
A New Era of Silicon Prototyping in
Computer Architecture Research

Christopher Torng

Computer Systems Laboratory
School of Electrical and Computer Engineering

Cornell University

Recent History of Prototypes at Cornell University

2014
2016

2017

2018

DCS (2014)
TSMC 65nm

1mm x 2.2mm

BRGTC1 (2016)
IBM 130nm
2mm x 2mm

Celerity (2017)
TSMC 16nm FinFET

5mm x 5mm

BRGTC2 (2018)
TSMC 28nm

1mm x 1.25mm

PCOSYNC (2018)
IBM 180nm
2mm x 1mm

Why Prototype?

Research Ideas

I Smart Sharing
Architectures

I Interconnection Networks
for Manycores

I Python-Based Hardware
Modeling

I High-Level Synthesis

I Synthesizable Analog IP

I Scalable Baseband
Synchronization

I Integrated Voltage
Regulation

Cornell University Christopher Torng 2 / 20

Recent History of Prototypes at Cornell University

2014
2016

2017

2018

DCS (2014)
TSMC 65nm

1mm x 2.2mm

BRGTC1 (2016)
IBM 130nm
2mm x 2mm

Celerity (2017)
TSMC 16nm FinFET

5mm x 5mm

BRGTC2 (2018)
TSMC 28nm

1mm x 1.25mm

PCOSYNC (2018)
IBM 180nm
2mm x 1mm

Why Prototype?

Chip-Based Startups

I Graphcore
I Nervana
I Cerebras
I Wave Computing
I Horizon Robotics
I Cambricon
I DeePhi
I Esperanto
I SambaNova
I Eyeriss
I Tenstorrent
I Mythic
I ThinkForce
I Groq
I Lightmatter

Cornell University Christopher Torng 2 / 20

BRGTC2 — Batten Research Group Test Chip 2

1.25 mm

1.
0

m
m

I$
Tag

I$
Data

Bloom
Filter
Accel

Shared
MDU

Shared
FPU

L0

P
L
L

I$
Tag

I$
Data

D$
Tag

D$
Data

D$
Tag

D$
Data

Core

CoreCore

Core

Chip Overview

I TSMC 28 nm

I 1 mm ⇥ 1.25 mm

I 6.7M-transistor

I Quad-core in-order
RISC-V RV32IMAF

I Shared L1 caches (32kB)
Shared LLFUs

I Designed and tested in
PyMTL (Python-based
hardware modeling)

I Fully synthesizable PLL

I Smart sharing mechanisms

I Hardware bloom filter xcel

I Runs work-stealing runtime

Cornell University Christopher Torng 3 / 20

Key Changes Driving A New Era

Ecosystems for Open Builders

Problem: Closed tools & IP makes dev tough
Changes: Open-source ecosystem with RISC-V

tick (
 . . .
)

Productive Tools for Small Teams

Problem: Small teams with a limited workforce
Changes: Productive & open tool development

Significantly Cheaper Costs

Problem: Building chips is expensive
Changes: MPW tiny chips in advanced nodes

$

Cornell University Christopher Torng 4 / 20

Ecosystems for Open Builders

Problem: A closed-source chip-building ecosystem (tools & IP) makes chip development tough

Software and ISA

Cycle-Level Modeling

RTL Modeling

Ec
os

ys
te

m
 fo

r O
pe

n
B

ui
ld

er
s

ASIC Flow

Problems with Closed-Source Infrastructure

I Difficult to replicate results (including your own)

I Anything closed-source propagates up and down the stack
. E.g., modified MIPS ISA
. Spill-over to other stages of the design flow

I Heavy impact on things I care about
. Sharing results and artifacts
. Portability
. Maintenance

I Reinventing the wheel

How important is a full ecosystem?

Cornell University Christopher Torng 5 / 20

Ecosystems for Open Builders

Key Change: The open-source ecosystem revolving around RISC-V is growing

Software and ISA

Cycle-Level Modeling

RTL Modeling

Ec
os

ys
te

m
 fo

r O
pe

n
B

ui
ld

er
s

ASIC Flow

RISC-V

RISC-V

RISC-V

RISC-V

The RISC-V Ecosystem

I Software toolchain and ISA
. Linux, compiler toolchain, modular ISA

I Cycle-level modeling
. gem5 system-level simulator supports RISC-V multicore
. We can now model complex RISC-V systems

I RTL modeling
. Open implementations and supporting infrastructure

(e.g., Rocket, Boom, PULP, Diplomacy, FIRRTL, FireSim)

I ASIC flows
. Reference flows available from community for inspiration

Cornell University Christopher Torng 6 / 20

Ecosystems for Open Builders

How has the RISC-V ecosystem helped in the design of BRGTC2?

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)

LLFU Arbiter

Int Mul/Div
FPU

L1 Instruction $
(32KB)

H
os

t I
nt

er
fa

ce
Sy

nt
he

si
za

bl
e

PL
L

ArbiterData

BRGTC2 in the RISC-V Ecosystem

I Software toolchain and ISA
. Not booting Linux...
. Upstream GCC support
. Incremental design w/ RV32 modularity

I Cycle-level modeling
. Multicore gem5 simulations of our system
. Decisions: L0 buffers, how many resources to share,

impact of resource latencies, programs fitting in the
cache

I RTL modeling
. This was our own...

I ASIC flows
. Reference methodologies available from other projects

(e.g., Celerity)

Cornell University Christopher Torng 7 / 20

Key Changes Driving A New Era

Ecosystems for Open Builders

Problem: Closed tools & IP makes dev tough
Changes: Open-source ecosystem with RISC-V

tick (
 . . .
)

Productive Tools for Small Teams

Problem: Small teams with a limited workforce
Changes: Productive & open tool development

Significantly Cheaper Costs

Problem: Building chips is expensive
Changes: MPW tiny chips in advanced nodes

$

Cornell University Christopher Torng 8 / 20

Productive Tools for Small Teams

Problem: Small teams have a limited workforce and yet must handle challenging projects

Functional-Level
Design & Simulation

Cycle-Level
Design & Simulation

RTL
Design & Simulation

Post-Synthesis
Gate-Level Simulation

Post-Place-and-Route
Gate-Level Simulation

Synthesis

Floorplanning

DRC RCXLVS

Power Routing
Placement

Clock Tree Synthesis
Routing

Power Analysis

Transistor-Level Sim

Tape Out

An Enormous Challenge for Small Teams

I Small teams exist in both academia as well as in
industry

I Time to first tapeout can be anywhere up to a few years

I What do big companies do?
. Throw money and engineers at the problem

I Generally stuck with tools that “work”
. If you have enough engineers
. E.g., System Verilog

Cornell University Christopher Torng 9 / 20

Productive Tools for Small Teams

Key Change: Productive open-source tools progressing and maturing quickly

Functional-Level
Design & Simulation

Cycle-Level
Design & Simulation

RTL
Design & Simulation

Post-Synthesis
Gate-Level Simulation

Post-Place-and-Route
Gate-Level Simulation

Synthesis

Floorplanning

DRC RCXLVS

Power Routing
Placement

Clock Tree Synthesis
Routing

Power Analysis

Transistor-Level Sim

Tape Out

Open
Python-
Based
HW
Modeling

Open
Modular
VLSI
Build
System

Synth
PLL
(to be
opened)

+

Focusing on BRGTC2

I PyMTL Hardware Modeling Framework
. Python-based hardware design and test
. Beta version of PyMTL v2
. https://github.com/cornell-brg/pymtl

I The Open Modular VLSI Build System
. Two chips taped out (180nm/28nm)
. Reference ASIC flow available
. https://github.com/cornell-brg/alloy-asic

I Fully Synthesizable PLL
. To be open-sourced soon
. All-digital PLL used in BRGTC2/Celerity
. Avoid mixed-signal design

Cornell University Christopher Torng 10 / 20

PyMTL
PyMTL: A Unified Framework for

Vertically Integrated Computer Architecture Research

Derek Lockhart, Gary Zibrat, Christopher Batten
47th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO)

Cambridge, UK, Dec. 2014

Mamba: Closing the Performance Gap in
Productive Hardware Development Frameworks

Shunning Jiang, Berkin Ilbeyi, Christopher Batten
55th ACM/IEEE Design Automation Conf. (DAC)

San Francisco, CA, June 2018

Cornell University Christopher Torng 11 / 20

Open Modular VLSI Build System – At A High Level
https://github.com/cornell-brg/alloy-asic

Problem: Rigid, static ASIC flows

Typical ASIC Flows

I Flows are automated for exact sequences of steps
. Want to add/remove a step? Modify the build system. Copies..
. Once the flow is set up, you don’t want to touch it anymore

I Adding new steps between existing steps is troublesome
. Steps downstream magically reach upstream — hardcoding
. In general, the overhead to add new steps is high

I Difficult to support different configurations of the flow
. E.g., chip flow vs. block flow
. How to add new steps before or after
. Each new chip ends up with a dedicated non-reusable flow

Cornell University Christopher Torng 12 / 20

Open Modular VLSI Build System – At A High Level
https://github.com/cornell-brg/alloy-asic

Better ASIC Flows – Modularize the ASIC flow!

I Use the build system to mix, match, and assemble steps together
. Create modular steps that know how to run/clean themselves
. The build system can also check prerequisites and outputs before and after

execution to make sure each step can run

I Assemble the ASIC flow as a graph
. Can target architecture papers by assembling a minimal graph
. Can target VLSI papers by assembling a medium graph w/ more steps (e.g.,

need dedicated floorplan)
. Can target a chip by assembling a full-featured tapeout graph

Cornell University Christopher Torng 13 / 20

Simple Front-End-Only ASIC Flow

Cornell University Christopher Torng 14 / 20

BRGTC2 ASIC Flow

Cornell University Christopher Torng 15 / 20

Key Changes Driving A New Era

Ecosystems for Open Builders

Problem: Closed tools & IP makes dev tough
Changes: Open-source ecosystem with RISC-V

tick (
 . . .
)

Productive Tools for Small Teams

Problem: Small teams with a limited workforce
Changes: Productive & open tool development

Significantly Cheaper Costs

Problem: Building chips is expensive
Changes: MPW tiny chips in advanced nodes

$

Cornell University Christopher Torng 16 / 20

Significantly Cheaper Costs

Problem: Building chips is expensive

Key Change: Multi-project wafer services offer advanced node runs with small minimum sizes

Snapshot from Muse Semiconductor

Cornell University Christopher Torng 17 / 20

BRGTC2 Timeline and Costs

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)

LLFU Arbiter

Int Mul/Div
FPU

L1 Instruction $
(32KB)

H
os

t I
nt

er
fa

ce
Sy

nt
he

si
za

bl
e

PL
L

ArbiterData

Time breakdown

I One month for one student to pass DRC/LVS for dummy logic with
staggered IO pads and no SRAMs

I One-month period with seven graduate students using PyMTL for
design, test, and composition

Seven graduate students working across:

I Applications development

I Porting an in-house work-stealing runtime to RISC-V target

I Cycle-level design-space exploration with gem5

I RTL development and testing of each component including SRAMs

I Composition testing at RTL and gate level

I SPICE-level modeling of the synthesizable PLL

I IO floorplanning

I Physical design and post-PnR performance tuning

Cornell University Christopher Torng 18 / 20

BRGTC2 Timeline and Costs

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)

LLFU Arbiter

Int Mul/Div
FPU

L1 Instruction $
(32KB)

H
os

t I
nt

er
fa

ce
Sy

nt
he

si
za

bl
e

PL
L

ArbiterData

Cost breakdown

I 1⇥1.25 mm die size and one hundred parts for about $18K under
the MOSIS Tiny2 program

I Packaging costs (about $2K for twenty parts)

I Board costs (less than $1K for PCB and assembly)

I Graduate student salaries

I Physical IP costs

I EDA tool licenses

Cornell University Christopher Torng 19 / 20

A New Era of Silicon Prototyping in
Computer Architecture Research

Memory

Instruction Memory Arbiter

L1 Data $
(32KB)

LLFU Arbiter

Int Mul/Div
FPU

L1 Instruction $
(32KB)

H
os

t I
nt

er
fa

ce
Sy

nt
he

si
za

bl
e

PL
L

ArbiterData

Key Takeaways
I Building silicon prototypes is traditionally challenging and costly

I Challenges have significantly reduced
. Ecosystems for open builders (based on RISC-V)
. Productive tools for small teams (e.g., PyMTL, ASIC flows)

I Costs have significantly reduced
. MPW services support small minimum sizes in advanced nodes

I It is now feasible and attractive to consider RISC-V silicon
prototypes for supporting future research

Acknowledgements
I NSF CRI Award #1512937
I NSF SHF Award #1527065
I DARPA POSH Award #FA8650-18-2-7852
I Donations from Intel, Xilinx, Synopsys, Cadence, and ARM
I Thanks: U.C. Berkeley, RISC-V Foundation, Shreesha Srinath

Cornell University Christopher Torng 20 / 20

