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1 Abstract

This poster will describe a taped-out 2⇥2 mm 1.3 M-transistor test chip in IBM
130 nm designed using our new Python-based hardware modeling
framework. The goal of our tapeout was to demonstrate the ability of this
framework to enable Agile hardware design flows.

Specifically, our approach has two pieces:
I Unify all simulation (behavioral, cycle-level timing, RTL, and gate-level)

within a single-language development framework
I Integrate this framework with highly automated standard-cell design flows
For small teams working on small computer architecture test chips for
research or as part of an Agile hardware design flow, such an approach can
enable rapid design iteration from RTL to layout, shortening the time to
tapeout despite limited manpower.

2 The PyMTL Hardware Modeling Framework

Computer architects have long traded off simulation time and accuracy by
leveraging multiple modeling abstractions including functional-level (FL),
cycle-level (CL), and register-transfer-level (RTL) modeling. However,
each of these uses distinct modeling languages, modeling patterns, and
modeling tools, creating a large impediment to vertically integrated, iterative
refinement of a design from algorithm, to exploration, to implementation.
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PyMTL is a unified and highly productive framework for FL, CL, and RTL
modeling based on a common high-productivity language (Python2.7).

What is PyMTL?

Functional-Level Modeling (FL)
- Behavior

Cycle-Level Modeling (CL)
- Behavior
- Cycle-Approximate
- Analytical Area, Energy, Timing

Register-Transfer-Level Modeling (RTL)
- Behavior
- Cycle-Accurate Timing
- Gate-Level Area, Energy, Timing
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[*] D. Lockhart, G. Zibrat, and C. Batten.
PyMTL: A Unified Framework

for Vertically Integrated
Computer Architecture Research.

Int’l Symp. on Microarchitecture, Dec 2014.

What Does PyMTL Enable?
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1. Incremental refinement from algorithm
    to hardware implementation

2. Automated testing and integration of
    PyMTL-generated Verilog

3. Multi-level co-simulation of
FL, CL, and RTL models

4. Construction of highly parameterized
RTL chip generators

3 PyMTL for Computer Architecture Test Chips

Why Build Computer Architecture Test Chips?

There are many reasons to build computer architecture test chips in the
contexts of both academia and industry.

Key Aspect in Agile Hardware Design

I Rapid design iteration
I Reduces cost of validation
I ”Building the right thing”

Benefits Research

I Builds research credibility
I Highly reliable power and energy

estimates for new architecture
techniques
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ASIC flow
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* Adapted from Yunsup Lee
IEEE Micro 2016

Design Methodologies: Large Chips vs. Small Chips

Large-scale commercial chips and small computer architecture test chips
have different design methodologies with different production targets.

Large-Scale Commercial Chips

I High-volume and high-yield
production

I Overcome design challenges with
large teams

Computer Architecture Test Chips

I Low-volume and reasonable-yield
production

I Overcome design challenges
despite small teams and limited
resources

Small teams that build computer architecture test chips with highly
productive development frameworks can shorten the time to tapeout.

PyMTL in Agile Hardware Design

One such framework can be created by combining the PyMTL framework with
a highly automated standard-cell design flow, potentially enabling small teams
to push RTL changes to layout with a validated gate-level netlist within a day.
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PyMTL provides the unified design and testing environment for not only
FL, CL, and RTL models but also for post-synthesis and post-PAR gate-level
models. Combining with a highly automated standard-cell design flow
allows small teams to meet low-volume and reasonable-yield production
targets while shortening the time to tapeout.

4 PyMTL-Integrated Tapeout Methodology
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Detailed Methodology Using PyMTL for Agile Hardware Design

5 PyMTL in Practice: BRG Test Chip 1

BRG Test Chip 1 (BRGTC1) was
designed using the PyMTL hardware
modeling framework.

Our methodology uses PyMTL for:

I Design (FL/CL/RTL)
I Composition with a commercial

high-level synthesis (HLS) toolflow
I As a unified testing environment

The testing environment drives:

I FL/CL/RTL simulation
I FPGA emulation
I Post-synthesis/PAR gate-level

simulation
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Testing Plans After Fabrication

I Xilinx ZC706 FPGA development board for
FPGA prototyping

I Custom-designed FMC mezzanine card for
ASIC test chips

The testing platform enables running test programs on BRGTC1 to compare the perfor-
mance/energy of pure-software kernels versus the HLS-generated sorting accelerator.

Chip Plot

Taped Out: March 2016 Expected Return: Fall 2016

A 2⇥2 mm 1.3 M-transistor RISC processor in IBM 130 nm,
16 KB SRAM, and HLS-generated accelerators.

Static Timing Analysis Freq. @ 246 MHz
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