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1 Abstract B FGVS Architecture Design: FG-SYNC+

Recent work has shown that monolithic integration of voltage regulators will be We explore a new FGVS controller called the fine-grain synchronization controller
feasible in the near future, enabling reduced system cost and the potential for (FG-SYNC+) that exploits fine-grain scaling in level (i.e., many voltage levels), space
fine-grain voltage scaling (FGVS). In this project, we use architecture-level (i.e., per-core regulation), and time (i.e., fast transition times between levels) to
modeling to explore a new dynamic voltage/frequency scaling controller called the improve performance and energy efficiency while maintaining similar average power.
fine-grain synchronization controller (FG-SYNC+). FG-SYNC+ enables improved FG-SYNC+ uses a thread library instrumented with hint instructions to inform the
performance and energy efficiency at similar average power for multithreaded hardware about which cores are doing useful work vs. useless work (e.g., waiting for
applications with activity imbalance. We then use circuit-level modeling to explore a task, waiting at a barrier).
various approaches to organizing on-chip voltage regulation, including a new
approach called reconfigurable power distribution networks (RPDNs). RPDNs allow (a) splash2-lu with Two Domains (c) rsort with 1000 ns Response Time
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compared to no FGVS, yet RPDN uses 40% less area compared to a more traditional . I___ﬁ'_l__ﬁl_l" . I__FLFh_FH_l"
per-core regulation scheme. time —— time ——
(b) splash2-lu with Eight Domains (d) rsort with 100 ns Response Time
0 = . | | O NT = Wml
= [ —— —
— «—> [ — A —ep— 1 p—
- - O e i Exec. O [ ——— —
2 MOtlvatIOn S == E = Reduced O T T
e ) DY 20% [ e — p—
— — —— — [ —— —
Monolithic integration using a standard CMOS process provides a tremendous cost [ | o — — | 7 [ T——p—f—
incentive for integrating closed-loop voltage regulators on the die. Recent technology time —— ime —
trends suggest that it is now becoming feasible to integrate switching regulators === Busy = —— Waiting Rest Nominal Sprint ~ === Super-Sprint

on-chip (e.g., Intel Haswell), enabling reduced system cost as well as the potential
for fine-grain voltage scaling (FGVS) to exploit fine-grain activity imbalance in
multi-threaded applications for performance and energy efficiency benefits.

In these application activity plots illustrating FG-SYNC+, rows show controller
decisions per-core and black strips above cores show when that core is active. We
compare SPLASH-2 LU factorization with two vs. four voltage domains (a,b). We also
illustrate the impact of slow voltage-settling response times over a small excerpt from
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Our target system is an embedded processor composed O 9 1 O 1 1 » 2 » 3 » 4 » 5 10 14 12 13 14 15
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4 Types of Integrated Voltage Regulation
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The three primary types of step-down voltage regulators are linear regulators (e.g.,

LDQOs), inductor-based switching regulators (e.g., buck), and capacitor-based 0.8 b ; | i i ; ;
switching regulators (e.g., switched-capacitor). 10 11 12 13 14 15 0. 4 0. 6 0. 8 1 O 1.2 1.4
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T—|>_I To exploit fine-grain activity imbalance, (1) at least three levels are required and four
1 levels helps further; (2) more domains results in improved performance and energy
T 'I I efficiency; (3) response times of 100 ns or faster are required.

6 FGVS Circuit Design: RPDN V4 Evaluation
Shown in (a), we use a single fixed-voltage regulator (SFVR) as a baseline to ]
compare against more sophisticated regulation schemes. We choose a configuration Evaluation Methodology
that can provide 80% efficiency at 1V with an area of 0.26 mm? (4% of the core/L1
area). Shown in (b), multiple adjustable voltage regulators (MAVR) enable _ _ | | o
fine-grain voltage scaling in space and level. The power efficiency vs. area plot in (c) We use a vertically integrated evaluation methodology that uses a mix of circuit-,
shows how we choose a per-core regulator area of 0.08 mm? to allow efficient voltage gate-, register-transfer-, and architectural-level modeling.
regulation for super-sprint. Note that designing for super-sprint significantly
over-provisions for rest, nominal, and sprint modes; also, only one or two cores will SPICE Circuit C++ Multithreaded Verilog RTL of Multicore
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We propose a new approach called reconfigurable power distribution networks
(RPDNs). As shown below, RPDNs include many small “unit cells” that each contain _
the flyback capacitance and regulator switches required for a SC regulator. These Evaluation Results
cells can be flexibly reconfigured through a switch fabric and combined with per-core
control circuitry to effectively create multiple differently-sized SC regulators
“on-demand” for cores. The inset shows how 16 unit cells can be allocated to four We evaluate the performance, energy e MAVR ¢ RPDN
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RPDN would allow a 5 | Our promising results suggest that there is an important opportunity for architecture
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super-sprinting core to and circuit co-design of integrated voltage regulation in future systems.
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