
Experiences Using a Novel Python-Based Hardware Modeling Framework for Computer Architecture Test Chips

Experiences Using a Novel Python-Based Hardware Modeling
Framework for Computer Architecture Test Chips

FL
Model

Test
Harness

CL
Model

Test
Harness

RTL
Model

Test
Harness

Verilog'
RTL'

Model'

Verilog
RTL

Model

Test
Harness

FL
Model

CL
Model

RTL
Model

Verilog
RTL

Model

PyMTL: A Unified Python-Based Framework
for FL, CL, and RTL Modeling

Functional-Level Modeling (FL)
- Behavior

Cycle-Level Modeling (CL)
- Behavior
- Cycle-Approximate
- Analytical Area, Energy, Timing

Register-Transfer-Level Modeling (RTL)
- Behavior
- Cycle-Accurate Timing
- Gate-Level Area, Energy, Timing

What Does PyMTL Enable?This Poster...

Goal of tapeout was to demonstrate the ability of this
framework to enable Agile hardware design flows

Describes a taped-out 2x2 mm 1.3M-transistor
test chip in IBM 130nm designed and
implemented using PyMTL, a novel

Python-based hardware modeling framework

1. Incremental refinement
from algorithm to

hardware implementation

2. Automated testing
and integration of

PyMTL-generated Verilog

3. Multi-level co-simulation of FL, CL, and RTL models

4. Construction of highly parameterized RTL chip generators

Cornell University Christopher Torng

1 / 4

Experiences Using a Novel Python-Based Hardware Modeling Framework for Computer Architecture Test Chips

PyMTL for Computer Architecture Test Chips

Large-Scale Commercial Chips
- High-volume and high-yield production
- Overcome design challenges with large teams

Computer Architecture Test Chips
- Low-volume and reasonable-yield production
- Overcome design challenges despite small teams
 and limited resources

Provide small teams with highly productive
development frameworks to shorten time to tapeout

Design Methodologies: Large Chips vs. Small Chips

PyMTL for Agile Hardware Design

FL Simulation
CL Simulation

RTL Simulation

Post-Synthesis
Gate-Level Simulation

Post-Place-and-Route
Gate-Level Simulation

Synthesis

Floorplanning
Power Routing

Placement
Clock Tree Synthesis

Routing

Power Analysis

DRC RCXLVS
Transistor-Level Sim

Tape Out

PyMTL
Framework

Highly Automated
Standard-Cell Design Flow

Small teams push RTL to layout with
validated gate-level netlist within a day

Why Build Computer Architecture Test Chips?

Key Aspect of Agile Hardware Design
- Rapid design iteration
- "Building the right thing"
- Reduces cost of validation

Benefits Research
- Builds research credibility
- Highly reliable power and
 energy estimates for new
 architecture techniques

C++

FPGA

ASIC flow

Tape-in

Small tape-out

Big tape-out

* Adapted from Yunsup Lee
IEEE Micro 2016

Cornell University Christopher Torng

2 / 4

Experiences Using a Novel Python-Based Hardware Modeling Framework for Computer Architecture Test Chips

IBM 130nm
SRAM Compiler

PyMTL RTL of Full Design

Verilog RTL
of Full Design

C-Based
Accelerator
Tested in C

Verilog Gate-
Level Simulator

PyMTL-Driven
Testing Framework

Standard Cell
Front-End Views

SRAM Specification

Post-PAR
Gate-Level Netlist

Post-Synthesis
Gate-Level Netlist

IBM 130nm PDK

Synopsys vcat utilityGDS of
SRAM Macros

SRAM Macros
Front-End Views

Full-Custom
LVDS Receiver

GDS & LEF

Standard / Pad Cell
 Back-End Views

GDS of Full Design

DRC-Clean GDS
of Full Design

FPGA Logic
w/ Full Design

Verilog RTL of
Accelerator

PyMTL Verilog Import

Tapeout-Ready GDS
of Full Design

PyMTL to
Verilog Translator

Synopsys
Design Compiler

Synopsys
IC Compiler

Calibre DRC

Commercial
Xilinx-Based
FPGA Tools

Commercial
HLS ToolH

LS
FP

G
A

A
SI

C
PyMTL

Calibre LVS

PyMTL Simulator
w/ Unit Tests and

Assembly Test Suite

VCD
Traces

Mature full-featured
software testing tools

PyMTL FL / CL Models

Detailed Methodology
Using PyMTL for Agile Hardware Design

Verilog RTL Modules
Specially Annotated
for FPGA Synthesis

PyMTL Verilog Import

Cornell University Christopher Torng

3 / 4

Experiences Using a Novel Python-Based Hardware Modeling Framework for Computer Architecture Test Chips

PyMTL in Practice: BRG Test Chip 1

Taped-out Layout for BRGTC1

Host
Interface

de
bu

g

RISC
Core

Sort
Accel

Memory Arbitration Unit

SRAM
Bank
(2KB)

SRAM
Bank
(2KB)

SRAM
Bank
(2KB)

SRAM
Bank
(2KB)

diff clk (+)
diff clk (�)

single
ended clk

re
se

t

Ctrl
Reghost2chip

chip2host

LVDS
Recv

clk
div

clk tree
reset
tree

cl
k

ou
t

The testing platform enables running small
test programs on BRGTC1 to compare the

performance and energy of pure-software kernels
versus the HLS-generated sorting accelerator

2x2mm 1.3M transistors in IBM 130nm
RISC processor, 16KB SRAM
HLS-generated accelerators

Static Timing Analysis Freq. @ 246 MHz

Testing Plans After Fabrication

Taped out in March 2016
Expected return in Fall 2016LV
D

S

di
vi

de
d

cl
k

ou
t

LV
D

S
cl

k
ou

t

Cornell University Christopher Torng

4 / 4

