
Efficiently Supporting Dynamic Task Parallelism on
Heterogeneous Cache-Coherent Systems

Moyang Wang, Tuan Ta, Lin Cheng, and Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{mw828,qtt2,lc873,cbatten}@cornell.edu

Abstract—Manycore processors, with tens to hundreds of tiny
cores but no hardware-based cache coherence, can offer tremen-
dous peak throughput on highly parallel programs while being
complexity and energy efficient. Manycore processors can be
combined with a few high-performance big cores for executing
operating systems, legacy code, and serial regions. These sys-
tems use heterogeneous cache coherence (HCC) with hardware-
based cache coherence between big cores and software-centric
cache coherence between tiny cores. Unfortunately, program-
ming these heterogeneous cache-coherent systems to enable col-
laborative execution is challenging, especially when considering
dynamic task parallelism. This paper seeks to address this chal-
lenge using a combination of light-weight software and hard-
ware techniques. We provide a detailed description of how to
implement a work-stealing runtime to enable dynamic task par-
allelism on heterogeneous cache-coherent systems. We also pro-
pose direct task stealing (DTS), a new technique based on user-
level interrupts to bypass the memory system and thus improve
the performance and energy efficiency of work stealing. Our
results demonstrate that executing dynamic task-parallel appli-
cations on a 64-core system (4 big, 60 tiny) with complexity-
effective HCC and DTS can achieve: 7× speedup over a sin-
gle big core; 1.4× speedup over an area-equivalent eight big-
core system with hardware-based cache coherence; and 21%
better performance and similar energy efficiency compared to a
64-core system (4 big, 60 tiny) with full-system hardware-based
cache coherence.

I. INTRODUCTION

Parallelism and specialization are currently the two ma-
jor techniques used to turn the increasing number of transis-
tors provided by Moore’s law into performance. While hard-
ware specialization has demonstrated its strength in certain
domains (e.g., GPUs for data parallelism and accelerators for
deep learning), general multi-threaded applications are still
better suited for multi-core processors. Hardware architects
have relied on parallelism to improve the performance of pro-
cessors for several decades, and the trend of increasing pro-
cessor core count is likely to continue. There has been a
growing interest in using a manycore approach which inte-
grates tens or hundreds of relatively simple cores into a sys-
tem to further increase hardware parallelism. Examples of
manycore processors include the 72-core Intel Knights Land-
ing [65], 64-core Tilera TILE64 [7], and 25-core Piton [47].
The manycore approach has demonstrated its potential in
achieving high throughput and energy efficiency per unit area
for multi-threaded workloads.

Hardware designers have realized that an unoptimized
hardware-based cache coherence protocol (e.g., directory-
based MESI and its variants) is difficult to scale due to di-
rectory state storage overhead, network latency overhead,
as well as design and verification complexity. Designing
a performance-, complexity-, and area-scalable hardware-

based cache coherence protocol remains an active area of
research [6, 14, 23, 25, 45, 48, 74, 75]. Another approach
to continue increasing the number of cores in manycore
systems is to sidestep hardware-based cache coherence and
adopt software-centric cache coherence [17, 35, 58, 69, 70],
software-managed scratchpad memory [5, 36], and/or mes-
sage passing without shared memory [37]. Manycore proces-
sors without hardware cache coherence have been fabricated
both in industry (e.g., 1024-core Adapteva Epiphany-V [51])
and academia (e.g., 511-core Celerity [20], 1000-core Kilo-
Core [13]). By moving away from hardware-based cache
coherence, these processors achieve exceptional theoretical
throughput and energy efficiency (due to their massive core
count), with relatively simple hardware. However, they have
not been widely adopted because of challenges posed to soft-
ware developers.

Programmers expect to use familiar CPU programming
models, especially ones that support dynamic task-based par-
allelism, such as Intel Cilk Plus [31], Intel Threading Build-
ing Blocks (TBB) [32], and OpenMP [4, 52]. These pro-
gramming models allow parallel tasks to be generated and
mapped to hardware dynamically through a software run-
time. They can express a wide range of parallel patterns,
provide automatic load balancing, and improve portability
for legacy code [46]. Unfortunately, manycore processors
without hardware-based cache coherence require program-
mers to explicitly manage data coherence among private
caches/memories and adopt a more restricted programming
model, such as explicit task partitioning [35], message pass-
ing [51], or remote store programming [20]. The difficult
programming model is arguably the primary reason why
manycore processors without hardware-based cache coher-
ence have not yet been widely accepted.

Furthermore, existing manycore processors without hard-
ware cache coherence are generally used as a discrete co-
processor, living in a separate memory space from the
main general-purpose processor (i.e., host processor). En-
abling efficient collaborative execution between the host and
the manycore processor requires significant effort to bridge
the gap between their disparate programming models and
hide the data offloading latency [66]. Recent work in het-
erogeneous cache coherence (HCC) has demonstrated that
hardware-based cache coherence protocols can be seamlessly
and efficiently integrated with software-centric cache coher-
ence protocols on chip in a unified memory address space [3].
While HCC solves the issue of data offloading by tightly in-
tegrating the host and the manycore, the programming model
challenge remains to be addressed.

Appears in the Proceedings of the ACM/IEEE Int’l Symp. on Computer Architecture (ISCA-47), June 2020

T
L1s

DIR
L2

DIR
L2

T
L1s

B

R
L1h

T
L1s

MC

DIR
L2

T
L1s

T
L1s

T
L1s

DIR
L2

T
L1s

B
L1h

T
L1s

DIR
L2

T
L1s

T
L1s

T
L1s

DIR
L2

T
L1s

B
L1h

T
L1s

DIR
L2

T
L1s

T
L1s

T
L1s

DIR
L2

T
L1s

B
L1h

T
L1s

T
L1s

T
L1s

MCMC MCMCMC MCMC

R R R R R R R

R R R R R R R R

R R R R R R R R

R R R R R R R R

...

...

...

...

...

...

...

8
 r

ow
s

Figure 1. Block Diagram of a big.TINY Manycore System with
HCC. T = in-order high efficiency tiny core; B = out-of-order high
performance (big) core; R = on-chip interconnect router; L1s = pri-
vate L1 cache with software-centric cache coherence; L1h = L1
cache with hardware-based cache coherence; DIR = directory; L2 =
shared L2 cache bank; MC = main memory controller.

In this work, we attempt to address the software challenges
of manycore processors with HCC by offering a TBB/Cilk-
like programming model with a work-stealing runtime. In ad-
dition, we propose direct-task stealing (DTS), a light-weight
hardware mechanism based on inter-processor user-level in-
terrupts, to improve the performance and energy efficiency of
dynamic task-parallel applications on HCC. We apply our ap-
proach to a big.TINY manycore architecture with HCC (see
Figure 1), which consists of a few high-performance (big)
cores with hardware-based cache coherence, and many sim-
ple (tiny) cores with software-centric cache coherence. Our
approach allows dynamic task-parallel applications written
for popular programming frameworks, such as Intel Cilk Plus
and Intel TBB, to work collaboratively on both the big cores
and the tiny cores without fundamental changes. In Sec-
tion II, we provide a general background on HCC and work-
stealing runtimes. In Section III, we describe in detail how
to implement a work-stealing runtime, the core component of
dynamic task-parallel frameworks, on HCC. In Section IV,
we describe the direct-task stealing technique to address in-
herent overheads in HCC. We also explain how DTS enables
some important optimizations in the work-stealing runtime to
improve performance and energy efficiency. In Section V,
we use a cycle-level evaluation methodology to demonstrate
the potential of our approach. We show that our tech-
niques applied to a 64-core big.TINY system (4 big, 60 tiny)
with complexity-effective HCC running 13 TBB/Cilk-like
dynamic task-parallel applications can achieve: 7× speedup
over a single big core; 1.4× speedup over an area-equivalent
eight big-core system with hardware-based cache coherence;
and 21% better performance and similar energy efficiency
compared to an optimistic big.TINY system (4 big, 60 tiny)
with full-system hardware-based cache coherence.

The contributions of this work are: (1) we provide, to the
best of our knowledge, the first detailed description on how
to implement work-stealing runtimes for HCC; (2) we pro-

pose a direct task stealing technique to improve performance
and energy efficiency of dynamic task-parallel applications
on manycore processors with HCC; and (3) we provide a de-
tailed cycle-level evaluation on our technique.

II. BACKGROUND

This section provides a background of several cache co-
herence protocols, HCC, and dynamic task parallelism. We
first characterize four representative hardware-based and
software-centric coherence protocols. We then describe
some existing work on HCC systems. Lastly, we provide a
brief overview of dynamic task parallelism exemplified by
TBB/Cilk-like programming models.

A. Hardware-Based and Software-Centric Coherence

There are two types of cache coherence protocols:
hardware-based and software-centric. In hardware-based
protocols, data coherence among private caches is han-
dled completely by hardware and transparent to software.
General-purpose processors usually support hardware-based
cache coherence protocols since they are easier to program.
In contrast, in software-centric protocols, software is in
charge of enforcing the coherence of shared data among pri-
vate caches. Software-centric cache coherence protocols are
relatively simple to implement in hardware but require more
effort from software programmers.

We use a similar taxonomy described in previous work [3]
to categorize four representative coherence protocols: MESI,
DeNovo [69], GPU-WT, and GPU-WB. A cache coherence
protocol can be described using three properties: stale inval-
idation, dirty propagation, and write granularity. The stale
invalidation property defines how and when stale data in a
private cache is invalidated so that a read of the data returns
its most up-to-date version. There are two ways to initiate an
invalidation of stale data: writer-initiated and reader-initiated.
In the first approach, a writer invalidates existing copies of
the target data in all private caches prior to writing the data.
This approach is used by hardware-based coherence proto-
cols. The other approach is called reader-initiated: a reader
invalidates potentially stale data in its private cache before it
reads the data. The dirty propagation property defines how
and when dirty data becomes visible to other private caches.
Some coherence protocols track which private cache owns
dirty data, so that the owner can propagate the data to read-
ers. This strategy is called ownership dirty propagation. Both
MESI and DeNovo take this strategy to propagate dirty data.
In contrast, GPU-WB and GPU-WT do not track the owner-
ship of dirty data. Instead, they rely on the writer to write
back dirty data. Writes can either be immediately sent to
the shared cache (i.e., write-through), or the dirty data can
be written back later using a special flush instruction. Lastly,
the write granularity property defines the unit size of data at
which writes are performed and the ownership of cache lines
is managed.

We summarize the four coherence protocols, MESI, De-
Novo, GPU-WT, and GPU-WB, in Table I. These differ-
ences represent some fundamental design trade-offs between

TABLE I. CLASSIFICATION OF CACHE COHERENCE PROTOCOLS

Protocol Who initiates
invalidation?

How is dirty data
propagated?

Write
Granularity

MESI Writer Owner, Write-Back Line

DeNovo Reader Owner, Write-Back Word/Line

GPU-WT Reader No-Owner, Write-Through Word

GPU-WB Reader No-Owner, Write-Back Word

hardware-based and software-centric coherence protocols. In
hardware-based protocols, the single-writer multiple-reader
(SWMR) invariance [67] is enforced. With the SWMR prop-
erty, hardware-based coherence protocols are transparent to
software, i.e., software can assume there is no cache at all.
However, it requires additional hardware complexity, includ-
ing communication and storage overheads (e.g., extra invali-
dation traffic, transient coherence states, and directory stor-
age). On the other hand, software-centric protocols (such
as DeNovo, GPU-WT, and GPU-WB) suffer less from these
overheads: by using the reader-initiated stale invalidation
strategy, these protocols do not need to track all readers of a
particular cache line, saving both communication traffic in the
interconnection network and directory storage. Neither GPU-
WT nor GPU-WB requires tracking ownership for writes.
DeNovo is a design point between MESI and GPU-WB/GPU-
WT: it uses ownership dirty propagation (like MESI) to po-
tentially improve performance of writes and atomic mem-
ory operations (AMO); and it uses reader-initiated stale in-
validation (like GPU-WB/GPU-WT) to reduce the invalida-
tion overhead. However, software-centric coherence proto-
cols push the complexity into software. Software needs to is-
sue invalidation and/or flush requests at appropriate times to
ensure coherence. GPU-WT and GPU-WB may also suffer
from slower AMO performance. AMOs have to be handled
in a globally shared cache, since private caches do not have
ownership.

B. Heterogeneous Cache Coherence
Previous studies have explored different ways to inte-

grate multiple coherence protocols into a heterogeneous
cache-coherent system to serve a diversity of coherence re-
quirements. IBM Coherent Accelerator Processor Interface
(CAPI) provides a coherent MESI-based proxy interface for
accelerators (e.g., FPGAs) to communicate with general-
purpose processors through a shared last-level cache and di-
rectory [68]. Power et al. proposed a directory-based ap-
proach to maintain data coherence between a CPU and GPU
at a coarse granularity (i.e., group of cache lines) [53]. Span-
dex [3] is a recent proposal on providing a general coherence
interface implemented in a shared last-level cache to coordi-
nate different coherence protocols, where different protocols
interact with the interface through their own translation units.

C. Programming Models for Dynamic Task Parallelism
Task parallelism is a style of parallel programming where

the workload is divided into tasks, units of computation, that
can be executed in parallel. In dynamic task parallelism,

tasks and dependencies among tasks are generated at run-
time. Tasks are dynamically assigned to available threads.
The most common computation model for dynamic task par-
allelism is the fork-join model, which was initially used by
MIT Cilk [11] and was later popularized by many modern
programming frameworks, including Intel Cilk Plus [31, 42],
Intel TBB [32, 56], and others [15, 61]. Fork-join parallelism
refers to a way of specifying parallel execution of a program:
the program’s control flow diverges (forks) into two or more
flows that can be executed in parallel (but not necessarily);
and then these control flows join into a single flow after they
are finished. A task can fork by creating two or more par-
allel tasks, which is referred to as spawning tasks. The cre-
ated tasks are called the child tasks (or simply children); the
spawning task becomes the parent tasks of its children. The
parent task waits until its children completes so that the chil-
dren can join the parent. This model can serve as a basis
to express many complex parallel patterns, including divide-
and-conquer, parallel loop, reduction, and nesting [56].

In programming frameworks with the fork-join model, par-
allel execution is realized by a runtime system using the work-
stealing algorithm [12]. In work-stealing runtimes, each
thread is associated with a task queue data structure to store
tasks that are available for execution. The task queue is a
double-ended queue (deque). When a task spawns a child
task, it enqueues the child on to the task queue of the exe-
cuting thread. When a thread is available, it first attempts to
dequeue a task from its own deque in last-in-first-out (LIFO)
order from one end. If the thread’s own deque is empty, it
tries to steal a task from another thread’s deque in first-in-
first-out (FIFO) order from the other end. The thread that
steals becomes a thief, and the thread whose tasks are stolen
becomes a victim. When a parent task is waiting for its chil-
dren to join, the thread executing the parent can steal from
other threads. This algorithm thus automatically balances the
workload across threads. It leads to better locality and helps
establish time and space bounds [12, 24].

III. IMPLEMENTING WORK-STEALING RUNTIMES
ON HETEROGENEOUS CACHE COHERENCE

This section gives a detailed description of our approach to
implement a work-stealing runtime for HCC. We first show
a baseline runtime for hardware-based cache coherence with
a TBB/Cilk-like programming model. We then describe our
implementation for heterogeneous cache coherence. We con-
clude this section with a qualitative analysis of the implica-
tions of HCC on work-stealing runtime systems.

A. Programming Example

We use the application programming interface (API) of In-
tel TBB to demonstrate our programming model (see Fig-
ure 2). Tasks are described by C++ classes derived from a
base class, task, which has a virtual execute() method.
Programmers override the execute() method to define the
execution body of the task. Scheduling a new task is done by
calling the spawn(task* t) function. Tasks are synchro-
nized using the wait() function. The reference count tracks

1 class FibTask : public task {
2 public:
3 long* sum;
4 int n;
5

6 FibTask(int _n, long* _sum) : n(_n), sum(_sum) {}
7

8 void execute() {
9 if (n < 2) {

10 *sum = n;
11 return;
12 }
13 long x, y;
14 FibTask a(n - 1, &x);
15 FibTask b(n - 2, &y);
16 this->reference_count = 2;
17 task::spawn(&a);
18 task::spawn(&b);
19 task::wait(this);
20 *sum = x + y;
21 }
22 } (a) fib using spawn() and wait()

1 long fib(int n) {
2 if (n < 2) return n;
3 long x, y;
4 parallel_invoke(
5 [&] { x = fib(n - 1); },
6 [&] { y = fib(n - 2); }
7);
8 return (x + y);
9 }

(b) fib using parallel_invoke

1 void vvadd(int a[], int b[], int dst[], int n) {
2 parallel_for(0, n, [&](int i) {
3 dst[i] = a[i] + b[i];
4 });
5 }

(c) vector-vector add using parallel_for

Figure 2. Task-Based Parallel Programs – A simple example for cal-
culating the Fibonancci number using two different APIs: (a) a low-
level API with explicit calls to spawn and wait; and (b) a high-level
API with a generic templated parallel_invoke pattern. (c) shows
an alternative generic templated parallel_for pattern.

the number of unfinished children. When a parent task exe-
cutes wait(), the execution of the parent task stalls until all
of its children are finished. In addition to low-level APIs (e.g.,
spawn, wait), programmers can use higher-level templated
functions that support various parallel patterns. For example,
programmers can use parallel_for for parallel loops and
parallel_invoke for divide-and-conquer.

B. Baseline Work-Stealing Runtime

Figure 3(a) shows an implementation, similar to Intel TBB,
of the spawn and wait functions for hardware-based cache
coherence. spawn pushes a task pointer onto the current
thread’s task deque, and wait causes the current thread to
enter a scheduling loop. Inside the scheduling loop, a thread
first checks if there is any task in its own deque. If so, it
dequeues a task, in LIFO order, from its local deque to ex-
ecute (lines 9–16). If there is none left in the local deque,
the current thread becomes a thief and attempts to steal tasks
from another thread in FIFO order (lines 19–28). When a task

is executed, its parent’s reference count is atomically decre-
mented (line 27). When the reference count reaches zero,
the parent task exits the scheduling loop and returns from
wait(). A thread also exits the scheduling loop when the
whole program is finished, and the main thread terminates all
other threads.

C. Supporting Shared Task Queues on HCC
A task queue is a data structure shared by all threads. On

processors with hardware-based cache coherence protocols, a
per-deque lock implemented using atomic read-modify-write
operations is sufficient for implementing proper synchroniza-
tion (see lines 2, 4, 9, 11, 21, 23 of Figure 3(a)). On proces-
sors with heterogeneous cache coherence, where some pri-
vate caches use software-centric cache coherence protocols,
additional coherence operations are required. Before a thread
can access a task queue, in addition to acquiring the lock for
mutual exclusion, all clean data in the private cache of the
executing thread needs to be invalidated to prevent reading
stale data. After a thread finishes accessing a task queue,
in addition to releasing the lock, all dirty data needs to be
written back (flushed) to the shared cache so that the data
becomes visible to other threads. Figure 3(b) shows an im-
plementation of spawn and wait for HCC protocols. We add
an invalidate instruction following the lock acquire (e.g.,
lines 3 and 13), and a flush instruction before the lock re-
lease (e.g., lines 15 and 29). Note that not all protocols re-
quire invalidate and flush. On private caches with DeN-
ovo, flush is not required because it uses an ownership stale-
invalidation strategy (see Table I). With DeNovo, flush can
be treated as no-op. MESI protocol requires neither flush or
invalidate, so both are treated as no-ops.

D. Supporting Task-Stealing on HCC
Adding proper invalidate and/or flush instructions

along with per-deque locks ensures all task queues deques
are coherent on HCC systems. However, user-level data
needs to be coherent as well. Fortunately, the TBB pro-
gramming model we use is structured by the DAG consis-
tency model [10]. Informally speaking, the DAG consistency
model means data sharing only exists between a parent task
and its child task(s). To observe the DAG consistency, there
are two requirements that the runtime system must fulfill:
(1) child tasks need to see the latest values produced by their
parent; and (2) a parent task needs to see all values produced
by its children after the wait(). There is no synchronization
between sibling tasks required because sibling tasks from the
same parent must be data-race-free with regard to each other.
This property allows us to correctly implement work-stealing
runtimes on HCC without requiring changes in the user code.
When a parent task spawns child tasks, the flush after the
enqueue (see Figure 3(b), line 5) ensures data written by the
parent task is visible to its child tasks, even if the children are
stolen and executed by another thread. For requirement (2),
the parent task needs to invalidate data in its own cache,
in case any children are stolen and the parent may have stale
data (line 40). Moreover, a thread needs to invalidate and
flush before and after executing a stolen task respectively

1 void task::spawn(task* t) {
2 tq[tid].lock_aq()
3 tq[tid].enq(t)
4 tq[tid].lock_rl()
5 }
6

7 void task::wait(task* p) {
8 while (p->rc > 0) {
9 tq[tid].lock_aq()

10 task* t = tq[tid].deq()
11 tq[tid].lock_rl()
12

13 if (t) {
14 t->execute()
15 amo_sub(t->p->rc, 1)
16 }
17

18 else {
19 int vid = choose_victim()
20

21 tq[vid].lock_aq()
22 t = tq[vid].steal()
23 tq[vid].lock_rl()
24

25 if (t) {
26 t->execute()
27 amo_sub(t->p->rc, 1)
28 }
29 }
30 }
31 }

(a) Hardware-Based Cache Coherence

1 void task::spawn(task* t) {
2 tq[tid].lock_aq()
3 cache_invalidate()
4 tq[tid].enq(t)
5 cache_flush()
6 tq[tid].lock_rl()
7 }
8

9 void task::wait(task* p) {
10 while (amo_or(p->rc, 0) > 0) {
11

12 tq[tid].lock_aq()
13 cache_invalidate()
14 task* t = tq[tid].deq()
15 cache_flush()
16 tq[tid].lock_rl()
17

18 if (t) {
19 t->execute()
20 amo_sub(t->p->rc, 1)
21 }
22

23 else {
24 int vid = choose_victim()
25

26 tq[vid].lock_aq()
27 cache_invalidate()
28 t = tq[vid].steal()
29 cache_flush()
30 tq[vid].lock_rl()
31

32 if (t) {
33 cache_invalidate()
34 t->execute()
35 cache_flush()
36 amo_sub(t->p->rc, 1)
37 }
38 }
39 }
40 cache_invalidate()
41 }

(b) Heterogeneous Cache Coherence

1 void task::spawn(task* t) {
2 uli_disable()
3 tq[tid].enq(t)
4 uli_enable()
5 }
6

7 void task::wait(task* p) {
8 int rc = p->rc
9 while (rc > 0) {

10

11 uli_disable()
12 task* t = tq[tid].deq()
13 uli_enable()
14

15 if (t) {
16 t->execute()
17 if (t->p->has_stolen_child)
18 amo_sub(t->p->rc, 1)
19 else
20 t->p->rc -= 1
21 }
22

23 else {
24 int vid = choose_victim()
25

26 uli_send_req(vid)
27 t = read_stolen_task(tid)
28

29 if (t) {
30 cache_invalidate()
31 t->execute()
32 cache_flush()
33 amo_sub(t->p->rc, 1)
34 }
35 }
36

37 if (p->has_stolen_child)
38 rc = amo_or(p->rc, 0)
39 else
40 rc = p->rc
41 }
42

43 if (p->has_stolen_child)
44 cache_invalidate()
45 }
46

47 void uli_handler(int thief_id) {
48 task* t = tq[tid].deq()
49 if (t)
50 t->p->has_stolen_child = 1
51 write_stolen_task(thief_id, t)
52 cache_flush()
53 uli_send_resp(thief_id)
54 }

(c) Direct Task-Stealing

Figure 3. Work-Stealing Runtime
Implementations – Pseudocode of spawn
and wait functions for: (a) hardware-based
cache coherence; (b) heterogeneous cache
coherence; and (c) direct-task stealing.
p = parent task pointer; t = current task
pointer; rc = reference count; tid =
worker thread id; lock_aq =
acquire lock; lock_rl = release lock; tq = array of task queues with one per worker thread;
enq = enqueue on tail of task queue; deq = dequeue from tail of task queue, returns 0 if
empty; choose_victim = random victim selection; vid = victim id; steal = dequeue from
head of task queue; amo_or = atomic fetch-and-or; amo_sub = atomic fetch-and-sub;
cache_flush = flush all dirty data in cache (no-op on MESI, DeNovo, and GPU-WT);
cache_invalidate = invalidate all clean data in cache (no-op on MESI); uli_disable =
disable servicing ULI; uli_enable = enable servicing ULI; uli_send_req = send ULI
request message and wait for response, calls uli_handler on receiver; uli_send_resp =
send ULI response message; read_stolen_task = read stolen task from per-thread
mailbox; write_stolen_task = store the stolen task into mailbox.

(lines 33 and 35), because the parent task is executed on a
different thread (the victim thread).

E. HCC Performance Impacts
In this section, we qualitatively discuss the performance

impacts of HCC on work-stealing runtimes. We defer the
quantitative characterization to Section VI.

Reader-initiated invalidation strategy degrades perfor-
mance in all three software-centric cache coherence proto-
cols (i.e., DeNovo, GPU-WT, and GPU-WB) due to more
cache misses. Every spawn and wait causes the executing
thread to invalidate all data in the private cache, causing later
reads to experience more cache misses.

Atomic operations may be slower. DeNovo uses the own-
ership dirty-propagation strategy, so the AMOs can be per-
formed in private caches in the same way as MESI. However,
GPU-WT and GPU-WB require AMOs to be performed at
the shared cache, increasing the latency per operation.

Flushing is inefficient. DeNovo and GPU-WT do not need
flush operations. GPU-WB, on the other hand, requires an
explicit flush at every spawn, as well as after executing ev-
ery stolen task. Writing back an entire private cache to the
shared cache may require a significant amount of time and
memory traffic, depending on the amount of data being writ-
ten back.

Fine-grained tasks may exacerbate all of the above
problems. Performance impacts discussed above are directly
related to the task granularity. Finer-grained applications
have many small tasks, and thus require a large number of
AMOs, invalidations, and flushes. Therefore, HCC is ex-
pected to have more severe performance impacts on appli-
cations with fine-grained tasks.

IV. DIRECT TASK STEALING

In this section, we propose a hardware technique called
direct task stealing (DTS) to improve the performance of
work-stealing runtimes on HCC. DTS leverages the follow-
ing properties of work-stealing runtimes: (1) when paral-
lelism is sufficient, the number of steals is relatively small
compared to the number of local task enqueues and de-
queues [12,24]; and (2) for a steal, synchronization is only
required between a victim thread and a thief thread, not
among all threads. As we have mentioned in the previ-
ous section, work-stealing may incur significant overhead in
terms of performance and memory traffic on HCC. DTS ad-
dresses this issue by allowing tasks to be stolen directly using
user-level interrupts (described below), rather than indirectly
through shared memory.

A. Implementing Direct Task Stealing

A user-level interrupt (ULI) is a short, light-weight inter-
processor interrupt. ULI is included in modern instruction-
set architectures (ISA) such as RISC-V [18,57]. Like regular
interrupts, user-level interrupts are handled asynchronously,
and can be enabled and disabled on the receiving core by soft-
ware. When a core has ULI enabled, and receives an ULI, its
current executing thread is suspended, and the core jumps to
a software-specified ULI handler. The only difference be-
tween ULI and regular interrupts is that ULIs are handled
completely in user mode. The cost of handling an ULI is
similar to regular context switching, minus the overheads as-
sociated with privilege mode changing.

Figure 3(c) shows an implementation of a work-stealing
runtime with DTS. DTS uses ULI to perform work-stealing:
when a thread attempts to steal a task, it sends a ULI to the
victim thread (line 26). If the victim has ULI enabled, execu-
tion of the victim is redirected to a handler (lines 47–53). In
the handler, the victim accesses its own task deque, retrieves
a task, and sends the task to the thief through shared mem-
ory. The victim also sends an ACK message to the thief as a
ULI response. With DTS, the victim steals tasks on behalf of
the thief. If the victim has ULI disabled, a NACK message is
replied to the thief. In the rest of this section, we discuss why
DTS can help reduce the overheads of work-stealing runtimes
on HCC.

B. Optimizations to Reduce Task Queue Synchronization

DTS reduces the synchronization cost associated with task
stealing on HCC. With DTS, task queues are no longer shared
data structures. A task queue is only accessed by its owner, ei-
ther for local accesses, or for steals through ULI. DTS there-
fore eliminates the need of synchronization (i.e., locks) on

task queues. Accesses to task queues are kept mutually ex-
clusive, by requiring a thread to disable ULI when it op-
erates on its task deque (line 11). Work-stealing runtimes
on HCC without DTS require every deque access, including
ones made to a thread’s own task deque, to have a pair of
invalidate and flush (associated with lock acquire and
release respectively, as in line 27 and 29 of Figure 3(b)). In
work-stealing runtimes with DTS, accessing task queues no
longer incurs cache invalidations or flushs since task queues
are private. DTS reduces cache misses on HCC caused by
cache invalidation and flush, and thus improves performance
and reduces memory traffic.

C. Optimizations to Reduce Parent-Child Synchronization

DTS offers an opportunity to further reduce synchroniza-
tion cost for work stealing on HCC using software optimiza-
tions. In work-stealing runtimes without DTS, it is difficult
to asses whether a task is actually stolen, since work steal-
ing happens implicitly through shared memory. Without this
information, a runtime must conservatively assume all tasks
can potentially be stolen, and the runtime must always ensure
proper synchronization between parent and child tasks. For
example, the reference count in each task always needs to be
updated using AMOs (Figure 3(b), line 20), and a parent task
always invalidates its cache before returning from wait func-
tion in case of any of its children has been stolen (Figure 3(b),
line 40).

DTS enables the runtime to track whether a task has
been stolen and avoid synchronization entirely when a task
is not stolen. This is particularly important to cache co-
herence protocols where flush (e.g., GPU-WB) or AMOs
(e.g., GPU-WT and GPU-WB) are expensive. To track
whether a task has been stolen, we add an auxiliary vari-
able (has_stolen_child) to each task, indicating whether
at least one of its child tasks has been stolen (Figure 3(c),
line 37). Before sending the stolen task to the thief in the
ULI handler, the victim sets has_stolen_child to true (line
50). The has_stolen_child variable is only accessed by
the thread running the parent task, and thus can be modified
with a regular load and store instead of an AMO.

According to the DAG-consistency model, if a child task
is not stolen (i.e., has_stolen_child is false), it is not nec-
essary to make its writes visible to other threads. Because
its parent, the only task that needs to read these writes, is
executed on the same thread as the child. A flush is only
required when a task is actually stolen (Figure 3(c), line 51),
instead of after each enqueue operation (Figure 3(b), line 5).
If there are considerably more local enqueues and dequeues
than steals, which is the common case when there is suffi-
cient parallelism, DTS can significantly reduce the number
of flush. Furthermore, if no child task has been stolen, it
is unnecessary to perform an invalidation at the end of
wait(); the parent task cannot possibly read stale data, since
all of its child tasks are executed on the same thread as itself
(Figure 3(c), line 43). Finally, if no child of a parent task
is stolen, it is not necessary to update the parent’s reference
count using AMOs (line 20 and 40). Instead, the reference

count can be treated as a local variable, because updates to it
so far has been performed by the same thread.

In summary, DTS enables software optimizations to lever-
age properties of the DAG-consistency model in work-
stealing runtimes to further reduce the overheads (i.e., invali-
dation, flush, and AMO) of work-stealing runtimes on HCC.

V. EVALUATION METHODOLOGY

In this section, we describe our cycle-level performance
modeling methodology used to quantitatively evaluate our
proposal.

A. Simulated Hardware

We model manycore systems with the gem5 cycle-level
simulator [9]. We implement HCC protocols described in
Section II using the Ruby memory modeling infrastructure.
We use Garnet 2.0 [2] to model on-chip interconnection net-
works (OCN). Our modeled systems have per-core private L1
caches and a shared banked L2 cache. All caches have a 64B
cache line size.

We use the shared L2 cache to integrate different cache co-
herence protocols, similar to Spandex [3]. The L2 cache sup-
ports different coherence request types required by the four
cache coherence protocols we study in this work. The L2
cache in the baseline MESI protocol is inclusive of L1 caches.
The L2 cache in HCC protocols is inclusive of MESI private
L1 caches only. The directory is embedded in the L2 cache
and has a precise sharer list for all MESI private L1 caches.
There is no additional directory latency.

We implement the inter-processor ULI in our simulated
manycore systems as specified by the RISC-V ISA [57]. We
model the ULI network as a mesh network with two virtual
channels (one for request and one for response to prevent
deadlock) using Ruby SimpleNetwork. We assume the ULI
network has a 1-cycle channel latency and a 1-cycle router
latency. We also model the buffering effect in the ULI net-
work. Each ULI message is single-word long. Only one ULI
is allowed to be received by a core at any given time. We en-
hance each core with a simple hardware unit for sending and
receiving ULI. A ULI is sent by writing to a dedicated con-
trol register. The hardware unit on each core has one buffer
for requests and one buffer for responses. When the buffer is
full, the receiver sends a NACK to senders.

We configure a 64-core big.TINY system with four out-of-
order high-performance big cores, and 60 in-order tiny cores.
A tiny core has a private L1 cache capacity of 4KB (i.e., 1/16
the capacity of a big core’s L1 cache). The big and tiny cores
are connected by an 8×8 on chip mesh network. Each column
of the mesh is connected to a L2 cache bank and a DRAM
controller. Figure 1 shows the schematic diagram of our sim-
ulated systems. Table II summarizes its key parameters.

We study the following big.TINY configurations:
big.TINY/MESI is a system where both big and tiny cores
are equipped with MESI hardware-based cache coherence;
big.TINY/HCC-dnv is a big.TINY system with HCC, where
big cores use MESI and tiny cores use DeNovo (DeN-
ovoSync [69] variant); similarly, big.TINY/HCC-gwt and

TABLE II. SIMULATOR CONFIGURATION

Tiny Core RISC-V ISA (RV64GC), single-issue, in-order,
single-cycle execute for non-memory inst. L1 cache:
1-cycle, 2-way, 4KB L1I and 4KB L1D,
software-centric coherence;

Big Core RISC-V ISA (RV64GC), 4-way out-of-order,
16-entry LSQ, 128 Physical Reg. 128-entry ROB. L1
cache: 1-cycle, 2-way, 64KB L1I and 64KB L1D,
hardware-based coherence;

L2 Cache Shared, 8-way, 8 banks, 512KB per bank, one bank
per mesh column, support heterogeneous cache
coherence;

OCN 8×8 mesh topology, XY routing, 16B per flit,
1-cycle channel latency, 1-cycle router latency;

Main Memory 8 DRAM controllers per chip, one per mesh column.
16GB/s total bandwidth.

big.TINY/HCC-gwb are HCC configurations with GPU-WT
and GPU-WB on the tiny cores, respectively. In addition,
we implement DTS proposed in Section IV on each HCC
configuration. We refer to those configurations with DTS
as big.TINY/HCC-DTS-dnv, big.TINY/HCC-DTS-gwt, and
big.TINY/HCC-DTS-gwb.

As a comparison to our big.TINY configurations, we also
study a traditional multicore architecture with only big cores.
O3×1, O3×4, and O3×8 are configurations with one, four,
and eight big cores, respectively. We use CACTI [50] to
model the area of L1 caches. Our results show that a big
core’s 64KB L1 cache is 14.9× as large as a tiny core’s 4KB
L1 cache. Based on total L1 capacity and the CACTI re-
sults, we estimate that O3×8 has similar area to our 64-core
big.TINY configurations (4 big cores and 60 tiny cores).

Future manycore processors are likely to have hundreds to
thousands of cores. To overcome the challenge of simulation
speed with large systems, we use a weak scaling approach
to only simulate a piece of the envisioned large-scale many-
core systems. We scale down the core count and the mem-
ory bandwidth to the 64-core system described in Table II.
We also choose moderate input dataset sizes with moderate
parallelism (see Table III). We attempt to make our results
representative of future manycore systems with more cores,
more memory bandwidth, and running proportionally larger
inputs. To validate our proposal in large systems, we also
select a subset of the application kernels and evaluate them
using larger datasets on a bigger 256-core big.TINY system.

B. Work-Stealing Runtime Systems

We implement three variations of a C++ library-based
work-stealing runtime described in Section III. We have com-
pared the performance of our baseline runtime system for
hardware-based cache coherence (Figure 3(a)) to Intel Cilk
Plus and Intel TBB using applications we study in this paper
running natively on an 18-core Xeon E7-8867 v4 processor,
with dataset sizes appropriate for native execution. Our re-
sults show that our baseline work-stealing runtime has similar
performance to Intel TBB and Intel Cilk Plus.

TABLE III. SIMULATED APPLICATION KERNELS

Cilkview Speedup over Serial IO Speedup over b.T/MESI

b.T/ b.T/HCC b.T/HCC-DTS

Name Input GS PM DInst Work Span Para IPT O3×1 O3×4 O3×8 MESI dnv gwt gwb dnv gwt gwb

cilk5-cs 3000000 4096 ss 456M 524M 0.9M 612.1 31.9K 1.65 4.92 9.78 18.70 1.01 1.01 1.02 1.01 0.99 1.01
cilk5-lu 128 1 ss 155M 170M 4.8M 35.5 6.5K 2.48 9.46 17.24 23.93 0.91 0.37 1.00 0.85 0.34 1.06
cilk5-mm 256 32 ss 124M 184M 0.4M 449.3 8.7K 11.38 11.76 22.04 41.23 1.00 0.89 0.94 0.98 0.93 1.11
cilk5-mt 8000 256 ss 322M 416M 0.5M 829.3 135K 5.71 19.70 39.94 57.43 0.71 1.05 0.69 0.72 1.04 0.70
cilk5-nq 10 3 pf 100M 180M 0.7M 274.9 0.4K 1.57 3.87 7.03 2.93 1.01 1.18 1.09 0.56 1.52 1.76
ligra-bc rMat_100K 32 pf 80M 129M 1.1M 117.9 0.4K 2.05 6.29 13.06 11.48 0.96 0.96 1.01 1.01 1.25 1.60
ligra-bf rMat_200K 32 pf 151M 252M 1.2M 203.3 0.4K 1.80 5.36 11.25 12.80 0.97 0.95 0.98 0.89 1.10 1.32
ligra-bfs rMat_800K 32 pf 236M 351M 0.9M 402.6 0.5K 2.23 6.23 12.70 15.63 1.02 1.05 1.10 1.08 1.23 1.52
ligra-bfsbv rMat_500K 32 pf 152M 201M 0.7M 277.5 0.5K 1.91 6.17 12.25 14.42 1.01 0.98 0.98 1.00 1.06 1.18
ligra-cc rMat_500K 32 pf 226M 278M 0.7M 383.5 0.6K 3.00 9.11 20.66 24.12 0.82 0.94 0.99 0.91 1.08 1.24
ligra-mis rMat_100K 32 pf 183M 243M 1.3M 177.7 0.5K 2.43 7.70 15.61 19.01 0.88 0.89 0.92 0.97 1.07 1.35
ligra-radii rMat_200K 32 pf 364M 437M 1.4M 311.4 0.7K 2.80 8.17 17.89 25.94 0.83 0.81 0.85 1.00 1.03 1.17
ligra-tc rMat_200K 32 pf 286M 342M 1.0M 334.9 3.5K 1.49 4.99 10.89 23.21 1.01 0.86 0.98 1.07 0.92 1.05

geomean 2.56 7.26 14.70 16.94 0.93 0.89 0.96 0.91 1.00 1.21

Input = input dataset; GS = task granularity; PM = parallelization methods: pf = parallel_for and ss = recursive spawn-and-sync; DInsts =
dynamic instruction count in millions; Work = total number of x86 instructions; Span = number of x86 instructions on the critical path; Para =
logical parallelism, defined as work divided by span; IPT = average number of instructions per task; Work, span, and IPT are analyzed by
Cilkview; b.T = big.TINY; HCC = heterogeneous cache coherence; dnv = DeNovo; gwt = GPU-WT; gwb = GPU-WB.

C. Benchmarks

We port 13 dynamic task-parallel applications from Cilk
v5.4.6 [24] and Ligra [62] to use our work-stealing run-
time systems (see Table III). We select applications
with varied parallelization methods: applications from Cilk
mainly use recursive spawn-and-sync parallelization (i.e.,
parallel_invoke); applications from Ligra mainly use
loop-level parallelization (i.e., parallel_for). Ligra appli-
cations also exhibit non-determinism, as they typically use
fine-grained synchronization such as compare-and-swap in
their code. cilk5-cs performs parallel mergesort algorithm;
lu calculates LU matrix decomposition; cilk5-mm is blocked
matrix multiplication; cilk5-mt is matrix transpose; cilk5-
nq uses backtracking to solve the N-queen problem; ligra-
bc calculates betweeness centrality of a graph; ligra-bf uses
Bellman-Ford algorithm to calculate the single-source short-
est path in a graph; ligra-bfs performs bread-first search
on graphs; ligra-bfsbv is a bit-vector optimized version of
bread-first search; ligra-cc computes connected components
in graphs; ligra-mis solves the maximum independent set
problem; ligra-radii computes the radius of a given graph;
ligra-tc counts the number of triangles in a graph. A more
detailed description for these benchmarks can be found in
previous work [24, 62].

D. Task Granularity

Task granularity (i.e., the size of the smallest task) is an im-
portant property of task-parallel applications. Programmers
can control task granularity by dividing the work into more
(fine-grained) or less (coarse-grained) tasks. Task granularity
presents a fundamental trade-off: fine-grained tasks increase
logical parallelism, but incur higher runtime overheads than
coarse-grained tasks. We use a hybrid simulation-native ap-
proach to choose the task granularity for each application. We
sweep the granularity and use Cilkview [28] to analyze the

16 32 64 128 256
Task Granularity

0

10

20

30
Sp

ee
du

p

0

200

400

600

Lo
gi

ca
l P

ar
al

le
lis

m

Speedup Parallelism

Figure 4. Speedup and Logical Parallelism of ligra-tc Running on
a 64-core System. Task Granularity = the number of triangles pro-
cessed by each task.

logical parallelism. We evaluate the speedup over serial code
for each granularity on a simulated manycore processor with
64 tiny cores. We select suitable granularity for each appli-
cation to make sure it achieves the best or close to the best
speedup over serial execution (see instruction-per-task (IPT)
in Table III). As an example, Figure 4 shows the speed up
and the logical parallelism of ligra-tc with different granular-
ity. It demonstrates that both a too big and a too small gran-
ularity lead to sub-optimal performance: the former due to
lack of parallelism, and the latter due to runtime overheads. A
smaller granularity penalizes HCC configurations more heav-
ily, and the benefits of DTS technique would be more pro-
nounced. Our choice of task granularity aims to optimize the
performance of our baseline, not the relative benefits of our
proposed DTS technique.

VI. RESULTS

Table III summarizes the speedup of the simulated config-
urations. Figure 5 illustrates the speedup of each big.TINY
HCC configuration relative to big.TINY/MESI. Figure 6

shows the hit rate of L1 data caches. Figure 7 presents the
execution time breakdown of the tiny cores. Figure 8 shows
the total memory traffic (in bytes) on the on-chip network.

A. Baseline Runtime on big.TINY/MESI
On 11 out of 13 applications, big.TINY/MESI has better

performance than O3×8. The baseline work-stealing run-
time enables collaborative execution and load balancing be-
tween the big and tiny cores in big.TINY/MESI. cilk5-nq per-
forms worse on big.TINY/MESI than O3×8 because the run-
time overheads outweigh the parallel speedup (as discussed in
Section V-D). Overall, our big.TINY/MESI vs. O3×8 results
demonstrate the effectiveness of unlocking more parallelism
using a big.TINY system compared to an area-equivalent tra-
ditional multi-core configuration O3×8.

B. Work-Stealing Runtime on HCC
We now discuss our work-stealing runtime on HCC (shown

in Figure 3(b)) by analyzing the performance and energy of
big.TINY/HCC-dnv, big.TINY/HCC-gwt, and big.TINY/HCC-
gwb.

Compared with big.TINY/MESI, big.TINY/HCC-dnv has
decreased L1 hit rate due to its reader-initiated invalidation
strategy, as shown in Figure 6. This decrease in L1 hit rate
causes a slight increase in memory traffic, as shown in the
cpu_req and data_resp categories in Figure 8. The impact of
these negative effects on performance is modest on most of
the applications, except for cilk5-mt. cilk5-mt has a signifi-
cant performance degradation due to additional write misses
caused by invalidation. This effect can be seen in the in-
creased data store latency and write-back traffic (see Fig-
ure 8).

big.TINY/HCC-gwt is a write-through and no write-
allocate protocol. In GPU-WT, a write miss does not refill
the cache. Therefore, big.TINY/HCC-gwt is unable to exploit
temporal locality in writes, resulting in significantly lower L1
hit rate compared to both big.TINY/MESI and big.TINY/HCC-
dnv. The network traffic of big.TINY/HCC-gwt is also signif-
icantly higher than others, especially in the wb_req category.
The reason is every write (regardless of hit or miss) updates
the shared cache (write-through). The latency for AMOs and
network traffic are also increased (shown in Figure 7 and Fig-
ure 8 respectively). big.TINY/HCC-gwt has slightly worse
performance and significantly more network traffic compared
to big.TINY/MESI and big.TINY/HCC-dnv in all applications
except cilk5-lu, where it performs significantly worse.

big.TINY/HCC-gwb has similar performance to
big.TINY/HCC-gwt when dealing with AMOs. How-
ever, the write-back policy allows big.TINY/HCC-gwb to
better exploit temporal locality. On all applications except
cilk5-mt, big.TINY/HCC-gwb has less memory traffic, higher
L1 hit rate, and better performance than big.TINY/HCC-
gwt. big.TINY/HCC-gwb is less efficient in memory traffic
compared big.TINY/HCC-dnv due to its lack of ownership
tracking: every private cache needs to propagate dirty data
through the shared cache.

In summary, our baseline work-stealing runtime on HCC
has moderately worse performance than the big.TINY/MESI

TABLE IV. CACHE INVALIDATION, FLUSH, AND HIT RATE

InvDec (%) FlsDec (%) HitRateInc (%)

App dnv gwt gwb gwb dnv gwt gwb

cilk5-cs 99.42 99.28 99.50 98.86 1.80 2.45 1.30
cilk5-lu 98.83 99.78 99.53 98.40 1.12 7.12 2.94
cilk5-mm 99.22 99.67 99.62 99.12 30.03 42.19 36.80
cilk5-mt 99.88 99.73 99.93 99.82 12.45 2.70 6.56
cilk5-nq 97.74 97.88 98.32 95.84 16.84 28.87 27.04
ligra-bc 94.89 97.04 97.33 93.80 7.64 21.43 14.99
ligra-bf 29.02 38.14 40.24 21.63 7.22 17.14 11.17
ligra-bfs 94.18 95.85 95.90 91.23 3.48 15.76 8.00
ligra-bfsbv 39.31 47.36 50.74 29.46 3.10 12.65 7.56
ligra-cc 98.03 98.17 98.16 95.89 3.11 11.11 6.17
ligra-mis 97.35 98.28 98.36 96.16 5.62 16.29 11.10
ligra-radii 95.97 98.17 98.19 95.75 3.62 11.00 7.03
ligra-tc 10.83 15.99 17.02 7.52 1.59 3.55 3.02

Comparisons of big.TINY/HCC-DTS with big.TINY/HCC. In-
vDec = % decrease in cache line invalidations. FlsDec = % decrease
in cache line flushes. HitRateInc = % increase in L1 D$ hit rate.

configuration on almost all applications. These results
demonstrate that HCC can effectively reduce hardware com-
plexity with a small performance and energy penalty.

C. Evaluation of HCC with DTS

In Section IV, we motivate DTS by observing that synchro-
nization is only needed when a task is stolen. DTS avoids
using cache invalidations and/or flushes unless a steal actu-
ally happens. We compare the results of HCC configura-
tions without DTS (big.TINY/HCC-*) with those with DTS
(big.TINY/HCC-DTS-*). We profile the number of invali-
dated and flushed cache lines for each configuration. We
summarize the reduction in the number of invalidations and
flushes in Table IV. We also calculate the increase in L1 hit
rate of big.TINY/HCC-DTS-* configurations compared with
corresponding big.TINY/HCC-* (HCC without DTS) config-
urations.

In all three HCC protocols across all benchmarks,
big.TINY/HCC-DTS-* have significantly lower number of
cache invalidations. ligra-bf and ligra-bfsbv show a reduc-
tion of 30–50%. ligra-tc has a reduction of 10–20%. The rest
of the benchmarks each has more than 90% reduction. The
number of flushes is also reduced on big.TINY/HCC-DTS-
gwb. 10 of 13 benchmarks have a reduction of more than
90%. In ligra-tc, ligra-bfsbf, and ligra-bf, DTS achieves less
flush reduction due to the relatively higher number of steals.

Table IV shows the reduction in invalidations translates to
higher L1 hit rate. The effect of increasing L1 hit rate is less
significant on big.TINY/HCC-DTS-dnv because it has higher
L1 hit rate to begin with (due to its ownership-based dirty
propagation). The increase in L1 hit rates also leads to re-
duced network traffic. Figure 8 shows big.TINY/HCC-DTS-*
have reduced network traffic in cpu_req and data_resp. In
big.TINY/HCC-DTS-gwb, wb_req traffic is also significantly
reduced, due to the reduction in flushes. However, DTS can-
not help reduce wb_req traffic in big.TINY/HCC-DTS-gwt
since each write still causes a write-through to the shared
cache.

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b0.0

0.5

1.0

1.5

Sp
ee

du
p

HCCHCC
DTS

cilk5-cs

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-lu

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b
HCCHCC

DTS

cilk5-mm

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-mt

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-nq

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bc

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bf

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bfs

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bfsbv

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-cc

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-mis

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-radii

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-tc

Figure 5. Speedup Over big.TINY/MESI

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b0.4

0.5

0.6

0.7

0.8

0.9

1.0

L1
D

 H
it

R
at

e
(%

)

HCCHCC
DTS

cilk5-cs

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-lu

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-mm

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-mt
M

ES
I

dn
v

gw
t

gw
b

dn
v

gw
t

gw
b

HCCHCC
DTS

cilk5-nq

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bc

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b
HCCHCC

DTS

ligra-bf

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bfs

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bfsbv

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-cc

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-mis

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-radii

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-tc

Figure 6. L1 Data (L1D) Cache Hit Rate

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

HCCHCC
DTS

cilk5-cs

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-lu

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-mm

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-mt

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-nq

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bc

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bf

Inst Fetch Data Load Data Store Atomic Flush Others

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bfs
M

ES
I

dn
v

gw
t

gw
b

dn
v

gw
t

gw
b

HCCHCC
DTS

ligra-bfsbv

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-cc

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-mis

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-radii

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-tc

Figure 7. Aggregated Tiny Core Execution Time Breakdown Normalized to big.TINY/MESI

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b0

1

2

3

4

N
or

m
al

iz
ed

 N
et

w
or

k
Tr

af
fic

HCCHCC
DTS

cilk5-cs

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-lu

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-mm

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-mt

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

cilk5-nq

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bc

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bf

cpu_req data_resp wb_req sync_req sync_resp dram_req dram_resp coh_req coh_resp

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bfs

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-bfsbv

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-cc

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-mis

M
ES

I
dn

v
gw

t
gw

b
dn

v
gw

t
gw

b

HCCHCC
DTS

ligra-radii
M

ES
I

dn
v

gw
t

gw
b

dn
v

gw
t

gw
b

HCCHCC
DTS

ligra-tc

Figure 8. Total On-Chip Network Traffic (in Bytes) Normalized to big.TINY/MESI – cpu_req = requests from L1 to L2; data_resp = response
from L2 to L1; wb_req = request for write-back data; sync_req = synchronization request; sync_resp = synchronization response; dram_req =
request from L2 to DRAM; dram_resp = response from DRAM to L2; coh_req = coherence request; coh_resp = coherence response

MESI = big.TINY/MESI; HCC = configurations with heterogeneous cache coherence; DTS = direct task stealing
dnv = tiny cores use DeNovo protocol; gwt = tiny cores use GPU-WT protocol; gwb = tiny cores use GPU-WB protocol.

TABLE V. RESULTS FOR 256-CORE BIG.TINY SYSTEM

Speedup

vs O3×1 vs b.T/MESI

Name Input DInst b.T/MESI HCC-gwb HCC-DTS-gwb

cilk5-cs 6000000 2.22× 27.7 0.94 1.07
ligra-bc rMat_1M 8.65× 14.3 0.96 1.61
ligra-bfs rMat_3M 2.90× 13.5 1.04 1.78
ligra-cc rMat_1M 1.99× 27.7 0.92 1.26
ligra-tc rMat_1M 6.05× 18.5 0.69 0.76

Results of using bigger datasets on a 256-core big.TINY manycore
processor. The processor consists of four big cores and 252 tiny
cores, configured in a 8-row, 32-column mesh. It has 32 L2 banks
(16MB total L2 capacity) and 32 DRAM controllers (see Figure 1).
Big cores and tiny cores use parameters in Table II. Input = input
datasets; DInsts = dynamic instruction count relative to the smaller
datasets in Table III; b.T = big.TINY; HCC = heterogeneous cache
coherence; DTS = direct task stealing; gwb = GPU-WB.

As we discuss in Section IV, DTS also enables run-
time optimizations to avoid using AMOs for the reference
count unless a child is stolen. big.TINY/HCC-DTS-gwt and
big.TINY/HCC-DTS-gwb benefit from this optimization since
the AMO latency is high in these two protocols. In Figure 8,
we can see the reduction of traffic due to less AMO requests.
Figure 7 shows the reduced execution time in the Atomic cat-
egory.

Out of the three HCC protocols, big.TINY/HCC-DTS-gwb
benefits the most from DTS. It can leverage reduction in
invalidations, flushes, and AMOs. big.TINY/HCC-gwt and
big.TINY/HCC-dnv benefit from DTS less because they do
not need flushes. big.TINY/HCC-gwt benefit from reduction
in AMOs, but its wb_req traffic is unaffected by DTS.

We measure the overhead of DTS in our simulations. In
all applications and configurations, we observe that the ULI
network has less than 5% network utilization rate, indicating
DTS is infrequent. The average latency of the ULI network
is around 20 hops (50 cycles). DTS does not incur cache in-
validations or flushes on the big cores, where hardware-based
coherence is available. It takes a few cycles to interrupt the
tiny core, and 10 to 50 cycles to interrupt the big core, since
an interrupt needs to wait until all instructions in-flight in the
processor pipeline are committed before jumping to the han-
dler. The total number of cycles spent on DTS is less than
1% of the total execution time, and thus DTS has minimal
performance overhead.

D. Results on Larger-Scale Systems

To evaluate our techniques on a larger-scale system, we
select five application kernels with larger input datasets, and
execute these kernels on a 256-core big.TINY system. Com-
pared to the 64-core big.TINY system we use for the rest of
the paper, the 256-core big.TINY system has four big cores,
252 tiny cores, 4× the memory bandwidth, and 4× the num-
ber of L2 banks. We scale up the input sizes to increase the
dynamic instruction count and amount of parallelism, in order
to approximately achieve weak scaling. For HCC configura-
tions, we select the best performing HCC protocol, GPU-WB.
The results are presented in Table V. A big core has 16× the

L1 cache capacity as a tiny core (64KB vs. 4KB), and there-
fore the total L1 cache capacity of the 256-core big.TINY
system is equivalent to 20 big cores. The results demonstrate
that, even in a larger-scale big.TINY system, HCC with our
work-stealing runtime allows dynamic task-parallel applica-
tions to achieve similar performance with simpler hardware
compared to big.TINY/MESI. Our DTS technique signifi-
cantly improves performance of our work-stealing runtime on
HCC. The relative benefit of DTS is more pronounced in the
256-core big.TINY system than in the 64-core system, be-
cause stealing overheads without DTS are higher in systems
with more cores.

E. Summary
Our overall results show that on big.TINY systems, com-

bining HCC and work-stealing runtimes allows dynamic task-
parallel applications with TBB/Cilk-like programming mod-
els to work with simpler hardware compared to hardware-
based coherence, at the cost of slightly worse performance.
The relative performance and energy efficiency of three
HCC protocols depend on the characteristics of the applica-
tion. DTS reduces the number of invalidations on all three
HCC protocols. It also reduces the number of flushes on
big.TINY/HCC-gwb. DTS is able to close the gap and en-
ables HCC systems to match or even exceed the performance
of fully hardware-based cache coherent systems. Regarding
the geometric mean of all apps, the best performing HCC pro-
tocol combined with DTS achieves 21% improvement in per-
formance, and similar amount of network traffic compared to
hardware-based cache coherence.

VII. RELATED WORK

There is a large body of work on optimizing hardware-
based cache coherence protocols. Coarse-grained sharer list
approaches reduce storage overhead for tracking sharers of
each cache line, at the expense of unnecessary invalidations
and broadcasts [14, 27, 48, 74, 75]. Hierarchical directories
attacks the same overhead by adding additional levels of in-
direction in the directories [45]. Techniques for increasing di-
rectory utilization allow for smaller directories, but increase
hardware complexity [23,59]. Prior work like SWEL propose
removing the sharer list altogether [19, 54]. However, those
techniques perform well only if most of the cache lines are not
shared. Other optimization techniques, such as dynamic self-
invalidation [41], token coherence [44, 55], and destination-
set prediction [43], have also been proposed for systems with
sequential consistency (SC). There has been work focusing
on optimizing banked shared caches, particularly those with
non-uniform cache access (NUCA), using static and/or dy-
namic techniques. Jigsaw [6] addresses the scalability and
interference problem in shared caches by allowing software
to control data placement in collections of bank partitions.
Coherence domain restriction [25] improves scalability of
shared caches by restricting data sharing. Whirlpool [49]
leverages both static and dynamic information to reduce data
movement between shared caches. HCC used in our work
primarily addresses scalability of private caches and can be
complementary to these NUCA techniques in shared caches.

Techniques to improve hardware-based cache coherence
protocols by leveraging relaxed consistency models (e.g.,
release consistency (RC) [21, 26, 33, 34, 58], entry consis-
tency [8], and scope consistency [30]) have been proposed
in the literature as well. An important observation of this
prior work is, unlike in the case of SC, cache coherence only
needs to be enforced at synchronization points for relaxed
consistency models. Some prior work proposed to use self-
invalidation at acquires in RC to remove the need of track-
ing sharers [33, 34, 58]. SARC [33] and VIPS [58] further
eliminate the directory all together by leveraging a write-
through policy. TSO-CC is another self-invalidation based
protocol designed for the total store ordering (TSO) consis-
tency model [22]. To maintain the stronger TSO consistency,
however, TSO-CC needs additional hardware logic such as
timestamps and epoch tables. Our work-stealing runtime sys-
tem leverages the DAG-consistency [10] model for heteroge-
neous coherence.

There have been several software-centric coherence pro-
tocols in prior work. DeNovo [17] uses self-invalidation to
eliminate sharer-tracking. In addition, by requiring the soft-
ware to be data-race-free (DRF), DeNovo eliminates transient
states. While DeNovo greatly simplifies the hardware, the
DRF requirement limits its software scope. To address this
problem, follow-up work on DeNovo (i.e., DeNovo-ND [70]
and DeNovoSync [69]) added support for lock-based non-
determinism and arbitrary synchronization. We used DeN-
ovoSync in our studies. GPU coherence protocols combine
write-through and self-invalidation, and achieve the simplest
hardware suitable for GPU workloads [63, 64]. Our GPU-
WT protocol is similar to the ones described in the litera-
ture. GPU-WB differs from GPU-WT in deferring the write-
through until barriers. GPU-WB is studied in manycore sys-
tems with a single globally shared task queue [35].

Prior work has proposed efficient heterogeneous coherence
protocols for integrated GPU-CPU systems [29, 53], and ac-
celerators [39]. Spandex explores an efficient interface for
various hardware-based and software-centric cache coher-
ence protocols [3]. Similar to this prior work, the hetero-
geneous coherence protocol we described in this paper uses a
MESI-based LLC to integrate different cache coherence pro-
tocols in private caches.

Past work has looked at improving task-based program-
ming models in various ways such as improving the schedul-
ing algorithms [12, 24, 73], improving the efficiency of
software-based task queues [1, 16], and reducing the over-
head of memory fences [40]. Carbon [38] improves the
performance of fine-grained tasks. ADM [60] uses active
messages [72] to improve task scheduling. While both Car-
bon and ADM provide a task-based model, their program-
ming frameworks are drastically different from widely-used
ones like Cilk or TBB. Prior work has also explored improv-
ing work-stealing runtime systems for heterogeneous system
with different core architectures [71]. We implemented our
proposed direct task-stealing (DTS) mechanism with user-
level interrupt [18], which is similar to but much simpler than
active messages used by ADM.

VIII. CONCLUSIONS

This paper has demonstrated how careful hardware/soft-
ware co-design can enable efficiently exploiting dynamic task
parallelism on heterogeneous cache-coherent systems. This
work provides a small yet important step towards ushering
in an era of complexity-effective big.TINY architectures that
combine a few big out-of-order high-performance cores with
many tiny energy-efficient cores, while at the same time sup-
porting highly productive programming frameworks. Our vi-
sion is of a future where programmers use traditional dynamic
task parallel programming frameworks to improve their per-
formance across a few big cores, and then seamlessly with-
out effort these applications can see significant performance
improvements (our results suggest up to 2–3× comparing
big.TINY/HCC-DTS-gwb to O3×4) by simply allowing col-
laborative execution across big and tiny cores using work
stealing.

ACKNOWLEDGMENTS

This work was supported in part by the Center for Appli-
cations Driving Architectures (ADA), one of six centers of
JUMP, a Semiconductor Research Corporation program co-
sponsored by DARPA, and equipment donations from Intel.
The authors acknowledge and thank I-Ting Angelina Lee for
useful discussions on work-stealing runtimes in general and
insightful feedback on how to implement such runtimes on
HCC. The authors also thank Ragav Kumar and Ryan Cun-
ningham for their help in developing task-parallel applica-
tions. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation theron. Any opinions, findings, and
conclusions or recommendations expressed in this publica-
tion are those of the author(s) and do not necessarily reflect
the views of any funding agency.

REFERENCES

[1] U. A. Acar, A. Chargeéraud, and M. Rainey. Scheduling Parallel
Programs by Work Stealing with Private Deques. Symp. on
Principles and Practice of Parallel Programming (PPoPP), Feb
2013.

[2] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GARNET: A
Detailed On-Chip Network Model inside a Full-System Simulator.
Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), Apr 2009.

[3] J. Alsop, M. Sinclair, and S. V. Adve. Spandex: A Flexible Interface
for Efficient Heterogeneous Coherence. Int’l Symp. on Computer
Architecture (ISCA), Jun 2018.

[4] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang. The Design of OpenMP
Tasks. IEEE Trans. on Parallel and Distributed Systems (TPDS),
20(3):404–418, Mar 2009.

[5] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad Memory: Design Alternative for Cache On-Chip
Memory in Embedded Systems. Intl’l Conf. on Hardware/Software
Codesign and System Synthesis (CODES/ISSS), May 2002.

[6] N. Beckmann and D. Sanchez. Jigsaw: Scalable Software-Defined
Caches. Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), Sep 2013.

[7] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks,
D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64
Processor: A 64-Core SoC with Mesh Interconnect. Int’l Solid-State
Circuits Conf. (ISSCC), Feb 2008.

[8] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway
Distributed Shared Memory System. Digest of Papers. Compcon
Spring, 1993.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 Simulator. SIGARCH Computer Architecture News (CAN),
39(2):1–7, Aug 2011.

[10] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H.
Randall. An Analysis of Dag-Consistent Distributed Shared-Memory
Algorithms. Symp. on Parallel Algorithms and Architectures (SPAA),
Jun 1996.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime
System. Symp. on Principles and Practice of Parallel Programming
(PPoPP), Aug 1995.

[12] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded
Computations by Work Stealing. Journal of the ACM,
46(5):720–748, Sep 1999.

[13] B. Bohnenstiehl, A. Stillmaker, J. J. Pimentel, T. Andreas, B. Liu,
A. T. Tran, E. Adeagbo, and B. M. Baas. KiloCore: A 32-nm
1000-Processor Computational Array. IEEE Journal of Solid-State
Circuits (JSSC), 52(4):891–902, Apr 2017.

[14] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving
Multiprocessor Performance with Coarse-Grain Coherence Tracking.
Int’l Symp. on Computer Architecture (ISCA), Jun 2005.

[15] P. Charles, C. Grothoff, V. Sarkar, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An Object-Oriented
Approach to Non-Uniform Cluster Computing. Conf. on
Object-Oriented Programming Systems Languages and Applications
(OOPSLA), Oct 2005.

[16] D. Chase and Y. Lev. Dynamic Circular Work-Stealing Deque.
Symp. on Parallel Algorithms and Architectures (SPAA), Jul 2005.

[17] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou. DeNovo:
Rethinking the Memory Hierarchy for Disciplined Parallelism. Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Oct 2011.

[18] J. Chung and K. Strauss. User-Level Interrupt Mechanism for
Multi-Core Architectures. US Patent 8255603, Aug 2012.

[19] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato. Increasing
the Effectiveness of Directory Caches by Deactivating Coherence for
Private Memory Blocks. Int’l Symp. on Computer Architecture
(ISCA), Jun 2011.

[20] S. Davidson, S. Xie, C. Torng, K. Al-Hawaj, A. Rovinski, T. Ajayi,
L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao,
A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. G. Dreslinski, C. Batten,
and M. B. Taylor. The Celerity Open-Source 511-Core RISC-V
Tiered Accelerator Fabric: Fast Architectures and Design
Methodologies for Fast Chips. IEEE Micro, 38(2):30–41, Mar/Apr
2018.

[21] M. Dubois, J. C. Wang, L. A. Barroso, K. Lee, and Y.-S. Chen.
Delayed Consistency and its Effects on the Miss Rate of Parallel
Programs. Int’l Conf. on High Performance Networking and
Computing (Supercomputing), Aug 1991.

[22] M. Elver and V. Nagarajan. TSO-CC: Consistency Directed Cache
Coherence for TSO. Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb 2014.

[23] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo
Directory: A Scalable Directory for Many-Core Systems. Int’l Symp.
on High-Performance Computer Architecture (HPCA), Feb 2011.

[24] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of
the Cilk-5 Multithreaded Language. ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), May
1998.

[25] Y. Fu and D. Wentzlaff. Coherence Domain Restriction on Large
Scale Systems. Int’l Symp. on Microarchitecture (MICRO), Dec
2015.

[26] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. Int’l Symp. on Computer
Architecture (ISCA), May 1990.

[27] A. Gupta, W. dietrich Weber, and T. Mowry. Reducing Memory and
Traffic Requirements for Scalable Directory-Based Cache Coherence
Schemes. Int’l Conf. on Parallel Processing (ICPP), Aug 1990.

[28] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview
Scalability Analyzer. Symp. on Parallel Algorithms and Architectures
(SPAA), Jun 2010.

[29] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M. Beckmann,
M. D. Hill, S. K. Reinhardt, and D. A. Wood. QuickRelease: A
Throughput-Oriented Approach to Release Consistency on GPUs.
Int’l Symp. on High-Performance Computer Architecture (HPCA),
Feb 2014.

[30] L. Iftode, J. P. Singh, and K. Li. Scope Consistency: A Bridge
between Release Consistency and Entry consistency. Symp. on
Parallel Algorithms and Architectures (SPAA), Jun 1996.

[31] Intel Cilk Plus Language Extension Specification, Version 1.2. Intel
Reference Manual, Sep 2013.

[32] Intel Threading Building Blocks. Online Webpage, 2015 (accessed
Aug 2015).

[33] S. Kaxiras and G. Keramidas. SARC Coherence: Scaling Directory
Cache Coherence in Performance and Power. IEEE Micro,
30(5):54–65, Sep 2010.

[34] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. Int’l Symp. on
Computer Architecture (ISCA), May 1992.

[35] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel. Rigel: An
Architecture and Scalable Programming Interface for a 1000-core
Accelerator. Int’l Symp. on Computer Architecture (ISCA), Jun 2009.

[36] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou,
P. Srivastava, S. V. Adve, and V. S. Adve. Stash: Have Your
Scratchpad and Cache It Too. Int’l Symp. on Computer Architecture
(ISCA), Jun 2015.

[37] R. Kumar, T. G. Mattson, G. Pokam, and R. V. D. Wijngaart. The
Case for Message Passing on Many-Core Chips. Multiprocessor
System-on-Chip, pages 115–123, Dec 2011.

[38] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: Architectural
Support for Fine-Grained Parallelism on Chip Multiprocessors. Int’l
Symp. on Computer Architecture (ISCA), Jun 2007.

[39] S. Kumar, A. Shriraman, and N. Vedula. Fusion: Design Tradeoffs in
Coherent Cache Hierarchies for Accelerators. Int’l Symp. on
Computer Architecture (ISCA), Jun 2015.

[40] E. Ladan-Mozes, I.-T. A. Lee, and D. Vyukov. Location-Based
Memory Fences. Symp. on Parallel Algorithms and Architectures
(SPAA), Jun 2011.

[41] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation: Reducing
Coherence Overhead in Shared-Memory MultiProcessors. Int’l
Symp. on Computer Architecture (ISCA), Jul 1995.

[42] C. E. Leiserson. The Cilk++ Concurrency Platform. Design
Automation Conf. (DAC), Jul 2009.

[43] M. M. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood.
Using Destination-Set Prediction to Improve the Latency/Bandwidth
Tradeoff in Shared-memory Multiprocessors. Int’l Symp. on
Computer Architecture (ISCA), Jun 2003.

[44] M. M. Martin, M. D. Hill, and D. A. Wood. Token Coherence:
Decoupling Performance and Correctness. Int’l Symp. on Computer
Architecture (ISCA), Jun 2003.

[45] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why On-chip Cache
Coherence is Here to Stay. Communications of the ACM, Jul 2012.

[46] M. McCool, A. D. Robinson, and J. Reinders. Structured Parallel
Programming: Patterns for Efficient Computation. Morgan
Kaufmann, 2012.

[47] M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, J. Balkind, A. Lavrov,
M. Shahrad, S. Payne, and D. Wentzlaff. Piton: A Manycore
Processor for Multitenant Clouds. IEEE Micro, 37(2):70–80,
Mar/Apr 2017.

[48] A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in
Snoop-Based Coherence. Int’l Symp. on Computer Architecture
(ISCA), Jun 2005.

[49] A. Mukkara, N. Beckmann, and D. Sanchez. Whirlpool: Improving
Dynamic Cache Management with Static Data Classification. Int’l
Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Mar 2016.

[50] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI
6.0: A Tool to Model Large Caches, 2009.

[51] A. Olofsson. Epiphany-V: A 1024-processor 64-bit RISC
System-On-Chip. CoRR arXiv:1610.01832, Aug 2016.

[52] OpenMP Application Program Interface, Version 4.0. OpenMP
Architecture Review Board, Jul 2013.

[53] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill,
S. K. Reinhardt, and D. A. Wood. Heterogeneous System Coherence
for Integrated CPU-GPU Systems. Int’l Symp. on Microarchitecture
(MICRO), Dec 2013.

[54] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian.
SWEL: Hardware Cache Coherence Protocols to Map Shared Data
onto Shared Caches. Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep 2010.

[55] A. Raghavan, C. Blundell, and M. M. Martin. Token Tenure:
PATCHing Token Counting Using Directory-Based Cache
Coherence. Int’l Symp. on Microarchitecture (MICRO), Nov 2008.

[56] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly, 2007.

[57] The RISC-V Instruction Set Manual Volume II: Privileged
Architecture. Online Webpage, 2019 (accessed Jun 8, 2019).

[58] A. Ros and S. Kaxiras. Complexity-Effective Multicore Coherence.
Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep 2012.

[59] D. Sanchez and C. Kozyrakis. SCD: A Scalable Coherence Directory
with Flexible Sharer Set Encoding. Int’l Symp. on High-Performance
Computer Architecture (HPCA), Feb 2012.

[60] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible Architectural
Support for Fine-Grain Scheduling. Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Mar 2010.

[61] T. B. Schardl, W. S. Moses, and C. E. Leiserson. Tapir: Embedding
Fork-Join Parallelism into LLVM’s Intermediate Representation.

Symp. on Principles and Practice of Parallel Programming (PPoPP),
Jan 2017.

[62] J. Shun and G. Blelloch. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. Symp. on Principles and Practice of
Parallel Programming (PPoPP), Feb 2013.

[63] M. D. Sinclair, J. Alsop, and S. V. Adve. Chasing Away RAts:
Semantics and Evaluation for Relaxed Atomics on Heterogeneous
Systems. Int’l Symp. on Computer Architecture (ISCA), Jun 2017.

[64] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M.
Aamodt. Cache Coherence for GPU Architectures. Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb 2013.

[65] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y.-C. Liu. Knights
Landing: Second-Generation Intel Xeon Phi Product. IEEE Micro,
36(2):34–46, Mar/Apr 2016.

[66] L. Song, M. Feng, N. Ravi, Y. Yang, and S. Chakradhar. COMP:
Compiler Optimizations for Manycore Processors. Int’l Symp. on
Microarchitecture (MICRO), Dec 2014.

[67] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence. Synthesis Lectures on Computer
Architecture, 2011.

[68] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel. CAPI: A
Coherent Accelerator Processor Interface. IBM Journal of Research
and Development, 59(1):7:1–7:7, Jan/Feb 2015.

[69] H. Sung and S. V. Adve. DeNovoSync: Efficient Support for
Arbitrary Synchronization without Writer-Initiated Invalidations.
Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Mar 2015.

[70] H. Sung, R. Komuravelli, and S. V. Adve. DeNovoND: Efficient
Hardware Support for Disciplined Non-Determinism. Int’l Conf. on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Apr 2013.

[71] C. Torng, M. Wang, and C. Batten. Asymmetry-Aware
Work-Stealing Schedulers. Int’l Symp. on Computer Architecture
(ISCA), Jun 2016.

[72] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active
Messages: A Mechanism for Integrated Communication and
Computation. Int’l Symp. on Computer Architecture (ISCA), May
1992.

[73] L. Wang, H. Cui, Y. Duan, F. Lu, X. Feng, and P.-C. Yew. An
Adaptive Task Creation Strategy for Work-Stealing Scheduling. Int’l
Symp. on Code Generation and Optimization (CGO), Apr 2010.

[74] J. Zebchuk, E. Safi, and A. Moshovos. A Framework for
Coarse-Grain Optimizations in the On-Chip Memory Hierarchy. Int’l
Symp. on Microarchitecture (MICRO), Dec 2007.

[75] H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE: Sharing
Pattern-Based Directory Coherence for Multicore Scalability. Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Sep 2010.

