exhibit low latency and efficiently exploit parallel
hardware. Conversely, large-scale reduction operations and certain
intra-vector data movements can become significant bottlenecks.
DMA transfers outperform PIO for bulk movements but lack flex-
ibility for sparse data access. Thus, achieving high efficiency on
compute-in-SRAM platforms requires careful optimization of data
movement strategies, data layouts, and computational structures
aligned with underlying hardware characteristics.

4 Optimizing Realistic Workloads on
Compute-in-SRAM

Compute-in-SRAM provides substantial advantages in data paral-

lelism and energy efficiency. However, it also introduces specific

challenges and opportunities for optimization. Here, we use binary

matrix multiplication as a motivating example to illustrate three

key optimizations for compute-in-SRAM devices.

4.1 Motivating Example

Binary matrix multiplication is a crucial kernel for efficient ma-
chine learning, supporting workloads such as binary neural net-
works [50, 51] and binarized transformers [31, 46]. Compute-in-
SRAM platform is a natural fit for this kernel due to its efficiency
and speed in logical operations and integer addition. However, it is
not easy to achieve high performance without careful consideration
of data layout and data movement.

In the motivating example shown in Fig. 7, the input matrices
A (M,K) and B (K, N) are bit-packed into uint16 types along the
K-axis. The binary matrix multiplication produces an output matrix
C (M, N) in int16 type. The algorithm is depicted in Fig. 7(a). To
implement this inner-product algorithm on an ultra-long vector
processor, the baseline approach unrolls loop j, leading to the data
layout illustrated in Fig. 7(c). We refer to this loop mapping scheme
as spatial reduction vector mapping, as the reduction sum occurs
spatially within the VR. Let the VR length be | = 32768. We consider
the device DRAM as off-chip memory, assuming matrix B fits in L1,
the baseline operational intensity (OI) is:
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M-N-K- -«
oI = : 2
(MK - |I/K] + KN + MN) - sf(u16)
where |I/K| is the duplication factor of matrix A due to loop j
unrolling, « is the number of logical and arithmetic operations
on each scalar, and sf() denotes size_of (). Matrix A rows are
duplicated in DRAM—L2 and moved to L1, with a run-time cost of:

= I%V(fs)wm) : H M+M-Too . ()
We assume matrix B is stored in a column-major layout in the
device DRAM, and it fits in L1, then the run time cost of moving
matrix B is given by:

Ta

N
Ig = WKl Tig—l1- 4)

For non-contiguous results in VR C, PIO transfers each element to
L4, with a cost of:

Tc=M-N- Tpio_st ©)

The compute run-time cost is:

N
Tvmac = m “ (Txor + Tpopent + Tash + Tssub + ng_add (K, 1)) (6)

and the total run-time cost is the sum of the data movement costs
and the compute cost.

4.2 Communication-Aware Reduction Mapping

As outlined in the analytical framework: (1) intra-VR operations are
more costly than inter-VR operations, and (2) using DMA to trans-
fer the same amount of data is significantly cheaper than using PIO.
Guided by these observations, we implement binary matrix multi-
plication as scalar-vector product (SVP) [13]. As shown in Fig. 8, the
reduction axis is mapped to the more efficient element-wise opera-
tions at each k loop iteration. We refer to this loop mapping scheme
as temporal reduction vector mapping. Additionally, the output
data layout becomes contiguous, enabling fast DMA. Therefore, the
compute run-time cost and matrix C movement cost reduce to:

Tmac = (Txor + Tpopcnt + Tash + Tosub + Tsadd) ' W -K, (7)
M

Te = —— " Tiy—n1- 8

¢ =N Teon ®)

Since all bit processors operate in parallel, higher VR occupancy
translates to improved computational efficiency. To achieve this, we
unroll loop i to fully utilize the VR, as shown in Fig. 9(a). Loop i is
specifically chosen for unrolling to maintain the temporal mapping
of loop k. Consequently, this approach results in two levels of data
duplication in the VR layout, as shown in Fig. 9(b): the scalars from
A are duplicated due to the spatial unrolling of loop j, and rows
from B are duplicated due to the spatial unrolling of loop i. This
data layout enables opportunities for data reuse and memory access
coalescing. We implement the scalar duplication of matrix A as a
lookup operation from L3. Therefore, the OI for the scalar-vector
product becomes



MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

A = uintlée [M, K]
B = uintlée [K, N] inner loop k middle lOOpj
C = intl6 [M, N] AV VNV ANV

Niansong Zhang, Wenbo Zhu, Courtney Golden, Dan Ilan, Hongzheng Chen, Christopher Batten, and Zhiru Zhang

middle loop j
ANAAAR

for i in range(M):

for j in range(N):

outer loop i
AL

for k in range(K):

outer loop i

[ AVAVIYAVAN

ve = A[i, k] * Blk, j]
vl

popcount (v0) A B
Cli, j1 += 16 - vl << 1

(a) Binary matrix multiply.

(b) Inner-product data access.

(c) Data layout on vector registers.

Figure 7: Motivating example: binary matrix multiply implemented as an inner-product algorithm on APU.
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(b) Scalar-vector product maps reduction to inter-VR operations (temporal)

Figure 8: Reduction axis spatial vs. temporal mapping.
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(a) Spatially unroll loop i.
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(b) VR data layout for SVP with spatially unrolled loop i.

Figure 9: Spatially unrolling i-axis fully utilizes the VR, en-
ables inter-VR reduction, and achieves a contiguous layout
of results.

B M-N-K-a

" (MK +NK - |I/N] +MN) - sf(u16)
Assuming matrix A is stored in row-major order, the run-time
cost of moving it involves transferring from L4 to L3, followed by
duplication via lookup:

oI 9

TA=M'K/BW+Tinit+Tlookup(N'K) . K (10

M
LI/N]

For B, loop i spatial unrolling incurs duplication of factor [I/N],
the run-time cost of moving matrix B becomes

N - sf(u16)

Tr =
B BW

I
+Tinit) . \‘NJ ‘K+K-Tp-n (11)

4.3 DMA Coalescing

Once we optimize the data layout, a new bottleneck of data dupli-
cation emerges. As seen in Fig. 9, one form of data duplication is
that of duplicating a chunk of data across an entire VR. In Fig. 10(a),
we see that DMA transactions can be used for data duplication.
However, this approach is bandwidth-inefficient since accessing
off-chip memory incurs high latency, and multiple DMA transac-
tions add initiation overhead. Because the same chunk of data from
B is accessed in each iteration of loop k, we can coalesce these
DMA accesses to avoid redundant data movement. Specifically, we
combine DMA transactions on multiple rows of B into a single
transaction, minimizing initiation overhead.

To implement this, we introduce a reuse VR to store the initial
DMA result. Using the subgroup copy capability, each row of B is
arranged in a subgroup and copied to fill the VR at each iteration of
loop k. Notably, subgroup copy can also target a portion of the VR,
providing flexibility when duplicating only part of the data. This
optimization results in a lower run-time cost of moving matrix B:

K-N

g = ’rT“ “Tasn +K - Tcpy_sgp (12)

Since DMA coalescing also removes duplicate data movement from
L4, the Ol is also improved:

M-N-K -«

oI = .
(MK + NK + MN) - sf(u16)

(13)

4.4 Broadcast-Friendly Data Layout

After removing the redundant DMA operations, the bottleneck
shifts to the lookup operation used to broadcast scalars in A. As
shown in Table 4, the lookup latency increases with the size of
the lookup table, prompting us to reduce its size. Fig. 11 illustrates
the lookup operation, where three scalars are broadcast each time,
highlighted by the blue-filled boxes. In the row-major layout shown
in Fig. 11(a), the broadcast window initially covers indices 0, 6, and
12, and then moves to indices 1, 7, and 13 in the next iteration. Since
the lookup table must be a contiguous chunk of memory, the lookup
table size is at least 18 to broadcast the first three rows. To reduce
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(b) With DMA coalescing.

Figure 10: Coalescing DMA - leverage subgroup copy to re-
move redundant data access and increase data reuse.

the lookup table size, we change the data layout to a broadcast-
friendly format, shown in Fig. 11(b). The broadcast window initially
covers indices 0, 1, 2, and then moves on to 3, 4, 5. Therefore, the
lookup table sizes can be reduced to 3. We express this data layout
as dimension sizes and strides, where decomposed sizes and strides
are expressed as tuples, as shown in Fig. 11. This format is proposed
by Graphene [23]. For the motivating example, this optimization
reduces the lookup table size for broadcasting matrix A from K - N
to N, thereby reducing the cost of data movement to:

Tp =M - K/BW + Tipjt + Tlookup(N) : K. (14)

LI/N]

In summary, we demonstrate how these three key optimizations
for data layout and movement reduce both input/output transfer
costs and computation costs for compute-in-SRAM devices.

5 Evaluation

Using the GSI APU as a commercial example, this section validates
the analytical framework and evaluates the real-world performance
of compute-in-SRAM with the proposed optimizations. First, a la-
tency breakdown of binary matrix multiplication highlights the
individual contributions of each optimization. Next, a benchmark
study validates the analytical framework and identifies workload
characteristics well-suited for in-SRAM computing. Finally, an end-
to-end retrieval-augmented generation study on large corpora com-
pares the performance and energy efficiency of compute-in-SRAM
against CPU and GPU platforms.

We use the GSI Leda-E APU (500 MHz clock frequency), an In-
tel Xeon Gold 6230R CPU (2.1 GHz, 1.6 MB L1 cache, 52 MB L2
cache, 71.5 MB L3 cache), and an NVIDIA A6000 GPU for compar-
ison. Latency measurements on the GSI APU are obtained using
control processor cycle counts. Energy profiling is performed us-
ing a Texas Instruments UCD9090 voltage monitor and Renesas
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ISL8273M power modules on board, which provide point-of-load
regulation and current telemetry.

5.1 Binary Matrix Multiplication

We use a 1024 x 1024 binary matrix multiplication kernel as a
microbenchmark to analyze and demonstrate the impact of the
proposed optimizations.

Fig. 12 illustrates the latency breakdown from the baseline im-
plementation to the optimized versions. Key operations include: LD
LHS / RHS, loading matrices from off-chip memory to L1 via DMA,
PIO, or lookup; VR Ops, on-chip operations like subgroup copies
and computations; and ST, storing results back to off-chip memory.

We use an inner-product algorithm as the baseline implementa-
tion (described in Section 3.2), which is bottlenecked by result data
movement due to costly PIO stores for non-contiguous outputs.
Applying communication-aware reduction mapping (opt1) reduces
this overhead by enabling efficient DMA transfers, though it in-
creases RHS matrix loading time due to data duplication. Adding
DMA coalescing (opt2) further improves LHS loading by replacing
PIO with faster DMA, at the cost of additional vector register oper-
ations for subgroup copies. Introducing a broadcast-friendly data
layout (opt3) also accelerates LHS loading, but the overall bottle-
neck remains in the result write back. When all three optimizations
are combined, results become contiguous and can be transferred
using DMA. We also apply DMA coalescing for the RHS matrix

using k-axis data packing and adopt a broadcast-friendly format
[ (32,32) 64

(1, 2048) 32
to-end latency of 12.0 ms, an 18.9X improvement over the baseline

latency of 226.3 ms.

This result demonstrates that while individual optimizations
may yield modest speedups, they enable opportunities for further
improvements. For example, communication-aware reduction map-
ping enables DMA coalescing to RHS matrix loading and facilitates
the use of a broadcast-friendly layout for the LHS matrix. Ultimately,
combining all optimizations leads to substantial performance gains.

] for the LHS matrix broadcasting, which yields an end-

5.2 Phoenix Benchmarks

We evaluate the optimized GSI APU performance using the Phoenix
Benchmark suite [41], comparing it against two baselines: single-
threaded and multi-threaded CPU implementations. We select Phoenix
for its data-intensive benchmarks and its prior use in compute-in-
SRAM studies such as CAPE [11]. The official Phoenix benchmark
provides optimized CPU implementations, either single-threaded
or multi-threaded. We use the official repository?, with the multi-
threaded version configured for up to 16 threads using the MapRe-
duce programming model. Table 6 summarizes the eight applica-
tions in the suite, including their CPU instruction count (measured
with Valgrind) and APU pCode instruction count (reported by the
Vector Command Unit). Input sizes range from 10 MB to 1.5 GB.
We measure the total APU kernel latency, covering data move-
ment from device memory to L1 and back. We achieve optimized
performance on these benchmarks by applying all proposed data
movement and data layout optimizations.

Zhttps://github.com/kozyraki/phoenix
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Figure 11: Broadcast-friendly data layout example - (a) a row-major data layout requires a lookup table of size 18. (b) A
broadcast-friendly data layout only requires a lookup table size of 3.
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Figure 12: Binary matrix multiplication runtime breakdown
with different optimizations. Opt1: communication-aware
reduction mapping. Opt2: DMA Coalescing. Opt3: broadcast-
friendly data layout.

Table 6: Statistics of the phoenix benchmark suite.

Application Input Size #Inst. on CPU #Inst. of APU pCode
Histogram 1.5GB 4.8 billion 110.7 million
Linear Regression 512MB 3.8 billion 1.6 million
Matrix Multiply — 1,024x1,024 22.6 billion 69.7 million
Kmeans 128k 0.4 billion 0.04 million
Reverse Index 100MB 4.8 billion 11.0 million
String Match 512MB 101.8 billion 0.09 million
Word Count 10MB 0.7 billion 0.17 million

Figure 13 compares the latency of the APU implementations
against CPU baselines. Relative to the single-threaded CPU, the
APU implementation with all optimizations applied achieves an
average speedup of 41.8X (mean), 14.4X (geometric mean), and
a peak speedup of 128.3X. Compared to the multi-threaded CPU
execution, the APU achieves an average speedup of 12.5X (mean),
2.6X (geometric mean), and a maximum speedup of 68.1x.

5.2.1 Results Analysis. The APU implementations shown in Fig. 13
include a baseline with no optimizations, as well as versions ap-
plying only communication-aware reduction mapping (Opt1), only
DMA coalescing (Opt2), only broadcast-friendly data layout (Opt3),
and all three optimizations together (APU all opts). Individually,
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Table 7: Phoenix benchmark suite latency measured vs. ana-
lytical framework.

Application Meas. Latency (ms) Predicted (ms) Error
Histogram 1644.8 1650.1 +0.32%
Linear Regression 923 94.5 +2.3%
Matrix Multiply 4213 402.5 -4.5%
Kmeans 1.6 1.4 -6.2%
Reverse Index 182.0 181.1 -0.49%
String Match 90.9 92.6 +1.8%
Word Count 3.2 3.1 -3.1%

communication-aware reduction mapping provides large gains in
workloads involving comparison or distance computation over
large volumes of data, such as kmeans, reverse index, string
match, and word count. DMA coalescing reduces data movement
costs in cases where data duplication is required (e.g., matmul) or
where input data can be packed to improve vector register utiliza-
tion (e.g., linear regression, string match). Broadcast-friendly
data layout is beneficial when scalar values are broadcast via lookup
operations, such as in kmeans, although these opportunities often
emerge only after other optimizations have been applied. Over-
all, we observe that applying all three optimizations consistently
yields greater performance improvements than applying any single
optimization in isolation.

The fully optimized results on the benchmark suite suggest that
compute-in-SRAM platforms are best suited for a specific subset of
applications. The optimized APU implementation outperforms a
multi-threaded CPU on linear regression, k-means, string match,
and word count: applications characterized by high data parallelism
and minimal intra-VR computation. With the proposed optimiza-
tions, most arithmetic operations are efficiently mapped to inter-VR
element-wise instructions, and data duplication overhead is reduced.
In contrast, other applications including histogram, matrix multiply,
reverse index, still involve frequent intra-VR operations and fine-
grained element access due to their algorithmic nature, limiting the
performance benefits from compute-in-SRAM acceleration.

5.2.2  Analytical framework validation. We validate the analytical
framework using the Phoenix Benchmark suite by comparing the
measured latency with the predicted latency. Table 7 summarizes
the results across the eight benchmarks. On average, the analytical
framework achieves 97.3% accuracy, with a maximum error of 6.2%.
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Figure 13: Latency comparison across workloads from the Phoenix Benchmark Suite, normalized to the single-threaded Intel
Xeon Gold CPU baseline. Opt1: communication-aware reduction mapping. Opt2: DMA Coalescing. Opt3: broadcast-friendly

data layout.

The primary source of error arises from the model’s inability to
account for memory subsystem details or cache behavior.

5.3 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) improves language model
responses by retrieving relevant knowledge during generation [16,
34]. It embeds queries and documents, then performs vector simi-
larity search [42]. Large corpora often require CPUs/GPUs to use
Approximate Nearest Neighbor Search (ANNS), trading accuracy
for latency and memory. This can cause significant accuracy loss
(22%-53% for L1ama-8B and Llama-80B [40]) compared to Exact
Nearest Neighbor Search (ENNS). Compute-in-SRAM platforms,
with massive parallelism, can accelerate ENNS efficiently, avoiding
this compromise. We study optimized compute-in-SRAM ENNS for
RAG, focusing on latency and energy benefits.

5.3.1 Experimental Setup. We implement the ENNS RAG retrieval
process on the GSI APU. However, the device’s limited DDR band-
width (23.8 GB/s) would unequivocally create an off-chip memory
bottleneck, hindering a fair performance comparison. To mitigate
this, we model a more representative off-chip memory system by
simulating HBM2e memory (16 GB, 2 ranks, 8 channels, 1.6 GHz,
yielding 380-420 GB/s peak bandwidth) using Ramulator 2 [35] and
DRAMPower 5.0 [12]. The compute-in-SRAM performance results
presented incorporate these simulated off-chip memory timings,
while all other components—including on-chip data movement,
computation, and system overheads are measured directly on the
GSI APU hardware.

We use Llama3.1-8B [20] with 16-bit number format as the
generation model and sample questions from the Natural Questions
(NQ) dataset [28]. The evaluation system comprises two GPUs (one
dedicated to generation and the other to retrieval), a CPU, and a GSI
APU. Generation runs on a single GPU, and retrieval is performed
using ENNS across three corpus sizes: 10 GB, 50 GB, and 200 GB,
on CPU, GPU, and a compute-in-SRAM accelerator. Each corpus
is chunked into segments of 16,384 tokens. As a result, the 10 GB
corpus contains 163K chunks (120 MB embedding size), the 50 GB
corpus contains 819K chunks (600 MB embedding size), and the
200 GB corpus contains 3.3M chunks (2.4 GB embedding size).
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For both the GPU and compute-in-SRAM accelerator, corpus
embeddings are transferred to device memory once at the start of
the workload. All subsequent queries are served without reloading
the embeddings. Meanwhile, the corpus chunks reside in the CPU’s
main memory. In the results that follow, we report the time-to-
interactive latency on each platform—also referred to as time-to-
first-token latency—which serves as the primary metric for eval-
uating the interactivity of the LLM inference system. All latency
results are averaged across 10 queries.

5.3.2  Software Configurations. We evaluate RAG performance on
the CPU and GPU using FAISS [14], a widely adopted library for
efficient similarity search and clustering of dense vectors at scale.
Our experiments use FAISS v1.7.2 to run ENNS inner product search
with IndexFlat, leveraging AVX512 intrinsics and OpenMP-based
multithreading on the CPU.
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Figure 14: Inference time breakdown of CPU, GPU, vs.
compute-in-SRAM with and without optimizations. The
Llama3.1-8B generative model runs on a dedicated GPU. Opt1:
communication-aware reduction mapping. Opt2: DMA Coa-
lescing. Opt3: broadcast-friendly data layout.

5.3.3 End-to-End RAG Performance. As shown in Fig. 14, retrieval
accounts for an increasing portion of end-to-end inference time
as corpus size scales (CPU-based retrieval: 4.3% at 10 GB — 50.5%
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Figure 15: Top-5 retrieval process energy comparison with
GPU. Results are measured on GSI Leda-E APU and NVIDIA
A6000 GPU.

at 200 GB). We optimize inner-product search on the compute-in-
SRAM accelerator via communication-aware reduction mapping
and a broadcast-friendly query layout, mapping reductions to inter-
VR instructions. Retrieval speedups over CPU are 6.3%/4.8X/6.6X
at 10/50/200 GB, yielding 1.05%/1.15%/1.75X% end-to-end gains. Ver-
sus an unoptimized compute-in-SRAM baseline, retrieval latency
reduces up to 6.4X. The optimized system attains GPU-level end-
to-end latency, underscoring the effectiveness of retrieval-side ac-
celeration.

5.3.4 Optimization Impact and Retrieval Latency Breakdown. APU
retrieval latency for RAG at 10/50/200 GB is 21.8/129.5/539.2 ms
without optimization, comparable to CPU performance but slower
than GPU. Communication-aware reduction mapping (opt1) ad-
dresses output data movement bottlenecks, cutting retrieval latency
to 4.0/21.0/86.1 ms. DMA coalescing (opt2) and a broadcast-friendly
layout (opt3) give modest standalone gains but compound with
optl; with all three, latency drops to 3.9/20.6/84.2 ms. Figure 14
shows that while opt2 and opt3 have limited standalone effect, they
enhance optl by improving data movement and vector utilization.

As shown in Table 8, most of the optimized compute-in-SRAM
retrieval speedup comes from the distance calculation stage. The key
is communication-aware reduction mapping—which maps inner-
product reductions to inter-VR ops to reduce intra-VR movement
and improves alignment (e.g., embedding-load time drops from
8.2ms to 6.1 ms at 200 GB). A broadcast-friendly layout further
lowers query-broadcast overhead and boosts vector reuse, adding
additional compute-time savings.

5.3.5 Energy Efficiency Comparison with GPU. We benchmark top-
5 retrieval on our optimized compute-in-SRAM accelerator against
an NVIDIA A6000 GPU, measuring GPU energy with nvidia-smi.
As shown in Fig. 15, the APU is 54.4X-117.9X more energy-efficient
than the GPU. At 200 GB, APU energy is dominated by static (71.4%),
followed by compute (24.7%), DRAM (2.7%), other (1.1%), and cache
(0.005%); smaller corpora show similar distributions, indicating
static power dominates while compute scales modestly with work-
load size.

6 Related Work

Compute-in-Memory architectures hold the promise of being a
highly energy-efficient approach for data-intensive applications by
reducing data movement between memory and compute units. The
Intelligent RAM (IRAM) [36-38] was one of the earliest efforts to
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Table 8: Compute-in-SRAM retrieval latency breakdown
across corpus size with and without optimizations.

Compute-in-SRAM No Opt  Compute-in-SRAM All Opts

Corpus Size 10 GB 50 GB 200 GB 10 GB 50 GB 200 GB
Load Embedding* 0.4 ms 2.0 ms 8.2ms 03ms 15ms 6.1 ms
Load Query 10 ps 11 ps 10 ps 62 ps 62 ps 65 pus
Calc Distance 21.0ms 126.5ms 5279ms 3.1ms 18.0 ms 74.6 ms
Top-K Aggregation 69 ps 325 ps 1.30 ms 72 ps 317 ps 1.24 ms
Return Top-K 14 us 14 ps 14 us 15 ps 16 ps 16 us
Total 21.8ms 1295ms 5392ms 3.9ms 20.6ms 84.2ms

* Load embedding latency reflects simulated HBM2e performance; all other values are
measured on GSI APU hardware.

integrate computational logic directly into DRAM, demonstrating
the potential of coupling memory with vector processing. Build-
ing on this idea, VIRAM [17] introduced a full vector processor
with embedded DRAM to accelerate bandwidth-bound workloads.
DIVA [4] brought SPMD (single-program multiple-data) models to
Processing-in-Memory (PNM), enabling more flexible parallelism,
while FlexRAM [5, 10] extended this model within embedded DRAM
systems, highlighting the importance of programmable abstractions
for general-purpose compute-in-memory platforms.
Compute-in-SRAM architectures has been explored to realize
boolean [2, 3, 8, 26], multiply-and-accumulate (MAC) [6, 9, 24, 25,
29, 30, 32, 45, 48], and associative computing [15, 21, 39, 43] mech-
anisms. Jeloka et al. [26] introduced bit-line compute techniques in
SRAMs, enabling bitwise logical operations between rows. Compute
caches [1] applied bit-line compute to transform chip multiproces-
sor (CMP) caches into logical compute engines. SRAM-based tech-
nologies have also proven effective for in-situ MAC operations due
to the high on/off impedance ratio of SRAM bit cells [9, 27, 32, 49].
Associative computing, which uses primitives like search and multi-
write to achieve in-memory compute [15, 43], has seen renewed
interest with modern technologies. CAPE [11], for example, demon-
strates a CMOS-based associative engine with high programmabil-
ity and low area cost.

APU Microbenchmarking. Prior work mapped RISC-V vector
abstractions to the APU [19], accelerated genomics kernels [18], and
implemented cryptographic primitives [33], but these handtuned
microkernels highlight architectural features rather than system-
level behavior. In contrast, we evaluate end-to-end Phoenix and
RAG workloads, providing detailed performance characterization,
and analysis of realistic compute and memory demands.

7 Conclusion

This work provides a comprehensive evaluation of compute-in-
SRAM devices under realistic workloads. Our analytical framework
highlights key optimizations for general-purpose in-SRAM com-
puting. With communication-aware reduction mapping, coalesced
DMA, and broadcast-friendly data layouts, we accelerated RAG re-
trieval stage by 4.8X-6.6x and reduced time-to-interactive latency
by 1.1X-1.8% over an optimized CPU baseline. Our system matched
the performance of an NVIDIA A6000 GPU while consuming 54.4X—
117.9% less energy, underscoring the practicality and efficiency of
compute-in-SRAM architectures.
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Characterizing and Optimizing Realistic Workloads on a Commercial Compute-in-SRAM Device

A Artifact Appendix

A.1 Abstract

This artifact contains GSI APU programs, profiling results, HBM
simulation traces, and the analytical framework described in Sec. 3.4.
It reproduces the key results presented in the paper through six
experiments, each corresponding to a specific figure or table:

Binary matrix multiplication (Fig. 12)
Phoenix benchmark (Fig. 13)

Analytical framework validation (Table 6)
End-to-end RAG inference (Fig. 14)

RAG energy analysis (Fig. 15)

RAG latency breakdown (Table 8)

A.2 Artifact Check-list (Meta-information)

Program: GSI LedaG Tools, Version 100.12.0.1.1000.25

o Compilation: GSI Device Library (GDL), GSI APU Library (GAL),

GSI Vector Math Library (GVML), gcc, meson

Hardware: GSI Gemini APU Leda-E PCIe board

Execution: bash, python3

Metrics: Measured latency, speedup against CPU/GPU baselines,

analytical prediction error, energy consumption

e Output: Reproduces Fig. 12, Fig. 13, Fig. 14, Fig. 15, Table 6, and
Table 8

o Experiments: Six automated experiments matching the paper’s
figures and tables

o Disk space required: 20 GB

Setup time: None. Evaluators access the artifact via JupyterHub on

our server

Runtime: 10 minutes

Publicly available: Yes, code hosted on GitHub *

License: Apache License 2.0

Workflow automation: Jupyter Notebook

Archived (DOI): 10.5281/zenodo.16730562

A.3 Description

A.3.1  How to Access. While the artifact is publicly available, the
experiments require access to a specialized APU accelerator. We
provide access to our research server via JupyterHub at zhang-
capra-xcel.ece.cornell.edu. For login credentials, the artifact evalu-
ator should contact the authors. Access is restricted and valid only
during the artifact evaluation period.

A.4 Installation

No installation is necessary. All dependencies and data are pre-
installed and accessible via the provided JupyterHub server.

A.5 Experiment Workflow

The experiments are fully automated through a Jupyter Notebook.
After logging into the JupyterHub, the evaluator will find the
main notebook at artifact_evaluation.ipynb. This notebook
includes detailed instructions for each experiment.

The evaluator may run individual experiments using Run > Run
Selected Cells, or execute all experiments at once using Run >
Run All Cells. Each experiment invokes APU kernels, profiles

3https://github.com/cornell-zhang/apu-micro25-artifact
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execution, parses outputs, and generates figures or tables matching
those in the paper.
The six included experiments are:
(1) Binary Matrix Multiplication (1-bmatmul): Performance
breakdown across optimization levels
(2) Phoenix Benchmark Suite (2-phoenix): Speedup com-
parison across CPU, GPU, and APU backends
(3) Analytical Model Validation (3-analytical): Comparison
of model predictions and measured performance
(4) RAG End-to-End Inference (4-rag-e2e): Inference time
analysis for retrieval-augmented generation
(5) RAG Energy Analysis (5-rag-energy): Energy comparison
between GPU and compute-in-SRAM
(6) RAG Latency Breakdown (6-rag-latency-breakdown):
Latency analysis across RAG components

A.6 Evaluation and Expected Results

The artifact reproduces the key figures and tables with minor vari-
ations due to hardware and runtime effects:

Fig. 12 — Binary matrix multiplication

Fig. 13 — Phoenix benchmark speedup

Table 6 — Analytical model validation

Fig. 14 — RAG end-to-end inference

Fig. 15 — Energy analysis

e Table 8 — Latency breakdown

A.7 Notes

A demo video * is provided to assist the evaluator in reproducing
the results. It walks through the entire process step by step.

“https://youtu.be/A_By1ShFXbc


zhang-capra-xcel.ece.cornell.edu
zhang-capra-xcel.ece.cornell.edu
https://github.com/cornell-zhang/apu-micro25-artifact
https://youtu.be/A_By1ShFXbc

	Abstract
	1 Introduction
	2 GSI APU Architecture
	2.1 Architecture and Microarchitecture
	2.2 Programming Model

	3 Analytical Framework
	3.1 Applicability and Assumptions
	3.2 Data Movement
	3.3 Computation
	3.4 Framework Implementation
	3.5 Framework Implications

	4 Optimizing Realistic Workloads on Compute-in-SRAM
	4.1 Motivating Example
	4.2 Communication-Aware Reduction Mapping
	4.3 DMA Coalescing
	4.4 Broadcast-Friendly Data Layout

	5 Evaluation
	5.1 Binary Matrix Multiplication
	5.2 Phoenix Benchmarks
	5.3 Retrieval-Augmented Generation (RAG)

	6 Related Work
	7 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Notes


