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PyMTL: A Unified Python-Based Framework
for FL, CL, and RTL Modeling

Functional-Level Modeling (FL)
- Behavior

Cycle-Level Modeling (CL)
- Behavior
- Cycle-Approximate
- Analytical Area, Energy, Timing

Register-Transfer-Level Modeling (RTL)
- Behavior
- Cycle-Accurate Timing
- Gate-Level Area, Energy, Timing

What Does PyMTL Enable?This Poster...

Goal of tapeout was to demonstrate the ability of this
framework to enable Agile hardware design flows 

Describes a taped-out 2x2 mm 1.3M-transistor
test chip in IBM 130nm designed and
implemented using PyMTL, a novel

Python-based hardware modeling framework

1. Incremental refinement
from algorithm to

hardware implementation

2. Automated testing
and integration of

PyMTL-generated Verilog

3. Multi-level co-simulation of FL, CL, and RTL models

4. Construction of highly parameterized RTL chip generators
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PyMTL for Computer Architecture Test Chips

Large-Scale Commercial Chips
- High-volume and high-yield production
- Overcome design challenges with large teams

Computer Architecture Test Chips
- Low-volume and reasonable-yield production
- Overcome design challenges despite small teams
   and limited resources

Provide small teams with highly productive
development frameworks to shorten time to tapeout

Design Methodologies: Large Chips vs. Small Chips

PyMTL for Agile Hardware Design

FL Simulation
CL Simulation

RTL Simulation

Post-Synthesis
Gate-Level Simulation

Post-Place-and-Route
Gate-Level Simulation

Synthesis

Floorplanning
Power Routing

Placement
Clock Tree Synthesis

Routing

Power Analysis

DRC RCXLVS
Transistor-Level Sim

Tape Out

PyMTL
Framework

Highly Automated
Standard-Cell Design Flow

Small teams push RTL to layout with
validated gate-level netlist within a day

Why Build Computer Architecture Test Chips?

Key Aspect of Agile Hardware Design
- Rapid design iteration
- "Building the right thing"
- Reduces cost of validation

Benefits Research
- Builds research credibility
- Highly reliable power and
   energy estimates for new
   architecture techniques

C++

FPGA

ASIC flow

Tape-in

Small tape-out

Big tape-out

* Adapted from Yunsup Lee
IEEE Micro 2016
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IBM 130nm
SRAM Compiler

PyMTL RTL of Full Design

Verilog RTL
of Full Design

C-Based
Accelerator
Tested in C

Verilog Gate-
Level Simulator

PyMTL-Driven
Testing Framework

Standard Cell
Front-End Views

SRAM Specification

Post-PAR
Gate-Level Netlist

Post-Synthesis
Gate-Level Netlist

IBM 130nm PDK

Synopsys vcat utilityGDS of
SRAM Macros

SRAM Macros
Front-End Views

Full-Custom
LVDS Receiver

GDS & LEF

Standard / Pad Cell
 Back-End Views

GDS of Full Design

DRC-Clean GDS
of Full Design

FPGA Logic
w/ Full Design

Verilog RTL of
Accelerator

PyMTL Verilog Import

Tapeout-Ready GDS
of Full Design

PyMTL to
Verilog Translator

Synopsys
Design Compiler

Synopsys
IC Compiler

Calibre DRC

Commercial
Xilinx-Based
FPGA Tools

Commercial
HLS ToolH

LS
FP

G
A

A
SI

C
PyMTL

Calibre LVS

PyMTL Simulator
w/ Unit Tests and

Assembly Test Suite

VCD
Traces

Mature full-featured
software testing tools

PyMTL FL / CL Models

Detailed Methodology
Using PyMTL for Agile Hardware Design

Verilog RTL Modules
Specially Annotated
for FPGA Synthesis

PyMTL Verilog Import
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PyMTL in Practice: BRG Test Chip 1

Taped-out Layout for BRGTC1
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The testing platform enables running small
test programs on BRGTC1 to compare the

performance and energy of pure-software kernels
versus the HLS-generated sorting accelerator

2x2mm 1.3M transistors in IBM 130nm
RISC processor, 16KB SRAM
HLS-generated accelerators

Static Timing Analysis Freq. @ 246 MHz

Testing Plans After Fabrication

Taped out in March 2016
Expected return in Fall 2016LV
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