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Abstract—Reconfigurable accelerator fabrics, including
coarse-grain reconfigurable arrays (CGRAs), have experienced
a resurgence in interest because they allow fast-paced software
algorithm development to continue evolving post-fabrication.
CGRAs traditionally target regular workloads with data-level
parallelism (e.g., neural networks, image processing), but once
integrated into an SoC they remain idle and unused for irregular
workloads. An emerging trend towards repurposing these idle
resources raises important questions for how to efficiently map
and execute general-purpose loops which may have irregular
memory accesses, irregular control flow, and inter-iteration loop
dependencies. Recent work has increasingly leveraged elasticity
in CGRAs to mitigate the first two challenges, but elasticity
alone does not address inter-iteration loop dependencies which
can easily bottleneck overall performance. In this paper, we
address all three challenges for irregular loop specialization
and propose ultra-elastic CGRAs (UE-CGRAs), a novel elastic
CGRA that accelerates true-dependency bottlenecks and saves
energy in irregular loops by overcoming traditional VLSI
challenges. UE-CGRAs allow configurable fine-grain dynamic
voltage and frequency scaling (DVFS) for each of potentially
hundreds of tiny processing elements (PEs) in the CGRA,
enabling chains of connected PEs to “rest” at lower voltages and
frequencies to save energy, while other chains of connected PEs
can “sprint” at higher voltages and frequencies to accelerate
through true-dependency bottlenecks. UE-CGRAs rely on a
novel ratiochronous clocking scheme carefully overlaid on the
inter-PE elastic interconnect to enable low-latency crossings
while remaining fully verifiable with commercial static timing
analysis tools. We present the UE-CGRA analytical model,
compiler, architectural template, and VLSI circuitry, and we
demonstrate how UE-CGRAs can specialize for irregular loops
and improve performance (1.42–1.50×) or energy efficiency
(1.24–2.32×) with reasonable area overhead compared to
traditional inelastic and elastic CGRAs, while also improving
performance (1.35–3.38×) or energy efficiency (up to 1.53×)
compared to a RISC-V core.

I. INTRODUCTION

Fast-evolving application domains such as machine learn-
ing, augmented and virtual reality, and intelligence on the
edge have increased the demand for energy-efficient hard-
ware accelerators that remain flexible after fabrication. In
particular, coarse-grain reconfigurable arrays (CGRAs) map
dataflows to a spatial array of simple processing elements
(PEs) and send data directly between PEs to reduce expen-
sive data-movement energy in the memory hierarchy. CGRAs
are well-known for efficiently targeting kernels with regular
data-level parallelism in domains such as neural networks and
image processing [1, 13, 15, 47, 59, 61]. However, once inte-
grated into an SoC, they remain idle and unused for irregular
workloads. There is an emerging trend towards repurposing
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Figure 1. Irregular Loops with Inter-Iteration Loop Dependencies –
CGRAs targeting irregular loops may need to address inter-iteration
loop dependencies, which introduce cycles in the dataflow graph
and greatly reduce throughput. (a) Toy code with a multiple-cycle
inter-iteration dependency; (b) Corresponding dataflow graph with
func() outlined in red; (c) Dataflow graph mapped to four CGRA
PEs and two memory banks; (d) Pipeline diagram illustrating the
inter-iteration dependency; (e) System-level view of a multicore sys-
tem with a UE-CGRA coupled to the memory bus and sprinting a
bottleneck region on an arbitrary kernel.

these idle CGRA resources in general-purpose systems for
accelerating both regular and irregular loops [18, 19, 45, 46].
Architects face three challenges for efficient acceleration of
irregular loops defined by: (1) irregular memory accesses
with variable latencies and non-uniform access patterns, (2)
irregular control flow, and (3) performance bottlenecks due to
inter-iteration loop dependencies.

Recent work has increasingly leveraged elasticity in
CGRAs to robustly address the first two challenges with
latency-insensitive handshaking in both the memory inter-
faces and in the interconnect [13, 18, 19, 21, 45]. Traditional
latency-sensitive CGRAs statically schedule computation at
compile time and function incorrectly for any irregularity in
memory access latency and/or control flow. In contrast, elas-
tic CGRAs determine control and data flow dynamically at
runtime, triggering computation when all operands have be-
come available. Unfortunately, elastic CGRAs still struggle
to achieve high performance in the presence of inter-iteration
loop dependencies. Figure 1(a-d) shows a code example with
a multi-cycle inter-iteration loop dependency. The corre-
sponding dataflow graph and mapped CGRA are shown to-
gether with a pipeline diagram illustrating how throughput
is limited to one iteration every four cycles. Note that this
simple example could be the performance-limiting loop in
a kernel with pointer-chasing behavior. While performance
could still be improved by parallelizing over an outer loop
(not shown) with additional resources, there is little room to
mitigate the true-dependency bottleneck in the inner loop.



Fine-grain dynamic voltage and frequency scaling (DVFS)
has the potential to accelerate true-dependency bottlenecks
in irregular loops by enabling per-PE voltage and frequency
domains and allowing chains of connected PEs to “rest” at
lower voltages and frequencies to save energy, while other
PEs can “sprint” at higher voltages and frequencies for perfor-
mance. As a simple example, the chain of true dependencies
in Figure 1(d) could potentially sprint (given power slack)
and complete every three cycles instead of four with the
same architectural resources. Fine-grain DVFS has already
been demonstrated to improve both performance and energy
for multicores in academia [17, 33, 35, 56, 57] and in indus-
try [28,29,38]. However, enabling fine-grain DVFS at the PE
level is very challenging. Per-domain fully integrated voltage
regulators and PLLs would occupy more area than the PE, and
common alternative clocking schemes based on ring oscilla-
tors suffer from high phase noise. Furthermore, the resulting
asynchronous crossings add synchronization latency and re-
quire specialized expertise, methodologies, and verification
tools [10]. The recent exponential rise in non-recurring engi-
neering costs motivates a greater focus on verifiability chal-
lenges [32]. Previous work has explored functional-unit-level
fine-grain DVFS in various contexts, including within an out-
of-order processor [51], for arbitrary logic partitionings [43],
and for small circuits in isolation [62]. Some isolated works
have even explored inelastic CGRAs [23, 24] — however,
these works make many assumptions (e.g., per-domain PLLs,
asynchronous crossings, ignoring synchronization latency)
that either make the approach infeasible or significantly re-
duce performance and energy efficiency.

In this paper, we tackle these problems and propose ultra-
elastic CGRAs (UE-CGRAs), a novel elastic CGRA that ac-
celerates true-dependency bottlenecks and saves energy in
irregular loops by overcoming traditional VLSI challenges.
UE-CGRAs support configurable per-PE fine-grain DVFS.
Figure 1(e) shows the system-level view for the UE-CGRA
platform, illustrating the fabric coupled to the system mem-
ory bus and sprinting through a true-dependency bottleneck
on an arbitrary kernel. All PEs are connected with elastic
buffers (i.e., PEs wait for all input operands before firing).
Unutilized PEs are power-gated as in previous literature [61].
Remaining PEs are configured for different voltages and fre-
quencies to execute the dataflow graph more efficiently.

The UE-CGRA platform relies on a ratiochronous clocking
scheme based on [50] that is carefully overlaid on the inter-PE
elastic interconnect and includes a novel elasticity-aware sup-
pressor. This approach is not only low latency but also quan-
tizes the frequency space and avoids asynchronous crossings,
allowing for full verifiability with commercial STA tools. Our
results show UE-CGRAs can improve performance (1.42–
1.50×) or energy efficiency (1.24–2.32×) with reasonable
area overheads compared to traditional inelastic and elastic
CGRAs, while also improving performance (1.35–3.38×) or
energy efficiency (up to 1.53×) over a RISC-V in-order core.

Our work challenges the conventional wisdom that kernels
with irregular control flow, irregular memory accesses, and
inter-iteration loop dependencies do not map efficiently to
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Figure 2. UE-CGRA Discrete-Event Performance Model – A toy
dataflow graph with a three-node cycle provides intuition on
UE-CGRA execution. (a) Execution with elastic flow control results
in correct functionality (tokens wait in queue “q”) with a throughput
of one every three cycles; (b) Resting A1/A2 at 1/3 frequency saves
energy and does not hurt throughput. (c) Resting A1/A2 to 1/2 and
sprinting B/C/D by 1.5× boosts throughput to one every two cycles.
Exact voltages/frequencies are used in the model but not shown here.

CGRAs. We also challenge the wisdom that enabling fine-
grain DVFS within tiny CGRA PEs incurs too much over-
head to be useful. We make the following contributions:
(1) the ultra-elastic CGRA compiler, architecture, and VLSI
techniques that enable a CGRA to efficiently accelerate ir-
regular loops with inter-iteration loop dependencies;1 (2) an
analytical model for rapid UE-CGRA design space explo-
ration; (3) the UE-CGRA compiler with a heuristic three-
phase power-mapping pass; (4) a detailed architectural study
of UE-CGRA design space parameters; and (5) to our knowl-
edge, the first CGRA with per-PE fine-grain DVFS which can
be fully verified using standard static timing analysis.

II. UE-CGRA ANALYTICAL MODELING

We provide intuition for the ultra-elastic CGRA compu-
tational model using first-order analytical performance and
power modeling before exploring more detailed modeling in
later sections. The analytical model includes discrete-event
performance simulation of dataflow on the UE-CGRA com-
putational model as well as a first-order power model.

A. Discrete-Event Performance Model

We designed a simple discrete-event simulator that models
the performance of a dataflow graph (DFG) executing on both
an elastic CGRA and an ultra-elastic CGRA.

Figure 2(a) illustrates a toy dataflow graph with six nodes,
with three connected in a cycle. Each node in the DFG “fires”
when all input tokens have arrived along the incoming edges.
If an input token has not yet arrived, the node applies back-
pressure and stalls. The node also stalls if a downstream node

1The UE-CGRA models have been released online at
https://github.com/cornell-brg/torng-uecgra-scripts-hpca2021



is not ready to accept a new token. As time advances, tokens
flow along the DFG until they exit the graph. We model two-
entry queues for each edge, and we also model wire delays
(i.e., tokens may only propagate after a cycle of delay). The
pipeline diagram illustrates how a single inter-iteration de-
pendency can slow the throughput to one every three cycles.

The discrete-event simulator models variation in perfor-
mance by ticking nodes running at higher voltages at higher
frequencies and ticking nodes running at lower voltages
at lower frequencies (see Section VI for how we selected
voltage-frequency pairs). For example, Figure 2(b) shows
nodes A1 and A2 resting to a lower voltage corresponding to
one-third the nominal frequency without impacting the kernel
throughput. Finally, Figure 2(c) shows how the power slack
(see energy model in Section II-B) can be used to sprint the
critical DFG cycle to boost throughput to one every two cy-
cles, reflecting a 1.5× factor in performance. Note that the A1
and A2 nodes can represent memory load PEs with SRAMs,
implying that we can rest these memory banks to save energy
while still executing the loads at a slow (but fast enough) rate.

Our performance model is able to execute more com-
plex DFGs with multiple live-ins/outs (i.e., inputs/outputs to
DFG), parallel fork-joins, recurrence edges, and with many
nodes. Note we only model CGRAs with single-cycle opera-
tions and many details that impact mappability (e.g., routing)
are abstracted away. Compared to a detailed hardware im-
plementation, our simulator assumes that all nodes map to a
unique PE and any PE can communicate with any other PE.

B. First-Order Energy Model

We also estimate the energy of a dataflow graph executing
on both an elastic CGRA and an ultra-elastic CGRA using a
first-order model that can be tuned against a particular tech-
nology and VLSI implementation (see Section VI).

Consider a CGRA with NT PEs with NTA configured ac-
tive and NT I configured inactive. The CGRA has NS SRAM
subbanks along the top and bottom edges with NSA banks con-
figured active and NSI banks configured inactive.

We assume that frequency is a polynomial function of volt-
age (validated using circuit-level simulation, see Section VI).
The frequency of each active PE and SRAM subbank is:

fTAi = k1V 2
TAi + k2VTAi + k3 (i = 1,2, ...,NTA)

fSA j = k1V 2
SA j + k2VSA j + k3 ( j = 1,2, ...,NSA)

where k1, k2, and k3 are fitted parameters, fTAi is the fre-
quency of PE i, VTAi is the voltage of PE i, and so on.

We assume the throughput of an active PE or SRAM sub-
bank is measured in iterations per second (IPS) and that the
throughput of any active PE or SRAM subbank is equal to the
throughput of the entire CGRA. This is valid because each to-
ken processed by the CGRA has visited each active PE and
each SRAM subbank exactly once. Tokens that flow along
cyclic recurrence edges do not count twice, as they represent
inputs for the next iteration of computation:

IPSAi = IPSCGRA (i = 1,2, ...,NTA)
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Power estimation is intimately tied to both throughput and
latency, and these parameters depend on the dataflow graph.
We use our discrete-event performance simulator to estimate
both throughput and latency. We later use this throughput
estimate to calculate dynamic energy, and we also use the
latency estimate to calculate static energy. Note that these raw
numbers are never used in isolation. All analytical results are
normalized and reported relative to another design point.

The PE and SRAM subbank powers includes both dynamic
and static power and are modeled as:

PTAi = αi,op IPSCGRA fTAi V 2
TAi +VTAi IT,leak (i = 1,2, ...,NTA)

PSA j = αsram IPSCGRA fSA j V 2
SA j +VSA j IS,leak ( j = 1,2, ...,NSA)

The factor αi,op is in the set {αmul ,αadd ,αsll ,αsrl ,αand ,αcp0},
where αop is the relative energy of a PE executing op at nom-
inal voltage VN and frequency FN compared to a PE executing
mul at the same voltage and frequency (also validated in Sec-
tion VI). Note that αsram is similarly defined relative to αmul .

We calculate the leakage current by assuming an architect
targets leakage power to consume a certain percentage (de-
noted as γ) of the total power of an active PE, and that an
SRAM bank’s leakage current is a multiplicative factor (de-
noted by β ) of the PE’s leakage current.

γ =
VN IT,leak

αmul IPSCGRA fN V 2
N +VN IT,leak

IS,leak = β IT,leak

We use PT I and PSI to refer to the power consumed by inactive
PEs and SRAM banks. We assume that these are both zero,
indicating that power-gated PEs consume no power.

The total power is the aggregate across PEs and SRAMs:

Ptotal =
NTA

∑
i=1

PTAi +
NSA

∑
j=1

PSA j +NT I (PT I)+NSI (PSI)

C. Analytical Case Study
The analytical model can quickly explore the UE-CGRA

design space. Figure 3 sweeps different voltage and fre-
quency settings for each node across all nodes in the DFG.
The energy for each node is modeled with its specific opera-
tor running at its specific voltage and frequency. We make the
following assumptions for parameters in the UE-CGRA ana-
lytical energy model: k1 = -1161.6, k2 = 4056.9, k3 = 1689.1,
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Figure 4. UE-CGRA Compiler Flow – The UE-CGRA compiler
builds on LLVM and transforms a C/C++ program into a logical
DFG, maps to physical PEs, places/routes onto the array, selects
power modes per PE, and generates the final bitstream.

VN = 0.9 V, Vmin = 0.61 V, Vmax = 1.23 V, fN = 750 MHz,
γ = 0.1, β = 2.0, αsram = 0.82 (per 4 kB subbank), αmul =
1.0, αadd = 0.30, αsll = 0.37, αsrl = 0.35, αcp0 = 0.23,
αand = 0.30, αor = 0.33, αxor = 0.42, αeq = 0.23, αne = 0.23,
αgt = 0.25, αgeq = 0.25, αlt = 0.25, αleq = 0.25, αbps = 0.11.
These parameters are derived from VLSI modeling for the tar-
get voltage range and system described in Section VII.

The circled point combines sprinting and resting for 1.4×
speedup and 1.2× energy efficiency. Note that sprinting the
six-node cycle increases energy, but resting non-critical nodes
reduces energy (in particular, live-ins and live-outs represent
power-hungry SRAMs). The results also suggest that resting
can enable 2.2× energy efficiency at similar performance.

III. UE-CGRA COMPILER

The UE-CGRA compiler is responsible for transforming
the C/C++ source code of a compute kernel for implemen-
tation (i.e., generating the bitstream) on the UE-CGRA ar-
chitecture (see Section IV). Figure 4 overviews the com-
piler toolchain, which builds on LLVM to transform simple
C programs into logical dataflow graphs, conducts a sim-
ple mapping of nodes to physical PEs, places and routes the
design onto the UE-CGRA, and then conducts a heuristic
power mapping pass to configure the voltages and frequen-
cies to optimize performance and energy efficiency. Because
the LLVM and place/route phases are similar to related work
(e.g., [30]), we focus our discussion on the power mapping
pass. See Section VI-A for more detail on the LLVM passes.

The compiler power-mapping pass automatically selects
DVFS power modes, one mode per PE. The pass begins by
power gating unused PEs as is common in related litera-
ture [61]. We then apply the three-phase mapping algorithm
described in Figure 5, which leverages the UE-CGRA analyt-
ical model for energy-delay estimates and employs heuris-
tics to iteratively search for a mapping with high perfor-
mance and/or high energy efficiency. The algorithm is simple
and not intended as a formal solution for the general power-
mapping problem. However, it is sufficient to explore the
potential of the UE-CGRA design space.

Complexity-Reduction Phase – Naively, selecting from
M possible power modes (e.g., rest, nominal, sprint) for each
of N logical DFG nodes has a worst-case time complexity of
O(MN), which grows quickly for larger DFGs. To reduce the
search space, we take advantage of the producer-consumer
relationship in a DFG and note that the throughput of an entire

1: procedure POWERMAPPING(N, T )
2: for each node n in N do
3: M(n) =V (sprint)
4: G = GroupNodes(N)
5: for each group g in G do
6: M(g) =V (rest)
7: if MeasureEnergyDelay(CGRA)< 1.0 then
8: M(g) =V (nominal)
9: if MeasureEnergyDelay(CGRA)< 1.0 then

10: M(g) =V (sprint)
11: for each PE t in T do
12: ConstrainPEModes(t)

Figure 5. UE-CGRA Compiler Power-Mapping Algorithm – The
PEs are mapped to rest, nominal, and sprint power modes. Heuristics
are applied to maximize energy-delay product. N = set of all logical
DFG nodes; T = set of all physical PEs; M(n) = power mode of node
n; V (x) = voltage for mode x. The MeasureEnergyDelay(CGRA)
result is relative to the previous best (i.e., < 1.0 is worse).

chain is determined by the slowest PE. Specifically, a singly
connected chain of nodes should run at the same frequency
and can be treated as living in a single logical power domain.
We group all such nodes (i.e., GroupNodes()) to effectively
reduce N. Note that nodes with multiple inputs and outputs
remain ungrouped from other nodes. The next two phases
of the algorithm apply heuristics for energy and delay and
further reduce the worst-case time complexity to O(NM).

Energy-Delay-Optimization Phase – In this phase, the
compiler initializes each logical node n to sprint voltage such
that power mode M(n) = V (sprint). We then attempt to rest
each group of nodes for an improved energy-delay product.
At the start since all nodes are initialized to sprint, perfor-
mance is already maximized and the compiler slowly trades
performance for greater factors of energy efficiency. The
algorithm greedily tries to rest first for the greatest poten-
tial energy-efficiency benefit before trying nominal, and then
rolling back to sprint. The MeasureEnergyDelay() function
estimates results using the analytical model by setting all pa-
rameters (in Section II-C) and all power modes for all nodes.
This phase produces a power mapping and an energy-delay
product strictly less than that of the starting configuration.

Constraint Phase – Logical nodes in the DFG may fold
onto the same physical PE (i.e., since size(N) ≥ size(T ))
and therefore be limited to run at the same voltage and fre-
quency. For example, a PE may execute a multiply with two
inputs while bypassing a third unrelated input to an adjacent
PE (i.e., routing through a busy PE). In this phase, the al-
gorithm identifies all nodes mapped to PE t and chooses a
single power mode in the event of disagreement. The Con-
strainPEModes() function implements a small energy-delay
optimization search across the options, estimating each op-
tion internally with the MeasureEnergyDelay() function.

Summary – This algorithm prioritizes performance by
seeding the initial state to the maximum performance point
(i.e., all sprint) to generate a performance-optimized map-
ping. A variation of the algorithm can also prioritize en-
ergy by initializing all nodes to nominal mode to generate an
energy-optimized mapping. This algorithm is simple but ef-
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fective. We see our algorithm as just a heuristic starting point
that demonstrates promise for UE-CGRAs. More sophisti-
cated variations that map iteratively with physical constraints
would be more effective and are interesting future work.

IV. UE-CGRA ARCHITECTURE

In this section, we describe the UE-CGRA architectural
template which enables repurposing the CGRA to accelerate
both regular and irregular workloads. We conduct various
sweeps to draw insights about the architectural design space.

A. Architectural Template

Figure 6 illustrates the block diagram for a system contain-
ing a 4× 4 UE-CGRA. To offload computation, the proces-
sor writes the control status registers (CSRs) in the CGRA
through the accelerator command interface and sets up the
base addresses and sizes for the DMA unit to fetch the config-
uration bitstream and the data. Data is loaded into the SRAM
banks in the PE array. Another CSR is then written to ini-
tiate computation. The complete UE-CGRA is composed of
a control unit, a DMA unit with read and write queues, and
an array of UE-CGRA PEs interconnected with queues. The
PEs along the north and south perimeter contain SRAM banks
and are the only PEs capable of memory operations. The PE
is carefully architected to enable both compute and bypass-
ing of data (i.e., routing) in the same cycle. The configuration
phase leverages the existing data network to forward config-
uration messages systolically through the array from top to
bottom. There are 26 configuration bits, which fits in an inter-
PE message. Each block is described in more detail below.

Input Queues and Registers – The input queues from
each cardinal direction are elastic and have two entries to
avoid creating unnecessary pipeline bubbles [41] when all

PEs are communicating on the same synchronous clock.
They are also designed to correctly interface clock domains
with known phase relationships (see Section V). A single-
entry multi-purpose register is included to store configured
constants, accumulate values, and implement phi node be-
havior for recurrence edges (i.e., cycles in the DFG).

Muxing and Operators – Four five-input muxes select be-
tween the four input queues and the multi-purpose register.
These supply the operands for the compute operator as well
as for two bypass paths. Bypassing enables any input queue
to forward data to any output, allowing messages to route
through PEs executing other operations. Five three-input
muxes select between the compute operator output and the
bypass messages before forwarding the message towards one
of the four cardinal directions or towards the multi-purpose
register. The compute operator supports the following opera-
tions in a 32-bit datapath: cp0, cp1, add, sub, sll, srl, and, or,
xor, eq, ne, gt, geq, lt, leq, mul, phi, br, nop. These operations
include control flow (handled as data flow). The multiply op-
eration truncates the upper half of the result so that the inputs
and outputs have identical bitwidths.

Merge and Branch Support – Phi nodes are merge op-
erations that fire when either of two input messages arrive.
Merge behavior is paired with control unit logic that sends a
single valid handshake after reset. This enables PEs to initial-
ize DFG cycles (i.e., iteration zero) with valid data. Because
PEs wait for inputs, if none of these inputs were initialized,
the PE would never fire. Branching is decoupled from com-
putation of the branch condition. A PE configured to branch
accepts two handshakes for the data and select, which deter-
mines which of two outputs to forward data to. The branch
bit is tapped from one operand which is then used as the con-
dition. Note that we convert all control flow into data flow.
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Figure 7. Performance Sweeps – Methodology for all three figures (Section VI) based on RTL simulation using performance-optimized power
mapping for both kernels and synthetic microbenchmarks (see raw DFGs in Figure 14). (a) Throughput with varying inter-PE latency (cycles
per hop). (b) Throughput with varying queue depth. cycle-N = a synthetic irregular microbenchmark with N nodes connected in a cycle.
chain = a synthetic regular microbenchmark with no cycles. (c) Throughput with varying sprinting frequencies. In the highlighted realistic
VLSI region, faster sprint provides linear returns.

B. Q&A: Impact of inter-PE latency on performance?

An architect’s first instinct may be to use asynchronous FI-
FOs to cross between clock domains, but these add two to
three cycles of inter-PE synchronization latency [10] with an
unclear impact on performance.

Dataflow architectures communicate at fine granularity
(e.g., every cycle) and are very sensitive to inter-PE latency.
Figure 7(a) quantifies this impact and shows how a two-cycle
synchronization latency degrades throughput by a factor of
three for DFGs with inter-iteration dependencies. A single to-
ken must propagate completely around the DFG cycle before
the next iteration can begin. As hops slow down, the through-
put of the critical DFG cycle (and therefore the entire kernel)
also slows down. As a result, performant dataflow archi-
tectures must reduce inter-PE synchronization latency as
much as possible. Note that asynchronous FIFOs only pay
a penalty when empty or full. Unfortunately, a token flow-
ing around a DFG cycle will repeatedly encounter PEs with
empty queues (i.e., the worst case), meaning that inter-PE
asynchronous FIFOs will reduce throughput by a factor
of 3–4×. High performance requires zero inter-PE latency.

C. Q&A: Impact of queue depth on performance?

Elastic architectures typically use two-element queues to
avoid creating unnecessary pipeline bubbles [41]. However,
since UE-CGRA PEs may fill their downstream queues more
slowly (or quickly) than in an E-CGRA, the question of queue
depth is important to guarantee maximum throughput.

A UE-CGRA is meant to augment an existing CGRA to ac-
celerate both regular and irregular workloads. Therefore, at
least two-element queues are required to support full through-
put for regular workloads. For irregular workloads, we study
queue depth in a UE-CGRA running a synthetic irregular mi-
crobenchmark (Figure 7(b)) and show that no amount of
deeper queuing affects the throughput of irregular ker-
nels with inter-iteration dependencies. While surprising at
first, this is in fact intuitive. Specifically, throughput is deter-
mined by the latency of a single token propagating around the
longest DFG cycle (i.e., with the most nodes) before the next
iteration can fire. The queues in these PEs are always empty
and so depth has no impact (in fact, even a single element is

sufficient). Therefore, we find that two-element queues are
reasonable to support both regular and irregular kernels.

D. Q&A: Which frequencies should be supported?

While an architect may desire many frequency levels for
greater flexibility, the VLSI overhead for each additional level
can grow quickly (e.g., clock generation, global clock net-
works, power grids, more complex static timing analysis).
This subsection studies which levels should be prioritized
over others given a conservative limit of only three levels.

The nominal level is required (e.g., 0.9 V in TSMC 28).
Recent literature (in non-CGRA settings) suggests that hav-
ing both a rest and sprint voltage will enable both saving en-
ergy and improving performance [17, 33, 42, 57]. However,
we cannot sprint too high (e.g., to avoid transistor breakdown)
nor rest too low (e.g., to avoid near-threshold). In TSMC 28,
from a reasonable range for resting (0.6–0.9 V) and sprinting
(0.9–1.3 V), we must choose two levels.

For the sprint level, Figure 7(c) sweeps sprint frequen-
cies for a UE-CGRA running synthetic irregular microbench-
marks (same as in Figure 7(b)) and a performance-optimized
compiler mapping. Speedup is proportional to frequency (i.e.,
the token propagates around the ring more quickly) until per-
formance hits a throughput ceiling (i.e., the rate of incom-
ing producer data is set to one token per nominal cycle here).
DFGs with longer cycles require higher frequencies to hit the
ceiling. However, only a limited range of frequencies is real-
istic from a VLSI perspective (e.g., sprinting to a high 1.3 V
in TSMC 28 only increases current drive for roughly a 1.58×
frequency boost, see SPICE modeling in Section VI-B). In a
realistic VLSI setting, higher sprint frequency linearly im-
proves throughput by speeding up the critical DFG cycle.

For the rest level, our SPICE modeling suggests that the
lowest rest voltage (i.e., 0.6 V) would decrease current drive
for roughly a 3.0× slower frequency (and a 7× power re-
duction). While this may seem slow, the opportunity to rest
at this level can be surprisingly high because any DFG with
an inter-iteration dependency of three or more ops could rest
non-critical PEs and SRAM banks (e.g., see Figure 2). There-
fore, it is likely that the opportunity to rest aggressively in a
realistic VLSI setting is high without impacting throughput.



E. Summary

The UE-CGRA architecture should prioritize low-latency
inter-PE crossings (ideally zero), queue depth should be two
elements, higher sprint modes can be chosen for linear per-
formance returns, and the lowest rest mode should be chosen,
given the high likelihood for resting in irregular kernels. A
reasonable set of voltages in TSMC 28 might therefore be
(0.60 V, 0.90 V, 1.30 V), before further VLSI considerations.

V. UE-CGRA VLSI

The previous sections assumed UE-CGRA platform VLSI
support. In this section, we describe the UE-CGRA VLSI
circuitry to enable per-PE fine-grain DVFS with reasonable
overheads. Figures 8 illustrates the primary components of
our clocking scheme and physical design approach.

Ratiochronous Clock-Domain Crossings – UE-CGRA
PEs communicate synchronously over ratiochronous clock-
domain crossings. The ratiochronous design pattern en-
forces rational clocking relationships across domains (e.g.,
frequency ratios of 1-to-3, 2-to-3). This requirement is
less flexible than a fully asynchronous approach (i.e., rati-
ochronous clocking quantizes an otherwise infinite space of
possible clock relationships). The ratiochronous family of
cross-domain interfaces was initially proposed by Sarmenta
et al. who published the seminal paper on rational clock-
ing [50], and it has since been explored primarily in the asyn-
chronous community for small circuits (see Section IX). En-
forcing ratiochronous crossings has minor impact on an archi-
tect’s choice of frequencies. In this paper, we adjust our pre-
ferred selection of voltages from (0.60 V, 0.90 V, 1.30 V) to
(0.61 V, 0.90 V, 1.23 V) to convert our clock ratio from “1.9-
to-3-to-8.5” to “2-to-3-to-9”. This reduces sprint frequency
by 5% according to our SPICE models in Section VI-B.

Suppressor Unit – Ratiochronous crossings have phasic
relationships that may require suppression of “unsafe” edges
as shown in Figure 8(a). For example, clock edges at a 2-
to-3 crossing repeat periodically at the least common multi-
ple of six. Several edges are not aligned and are “unsafe”
for transmitting data. Figure 8(c) implements a traditional
unsafe-edge detector [50] for each crossing between three
clock domains. Because CGRA performance is very sen-
sitive to frequent and periodic stalling, we propose a novel
elasticity-aware suppressor unit that enables safe crossings in
the presence of backpressure. Specifically, Figure 8(d) shows
how the empty signal from the input queues is used to im-
plement two edge detectors that allow handshakes on unsafe
edges as long as data has been enqueued for longer than one
local clock cycle, which can prevent unnecessary stalling.

Bisynchronous Queues – We select a simple two-element
bisynchronous normal queue to interface between two PEs
in different clock domains. Messages sent are source-
synchronous, meaning the write clock is sent with the data.
We specifically do not use asynchronous queues as is as-
sumed in most literature [24,51,62], as these complicate ver-
ification [10] and add two-to-three-cycle synchronization la-
tency penalties which significantly reduce performance.
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Figure 8. Ratiochronous Crossings and Power Domains – (a) Ratio-
nal clocks with 2-to-3 ratio and edges uniquely numbered (before re-
peating periodically). The first crossing is safe since the propagation
time from edge B0 to edge A1 is a full (receiver) clock cycle from
edge A0 to edge A1; the second crossing is unsafe and too aggres-
sive to meet timing. (b) Two PEs with level shifters and boundary
isolation. Source-synchronous messages travel to a neighboring PE
through level shifters/isolation and write the bisync queue, where the
consumer reads it (entire path checked by STA). (c) Clock checker
to detect safe/unsafe edges in ratiochronous clock-domain crossings.
(d) Suppressor unit to disable handshakes on unsafe cycles.

Static Timing Analysis (STA) – Because ratiochronous
design quantizes the frequency space, UE-CGRAs are fully
verifiable with commercial STA tools by checking the cross-
product of each domain at each frequency. Our UE-CGRA
template further reduces the complexity of the verification
space by leveraging suppressors to eliminate unsafe cross-
ings at the architecture level. STA tools need only check safe
crossings, which significantly simplifies timing constraints.

Clock Dividers and Switchers – We generate rational
clocks with standard 50%-duty clock dividers (e.g., divide by
two, divide by three) [48] and distribute to all PEs. Each PE
then selects between clocks with a traditional glitchless clock
switcher. At the system level, we then align all clocks with
a two-phase reset: a dedicated clock reset (i.e., Figure 8(c)
“clkrst”) aligns all clock dividers and switchers, which gen-
erates the edges to synchronously reset all state within PEs.

Hierarchical Clock-Network Gating – Three clock net-
works in the UE-CGRA distribute the divided clocks (i.e.,
rest, nominal, and sprint) to each PE. Gating these clocks is
critical to the energy efficiency of the UE-CGRA. We first
power gate inactive PEs to eliminate their local clock power
as in the literature [61]. We then adopt a hierarchical clock-
network gating approach to reduce toggles in large unselected
portions of the global clock networks, similar to [49]. Specif-
ically we cluster PEs (e.g., 4×4 clusters) and gate each clus-
ter’s portion of the global clock network with a 1-bit config-
uration register. Because the compiler is statically aware of
all PE clocks, it can gate with perfect knowledge (e.g., it can
gate the entire sprinting clock if no PEs are sprinting).



1 while(hd) {
2 if(hd−>d==tgt)
3 return hd−>d;
4 else
5 hd=hd−>nxt;
6 }
7 return −1;

1 for(i=0;i<N;++i){
2 out = src[i]+err;
3 if(out>127) {
4 pixel = 0xFF;
5 err = out−pixel;
6 } else {
7 pixel = 0;
8 err = out;
9 }

10 dest[i] = pixel;
11 }

1 for(x=−S;x<=N;x++){
2 bright=total+
3 ∗ip++;
4 tmp=∗dpt++∗
5 ∗(cp−bright);
6 area+=tmp;
7 total+=tmp∗bright;
8 }

1 for(k=0;k<G;++k){
2 t_r=Wr∗r[2∗j∗G+G+k]
3 −Wi∗i[2∗j∗G+G+k];
4 t_i=Wi∗r[2∗j∗G+G+k]
5 +Wr∗i[2∗j∗G+G+k];
6 r[2∗j∗G+G+k]=
7 r[2∗j∗G+k]−t_r;
8 r[2∗j∗G+k]+=t_r;
9 i[2∗j∗G+G+k]=

10 i[2∗j∗G+k]−t_i;
11 i[2∗j∗G+k]+=t_i;
12 }

1 for (i=0;i<21;++i){
2 BF_ENC(right,left,
3 s,p[i]);
4 temp=right;
5 right=left;
6 left=temp;
7 }

(a) llist (b) dither (c) susan (d) fft (e) blowfish

Figure 9. Target Kernel Loops – Code for each inner loop and their inter-iteration dependencies (e.g., llist hd, blowfish left/right).

Multi-Rail Supply Voltages – The research community
has studied fine-grain DVFS with multi-rail supply volt-
ages [11, 42, 57] and fully integrated voltage regulators [14,
16, 17, 25, 33, 35, 54, 56]. In this work, we select a traditional
multi-rail supply scheme with three voltages. This increases
pin count and hierarchical power grid overhead but enables
fast reconfiguration on the order of nanoseconds [57] (also
verified in-house in TSMC28 for a PE at power signoff).

Voltage Level-Shifting Considerations – Driving signals
directly between voltage domains can be functionally incor-
rect (e.g., 0.6 V driving 1.2 V). Modern commercial ASIC li-
brary vendors provide universal up-down level-shifters (e.g.,
100s of mV in one FO4 delay). However, driving from near-
threshold voltage can increase this latency to 1–10 ns even
with cutting-edge circuit design [34]. UE-CGRAs are not de-
signed for near- or sub-threshold voltage domains and rely
only on commercially available level shifters operating above
threshold. Figure 8(b) shows how these cells level-shift out-
bound signals from the PE, directly behind the boundary-
isolation cells (with gate_en) which are already present for
fine-grain power-gating in modern CGRAs [61]. This ensures
that outbound signals are always driven to known values.

VI. METHODOLOGY

We use a vertically integrated research methodology span-
ning software, architecture, and VLSI and describe our
benchmarks, compiler, architectural modeling, and VLSI.

A. Benchmarks and Compiler

CGRA compilers typically identify small 10-instruction re-
gions that can be reused 10K+ times [18,19]). Figure 9 shows
the inner loop code for the five benchmarks used in our eval-
uation and their inter-iteration dependencies. We map only
the innermost loops. We choose benchmarks small enough to
fit in our 8× 8 UE-CGRA while remaining suitable for de-
tailed evaluation. llist is a linked-list search kernel. dither
runs grayscale Floyd-Steinberg image dithering. The remain-
ing few kernels are derived from previous literature on elastic
CGRAs [21], including susan, an automotive image recogni-
tion smoothing kernel, and bf, a block-cipher security kernel.

Our compiler is implemented as an LLVM pass (v3.8.0).
We generate a DFG for the innermost loop of each kernel and
structurally map the DFG onto the CGRA. We implement a
control dataflow graph (CDFG) analysis pass to generate the
CDFG (i.e., with both control and data dependency edges) for
each kernel. The CDFG is tuned (e.g., control-dependency

edges are converted to data-dependency edges with phi and
branching support) to generate a new DFG containing only
the set of operations supported by the UE-CGRA. We then
place one DFG node at a time onto PEs in the UE-CGRA. For
each node, a valid path to route dependencies is calculated
with Dijkstra’s algorithm.

B. Architecture and VLSI Modeling

We designed a parameterizable elastic CGRA (E-CGRA)
and UE-CGRA RTL generator within a Python-based hard-
ware modeling framework [26, 27, 37]. The E-CGRA is sim-
ilar to [21]. We translated to Verilog and pushed each 8× 8
CGRA through an ASIC toolflow at 750 MHz using Synopsys
and Cadence tools (i.e., Design Compiler, Innovus, Prime-
Time PX, and VCS) in TSMC 28 nm. We ran synthesis,
place-and-route, gate-level simulation, and power estimation.

We also ran SPICE-level simulations to help determine
the relationship between voltage and frequency for our pro-
cess technology across different operating modes. We used
21 delay stages consisting of multiple FO4-loaded inverters,
NAND, and NOR gates connected in a loop, such that the to-
tal delay in the loop matches our gate-level cycle time for a
given voltage. We used the change in delay vs. supply voltage
as a model for PE voltage-frequency scaling.

C. Energy Modeling

We model energy for our 8× 8 E-CGRA and our 8× 8
UE-CGRA with vectored SDF-annotated gate-level power es-
timation using Synopsys VCS and PrimeTime PX at nominal
voltage, followed by first-order power-scaling equations for
different voltages. We first simulated each benchmark sepa-
rately on both gate-level models at nominal voltage. We then
used both sets of energy breakdowns to model the intended
UE-CGRA with rest and sprint voltages. Specifically, the to-
tal UE-CGRA energy is the sum of energies in all E-CGRA
PEs, the suppression logic, and the clock switcher in all 64
UE-CGRA PEs. We scaled each PE to the new voltage to first
order, re-accounted for leakage, and added global clock en-
ergy (which is not voltage-scaled). The gate-level simulation
is driven by 1000 iterations of random input data for llist, fft,
susan, dither and 32 iterations for bf. We model hierarchical
clock-network gating (see Section V) using post-PnR SDF-
annotated power reports. We extract local (PE) clock power
and global clock network power (rest, nominal, sprint) and
also analyze the power breakdown of all clock tree buffers.
Then for each CGRA configuration, we subtract (i.e., gate)
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Figure 10. PE Area vs. Cycle Latency – PE areas of IE-CGRA,
E-CGRA, and UE-CGRA across different cycle time targets.

portions of the global clock network based on the average
power of a clock buffer multiplied by the number of toggling
clock buffers in each tree (by cross-checking with the com-
piler to see which PEs use that clock). For example, if two-
thirds of the PEs use nominal clock, then we estimate the
number of clock buffers in the tree driving those PEs, and if
the compiler decides that no PEs use the sprint clock then that
entire network can be gated. Finally, note that our gate-level
power estimates for the CGRA PE (see Section VII-A) prop-
agate back to the UE-CGRA analytical model as αop values.

D. System Integration Modeling
We model a system with an in-order RV32IM core cou-

pled with a CGRA. The core is implemented similarly to our
CGRAs and meets 750 MHz timing post-layout. We model
performance for the CPU in isolation by compiling each ker-
nel with the RISC-V toolchain and simulating in RTL, and
we measure energy as discussed earlier with Synopsys PTPX.
To model performance of a CPU offloading a benchmark
onto a CGRA, we estimate to first order the reconfiguration
and data-loading overheads based on benchmark properties.
Specifically, we assume that all accesses to the L1 cache are
hits and that the sustained bandwidth between the CGRA and
the memory system is 128 bits/cycle (similar to [18, 19]).

VII. RESULTS

In this section, we evaluate UE-CGRAs against inelastic
CGRAs (IE-CGRA) and elastic CGRAs (E-CGRA) execut-
ing a set of irregular kernels that fit in an 8× 8 CGRA for
detailed simulation. We then finish with a first-order system-
level analysis with a RISC-V core. Note that while these
studied CGRAs have limited resources and can only fit sim-
pler kernels, modern CGRAs are beginning to scale in size
(e.g., 500+ PEs [2, 61]) to accelerate regular ML workloads.
We will show that the overhead to convert to an E-CGRA or
UE-CGRA is reasonable to also support irregular workloads.

A. PE Area and Energy
We first consider a single IE-CGRA PE (no elasticity, no

DVFS), an E-CGRA PE, and a UE-CGRA PE in a 28 nm
technology. Figure 10 shows post-PnR area for a sweep of
clock targets. Area increases as expected for more aggressive
clocks. In general, the E-CGRA PE and UE-CGRA PE have
similar area with 14% and 17% overhead over the IE-CGRA
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Figure 12. CGRA Layouts – CGRA layout for IE-CGRA, E-CGRA,
and UE-CGRA targeting 750 MHz in TSMC 28 nm.

PE at a 750 MHz target (1.33 ns). Notably, the E-CGRA has
similar overheads over the IE-CGRA as in [21].

Figure 11 breaks down area for each PE and also energy
for a single E-CGRA PE and UE-CGRA PE across all op-
erations. The area for UE-CGRA-specific logic (e.g., un-
safe crossing suppression) is very small. On average, the
UE-CGRA PE consumes 21% more energy across all opera-
tions compared to an E-CGRA PE. The unsafe clock-domain
crossing suppression logic (field unsafe_gen and suppress in
Figure 11) contributes to a minimal 1.3% energy overhead.
The remaining difference is from the three clock networks
entering the PE. Note that our full-CGRA results in Sec-
tion VII-C will reflect hierarchical clock-network gating as
described in Section V to reduce this energy for inactive PEs.

B. CGRA Area, Cycle Time, and Power Breakdown

Figure 12 shows the post-PnR layout of the three 8× 8
CGRAs. The IE-CGRA has the smallest area (463×463 µm)
due to its simplicity and lack of flow control. The
E-CGRA has slightly larger area (495×495 µm) with flex-
ible, hardware-managed flow control. The UE-CGRA has
an area overhead of 14% compared to an E-CGRA due to
three global clock networks, global clock dividers, and per-



TABLE I. POWER BREAKDOWNS

PE Logic
Power

PE Clock
Power

Global Clock Total
Clock Power

Total
PowerSprint Nominal Rest

E-CGRA w/o P+H 1.66 1.70 0.24 1.94 3.60
E-CGRA w/o H 0.94 0.80 0.24 1.04 1.98
E-CGRA 0.94 0.80 0.10 0.91 1.85

PO
pt

UE-CGRA w/o P+H 2.31 1.91 0.54 0.36 0.12 2.93 5.29
UE-CGRA w/o H 1.43 1.13 0.54 0.36 0.12 2.15 3.63
UE-CGRA 1.43 1.13 0.16 0.04 <0.01 1.34 2.82

E
O

pt

UE-CGRA w/o P+H 1.70 1.37 0.53 0.36 0.12 2.38 4.12
UE-CGRA w/o H 0.81 0.59 0.53 0.36 0.12 1.60 2.47
UE-CGRA 0.81 0.59 <0.01 0.15 <0.01 0.74 1.61

Power (mW) derived from SDF-annotated post-PnR design running the
dither kernel (Popt/Eopt, Figure 14 (g/h)). P: unused PEs are power
gated (and therefore clock gated); H: hierarchical clock gating (see
Section V). PE clock power: the intra-PE clock network power (clock
buffers and DFFs in PEs). Global clock: the inter-PE clock network
power (clock buffers outside PEs). POpt/EOpt: see Section VII-C.

PE clock switchers and suppression logic. All three CGRAs
target a 750 MHz nominal clock frequency and meet timing.

Table I shows the post-PnR power breakdown of the dither
kernel running on the E-CGRA and UE-CGRA with and
without power gating of idle PEs and the hierarchical clock-
network gating in Section V. The first row for each CGRA
shows that the clock network (with no gating) accounts for
about half the overall power, agreeing with the conventional
wisdom that clock networks have significant overhead. Note
that both UE-CGRAs have global clock power (i.e., not in-
cluding the PE portion) about 4× that of the E-CGRA, and
accounts for 19% of the total power of UE-CGRA POpt.

The second row power gates inactive PEs which also elim-
inates their local clock network power, significantly reduc-
ing overall power. Finally, the third row applies hierar-
chical clock gating as described in Sections V and VI-C
to reduce global clock network power. Comparing to the
most optimized E-CGRA (third row), successively gating the
UE-CGRA (POpt) starts at 2.86× power overhead and re-
duces first to 1.96× and then to 1.52× with both methods
of gating. Note that UE-CGRA POpt has higher power than
the E-CGRA, but UE-CGRA EOpt has lower power, showing
how the compiler can target different power budgets.

C. CGRA Performance and Energy
Performance and gate-level energy results are listed in Ta-

ble II for the 8× 8 UE-CGRA relative to the baseline 8× 8
E-CGRA. These results include hierarchical clock-network
gating as described in Section V. Figure 14 visualizes the en-
ergy consumption of each PE in the baseline E-CGRA and the
UE-CGRAs with performance/energy-optimized mappings
on kernels llist and dither. These two mappings are gener-
ated by configuring the initial state of the power-mapping al-
gorithm to prioritize either performance or energy. We do not
include IE-CGRA in this comparison because it requires a
radically different kernel mapping with extra routing PEs and
slack matching and is therefore not a fair comparison. Note
that the kernels do not fully utilize the CGRA, and this is a
problem for CGRAs in general (our average is 65% utilized).

TABLE II. UE-CGRA PERFORMANCE AND ENERGY

Mapping Energy-Optimized Performance-Optimized
Perf E.Eff Perf E.Eff

llist 1.00 1.50 1.49 1.09
dither 1.00 1.24 1.42 1.00
susan 1.00 1.73 1.50 1.19
fft 1.00 2.32 1.49 2.02
bf 0.87 1.32 1.44 1.05

Performance (iterations/s) from RTL simulation and energy effi-
ciency (iterations/J) from post-PnR power estimation with SDF-
annotated GL simulations. Both relative to 8× 8 E-CGRA.

Figure 13. Normalized Energy Efficiency vs. Performance – Perfor-
mance (iterations/s) and energy efficiency (iterations/J) plotted rel-
ative to an E-CGRA baseline running at nominal VF (0.90V, 1.00X
freq.). Blue curves scale the entire E-CGRA (e.g., to full rest, full
sprint, and in between), and orange curves indicate fine-grain DVFS
with UE-CGRA. rest = all fully rested (0.61V, 0.33X freq.); low =
slightly rested (0.80V, 067X freq.); high = slightly sprinted ( 1.0V,
1.33X freq.); sprint = all fully sprinted (1.23V, 1.50X freq.).

Energy-Optimized Mapping (EOpt) – The energy-
optimized UE-CGRA prioritizes resting PEs while avoiding
performance loss. Table II shows that an 8× 8 UE-CGRA
can improve energy efficiency by up to 2.32× over an 8× 8
E-CGRA for our kernels. The energy-optimized power map-
ping identifies PEs on non-critical paths that trigger only once
every few cycles and configures these PEs to rest at lower
power modes while still (slowly) computing. The energy con-
tours show lighter colors for this mapping in the UE-CGRA.
Most kernels have acceptable performance degradation as
less-critical PEs operate at lower frequencies (0.8× to 1.0×).

Performance-Optimized Mapping (POpt) – The
performance-optimized UE-CGRA sprints PEs in the recur-
rence loop while also resting less-critical PEs for energy
efficiency. Table II shows that kernels can achieve up
to 1.77× speedup. From Figure 14(g), the performance-
optimized mapping achieves higher performance while
remaining energy efficient (PEs having lighter colors)
compared to the E-CGRA.

Energy Efficiency and Performance – Figure 13 plots
the energy efficiency and performance of four different
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Figure 14. PE Energy Contours for llist and dither – (a,e) kernel DFGs; (b,f) E-CGRA energy contours; (c,g) UE-CGRA POpt energy
contours; (d,h) UE-CGRA EOpt energy contours. Different PE shapes indicate different DVFS states; rest: 0.61 V, 0.33× freq.; nominal:
0.90 V, 1.00× freq.; sprint: 1.23 V, 1.50× freq.. A self-cycle inside a PE indicates one input is constant. Dashed lines indicate bypass paths
in a PE. C: condition input of br. D: data input of br. T: output of br when C is true (optional). F: output of br when C is false (optional).

E-CGRAs (all PEs at lowest rest mode, all PEs at highest
sprint mode, and two in-between modes) as well as the two
performance/energy-optimized UE-CGRA mappings. Re-
sults show that statically resting and sprinting the entire
E-CGRA can only achieve either high energy efficiency or
high performance. On the other hand, the UE-CGRA can
achieve both with carefully chosen power mappings. For
example, llist (linked-list search) in Figure 14(c) achieves
1.49× performance over the E-CGRA by accelerating criti-
cal PEs with the same energy cost. Even in situations where
most PEs must sprint for performance (see Figure 14(g)),
dither’s performance-optimized mapping demonstrates sim-
ilar energy (1.00×) by resting non-critical PEs.

D. First-Order System-Level Results

This work focuses on detailed evaluation within the CGRA
subsystem, but we also take the opportunity to evaluate the
CGRA in a small system with a 750 MHz inorder RV32IM
core (matching our CGRAs, see Section VI-D) with first-
order estimation of reconfiguration and data-loading over-
heads based on kernel properties (e.g., dataset size). Ta-
ble III projects the performance and energy efficiency of the
processor-CGRA system (with approximate overheads listed)
relative to a single core. For example, the linked list ker-
nel (i.e., llist) on the UE-CGRA requires 65 cycles for re-
configuration (60 configuration, 3 voltage-scaling, 2 clock-
scaling) and 500 cycles to load data before executing for 1000
iterations (and throughput is then measured in iterations/s,

TABLE III. PERFORMANCE AND ENERGY EFFICIENCY FOR
INTEGRATED SYSTEM RELATIVE TO PROCESSOR

Mapping Recurrence Cost E-CGRA EOpt POpt
Ideal Real Cfg Data Perf E.Eff Perf E.Eff Perf E.Eff

llist 5 8 58/65 500 0.94 0.72 0.94 1.02 1.35 0.75
dither 5 8 58/65 500 1.30 0.80 1.30 1.16 1.80 0.93
susan 5 11 58/65 250 1.42 0.55 1.42 0.91 2.10 0.63
fft 4 12 58/65 250 2.31 0.69 2.31 1.53 3.38 1.34
bf 12 24 58/65 8 1.36 0.64 1.18 0.80 1.90 0.64

Ideal = ideal recurrence length (theoretical lower bound) (cycles).
Real = actual recurrence length in E-CGRA simulation (cycles). Cfg =
cycles to transfer config bits and configure E-CGRA/UE-CGRA.
Data = cycles to transfer data. EOpt/POpt = performance/energy-
optimized UE-CGRAs. See Table II and Section VI for methodology.
Performance and efficiency relative to single in-order RV32IM core.

see Section VI-C). The iteration count amortizes overheads,
and modern CGRA compilers typically identify small 10-
instruction regions that can be reused 10K+ times [18, 19]).

Next we note from the recurrence columns that our com-
piler for the baseline E-CGRA is not perfectly optimized (and
is indeed not the focus of this work). For example, the theo-
retical lower bound for the recurrence in bf is 12 cycles, but
our mapping completes a cycle in 24 cycles. This means that
our CGRA performance is conservative and could be higher.

Next we consider the E-CGRA results (with overheads)
relative to the core. The most conspicuous impact of true-
dependency bottlenecks is the simple llist kernel, which per-



forms no better on the E-CGRA (0.94×) than on the core.
The dither kernel is similar. Performance on other kernels
comes from exploiting ILP (up to 2.31×), and energy is worse
than the core because many PEs are left active to route data.

Finally, the UE-CGRA results show that true-dependency
bottlenecks can be overcome. The llist kernel improves
1.35× in performance despite its true dependency, and dither
improves 1.80×. For all other kernels, there is at least one
power-mapping approach (either EOpt or POpt) that has good
energy efficiency or performs well (e.g., fft exploits both ILP
and fine-grain DVFS for 3.38× speedup or 1.53× energy).

VIII. DISCUSSION

In this section we discuss various topics about the
UE-CGRA design space and irregular loop specialization.

A. Q&A: Scalability of UE-CGRAs?

As CGRAs (both inelastic and elastic) scale in PE count,
their area and therefore clock-distribution overhead increases,
and we expect VLSI architects to eventually consider clas-
sic GALS approaches to reduce the overhead by partition-
ing the design into synchronous islands (e.g., ETH [20],
NVIDIA [31]). A ratiochronous design approach is still a
synchronous one, and therefore a UE-CGRA is constrained
to live entirely within these synchronous islands.

From an efficiency perspective, we expect a large
UE-CGRA island to show similar overheads compared to a
large E-CGRA island, with trends comparable to Table I (de-
spite replicating three global clock networks). This is because
hierarchical global clock-network gating is very effective for
UE-CGRAs. Each PE only selects one of the three clocks,
leaving most of the clock network gateable across the array.
The compiler can statically analyze for optimal global clock
gating because it is aware of all PE clock selections. In ad-
dition, PEs on the same clock are naturally clustered due to
the producer-consumer relationship in dataflow (e.g., see Fig-
ure 14(c,g)), which increases the opportunity to gate large
portions of the clock network.

B. Q&A: Performance compared to an out-of-order core?

Out-of-order cores and CGRAs (including UE-CGRAs)
are each designed to extract ILP for performance. The mech-
anisms in the out-of-order core do not typically help to also
accelerate irregular loops with true dependencies. In par-
ticular, speculation mechanisms target control flow but do
not speculate data. Although value prediction has been ex-
plored [36], large general-purpose cores tend to prioritize re-
sources for dynamically extracting ILP, resulting in an over-
all inefficient architecture. Note that an out-of-order core can
also be sprinted (monolithically) but it would transition more
slowly (e.g., 100s of cycles, [33]) while greatly exacerbating
the inefficiencies. If such a core were added to Table III, the
results might match UE-CGRA POpt performance but only
run at 0.05× efficiency.

C. Q&A: Area efficiency and unrolling for more parallelism?

Utilization is a challenge for CGRAs in general. In prac-
tice, the CGRA fabric size is typically tuned such that the
largest target workload has a high utilization, but this means
that smaller kernels will underutilize CGRA resources (e.g.,
see Figure 14, our average is 65% utilized). While not im-
plemented in this work, the utilization challenge can be miti-
gated by unrolling the outer loop and then instantiating mul-
tiple instances of the kernel onto different parts of the fab-
ric. Another approach could also launch multiple instances
from different kernels onto the fabric in parallel. From the
perspective of this work, it is worth noting that the benefits
of a UE-CGRA are complementary by applying DVFS intra-
kernel, so each DFG improves as shown in Figure 13.

IX. RELATED WORK

Reconfigurable spatial architectures including CGRAs are
an active area of research [1, 12, 13, 15, 18, 19, 39, 40, 44–
47, 53, 59, 61]. Well-known CGRAs include ADRES [40],
RaPiD [12], and MorphoSys [53]. More recently, less tradi-
tional CGRAs have been explored including the DySER ar-
chitecture [18, 19], the triggered instructions paradigm [45].
and CGRAs targeting vision, object detection, and learn-
ing [1, 13, 59, 61], including in industry [61].

Fine-grain DVFS has been studied with multi-rail voltage
supplies [11, 42, 57] and with fully integrated voltage regu-
lators [14, 16, 17, 25, 33, 35, 54, 56]). Most recent work has
explored fine-grain DVFS at the core granularity (as com-
pared to simple PEs in this work), where per-domain regu-
lators and PLLs might still be practical. Kim et al. conducted
a system-level analysis of per-core DVFS primarily to save
energy [33], while Godycki et al. and Torng et al. tried to also
improve multicore performance [17, 56]. Truong et al. built a
167-processor array with per-core DVFS and provided a de-
tailed account of multi-rail supplies with power switches [57].
Industry interest in per-core DVFS has also risen [28,29,38].

Relatively fewer works explore fine-grain DVFS at the PE
level. Semeraro et al. [51] explored fine-grain DVFS across
subunits of an out-of-order processor. They assumed asyn-
chronous FIFOs and per-domain PLLs, both of which are
likely to be intractable for CGRAs with very small domains.
Muramatsu et al. [43] explored fine-grain DVFS for a RISC-
V core partitioned into a 6× 7 grid. Some isolated work ex-
plored inelastic CGRAs [23,24] but relied on brute-force syn-
chronizers for clock-domain crossings. The high latency is
inappropriate for high-performance dataflow (Section IV-B),
and synchronizers prevent the use of commercial STA.

There is a long history of research on GALS systems [8,20,
22, 55]. The most well-known GALS implementations were
based on a pausible-clocking scheme with per-domain ring
oscillators. The chips built at ETH Zurich were particularly
well-known for this approach [20]. Intel has experimented
with a mesochronous GALS chip with 80 PEs running at the
same frequency but with unknown phase [58]. More recently,
NVIDIA’s research team designed a spatial accelerator with
GALS domains enabled by pausible bisynchronous fifos [31].



The ratiochronous family was initially proposed by Sar-
menta et al. [50]. Chabloz et al. continued exploring rational
clocking as an alternative to fully asynchronous GALS [3–7].
These works focused on the interface and communication
mechanisms rather than on architectural implications. Yadav
et al. [62] proposed phase-aligned ratiochronous blocks with
fine-grain DVFS. However, they focused on individual cir-
cuits in isolation and assumed asynchronous FIFOs for cor-
rect interfacing. The RIRI scheme generates rational clocks
across phase-aligned boundaries [60], but they do not handle
communication microprotocols.

The UE-CGRA compiler power-mapping problem resem-
bles traditional DVFS mode assignment for task graphs
mapped onto multiprocessor SoCs [9, 52], but node commu-
nication is typically assumed to be free (not true for CGRAs).

X. CONCLUSION

CGRAs are well-known to be efficient for regular kernels,
but once integrated into an SoC they remain idle for irregular
workloads. This work explored the potential of UE-CGRAs
for enabling the CGRA to also efficiently execute irregular
loops. We demonstrated that new techniques co-designed
across the compiler, architecture, and VLSI can enable sprint-
ing through true-dependency bottlenecks while also resting
to save energy. We also showed that careful VLSI design
with ratiochronous clocking can enable robust clock-domain
crossings that are fully verifiable with commercial STA tools.
Overall, UE-CGRAs show promise in mitigating all three
challenges for irregular loop specialization, making CGRAs
stronger candidates for specialized compute.
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