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Recent History of Prototypes at Cornell University

2014
2016

2017

2018

DCS (2014)
TSMC 65nm

1mm x 2.2mm

BRGTC1 (2016)
IBM 130nm
2mm x 2mm

Celerity (2017)
TSMC 16nm FinFET

5mm x 5mm

BRGTC2 (2018)
TSMC 28nm

1mm x 1.25mm

PCOSYNC (2018)
IBM 180nm
2mm x 1mm

Why Prototype?

Research Ideas

I Smart Sharing
Architectures

I Interconnection Networks
for Manycores

I Python-Based Hardware
Modeling

I High-Level Synthesis

I Synthesizable Analog IP

I Scalable Baseband
Synchronization

I Integrated Voltage
Regulation
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Why Prototype?

Chip-Based Startups

I Graphcore
I Nervana
I Cerebras
I Wave Computing
I Horizon Robotics
I Cambricon
I DeePhi
I Esperanto
I SambaNova
I Eyeriss
I Tenstorrent
I Mythic
I ThinkForce
I Groq
I Lightmatter
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BRGTC2 — Batten Research Group Test Chip 2
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Chip Overview

I TSMC 28 nm

I 1 mm ⇥ 1.25 mm

I 6.7M-transistor

I Quad-core in-order
RISC-V RV32IMAF

I Shared L1 caches (32kB)
Shared LLFUs

I Designed and tested in
PyMTL (Python-based
hardware modeling)

I Fully synthesizable PLL

I Smart sharing mechanisms

I Hardware bloom filter xcel

I Runs work-stealing runtime

Cornell University Christopher Torng 3 / 20



Key Changes Driving A New Era

Ecosystems for Open Builders

Problem: Closed tools & IP makes dev tough
Changes: Open-source ecosystem with RISC-V

tick (
 . . .
)

Productive Tools for Small Teams

Problem: Small teams with a limited workforce
Changes: Productive & open tool development

Significantly Cheaper Costs

Problem: Building chips is expensive
Changes: MPW tiny chips in advanced nodes

$
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Ecosystems for Open Builders

Problem: A closed-source chip-building ecosystem (tools & IP) makes chip development tough

Software and ISA

Cycle-Level Modeling

RTL Modeling
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ASIC Flow

Problems with Closed-Source Infrastructure

I Difficult to replicate results (including your own)

I Anything closed-source propagates up and down the stack
. E.g., modified MIPS ISA
. Spill-over to other stages of the design flow

I Heavy impact on things I care about
. Sharing results and artifacts
. Portability
. Maintenance

I Reinventing the wheel

How important is a full ecosystem?
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Ecosystems for Open Builders

Key Change: The open-source ecosystem revolving around RISC-V is growing

Software and ISA

Cycle-Level Modeling

RTL Modeling
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ASIC Flow

RISC-V

RISC-V

RISC-V

RISC-V

The RISC-V Ecosystem

I Software toolchain and ISA
. Linux, compiler toolchain, modular ISA

I Cycle-level modeling
. gem5 system-level simulator supports RISC-V multicore
. We can now model complex RISC-V systems

I RTL modeling
. Open implementations and supporting infrastructure

(e.g., Rocket, Boom, PULP, Diplomacy, FIRRTL, FireSim)

I ASIC flows
. Reference flows available from community for inspiration
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Ecosystems for Open Builders

How has the RISC-V ecosystem helped in the design of BRGTC2?

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)
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BRGTC2 in the RISC-V Ecosystem

I Software toolchain and ISA
. Not booting Linux...
. Upstream GCC support
. Incremental design w/ RV32 modularity

I Cycle-level modeling
. Multicore gem5 simulations of our system
. Decisions: L0 buffers, how many resources to share,

impact of resource latencies, programs fitting in the
cache

I RTL modeling
. This was our own...

I ASIC flows
. Reference methodologies available from other projects

(e.g., Celerity)
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Productive Tools for Small Teams

Problem: Small teams have a limited workforce and yet must handle challenging projects

Functional-Level
Design & Simulation

Cycle-Level
Design & Simulation

RTL
Design & Simulation

Post-Synthesis
Gate-Level Simulation

Post-Place-and-Route
Gate-Level Simulation

Synthesis

Floorplanning

DRC RCXLVS

Power Routing
Placement

Clock Tree Synthesis
Routing

Power Analysis

Transistor-Level Sim

Tape Out

An Enormous Challenge for Small Teams

I Small teams exist in both academia as well as in
industry

I Time to first tapeout can be anywhere up to a few years

I What do big companies do?
. Throw money and engineers at the problem

I Generally stuck with tools that “work”
. If you have enough engineers
. E.g., System Verilog
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Productive Tools for Small Teams

Key Change: Productive open-source tools progressing and maturing quickly

Functional-Level
Design & Simulation

Cycle-Level
Design & Simulation

RTL
Design & Simulation

Post-Synthesis
Gate-Level Simulation

Post-Place-and-Route
Gate-Level Simulation

Synthesis

Floorplanning

DRC RCXLVS

Power Routing
Placement

Clock Tree Synthesis
Routing

Power Analysis

Transistor-Level Sim

Tape Out

Open
Python-
Based
HW
Modeling

Open
Modular
VLSI
Build
System

Synth
PLL
(to be
opened)

+

Focusing on BRGTC2

I PyMTL Hardware Modeling Framework
. Python-based hardware design and test
. Beta version of PyMTL v2
. https://github.com/cornell-brg/pymtl

I The Open Modular VLSI Build System
. Two chips taped out (180nm/28nm)
. Reference ASIC flow available
. https://github.com/cornell-brg/alloy-asic

I Fully Synthesizable PLL
. To be open-sourced soon
. All-digital PLL used in BRGTC2/Celerity
. Avoid mixed-signal design
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PyMTL
PyMTL: A Unified Framework for

Vertically Integrated Computer Architecture Research

Derek Lockhart, Gary Zibrat, Christopher Batten
47th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO)

Cambridge, UK, Dec. 2014

Mamba: Closing the Performance Gap in
Productive Hardware Development Frameworks

Shunning Jiang, Berkin Ilbeyi, Christopher Batten
55th ACM/IEEE Design Automation Conf. (DAC)

San Francisco, CA, June 2018
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Open Modular VLSI Build System – At A High Level
https://github.com/cornell-brg/alloy-asic

Problem: Rigid, static ASIC flows

Typical ASIC Flows

I Flows are automated for exact sequences of steps
. Want to add/remove a step? Modify the build system. Copies..
. Once the flow is set up, you don’t want to touch it anymore

I Adding new steps between existing steps is troublesome
. Steps downstream magically reach upstream — hardcoding
. In general, the overhead to add new steps is high

I Difficult to support different configurations of the flow
. E.g., chip flow vs. block flow
. How to add new steps before or after
. Each new chip ends up with a dedicated non-reusable flow
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Open Modular VLSI Build System – At A High Level
https://github.com/cornell-brg/alloy-asic

Better ASIC Flows – Modularize the ASIC flow!

I Use the build system to mix, match, and assemble steps together
. Create modular steps that know how to run/clean themselves
. The build system can also check prerequisites and outputs before and after

execution to make sure each step can run

I Assemble the ASIC flow as a graph
. Can target architecture papers by assembling a minimal graph
. Can target VLSI papers by assembling a medium graph w/ more steps (e.g.,

need dedicated floorplan)
. Can target a chip by assembling a full-featured tapeout graph
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Simple Front-End-Only ASIC Flow
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BRGTC2 ASIC Flow
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Significantly Cheaper Costs

Problem: Building chips is expensive

Key Change: Multi-project wafer services offer advanced node runs with small minimum sizes

Snapshot from Muse Semiconductor
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BRGTC2 Timeline and Costs
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Time breakdown

I One month for one student to pass DRC/LVS for dummy logic with
staggered IO pads and no SRAMs

I One-month period with seven graduate students using PyMTL for
design, test, and composition

Seven graduate students working across:

I Applications development

I Porting an in-house work-stealing runtime to RISC-V target

I Cycle-level design-space exploration with gem5

I RTL development and testing of each component including SRAMs

I Composition testing at RTL and gate level

I SPICE-level modeling of the synthesizable PLL

I IO floorplanning

I Physical design and post-PnR performance tuning
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BRGTC2 Timeline and Costs
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Cost breakdown

I 1⇥1.25 mm die size and one hundred parts for about $18K under
the MOSIS Tiny2 program

I Packaging costs (about $2K for twenty parts)

I Board costs (less than $1K for PCB and assembly)

I Graduate student salaries

I Physical IP costs

I EDA tool licenses
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A New Era of Silicon Prototyping in
Computer Architecture Research
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Key Takeaways
I Building silicon prototypes is traditionally challenging and costly

I Challenges have significantly reduced
. Ecosystems for open builders (based on RISC-V)
. Productive tools for small teams (e.g., PyMTL, ASIC flows)

I Costs have significantly reduced
. MPW services support small minimum sizes in advanced nodes

I It is now feasible and attractive to consider RISC-V silicon
prototypes for supporting future research
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