
Experiences Using a Novel
Python-Based Hardware Modeling Framework
for Computer Architecture Test Chips

Christopher Torng, Moyang Wang, Bharath Sudheendra,
Nagaraj Murali, Suren Jayasuriya, Shreesha Srinath,
Taylor Pritchard, Robin Ying, and Christopher Batten

School of Electrical and Computer Engineering
Cornell University

1 Abstract

This poster will describe a taped-out 2⇥2 mm 1.3 M-transistor test chip in IBM
130 nm designed using our new Python-based hardware modeling
framework. The goal of our tapeout was to demonstrate the ability of this
framework to enable Agile hardware design flows.

Specifically, our approach has two pieces:
I Unify all simulation (behavioral, cycle-level timing, RTL, and gate-level)

within a single-language development framework
I Integrate this framework with highly automated standard-cell design flows
For small teams working on small computer architecture test chips for
research or as part of an Agile hardware design flow, such an approach can
enable rapid design iteration from RTL to layout, shortening the time to
tapeout despite limited manpower.

2 The PyMTL Hardware Modeling Framework

Computer architects have long traded off simulation time and accuracy by
leveraging multiple modeling abstractions including functional-level (FL),
cycle-level (CL), and register-transfer-level (RTL) modeling. However,
each of these uses distinct modeling languages, modeling patterns, and
modeling tools, creating a large impediment to vertically integrated, iterative
refinement of a design from algorithm, to exploration, to implementation.

FL CL RTL
Modeling Productivity Efficiency Hardware
Languages Level Level Description

(PLL) (ELL) (HDL)
MATLAB/Python C/C++ Verilog/VHDL

Modeling Functional: Object Oriented: Concurrent-Structural:
Patterns Data Structures, Classes, Methods, Combinational Logic,

Algorithms Ticks and/or Clocked Logic,
Events Port Interfaces

Modeling Third-party Computer Simulator
Tools Algorithm Architecture Generators,

Packages and Simulation Synthesis Tools,
Toolboxes Frameworks Verification Tools

PyMTL is a unified and highly productive framework for FL, CL, and RTL
modeling based on a common high-productivity language (Python2.7).

What is PyMTL?

Functional-Level Modeling (FL)
- Behavior

Cycle-Level Modeling (CL)
- Behavior
- Cycle-Approximate
- Analytical Area, Energy, Timing

Register-Transfer-Level Modeling (RTL)
- Behavior
- Cycle-Accurate Timing
- Gate-Level Area, Energy, Timing

PyMTL
Hardware Modeling

Framework [*]

[*] D. Lockhart, G. Zibrat, and C. Batten.
PyMTL: A Unified Framework

for Vertically Integrated
Computer Architecture Research.

Int’l Symp. on Microarchitecture, Dec 2014.

What Does PyMTL Enable?

Verilog'
RTL'

Model'

FL
Model

CL
Model

RTL
Model

Verilog
RTL

Model

Test
Harness

Test
Harness

Test
Harness

Test
Harness

FL
Model

CL
Model

RTL
Model

Verilog
RTL

Model

1. Incremental refinement from algorithm
 to hardware implementation

2. Automated testing and integration of
 PyMTL-generated Verilog

3. Multi-level co-simulation of
FL, CL, and RTL models

4. Construction of highly parameterized
RTL chip generators

3 PyMTL for Computer Architecture Test Chips

Why Build Computer Architecture Test Chips?

There are many reasons to build computer architecture test chips in the
contexts of both academia and industry.

Key Aspect in Agile Hardware Design

I Rapid design iteration
I Reduces cost of validation
I ”Building the right thing”

Benefits Research

I Builds research credibility
I Highly reliable power and energy

estimates for new architecture
techniques

C++

FPGA

ASIC flow

Tape-in

Small tape-out

Big tape-out

* Adapted from Yunsup Lee
IEEE Micro 2016

Design Methodologies: Large Chips vs. Small Chips

Large-scale commercial chips and small computer architecture test chips
have different design methodologies with different production targets.

Large-Scale Commercial Chips

I High-volume and high-yield
production

I Overcome design challenges with
large teams

Computer Architecture Test Chips

I Low-volume and reasonable-yield
production

I Overcome design challenges
despite small teams and limited
resources

Small teams that build computer architecture test chips with highly
productive development frameworks can shorten the time to tapeout.

PyMTL in Agile Hardware Design

One such framework can be created by combining the PyMTL framework with
a highly automated standard-cell design flow, potentially enabling small teams
to push RTL changes to layout with a validated gate-level netlist within a day.

FL Simulation
CL Simulation

RTL Simulation

Post-Synthesis
Gate-Level Simulation

Post-Place-and-Route
Gate-Level Simulation

Synthesis

Floorplanning
Power Routing

Placement
Clock Tree Synthesis

Routing

Power Analysis

DRC RCXLVS

Transistor-Level Sim

Tape Out

PyMTL
Framework

Highly Automated
Standard-Cell Design Flow

PyMTL provides the unified design and testing environment for not only
FL, CL, and RTL models but also for post-synthesis and post-PAR gate-level
models. Combining with a highly automated standard-cell design flow
allows small teams to meet low-volume and reasonable-yield production
targets while shortening the time to tapeout.

4 PyMTL-Integrated Tapeout Methodology

IBM 130nm
SRAM Compiler

PyMTL RTL of Full Design

Verilog RTL
of Full Design

C-Based
Accelerator
Tested in C

Verilog Gate-
Level Simulator

PyMTL-Driven
Testing Framework

Standard Cell
Front-End Views

SRAM Specification

Post-PAR
Gate-Level Netlist

Post-Synthesis
Gate-Level Netlist

IBM 130nm PDK

Synopsys vcat utilityGDS of
SRAM Macros

SRAM Macros
Front-End Views

Full-Custom
LVDS Receiver

GDS & LEF

Standard / Pad Cell
 Back-End Views

GDS of Full Design

DRC-Clean GDS
of Full Design

FPGA Logic
w/ Full Design

Verilog RTL of
Accelerator

PyMTL Verilog Import

Tapeout-Ready GDS
of Full Design

PyMTL to
Verilog Translator

Synopsys
Design Compiler

Synopsys
IC Compiler

Calibre DRC

Commercial
Xilinx-Based
FPGA Tools

Commercial
HLS ToolH

LS
FP

G
A

A
SI

C

PyMTL

Calibre LVS

PyMTL Simulator
w/ Unit Tests and

Assembly Test Suite

VCD
Traces

Mature full-featured
software testing tools

PyMTL FL / CL Models

Verilog RTL Modules
Specially Annotated
for FPGA Synthesis

PyMTL Verilog Import

Detailed Methodology Using PyMTL for Agile Hardware Design

5 PyMTL in Practice: BRG Test Chip 1

BRG Test Chip 1 (BRGTC1) was
designed using the PyMTL hardware
modeling framework.

Our methodology uses PyMTL for:

I Design (FL/CL/RTL)
I Composition with a commercial

high-level synthesis (HLS) toolflow
I As a unified testing environment

The testing environment drives:

I FL/CL/RTL simulation
I FPGA emulation
I Post-synthesis/PAR gate-level

simulation

Host
Interface

de
bu

g

RISC
Core

Sort
Accel

Memory Arbitration Unit

SRAM
Bank
(2KB)

SRAM
Bank
(2KB)

SRAM
Bank
(2KB)

SRAM
Bank
(2KB)

diff clk (+)
diff clk (−)

single
ended clk

re
se

t

Ctrl
Reghost2chip

chip2host

LVDS
Recv

clk
div

clk tree
reset
tree

cl
k

ou
t

LV
D

S

di
vi

de
d

cl
k

ou
t

LV
D

S
cl

k
ou

t

Testing Plans After Fabrication

I Xilinx ZC706 FPGA development board for
FPGA prototyping

I Custom-designed FMC mezzanine card for
ASIC test chips

The testing platform enables running test programs on BRGTC1 to compare the perfor-
mance/energy of pure-software kernels versus the HLS-generated sorting accelerator.

Chip Plot

Taped Out: March 2016 Expected Return: Fall 2016

A 2⇥2 mm 1.3 M-transistor RISC processor in IBM 130 nm,
16 KB SRAM, and HLS-generated accelerators.

Static Timing Analysis Freq. @ 246 MHz

6 Acknowledgments

Chip fabrication was made possible by the MOSIS Educational Program. This work was supported in part by NSF CAREER Award #1149464, NSF XPS Award
#1337240, NSF CRI Award #1512937, and equipment/tool/IP donations from Intel, Synopsys, Cadence, Mentor Graphics, Xilinx, and ARM. We acknowledge
and thank Mark Buckler for EDA toolflow development and Ivan Bukreyev for advice on full-custom design.

Publication: Student Poster at the 28th Symposium on High Performance Chips (HotChips-28), Aug. 2016. URL: http://www.csl.cornell.edu/
~

cbatten/pdfs/torng-brgtc1-hotchips2016.pdf Contact Author: Christopher Torng, , clt67@cornell.edu

