
Appears in the Proceedings of the 43rd ACM/IEEE Int’l Symp. on Computer Architecture (ISCA-43), June 2016

Asymmetry-Aware Work-Stealing Runtimes
Christopher Torng, Moyang Wang, and Christopher Batten

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{clt67,mw828,cbatten}@cornell.edu

Abstract—Amdahl’s law provides architects a compelling rea-
son to introduce system asymmetry to optimize for both se-
rial and parallel regions of execution. Asymmetry in a multi-
core processor can arise statically (e.g., from core microarchitec-
ture) or dynamically (e.g., applying dynamic voltage/frequency
scaling). Work stealing is an increasingly popular approach
to task distribution that elegantly balances task-based paral-
lelism across multiple worker threads. In this paper, we pro-
pose asymmetry-aware work-stealing (AAWS) runtimes, which
are carefully designed to exploit both the static and dynamic
asymmetry in modern systems. AAWS runtimes use three key
hardware/software techniques: work-pacing, work-sprinting,
and work-mugging. Work-pacing and work-sprinting are novel
techniques that combine a marginal-utility-based approach with
integrated voltage regulators to improve performance and en-
ergy efficiency in high- and low-parallel regions. Work-mugging
is a previously proposed technique that enables a waiting big
core to preemptively migrate work from a busy little core.
We propose a simple implementation of work-mugging based
on lightweight user-level interrupts. We use a vertically inte-
grated research methodology spanning software, architecture,
and VLSI to make the case that holistically combining static
asymmetry, dynamic asymmetry, and work-stealing runtimes
can improve both performance and energy efficiency in future
multicore systems.

I. INTRODUCTION

Work stealing is a well-known approach to task distribution
that elegantly balances task-based parallelism across multi-
ple worker threads [10, 30]. In a work-stealing runtime, each
worker thread enqueues and dequeues tasks onto the tail of its
task queue. When a worker finds its queue empty, it attempts
to steal a task from the head of another worker thread’s task
queue. Work stealing has been shown to have good perfor-
mance, space requirements, and communication overhead in
both theory [8] and practice [7,22]. Optimizing work-stealing
runtimes remains a rich research area [4,12,13,15,18,47], and
work stealing is a critical component in many popular concur-
rency platforms including Intel’s Cilk++, Intel’s C++ Thread-
ing Building Blocks (TBB), Microsoft’s .NET Task Paral-
lel Library, Java’s Fork/Join Framework, X10, and OpenMP.
Most of the past research and current implementations use
asymmetry-oblivious work-stealing runtimes. In this work,
we propose asymmetry-aware work-stealing (AAWS) run-
times, which exploit both static asymmetry (e.g., different
core microarchitectures) and dynamic asymmetry (e.g., per-
core dynamic voltage/frequency scaling) to improve the per-
formance and energy efficiency of multicore processors.

Single-ISA heterogeneous processors integrate multiple
cores with different microarchitectures onto a single die
in order to provide distinct energy-performance operating
points [42, 43]. These processors exhibit static asymme-
try that is fixed at design time. Systems based on ARM’s
big.LITTLE architecture, which composes “big” ARM

Cortex-A15/A57 out-of-order cores with “little” Cortex-
A7/A53 in-order cores [25, 41], are commercially available
from Samsung [29], Qualcomm [28], Mediatek [17], and Re-
nesas [27]. There has been significant interest in new tech-
niques for effectively scheduling software across these big
and little cores, although most of this prior work has fo-
cused on either multiprogrammed workloads [1, 42, 43, 60]
or on applications that use thread-based parallel program-
ming constructs [35, 36, 44, 59]. However, there has been
less research exploring the interaction between state-of-the-
art work-stealing runtimes and static asymmetry. A notable
exception is Bender et al.’s theoretical work [3] and abstract
discrete-event modeling [37] on an enhanced Cilk sched-
uler for heterogeneous systems. Others have also explored
combining work-stealing with work-sharing, critical-path
scheduling, and/or core affinity to more effectively schedule
tasks across statically asymmetric systems [13, 14, 16, 52].

Dynamic voltage/frequency scaling (DVFS) is an example
of dynamic asymmetry that is adjustable at runtime. Much of
the prior work on DVFS has assumed off-chip voltage regula-
tion best used for coarse-grain voltage scaling [9,32,33]. Re-
cent architecture/circuit co-design of fine-grain DVFS (either
through multi-rail voltage supplies [19,51] or fully integrated
voltage regulators [21, 23, 24, 34, 40, 58]) suggests that sub-
microsecond voltage transition times may be feasible in the
near future. There has been significant interest in new tech-
niques for exploiting fine-grain DVFS to improve the perfor-
mance and/or energy efficiency of multiprogrammed work-
loads [20, 40] or on applications that use thread-based paral-
lel programming constructs [4, 11, 24, 48, 51]. Again, there
has been relatively little research exploring the interaction
between work-stealing runtimes and dynamic asymmetry. A
notable exception is recent work by Ribic et al. that proposes
reducing the voltage/frequency of thieves and increasing the
voltage/frequency of workers with deep task queues [55].

Recent studies have demonstrated the potential benefit of
combining static and dynamic asymmetry [2, 26, 50]. A key
observation is that static asymmetry through heterogeneous
core types offers larger marginal utility but must be fixed
at design time, while dynamic asymmetry in the form of
DVFS offers smaller marginal utility but can be varied at
run time [2]. These past works have focused on coarse-grain
multiprogrammed workloads. To our knowledge, this is the
first work to explore the interaction between static asymme-
try, dynamic asymmetry, and work-stealing runtimes. We ar-
gue that work-stealing runtimes are a natural fit for manag-
ing asymmetry. Assuming fully strict programs with high-
parallel slack [22], a work-stealing runtime will naturally ex-
ploit asymmetry without modification; faster cores will exe-
cute tasks more quickly and then simply steal work as neces-
sary from slower cores. However, our work shows there are

still important opportunities for AAWS runtimes to improve
performance and energy efficiency.

In Section II, we develop a simple first-order model to pro-
vide insight into optimizing the aggregate throughput and en-
ergy efficiency of an AAWS runtime. Our model predicts that
the maximum throughput will occur when the marginal util-
ity (i.e., performance) vs. marginal cost (i.e., power) of each
core is equal. This is an intuitive application of a fundamental
principle in economics known as the Law of Equi-Marginal
Utility. Others have also observed this important design
guideline in the context of design-space exploration of pro-
cessor microarchitecture [2] and market-based multi-resource
allocation in multicore processors [62]. We use numerical
analysis to study the potential benefit of a marginal-utility-
based approach in AAWS runtimes for both high-parallel
(HP) and low-parallel (LP) regions.

In Section III, we propose three new hardware/software
mechanisms to enable AAWS runtimes: work-pacing, work-
sprinting, and work-mugging. Work-pacing is a novel tech-
nique that directly applies a marginal-utility-based approach
in the HP region by increasing the voltages of little cores and
decreasing the voltages of big cores to improve both perfor-
mance and energy efficiency. Work-sprinting is a novel tech-
nique similar to work-pacing that applies a marginal-utility-
based approach in the LP region, while also exploiting ad-
ditional power slack generated from resting waiting cores.
Work-pacing and work-sprinting require a fine-grain DVFS
controller specifically designed for an AAWS runtime as well
as lightweight hint instructions that allow the AAWS run-
time to inform the hardware when cores are active or wait-
ing. While work-sprinting can provide some benefit in LP
regions, it is also fundamentally limited by the work-stealing
scheduler’s task distribution algorithm. Our first-order mod-
eling suggests that when distributing power among busy cores
in the LP region, sprinting a little core while resting a big
core is usually suboptimal compared to resting a little core
and sprinting a big core. To address this issue, we revisit
previous theoretical work on work-mugging [3, 37]. Work-
mugging allows a waiting big core to “mug” an active lit-
tle core by preemptively migrating a task from the little core
to the big core. We describe a practical implementation of
work-mugging in multicore systems that relies on user-level
inter-core interrupts.

In Section IV, we outline our vertically integrated re-
search methodology. We have developed our own C++ work-
stealing runtime inspired by Intel TBB which uses Chase-Lev
task queues [12] and occupancy-based victim selection [15].
We have ported 20 application kernels to our work-stealing
runtime. These kernels are selected from the PBBS [57],
PARSEC [5], Cilk [22], and UTS [53] benchmark suites and
represent diverse application-level characteristics. We evalu-
ate the performance of two eight-core systems (4 big & 4 lit-
tle; 1 big & 7 little) using the cycle-level gem5 simulator [6],
and we evaluate power and energy efficiency using a detailed
power/energy model that leverages component models within
McPAT [49] as well as energy estimates from our own VLSI
implementation of a single-issue in-order RISC processor.

B0
B1
B2
B3
L0
L1
L2
L3

HP Region (3.3 μs) LP Region (7.4 μs)

Figure 1. Activity Profile for Convex Hull Application on Statically
Asymmetric System – Only a subset of the entire activity profile is
shown. Cores L0–3 are “little” in-order cores; cores B0–3 are “big”
out-of-order cores. Green = executing task; light-gray = waiting
in work-stealing loop; HP = high-parallel; LP = low-parallel. See
Section IV for simulation methodology.

In Section V, we use this methodology to explore the po-
tential performance and energy efficiency benefits of AAWS
runtimes. On a system with four big and four little cores,
an AAWS runtime achieves speedups from 1.02–1.32⇥ (me-
dian: 1.10⇥). At the same time, all but one kernel achieves
improved energy efficiency with a maximum improvement of
1.53⇥ (median: 1.11⇥).

The key contributions of this work are: (1) we develop a
marginal-utility-based approach to both quantify the poten-
tial benefit of AAWS runtimes and motivate specific hard-
ware/software techniques; (2) we propose new work-pacing
and work-sprinting techniques that directly apply a marginal-
utility-based approach within AAWS runtimes; (3) we pro-
vide a practical implementation of the previously proposed
work-mugging technique suitable for use in AAWS runtimes;
and (4) we use a vertically integrated research methodology
that spans software, architecture, and VLSI to make the case
that holistically combining static asymmetry, dynamic asym-
metry, and work-stealing runtimes can improve both perfor-
mance and energy efficiency in future multicore systems.

II. A MARGINAL-UTILITY-BASED APPROACH

Figure 1 shows an activity profile for an example appli-
cation running on a system with four big cores and four
little cores and an asymmetry-oblivious work-stealing run-
time. Notice that the application includes a mix of both high-
parallel (HP) and low-parallel (LP) regions. During HP re-
gions, the work-stealing runtime is able to adapt to the static
asymmetry by distributing more tasks to the bigger cores re-
sulting in good throughput and a relatively balanced profile.
During LP regions, some cores are active, while other cores
are waiting in the work-stealing loop. Notice that there is
usually a small LP region near the end of an HP region, since
the work-stealing runtime is unable to redistribute work at in-
finitely small granularities.

AAWS runtimes attempt to improve performance and en-
ergy efficiency in both the HP and LP regions by making the
work-stealing runtime aware of the underlying static and dy-
namic asymmetry. In this section, we use first-order model-
ing and numerical analysis (similar to [31,63]) to motivate the
three techniques we will explore in this paper: work-pacing,

which targets the HP region; work-sprinting, which focuses
on the LP region; and work-mugging, which also focuses on
the LP region.

A. First-Order Model
Consider a multicore system comprised of NB big cores

and NL little cores, with NBA, NBW , NLA, NLW big/little ac-
tive/waiting cores. Assume both big and little cores have
the same nominal voltage (VN) and nominal frequency (fN),
and that the system can individually scale the voltage of each
core from Vmin to Vmax. Waiting cores can execute the work-
stealing loop while “resting” at Vmin to save power while still
enabling correct execution.

We assume that frequency is a linear function of voltage
(validated using circuit-level simulation, see Section IV). The
frequency of each active core is thus:

fBi = k1VBi + k2 (i = 1,2, ...,NBA)

fL j = k1VL j + k2 (j = 1,2, ...,NLA) (1)

where k1, k2 are fitted parameters, fBi is the frequency of big
core i, VBi is the voltage of big core i, and so on.

The throughput of an active core is measured in instruc-
tions per second (IPS) and is a function of the average in-
structions per cycle (IPC) of a given core type:

IPSBAi = IPCB fBi (i = 1,2, ...,NBA)

IPSLA j = IPCL fL j (j = 1,2, ...,NLA) (2)

To simplify our discussion we define b = IPCB/IPCL.
We use the aggregate throughput of all active cores as an

approximation for the performance of the overall applica-
tion. If we assume compute-bound tasks and perfect task-
balancing through work-stealing in the HP region, then in-
creasing the total throughput will indeed reduce the overall
execution time of the HP region. The performance of the LP
region is more subtle, since by definition the LP region can-
not take advantage of work-stealing until more work is gener-
ated. Increasing the throughput of one core at the expense of
another core may or may not improve execution time depend-
ing on when cores reach the next synchronization point. For-
tunately, resting waiting cores in the LP region can generate
power slack that can be reallocated to the active cores. This
means in practice, we are usually increasing the performance
of all active cores in the LP region, and thus using the aggre-
gate throughput can still provide useful insight into how to
scale the relative voltages of each core. Given these caveats,
we model the total performance of the multicore system as:

IPStot =
NBA

Â
i=1

IPSBAi +
NLA

Â
j=1

IPSLA j (3)

The core power includes both dynamic and static power
and is modeled as:

PBAi = aB IPCB fBi V 2
Bi +VBi IB,leak (i = 1,2, ...,NBA)

PLA j = aL IPCL fL j V 2
L j +VL j IL,leak (j = 1,2, ...,NLA) (4)

The factors aB and aL capture the relative energy overhead of
a big core compared to a little core. To simplify our discus-

0.8 0.9 1.0 1.1 1.2

Normalized IPS

0.9

1.0

1.1

1.2

N
o

rm
al

iz
ed

 E
n

er
g

y
 E

ff
ic

ie
n

cy

Pareto Frontier
Figure 2. Pareto-Optimal
Frontier for 4B4L System
– Projected energy effi-
ciency vs. performance of
a busy 4B4L system across
different (VBi, VL j) pairs.
Points normalized to (1.0 V,
1.0 V) system. Diagonal
line is isopower. Open circle
= pareto-optimal isopower
system. a = 3, b = 2.

sion, we define a = aB/aL as the energy ratio of a big core to
a little core at nominal voltage and frequency. We calculate
the leakage current by assuming an architect targets leakage
power to consume a certain percentage (denoted as l) of the
total power of a big core at nominal voltage. We assume a
little core’s leakage current is a fraction (denoted by g) of the
big core’s leakage current. We use PBN , PLN , PBW , and PLW to
refer to the power consumed by big and little cores running at
nominal VN or waiting at Vmin.

The total power is the aggregate power across all cores:

Ptotal =
NBA

Â
i=1

PBAi +
NLA

Â
j=1

PLA j +NBW (PBW)+NLW (PLW) (5)

B. Marginal Utility Optimization Problem
In Figure 2, we use our first-order model to generate en-

ergy vs. performance estimates for a system with four big
and four little cores (denoted as 4B4L). The array of plot-
ted points represent selections of different (VBi, VL j) pairs,
with all estimates normalized to the nominal system (1.0 V,
1.0 V). We assume that all cores are busy with useful work.
Points in the lower-right quadrant generally have higher volt-
age and frequency, suggesting that performance can easily be
improved at the expense of energy efficiency and at higher
power. Points in the upper-left quadrant generally have lower
voltage and frequency, suggesting that energy efficiency can
easily be improved at the expense of performance with lower
power. However, points in the upper-right quadrant suggest
that careful tuning of the voltages and frequencies of the big
and little cores can potentially improve performance and en-
ergy efficiency at the same time.

Our goal is to create an optimization problem to find the
pareto-optimal points in the upper-right quadrant. As a basic
heuristic, we use average system power at nominal voltage
to constrain our optimization problem, effectively targeting a
pareto-optimal system that draws similar power compared to
the nominal system (denoted by the open circle). The target
system power is therefore the aggregate power of all cores
running at nominal voltage and frequency:

Ptarget = NB (PBN)+NL (PLN) (6)

More specifically, our optimization problem searches for
the optimal voltages for active big (VBi) and little (VLi) cores
such that the total throughput (IPStot) is maximized while
maintaining the power target (Ptarget). We use the method
of Lagrange multipliers to solve this optimization problem,

and we rewrite the final result in terms of the marginal per-
formance vs. marginal power as follows:

∂PBAi

∂ IPSBAi
=

∂PLA j

∂ IPSLA j
(i = 1,2, ...,NBA; j = 1,2, ...,NLA) (7)

This is an intuitive application of a fundamental principle in
economics known as the Law of Equi-Marginal Utility. At
the optimum operating point the marginal utility (i.e., perfor-
mance) vs. marginal cost (i.e., power) of each core must be
equal. If this was not the case, then an arbitrage opportu-
nity would exist: we could “sell” expensive performance to
reclaim power on one core and “buy” more performance at
a cheaper price (power) on another core. Others have also
recognized that the Law of Equi-Marginal Utility provides an
elegant digital design principle [2, 62], although here we are
applying this principle in a slightly different context.

Unfortunately, a closed-form solution for the optimum VBi
and VL j can be complex, so in the remainder of this section
we use numerical analysis to explore using a marginal-utility-
based approach in both the HP and LP regions. Unless oth-
erwise noted we will assume the following parameters: k1 =
7.38⇥108, k2 = -4.05⇥108, VN = 1 V, Vmin = 0.7 V, Vmax =
1.3 V, fN = 333 MHz, l = 0.1, g = 0.25. These parameters
are derived from VLSI modeling for the target voltage range
and system described in Section IV.

C. Marginal Utility in the High-Parallel Region

Figure 3 uses the first-order model developed in the pre-
vious subsections to plot the power and performance of a
4B4L system. This is a common configuration found in com-
mercially available ARM big.LITTLE systems [28, 29]. We
can immediately see the benefit of static asymmetry in Fig-
ure 3(a). The big core offers higher performance at higher
power, while the little core offers lower performance at lower
power. Figure 3(b) shows the marginal utility of the big core
(blue curve) and little core (green curve) as well as IPStot .
As expected, IPStot is maximized when the marginal utili-
ties are equal. The optimal operating point is VBi = 0.86 V
and VLi = 1.44 V with a theoretical speedup of 1.12⇥ over
running all cores at VN . Since 1.44 V > Vmax, the best fea-
sible operating point is VBi = 0.93 V and VLi = Vmax with a
theoretical speedup of 1.10⇥. Figure 4 shows how the op-
timal and feasible speedup varies as a function of a and b .
A marginal-utility-based approach is most effective when the
big core has moderate performance benefit for large energy
overhead (i.e., a/b > 1.0), which matches the conventional
wisdom concerning big vs. little cores. This wisdom is sup-
ported by data collected by ARM during pre-silicon design-
space exploration of Cortex-A7 and Cortex-A15 cores [25] as
well as by our own results (see Section V).

This analysis suggests a marginal-utility-based approach
can offer respectable speedups in the HP region, and thus
motivates our interest in our new work-pacing technique. It
is important to note, that a marginal-utility-based approach
requires holistically considering static asymmetry, dynamic
asymmetry, and a work-stealing runtime. With a thread-
based parallel programming framework instead of work-

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Normalized IPS

0

1

2

3

4

5

6

7

N
o

rm
a
li

z
e
d

 P
o

w
e
r

0.70

1.04

1.00

1.00

1.30

0.92

1.60

0.76

1.90

0.24

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a
li

z
e
d

 T
o

ta
l

IP
S

(a) Power vs. IPS (b) Total IPS vs. VBi and VL j

Figure 3. 4B4L System w/ All Cores Active – (a) Power vs. perfor-
mance curves across the DVFS operating points for each core type,
green = little, blue = big, circle = nominal; (b) blue = ∂PBAi/∂ IPSBAi
(axis not shown), green = ∂PLA j/∂ IPSLA j (axis not shown), red =
IPStot (axis on left) assuming VL j and VBi shown on x-axis (VL j on
top, VBi on bottom) with constant Ptarget . (a–b) star = optimal oper-
ating point, dot = feasible operating point, a = 3, b = 2.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

β

1.0

1.5

2.0

2.5

3.0

3.5

4.0

α

1.025

1.050
1.0751.1
001.1

25

1.1
501.1

75

1.0 1.5 2.0 2.5 3.0 3.5 4.0

β

1.0

1.5

2.0

2.5

3.0

3.5

4.0

α

1.025

1.050
1.0

75

1.
10

01
.1

2
5

1
.1

5
0

(a) Optimum Speedup (b) Feasible Speedup

Figure 4. Theoretical Speedup for 4B4L System vs. a and b –
(a) optimum speedup ignoring Vmin and Vmax; (b) = feasible speedup
within Vmin and Vmax. Speedups relative to all cores running at VN .

stealing, slowing down the big core would likely create a sig-
nificantly lagging thread hurting the overall execution time.
Without static asymmetry, the Law of Equi-Marginal Utility
tells us that the optimal approach is to simply run all homo-
geneous cores at VN during the HP region. Without dynamic
asymmetry, there is no opportunity to adaptively “trade” per-
formance vs. power and thus no way to balance the marginal
utilities in the HP region.

D. Marginal Utility in the Low-Parallel Region

Figure 5 plots the power and performance of a 4B4L sys-
tem in the LP region with two active big cores and two active
little cores. We can rest the waiting cores, generating power
slack that can then be reallocated to the active cores. The
resulting optimal operating point is VBi = 1.02 V and VLi =
1.70 V with a theoretical speedup of 1.55⇥ over running all
cores at VN . Obviously running the little core at 1.70 V is not
feasible, so the best feasible operating point is VBi = 1.16 V
and VLi = Vmax with a theoretical speedup of 1.45⇥.

Note that we can potentially further improve performance
by moving tasks from little to big cores. As shown in Fig-
ure 5(a) the little core often reaches Vmax before it can com-

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Normalized IPS

0

1

2

3

4

5

6

7

N
o

rm
a
li

z
e
d

 P
o

w
e
r

0.20

1.26

0.60

1.24

1.00

1.21

1.40

1.14

1.80

0.97

2.20

0.39

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o

rm
a
li

z
e
d

 T
o

ta
l

IP
S

(a) Power vs. IPS (b) Total IPS vs. VBi and VL j

Figure 5. 4B4L System w/ 2B2L Active – Assume we rest inactive
cores at Vmin. See Figure 3 for legend. a = 3, b = 2.

pletely exploit the power slack generated from resting cores.
Moving tasks to a big core increases peak performance and
thus can help accelerate LP regions. As an example, assume
there is a single remaining task in a 4B4L system and we must
decide whether to execute this task on a little or big core. Our
first-order model predicts that the optimum operating point
when using a little core is VL = 2.59 V, but the feasible op-
erating point is Vmax with a theoretical speedup of 1.6⇥ over
running this task on the little core at VN . If we instead move
this final task to a big core, the optimum operating point is
VB = 1.51 V, and the feasible operating point is again Vmax
with a theoretical speedup of 3.3⇥ over running this task on
the little core at VN . Moving work from little to big cores
in the LP range can significantly improve performance if we
take into account the feasible voltage range.

This analysis suggests that a marginal-utility-based ap-
proach can be useful in the LP region, but our analysis also
motivates our interest in a practical implementation of work-
mugging. Work-mugging can preemptively move work from
little to big cores, and thus helps keep big cores busy during
the LP region. Again a holistic approach is required: using
just dynamic or static asymmetry during the LP region is un-
likely to fully exploit the generated power slack.

III. AAWS RUNTIMES

In this section, we describe how AAWS runtimes can use
three new hardware/software techniques: work-pacing, work-
sprinting, and work-mugging. We also describe two simpler
techniques, serial-sprinting and work-biasing, which we in-
clude in our aggressive baseline runtime.

A. Work-Pacing and Work-Sprinting
Work-pacing uses a marginal-utility-based approach to

maximize throughput in the HP region by increasing the volt-
age of little cores and decreasing the voltage of big cores.
Work-sprinting combines the power slack generated from
resting waiting cores in the LP region with a marginal-utility-
based approach to again maximize throughput. An efficient
implementation of work-pacing and work-sprinting requires
lightweight changes to both the hardware and software.

Work-pacing and work-sprinting require the AAWS soft-
ware runtime to inform the hardware of when threads are ei-
ther actively executing tasks or waiting in the work-stealing

On-Chip Interconnect

User-Level Interrupt Network

L1$ L1$

B0 L0

VR VR

DRAMMemory Controller

L1$ L1$

B1 L1

VR VR

L1$ L1$

B2 L2

VR VR

L1$ L1$

B3 L3

VR VR

Shared L2$ Cache Banks

DVFS Controller

Figure 6. 4B4L System w/ Hardware Support for AAWS Runtimes
– Work-pacing and work-sprinting require fully integrated voltage
regulators for fine-grain DVFS (i.e., per-core, sub-microsecond scal-
ing to potentially many voltage levels) as well as a customized DVFS
controller. Work-mugging requires user-level interrupts to enable
rapid communication between cores. B0–B3 = big cores, L0–L3 =
little cores, VR = fully integrated voltage regulator.

loop. We propose instrumenting the work-stealing loop in the
AAWS runtime with hint instructions, such that each hint in-
struction toggles an activity bit indicating the status of each
core. This is similar to past work on lightweight DVFS con-
trollers for applications that use thread-based parallel pro-
gramming frameworks [24, 51]. When a worker thread en-
ters the work-stealing loop, it will wait until its second steal
attempt before using the hint instruction to toggle the ac-
tivity bit. When combined with occupancy-based victim
selection [15] as opposed to random victim selection [22],
this avoids unnecessary activity bit transitions that could ad-
versely impact the customized DVFS controller described
later in this subsection. Although this elegant approach is re-
active, it also avoids the need for prediction heuristics [4,11].

As shown in Figure 1, HP and LP region timescales can
be on the order of a few microseconds. Unfortunately, tradi-
tional off-chip switching regulators can have voltage scaling
response times on the order of tens to hundreds of microsec-
onds [9, 54]. Multi-rail voltage supplies offer very fast re-
sponse times on the order of tens of nanoseconds [19,51], but
they offer limited voltage levels making them a poor fit for the
many voltage levels required by our marginal-utility-based
approach. We propose leveraging recent circuit-level research
on fully-integrated switching regulators [39, 45, 46]. Archi-
tects are increasingly making the case for integrated voltage
regulation as a way to reduce system cost and enable fine-
grain DVFS for per-core, sub-microsecond scaling to poten-
tially many voltage levels [23, 24, 34, 40, 64]. Indeed, the In-
tel Haswell processor uses in-package inductors with on-chip
regulators to provide fast-changing per-core supplies [38].

Figure 6 illustrates a 4B4L system that can potentially
leverage an AAWS runtime. Each core has its own private
L1 instruction and data cache along with a shared, banked L2
cache. The activity bits controlled by the hint instructions are
read by a global DVFS controller, which then decides how
to set the supply voltages of fully integrated per-core voltage

regulators. While distributed DVFS controllers are certainly
possible [62], the added complexity is probably not warranted
for smaller-scale systems. We propose using a simple lookup-
table-based DVFS controller to map activity information into
appropriate voltage levels. The marginal-utility-based analy-
sis from the previous section along with estimated values for
a and b can be used to create a lookup table that performs
generally well across a wide range of application kernels. For
a 4B4L system, there are five possible values for the number
of active little (big) cores, including zero. The lookup table
would therefore include 25 entries. More sophisticated adap-
tive algorithms that update the lookup tables based on per-
formance and energy counters are possible and an interesting
direction for future work.

B. Work-Mugging
The goal of work-mugging is to preemptively migrate work

from little cores to big cores during the LP region. Our first-
order modeling argues for using the big cores when possible
during the LP region, since bigger cores have a higher fea-
sible performance limit. Previous theoretical work [3] and
abstract discrete-event modeling [37] have made the case for
work-mugging, although these past works did not propose a
concrete way to actually implement work-mugging. As with
work-pacing and work-sprinting, an efficient implementation
of work-mugging requires lightweight changes to both the
hardware and software.

We propose using fast user-level interrupts to enable one
core to redirect the control flow of another core. These user-
level interrupts are essentially a simple implementation of
previous ideas on asynchronous direct messages [56] and ac-
tive messages [61]. A “mugger” can use a new mug instruc-
tion to mug a “muggee”. The mug instruction takes two input
values stored in registers. One indicates which core to mug
and the other contains the address of the user-level interrupt
handler. Other than the handler address, all data is commu-
nicated through shared memory. This form of user-level in-
terrupts requires a simple, low-bandwidth inter-core network
with approximately four-byte messages (see Figure 6).

We modify the AAWS runtime so that when a worker
thread running on a big core enters the work-stealing loop,
it will attempt to steal work twice before considering work-
mugging. If at least one little core is active, then the big core
selects a little core to mug using the mug instruction. Each
core’s runtime keeps information about that core’s activity
and task queue occupancy in shared memory, so that every
core can easily determine which cores are active and which
cores are waiting. The mugger and muggee store their user-
level architectural state to shared memory, synchronize at a
barrier, and then load the other thread’s user-level architec-
tural state. The overall effect is that a big core begins exe-
cuting a task which was previously executing on a little core,
while the little core enters the work-stealing loop. A subtle
yet critical implementation detail involves ensuring that a big
core always executes the sequential part of the program after
the parallel region (i.e., logical thread 0). Otherwise, a lit-
tle core can end up executing the serial region. We modify
the AAWS runtime so at the end of a parallel region, logical

thread 0 checks to see if it is running on a big core. If not, it
simply uses a mug instruction to mug any big core.

While work-mugging can help preemptively move work
from little to big cores, it can also cause additional L1 cache
misses as the task’s working set is gradually migrated. This
overhead is somewhat mitigated by the good locality proper-
ties of a work-stealing runtime and by the fact that little cores
do not mug work back from a big core during the LP region.

C. Serial-Sprinting and Work-Biasing

Instruction hints can also be used to inform the hardware
of truly serial regions (as opposed to an LP region which just
happens to have one task remaining). An obvious extension
is to allow the DVFS controller to sprint the single active
big core during these serial regions. Since this is a relatively
straight-forward optimization, we include serial-sprinting in
our baseline work-stealing runtime. Our application work-
loads have relatively short serial regions. So while serial-
sprinting does not hurt performance, it also does not offer
much benefit (approximately 1–2%).

A simple non-preemptive scheme we call work-biasing in-
volves preventing little cores from stealing work unless all
big cores are active. Work-biasing has the effect of “biasing”
work towards the big cores, but the non-preemptive nature
of work-biasing means there are few opportunities to have
a meaningful impact on the work distribution. Indeed, the
prior theoretical work on work-mugging also suggests the
importance of preemption [3]. Even so, work-biasing can
sometimes have a small benefit (approximately 1%) and never
hurts performance, so we include work-biasing in our base-
line work-stealing runtime.

We choose to include serial-sprinting and work-biasing in
our baseline runtime to ensure that it is as aggressive as pos-
sible, but this does mean our baseline runtime includes a very
limited form of asymmetry awareness.

IV. EVALUATION METHODOLOGY

We use a vertically integrated research methodology span-
ning software, architecture, and VLSI. In this section, we
describe our target system, applications, baseline runtime,
cycle-level performance modeling, and energy modeling.

A. Target System

Although much of our analysis is applicable to larger high-
performance systems, we focus on the smaller embedded sys-
tems that are already integrating static and dynamic asymme-
try [17, 27–29]. Table I includes details on the core microar-
chitectures and memory system. We study two eight-core
configurations: a 4B4L system with four big and four little
cores similar to commercial products [28, 29] and a 1B7L
system with one big core and seven little cores. We target
a 32-bit RISC architecture with 32 general-purpose registers
and hardware floating point. We specifically target an older
technology (TSMC 65nm LP) and a lower-frequency, single-
issue, in-order little core for two reasons. First, we have our
own VLSI implementation of such a core and thus can pursue
a more rigorous energy-modeling strategy (see Section IV-E).

TABLE I. CYCLE-LEVEL SYSTEM CONFIGURATION

Technology TSMC 65nm LP, 1.0V nominal voltage

ALU 4/10-cycle Int Mul/Div, 6/6-cycle FP Mul/Div,
4/4-cycle FP Add/Sub

Little Core 1-way, 5-stage in-order, 32 Phys Regs, 333MHz
nominal frequency

Big Core 4-way, out-of-order, 128 Phys Regs, 32 Entries IQ
and LSQ, 96 Entries ROB, Tournament Branch Pred,
333MHz nominal frequency

Caches 1-cycle, 1-way, 16KB L1I, 1-cycle 2-way 16KB L1D
per core; 20-cycle, 8-way, shared 1MB L2; MESI
protocol

OCN Crossbar topology, 2-cycle fixed latency

DRAM 200ns fixed latency, 12.8GB/s bandwidth
SimpleMemory model

Second, we have access to SPICE-level models of integrated
voltage regulators in this technology that help us to accurately
estimate DVFS transition overheads. We expect the high-
level conclusions of our work to hold for high-performance
target systems.

B. Benchmark Suite

We have ported 20 C++ application kernels to our RISC
architecture and work-stealing runtime. These kernels are
selected from the PBBS (v. 0.1) [57], PARSEC (v. 3.0) [5],
Cilk (v. 5.4.6) [22], and UTS (v. 2.1) [53] benchmark suites
and represent diverse application-level characteristics (see
Table III). We include two datasets for qsort and radix, since
they exhibit strong data-dependent variability. bfs-d and bfs-
nd capture the impact of deterministic execution for the same
problem. Determinism is a desirable trait that can mitigate
the difficulties of reasoning about both correctness and per-
formance in complex systems [57]. We list MPKI for each
app, showing that our application kernels are fairly compute-
bound. We select applications with varied parallelization
methods. In addition to the conventional parallel_for
construct, our selections exhibit recursive spawn-and-sync
parallelization as well as nested loop parallelism (sampsort
and uts). Most PBBS benchmarks parallelize execution with
reserve-and-commit phases to create determinism. For sptree
and mis, we choose the non-deterministic versions which use
atomic memory operations to synchronize work. When run-
ning on our target systems, our application kernels achieve re-
spectable parallel speedup and yet vary widely in the number
of tasks and sizes of tasks. For detailed kernel descriptions,
see [5, 22, 53, 57].

C. Work-Stealing Runtime

Work-stealing runtimes can be divided into several cate-
gories (e.g., language-based vs. library-based, child-stealing
vs. continuation-stealing). While we believe that our ap-
proach can be applied to various categories, in this work
we choose to focus on a C++ library-based implementa-
tion similar in spirit to Intel TBB. We support syntax sim-
ilar to TBB’s parallel_for and parallel_invoke. Our
runtime uses child-stealing and supports automatic recur-

TABLE II. PERFORMANCE OF BASELINE RUNTIME VS.
INTEL CILK++ AND INTEL TBB ON REAL SYSTEM

Cilk++ TBB Baseline Baseline vs. TBB

dict 4.02 5.02 5.53 +10%
radix 7.05 4.87 5.58 +14%
rdups 3.96 4.36 4.54 +4%
mis 2.75 2.42 2.40 -1%
nbody 7.37 7.10 6.95 -3%

Numbers are speedups vs. scalar implementation. Cilk++ = original
Cilk implementation of PBBS apps compiled with Intel C++ Com-
piler 14.0.2. TBB = ported PBBS apps using parallel_for with
Intel TBB 4.4 build 20150928. Baseline = ported PBBS apps using
parallel_for with our baseline work-stealing runtime. Each con-
figuration uses eight threads running on an unloaded Linux server
with two Intel Xeon E5620 processors.

sive decomposition of parallel loops (similar to Intel TBB’s
simple_partitioner). We use non-blocking, dynamically
sized Chase-Lev task queues [12] and occupancy-based vic-
tim selection [15]. We have carefully optimized our runtime
to minimize memory fences, atomic memory operations, and
false sharing.

We have compared the performance of our baseline run-
time to Intel Cilk++ and Intel TBB on five application ker-
nels from PBBS running natively on an eight-core Intel x86
platform. We use large datasets and many trials so that it
takes ⇡30 seconds to run one serial application. The speedup
results over optimized serial implementations are shown in
Table II. Our runtime has similar performance to Intel TBB
and is sometimes slightly faster due to the fact that our run-
time is lighter weight and does not include advanced fea-
tures like C++ exceptions or cancellations from within tasks.
Section V uses cycle-level simulation to show that our base-
line runtime achieves very reasonable speedups on both 4B4L
and 1B7L systems. These real-system- and simulation-based
results provide compelling evidence for the strength of our
baseline runtime. As mentioned in Section III-C, we also add
serial-sprinting and work-biasing (limited forms of asymme-
try awareness) to our baseline runtime to ensure it is as ag-
gressive as possible. Our AAWS runtime extends this base-
line runtime as described in Sections III-A and III-B.

D. Cycle-Level Performance Modeling

We use the gem5 simulator [6] in syscall emulation mode
for cycle-level performance modeling of our target systems.
Heterogeneous systems are modeled by combining modified
O3CPU and InOrderCPU models. We modified gem5 to tog-
gle an activity bit in each core after executing the hint instruc-
tions. We modified gem5’s clock domains and clocked object
tick calculations to support dynamic frequency scaling. Cores
can independently scale their frequency, but we centralized
control of all clock domains in a DVFS controller special-
ized for AAWS. As described in Section III-A, we model
a lookup-based DVFS controller that maps activity informa-
tion into appropriate voltage levels. We use tables similar to
those described in FG-SYNC+ [24]. We slightly modify this
approach by separating little-core activity bits from big-core

TABLE III. APPLICATION KERNELS

Speedup

DInst Num Task Opt IO 1B7L 4B4L L2

Name Suite Input PM (M) Tasks Size (K) Cyc (M) ERatio O3 vs O3 vs IO vs O3 vs IO MPKI

bfs-d pbbs randLocalGraph_J_5_150K p 36.0 2588 14 113.2 2.8 2.2 2.3 5.1 2.9 6.5 14.8
bfs-nd pbbs randLocalGraph_J_5_150K p 58.1 3108 19 113.2 2.8 2.2 1.8 4.0 2.4 5.3 12.3
qsort-1 pbbs exptSeq_10K_double rss 18.8 777 24 26.1 2.5 1.7 2.8 4.7 3.2 5.4 0.0
qsort-2 pbbs trigramSeq_50K rss 20.0 3187 6 38.9 3.1 1.9 3.3 6.3 4.6 8.7 0.0
sampsort pbbs exptSeq_10K_double np 37.5 15522 2 26.1 2.5 1.7 2.5 4.2 3.0 5.1 0.11

dict pbbs exptSeq_1M_int p 45.1 256 151 101.5 2.8 1.7 4.0 6.9 5.1 8.8 7.0
hull pbbs 2Dkuzmin_100000 rss 14.2 882 16 31.6 2.1 2.2 3.4 7.5 4.4 9.8 6.0
radix-1 pbbs randomSeq_400K_int p 42.4 176 240 83.1 2.2 1.8 2.7 4.7 3.1 5.5 7.7
radix-2 pbbs exptSeq_250K_int p 35.1 285 123 56.6 2.1 1.8 2.8 4.9 3.1 5.5 7.5
knn pbbs 2DinCube_5000 p, rss 83.3 3499 23 139.3 2.8 1.7 6.0 9.9 7.0 11.5 0.02

mis pbbs randLocalGraph_J_5_50000 p 5.8 3230 2 11.6 3.6 2.3 3.8 9.0 4.3 10.1 3.5
nbody pbbs 3DinCube_180 p, rss 56.6 485 116 75.1 2.9 1.6 5.6 8.7 7.1 11.1 0.01
rdups pbbs trigramSeq_300K_pair_int p 51.2 288 156 108.4 2.6 1.7 3.5 5.9 4.2 7.1 7.6
sarray pbbs trigramString_120K p 42.1 2434 16 114.7 2.5 2.3 2.6 6.0 2.9 6.8 10.0
sptree pbbs randLocalGraph_E_5_100K p 18.9 482 39 57.2 2.8 2.1 3.0 6.3 3.5 7.3 4.9

clsky cilk -n 128 -z 256 rss 42.0 3645 11 70.4 2.4 1.7 5.1 8.6 6.2 10.5 0.02
cilksort cilk -n 300000 rss 47.0 2056 22 76.2 3.7 1.3 5.7 7.3 6.3 8.1 2.3
heat cilk -g 1 -nx 256 -ny 64 -nt 1 rss 54.3 765 54 64.9 2.3 2.1 4.2 8.8 5.7 11.7 0.04
ksack cilk knapsack-small-1.input rss 30.1 78799 0.3 25.9 2.4 1.9 2.3 4.3 2.7 5.0 0.0
matmul cilk 200 rss 68.2 2047 33 118.8 2.0 3.6 2.7 10.0 4.8 17.4 0.0

bscholes parsec 1024 options p 40.3 64 629 52.7 2.4 1.9 4.2 7.9 5.5 10.4 0.0
uts uts -t 1 -a 2 -d 3 -b 6 -r 502 np 63.9 1287 50 82.6 2.3 2.0 4.4 8.8 5.8 11.6 0.02

Suite = benchmark suite. Input = input dataset & options. PM = parallelization methods: p = parallel_for, np = nested parallel_for,
rss = recursive spawn-and-sync. DInsts = dynamic instruction count in millions. Num Tasks = number of tasks. Task Size = average task size
in thousands of instructions. Opt IO Cyc = number of cycles of an optimized serial implementation on an in-order core. ERatio = energy
ratio of the serial implementation on O3 over IO (i.e., a in Section II-A). O3 = speedup of the serial implementation on O3 over IO (i.e., b
in Section II-A). 1B7L = speedup on one big and seven little cores. 4B4L = speedup on four big and four little cores. L2 MPKI = L2 misses
per one thousand instructions with the parallelized implementation and baseline runtime on one core.

activity bits. The number of active little cores and active big
cores then maps to appropriate voltage levels according to the
marginal utility model.

We use SPICE-level models of integrated voltage regula-
tors in this technology to accurately estimate DVFS mode
transition overheads. The transition time from 0.7 V to 1.33 V
is roughly 160 ns with a sophisticated scheme as described
in [24]. We model transition overheads linearly with 40 ns
per 0.15 V step in gem5 to capture the general trend, and
we include this overhead in our results. However, transi-
tions happen infrequently with an average of 0.2 transitions
per ten microseconds across our benchmarks (maximum of
0.7). We ran a sensitivity study sweeping transition overhead
to 250 ns per step and saw less than 2% overall performance
impact. Throughout our experiments, we assume that cores
can continue executing through the voltage transition at the
lower frequency, and we also assume that new decisions can-
not be made until the previous transition completes.

We added support for the new mug instruction which can
cause one core to initiate an interrupt on another core. Spe-
cific overheads are difficult to isolate but are modeled in our
simulators: pipeline-flush overhead is captured through the
gem5 interrupt-handling mechanism; register state (32 GPRs,
exception cause and EPC, thread-ID reg) swapping is done
via memory in the exception handler and captured through
gem5 modeling of cache coherence and misses; instruction/-

data cache migration overhead is captured the same way; we
estimate the inter-core interrupt latency to be on the order
of an L2 access and thus add an explicit 20-cycle latency
per-mug. Because we use multithreaded workloads, we do
not model TLB invalidations. Thread-swapping assembly in-
cludes about 80 instructions of mugging assembly code. We
observe that work-mugging happens infrequently (less than
40 per million instructions) and that performance is generally
insensitive to work-mugging overheads. We ran a sensitivity
study sweeping the interrupt latency to 1000 cycles and saw
less than 1% overall performance impact.

E. Energy Modeling

To help estimate energy of a little core, we developed a re-
alistic RTL implementation of an in-order, single-issue scalar
core and L1 memory system. The RTL model is synthe-
sized and placed-and-routed using a combination of Synop-
sys Design Compiler, IC Compiler, and PrimeTime PX with
a TSMC 65 nm LP standard-cell library characterized at 1 V.
Analysis of the placed-and-routed design indicates each core
is approximately 0.75 mm2 and can run at 333 MHz at 1 V.
We predict that more aggressive RTL and circuit design could
increase this clock frequency by 2⇥ or more. We then ran a
suite of 65 energy microbenchmarks that are each designed
to measure the energy used by various components in the
core for each instruction. For example, the addiu energy

microbenchmark warms up the instruction cache (to isolate
the energy solely due to the instruction under test) and then
executes 100 addiu instructions in sequence. We ran this mi-
crobenchmark on the synthesized gate-level design to obtain
bit-accurate traces that are fed into PrimeTime power simu-
lations for power estimates. Coupled with the cycle time of
the placed-and-routed design, we can calculate the energy per
unit used by the addiu instruction.

We experimented with a purely McPAT-based energy
model, but we had difficulty validating the McPAT in-order
energy model against our own VLSI results. Since we do not
have access to RTL for an aggressive superscalar out-of-order
processor, we used a hybrid approach. We run the same en-
ergy microbenchmarks mentioned above on gem5’s in-order
model to generate event counts (e.g., register file reads, in-
struction cache accesses, integer ALU accesses). We then
use our VLSI implementation to carefully calculate the en-
ergy for each event. We have developed a simple energy
modeling tool which takes the event counts and our own
component-level energy numbers and produces a total en-
ergy estimate. We iterate to ensure that the overall energy of
each energy microbenchmark correlates between our VLSI
implementation and our energy model. We then use Mc-
PAT’s component-level models to estimate the energy of var-
ious structures within an out-of-order core but not within an
in-order core. Since the absolute energy numbers from Mc-
PAT and our VLSI implementation do not necessarily match,
we use the energy of a component that is present both in our
VLSI implementation and McPAT (e.g., the integer ALU or
register file read access) to normalize the McPAT component
models. Finally, we account for pipeline register overhead
and leakage power. We then run our energy microbenchmarks
on our VLSI implementation, the gem5 in-order model, and
the gem5 out-of-order model, and generate detailed energy
breakdowns for every component. We carefully compare all
breakdowns for each microbenchmark to ensure that our en-
ergy model matches our intuition.

SPICE-level simulations were used to determine the rela-
tionship between frequency and voltage for our cores across
different operating modes. We used nine delay stages con-
sisting of multiple FO4 loaded inverters, NAND, and NOR
gates connected in a loop, such that the total delay in the
loop matches our RTL cycle time for a given voltage. We
used the change in delay vs. supply voltage as a model for
core voltage-frequency scaling, and found the linear model
described in Section II-A to be a good fit. We use the first-
order model developed in Section II-A to estimate the energy
as a function of DVFS scaling.

V. EVALUATION RESULTS

In this section, we evaluate the performance and energy
efficiency of our AAWS runtime with work-pacing, work-
sprinting, and work-mugging against our baseline system.

A. Performance of Baseline Work-Stealing Scheduler
Table III provides detailed performance and energy statis-

tics for optimized serial code running on our single-core sys-
tems as well as for the parallelized versions running on our

(a) Baseline

1.00 V 0.90 V0.70 V 1.04 V
1.24 VBusy Waiting

B
ig

Li
ttl

e

time time

timetime

1.33 V

(b) Work-Pacing

15% reduction
(c) Work-Pacing, Sprinting

18% reduction

B
ig

Li
ttl

e

24% reduction

(d) Work-Pacing, Sprinting, Mugging

Figure 7. Activity Profiles for radix-2 on 4B4L – Execution times of
(b), (c), and (d) normalized to (a). Each row corresponds to a core’s
activity (black strip) and DVFS operating mode (colored strip) over
time. (a) baseline 4B4L system; (b) applying work-pacing reduces
HP region; (c) combining work-pacing and -sprinting reduces both
HP and LP regions; (d) the complete AAWS runtime with work-
pacing, sprinting, and mugging reduces execution time by 24%.

1B7L and 4B4L systems. The big out-of-order core shows
reasonable energy efficiency overhead and speedup compared
to the little in-order core, similar to reported ratios collected
by ARM during pre-silicon design-space exploration [25].
The 4B4L system strictly increases performance over the
1B7L system, although we observe that the additional big
cores do not always provide much performance benefit. Fig-
ure 7(a) shows per-core activity of the baseline 4B4L system
executing radix-2. Notice that the execution time of radix-2
is limited by LP regions created by lagging little cores.

B. Performance Analysis of Work-Pacing,
Work-Sprinting, and Work-Mugging

In this subsection, we evaluate the performance benefit of
work-pacing, work-sprinting, and work-mugging on both tar-
get systems. Figure 8 shows detailed execution time break-
downs for the (a) 4B4L system and the (b) 1B7L system.
Each group of bars represents a single application, and bars
incrementally add our techniques. To aid our evaluation,
breakdowns within each bar represent the time spent in the
serial region (serial), the HP region (HP), and the LP region.
The LP region is further broken down into three categories.
First, we isolate the LP region within which the number of in-
active big cores is too few to mug all work. In this region, the
number of big inactive cores is fewer than the number of little
active cores (BI<LA). Second, we isolate the LP region within
which inactive big cores can mug all work from little cores.
In this region, the number of big inactive cores matches or ex-
ceeds the number of little active cores (BI>=LA). Lastly, we
gather the remaining LP region in which mugging is not pos-
sible into a single "other LP" category (oLP). The system with
all of our techniques together is represented by base+psm.
Note that the bar with work-mugging alone (base+m) serves
as a comparison point without marginal utility techniques.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

0.0

0.2

0.4

0.6

0.8

1.0

(a
)

4
B

4
L

1
.0

1

1
.0

2

1
.0

5

1
.0

1

1
.0

2

1
.0

4

0
.9

9

1
.0

3

1
.0

8

1
.0

3

1
.0

9

1
.0

9

1
.0

9

1
.1

1

1
.1

1

1
.1

5

1
.0

2

0
.9

7

1
.1

3

1
.0

8

1
.1

8

1
.0

0

1
.0

2

1
.0

2

1
.0

4

1
.0

2

1
.0

4

1
.0

4

1
.0

5

1
.0

4

1
.0

8

1
.0

2

1
.0

9

1
.1

1

1
.1

2

1
.1

1

1
.1

0

1
.1

5

1
.1

6

1
.1

3

1
.1

9

1
.2

0

1
.2

2

1
.3

4

1
.0

3

1
.0

3

1
.0

4

1
.0

5

1
.0

5

1
.0

6

1
.0

7

1
.0

7

1
.0

8

1
.0

8

1
.0

9

1
.1

2

1
.1

3

1
.1

3

1
.1

4

1
.1

6

1
.1

6

1
.1

7

1
.2

0

1
.2

0

1
.3

1

1
.3

2

1
.0

0

1
.0

3

1
.0

0

1
.0

5

1
.0

2

1
.0

4

1
.0

3

1
.0

4

1
.0

0

1
.0

5

1
.0

0

1
.0

2

0
.9

9

1
.0

0

1
.0

0

1
.0

5

1
.0

0

1
.1

0

1
.0

4

1
.0

2

1
.1

7

1
.0

1

Bar Order: { base, base+p, base+ps, base+psm, base+m } serial BI<LA BI>=LA oLP HP

di
ct

m
at

m
ul m

is
bf

s-
d

rd
up

s

bf
s-

nd

ra
di

x-
1

sp
tre

e

ks
ac

k
hu

ll ut
s

he
at

sa
m

ps
or

t

ci
lk

so
rt

nb
od

y

bs
ch

ol
es

qs
or

t-2

sa
rra

y
kn

n
cl

sk
y

ra
di

x-
2

qs
or

t-1
0.0

0.2

0.4

0.6

0.8

1.0

(b
)

1
B

7
L

1
.0

6

1
.0

1

1
.0

2

1
.0

0

1
.0

4

1
.0

1

0
.9

5

1
.0

1

1
.0

5

0
.9

8

1
.0

5

1
.0

6

1
.0

7

1
.0

5

1
.1

1

1
.0

3

1
.0

9

1
.0

2

1
.0

6

1
.0

6

1
.0

6

1
.0

3

1
.0

7

1
.0

2

1
.0

3

1
.0

0

1
.0

5

1
.0

3

1
.0

2

1
.0

2

1
.0

5

1
.0

4

1
.0

6

1
.0

7

1
.0

7

1
.0

6

1
.1

3

1
.0

9

1
.2

2

1
.0

7

1
.1

1

1
.2

1

1
.1

2

1
.2

4

1
.0

7

1
.0

3

1
.0

2

1
.0

2

1
.0

6

1
.0

3

1
.0

4

1
.0

2

1
.0

5

1
.0

3

1
.0

6

1
.0

8

1
.0

8

1
.0

7

1
.1

3

1
.1

2

1
.2

1

1
.1

6

1
.1

1

1
.2

1

1
.1

7

1
.2

5

1
.0

1

1
.0

3

1
.0

1

1
.0

2

1
.0

0

1
.0

2

1
.0

2

1
.0

1

1
.0

0

1
.0

1

1
.0

0

1
.0

1

1
.0

0

0
.9

7

1
.0

1

1
.0

3

1
.0

7

1
.0

9

1
.0

2

1
.0

4

1
.0

6

0
.9

8

Figure 8. Normalized Execution Time Breakdown – (a) 1B7L configuration; (b) 4B4L configuration. Each group of bars represents a single
application. First bar within each group is baseline with work-biasing and serial-region sprinting (base). Additional bars incrementally
add our techniques: work-pacing (base+p); work-pacing and work-sprinting (base+ps); work-pacing, work-sprinting, and work-mugging
(base+psm); work-mugging alone (base+m). All execution times are normalized to the baseline (base), and speedup is printed above each
bar. Kernels are sorted by speedup for 4B4L base+psm from left to right. See Section V for breakdown explanations.

We evaluate work-pacing by comparing base+p to base.
Work-pacing achieves reasonable performance benefits de-
spite all cores often being completely busy (i.e., in the HP re-
gion) simply by applying a marginal-utility-based approach
to the core voltages and frequencies. However, optimizing
instantaneous system throughput can either mitigate or ex-
acerbate load imbalance with realistic task sizes. For exam-
ple, in the execution of sarray (4B4L), radix-1 (1B7L and
4B4L), and hull (1B7L), benefits are outweighed by newly
created lagging threads. Similarly, qsort-1 on 4B4L sees
smaller benefit because although the small HP region is sped
up, the critical big core that generates new work is slowed
down. Load balancing can also sometimes improve when lag-
ging threads are coincidentally eliminated, thereby reducing
the LP region (e.g., radix-2 1B7L and 4B4L, qsort-2 1B7L).
With a ⇡ 3 and b ⇡ 2 (see Table III), our analytical modeling
suggests up to 12% benefit in the HP region (see Figure 4).
Our results suggest that although work-pacing can sometimes
achieve these predicted speedups, newly lagging threads can
also limit the potential benefit. We can significantly mitigate
this effect by applying work-sprinting in the LP region.

We evaluate work-sprinting by comparing base+ps to
base+p. Work-sprinting rests waiting cores for power slack
and then applies a marginal-utility-based approach to tune the
voltage and frequency of active cores within the LP region.
Notice that applications with large LP regions (i.e., combina-
tion of BI<LA, BI>=LA, and oLP regions) have the greatest
performance improvements (e.g., qsort-1, radix-2, clsky, knn,
sarray, qsort-2). Negative latency impacts from work-pacing
are also significantly reduced (e.g., sarray 4B4L, qsort-1
4B4L, radix-1 1B7L and 4B4L). Note that radix-1 sees little
benefit because all four big cores are busy in the LP region,
and the resting little cores do not generate enough power slack
to sprint. Datasets can significantly impact the size of LP re-

gions. In particular, note that qsort-1 sorts an exponentially
distributed dataset, making tasks very short or very long and
creating large LP regions that work-sprinting can then exploit.
Although work-sprinting allows little cores to sprint lagging
threads, it is often optimal to move the work onto big cores
and sprint the big cores when possible (i.e., BI>=LA regions).
We add the final AAWS technique, work-mugging, to take
advantage of these opportunities for further benefit.

We evaluate work-mugging by comparing base+psm to
base+ps as well as base+m to base. Work-mugging helps the
LP region by moving work from slow little cores to fast big
cores. First, notice that work-mugging eliminates all BI<LA
and BI>=LA regions (i.e., all opportunities for work mugging
are exhausted). In general, the movement of work between
cores can result in smaller speedups (e.g., bscholes 1B7L, sp-
tree 4B4L) as well as larger speedups (e.g., hull 4B4L, radix-
2 4B4L, sarray 1B7L). Work-mugging provides the greatest
benefit on applications with large BI>=LA regions, in which
all work can be mugged onto fast big cores. Performance ben-
efit is more limited in the BI<LA region in which some work
must be left executing slowly on little cores. Although rarely
the case, mugging overheads can cause minor slowdown. For
example, qsort-1 on 1B7L experiences slight slowdown with
base+m compared to base when many tiny tasks at the end of
the sort are quickly spawned and successively mugged onto
the big core, incurring mugging overhead each time.

Figures 7(b-d) show activity profiles for radix-2 executing
on the 4B4L system. By comparing Figure 7(a) and (b) we
can see that during the HP region, the AAWS runtime tunes
performance by raising the voltage of little cores and lowering
the voltage of big cores. In Figure 7(c), we see that the AAWS
runtime rests waiting cores and then sprints the remaining ac-
tive cores. Most of the leftover work in the LP region is ex-
ecuting on little cores, limiting the performance benefit from

work-sprinting. The little cores quickly reach their maximum
voltage and frequency and leave a large amount of power
headroom unused. Finally, Figure 7(d) shows work-mugging
shifting tasks from little cores to big cores in the LP region
for a total execution time reduction of 24%.

In summary, work-pacing can provide performance benefit
in the HP region as suggested by our analytical modeling, but
due to realistic task sizes, the overall performance can vary
widely when applied alone. The benefits of work-sprinting
and work-mugging depend heavily on the presence of LP re-
gions, which can vary with the application, the algorithm,
and the dataset. Either technique can be applied indepen-
dently to improve performance in the LP region. However,
when non-ideal work-stealing schedules result in the pres-
ence of BI>=LA regions, work-sprinting and work-mugging
can complement each other to provide the largest speedups.
Finally, work-mugging and DVFS transition overheads have
minor performance impacts, likely due to the relative infre-
quency of mugs and DVFS transitions.

C. Performance Versus Energy Analysis

Figure 9 shows detailed performance and energy efficiency
results for the 4B4L system. Notice that the general trend is
higher performance and higher energy efficiency at similar
power (i.e., tracking the isopower line). A more sophisti-
cated adaptive DVFS control scheme with performance and
energy counters could track the isopower line more closely,
but a simple lookup-table-based DVFS controller is less com-
plex and can generally improve both performance and en-
ergy efficiency with slight power variation. Figure 9(a) com-
pares base, base+p, and base+ps and shows that work-pacing
alone can improve both performance and energy efficiency
for many applications at similar power. Several applications
suffer reduced performance and energy efficiency due to the
creation of lagging threads. Work-sprinting increases perfor-
mance and energy efficiency, mitigating the impact of lagging
threads. Detailed energy breakdown data (not shown) sug-
gests that work-pacing and work-sprinting save energy be-
cause: (1) big cores execute at low-voltage operating modes,
and (2) slower big cores do less work, allowing work to be
stolen and executed on more energy-efficient little cores.

Figure 9(b) compares base, base+psm, and base+m. We
show results for base+m as a comparison point without
marginal utility techniques. Detailed energy breakdown data
suggests that work-mugging significantly reduces the busy-
waiting energy of cores in the steal loop, which are operat-
ing at nominal voltage and frequency without work-sprinting.
We therefore notice that base+m improves both perfor-
mance and energy efficiency. The complete AAWS runtime
(base+psm) provides the greatest improvements across all ap-
plications. The strengths and weaknesses of work-pacing,
work-sprinting, and work-mugging complement each other
to elegantly adapt to diverse application-level behavior.

VI. RELATED WORK

While the MIT Cilk project helped recently popularize
work-stealing [7, 8, 22], the general idea dates to at least the

0.0 0.2 0.4 0.6 0.8 1.0

Performance

0.0

0.2

0.4

0.6

0.8

1.0

E
n
er

g
y
 E

ff
ic

ie
n
cy

1.0 1.1 1.2 1.3 1.4 1.5

(a)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

iso
po

w
er

base base+p base+ps base+psm base+m

1.0 1.1 1.2 1.3 1.4 1.5

(b)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

iso
po

w
er

Figure 9. Energy Efficiency vs. Performance – Each point represents
one application kernel’s performance and energy efficiency running
with a particular subset of the AAWS techniques, normalized to the
same application kernel running on the baseline 4B4L system. Black
markers on the origin represent base in both plots. An isopower line
is drawn for reference, where points below the line are higher power
and points above the line are lower power compared to the baseline.
(a) base, base+p, base+ps. (b) base, base+psm, base+m.

early 1980’s [10, 30]. There has been tremendous work over
the past decade on work-stealing runtimes (e.g., optimized
task queue implementations [12], alternative victim selection
strategies [4, 15], efficiently supporting reduction operations
across tasks [47]). However, very little work explores the in-
teraction between work-stealing schedulers and either static
or dynamic asymmetry with a few notable exceptions.

Bender and Rabin proposed work-mugging as a way to mi-
grate work from slow to fast cores and analyzed the theoret-
ical impact of work-mugging on performance [3]. Follow-
up work by Jovanović and Bender used high-level discrete-
event simulation to explore the potential benefits and over-
heads of work-mugging [37]. We build on this earlier work
with a realistic implementation and a new context. Chron-
aki et al. propose a dynamic task scheduler with constrained
work stealing that attempts to schedule critical tasks to big
cores [14]. This technique is most effective in applications
with low parallel slack. Costero et al. [16] group a big and
little core together into a virtual core for the work-stealing
runtime, and use a completely separate customized scheduler
within the virtual core. Chen et al. propose the workload-
aware task scheduler (WATS) which uses a combination of
history-based task-execution-time prediction and task affin-
ity [13]. WATS demonstrates good performance but is rela-
tively complex and uses randomized victim selection in the
baseline work-stealing runtimes. Previous work has shown
the benefit of occupancy-based victim selection [15]. Ribic
et al. proposed a work-stealing runtime that exploits dynamic
asymmetry to improve energy efficiency, and they report rea-
sonable energy benefits with modest performance loss on a
real system [55]. Our proposal is fundamentally different in
that it focuses on improving both performance and energy ef-
ficiency by exploiting both static and dynamic asymmetry.

There has been a wealth of research on scheduling for
statically asymmetric systems [1, 35, 36, 42–44, 52, 59, 60].
Most closely related to our work are techniques that acceler-

ate applications written with a thread-based parallel program-
ming framework [16, 35, 36, 44, 52, 59]. For example, Joao
et al. propose bottleneck identification and scheduling which
migrates programmer-identified bottlenecks to big cores [35],
Lakshminarayana et al. propose progress performance coun-
ters to accelerate lagging threads [44], and Joao et al. pro-
pose utility-based acceleration to accelerate both lagging and
bottleneck threads [36]. These prior works focus on tra-
ditional thread-based parallel programming frameworks as
opposed to task-based frameworks based on state-of-the-art
work-stealing runtimes. They do not explore the interaction
between static and dynamic asymmetry.

DVFS is perhaps one of the most well-studied techniques
for power management [4, 9, 11, 19, 20, 24, 32–34, 40, 48, 51,
58]. Most closely related to our own work are techniques that
accelerate multithreaded applications. For example, Miller
et al. and Godycki et al. both propose instrumenting a tradi-
tional thread library to reactively sprint lagging threads in LP
regions [24, 51]. Cai et al. and Bhattacharjee et al. use in-
strumentation or prediction to rest waiting threads and sprint
lagging threads [4, 11]. While there are certainly similarities
between this prior work and AAWS, there are unique oppor-
tunities involved in exploiting static and dynamic asymmetry
within the context of a state-of-the-art work-stealing runtime.

Finally, some important work studies the tradeoffs be-
tween static and dynamic asymmetry, albeit with multipro-
grammed workloads [2, 26, 50]. Azizi et al. use a similar
marginal-utility-based approach to explore circuit/architec-
ture co-design and the impact of voltage scaling, but their
work is purely within the context of VLSI design as opposed
to adaptive scheduling for runtime systems [2]. Lukefahr et
al. argue that heterogeneous microarchitectures trump DVFS,
but the study is within the context of a novel reconfigurable
core (as opposed to static asymmetry) and uses multipro-
grammed workloads scheduled optimally offline [50]. A key
conclusion in these works is that heterogeneous microarchi-
tectures can offer steeper utility curves, while DVFS offers a
shallower tradeoff. We see the same tradeoff in Figure 3(a),
and we exploit this in our marginal-utility-based approach.

VII. CONCLUSION

To our knowledge, this is the first work to explore the in-
teraction between static asymmetry (in the form of heteroge-
neous microarchitectures), dynamic asymmetry (in the form
of fine-grain DVFS), and work-stealing runtimes. We ar-
gue that work-stealing runtimes are a natural fit for manag-
ing asymmetry, but we also argue that there are unique op-
portunities for an asymmetry-aware work-stealing runtime.
Through a mix of first-order modeling, numerical analysis,
runtime software development, architecture-level simulation,
and VLSI energy modeling, we have attempted to make the
case that holistically combining static asymmetry, dynamic
asymmetry, and work-stealing runtimes can improve perfor-
mance and energy efficiency in future multicore systems.

ACKNOWLEDGMENTS

This work was supported in part by NSF CAREER Award
#1149464, AFOSR YIP Award #FA9550-15-1-0194, and do-
nations from Intel and Synopsys. The authors would like to
thank Angelina Lee for her early feedback, and Alyssa Apsel,
Ivan Bukreyev, and Waclaw Godycki for their help on circuit-
level modeling for integrated voltage regulation.

REFERENCES

[1] A. Annamalai et al. An Opportunistic Prediction-Based Thread
Scheduling to Maximize Throughput/Watt in AMPs. Int’l Conf. on
Parallel Architectures and Compilation Techniques, Sep 2013.

[2] O. Azizi et al. Energy-performance Tradeoffs in Processor
Architecture and Circuit Design: A Marginal Cost Analysis. Int’l
Symp. on Computer Architecture, Jun 2010.

[3] M. A. Bender and M. O. Rabin. Online Scheduling of Parallel
Programs on Heterogeneous Systems with Applications to Cilk.
Theory of Computing Systems, 35(3):289–304, Jun 2002.

[4] A. Bhattacharjee and M. Martonosi. Thread Criticality Predictors for
Dynamic Performance, Power, and Resource Management in Chip
Multiprocessors. Int’l Symp. on Computer Architecture, Jun 2009.

[5] C. Bienia et al. The PARSEC Benchmark Suite: Characterization and
Architectural Implications. Int’l Conf. on Parallel Architectures and
Compilation Techniques, Oct 2008.

[6] N. Binkert et al. The gem5 Simulator. SIGARCH Computer
Architecture News, 39(2):1–7, Aug 2011.

[7] R. D. Blumofe et al. Cilk: An Efficient Multithreaded Runtime
System. Journal of Parallel and Distributed Computing,
37(1):55–69, Aug 1996.

[8] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded
Computations by Work Stealing. Journal of the ACM,
46(5):720–748, Sep 1999.

[9] T. Burd et al. A Dynamic Voltage Scaled Microprocessor System.
IEEE Journal of Solid-State Circuits, 35(11):1571–1580, Nov 2000.

[10] F. W. Burton and M. R. Sleep. Executing Functional Programs on a
Virtual Tree of Processors. Conf. on Functional Programming
Languages and Computer Architecture, Aug 1984.

[11] Q. Cai et al. Meeting Points: Using Thread Criticality to Adapt
Multicore Hardware to Parallel Regions. Int’l Conf. on Parallel
Architectures and Compilation Techniques, Oct 2008.

[12] D. Chase and Y. Lev. Dynamic Circular Work-Stealing Deque.
Symp. on Parallel Algorithms and Architectures, Jun 2005.

[13] Q. Chen et al. WATS: Workload-Aware Task Scheduling in
Asymmetric Multi-core Architectures. Int’l Parallel and Distributed
Processing Symp., May 2012.

[14] K. Chronaki et al. Criticality-Aware Dynamic Task Scheduling for
Heterogeneous Architectures. Int’l Symp. on Supercomputing, Jun
2015.

[15] G. Contreras and M. Martonosi. Characterizing and Improving the
Performance of Intel Threading Building Blocks. Int’l Symp. on
Workload Characterization, Sep 2008.

[16] L. Costero et al. Revisiting Conventional Task Schedulers to Exploit
Asymmetry in ARM big.LITTLE Architectures for Dense Linear
Algebra. CoRR arXiv:1509.02058, Sep 2015.

[17] M. Demler. MediaTek Steps Up to Tablets: MT8135 Brings
Heterogeneous Multiprocessing to Big.Little. Microprocessor
Report, The Linley Group, Aug 2013.

[18] J. Dinan et al. Scalable Work Stealing. Int’l Conf. on High
Performance Networking and Computing, Nov 2009.

[19] R. G. Dreslinski. Near-Threshold Computing: From Single-Core to
Many-Core Energy-Efficient Architectures. Ph.D. Thesis, EECS
Department, University of Michigan, 2011.

[20] S. Eyerman and L. Eechkout. Fine-Grained DVFS Using On-Chip
Regulators. ACM Trans. on Architecture and Code Optimization,
8(1):1:1–1:24, Apr 2011.

[21] E. Fluhr et al. The 12-Core POWER8 Processor With 7.6 Tb/s IO
Bandwidth, Integrated Voltage Regulation, and Resonant Clocking.
IEEE Journal of Solid-State Circuits, 50(1):10–23, Jan 2015.

[22] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of
the Cilk-5 Multithreaded Language. ACM SIGPLAN Conf. on
Programming Language Design and Implementation, Jun 1998.

[23] H. Ghasemi et al. Cost-Effective Power Delivery to Support Per-Core
Voltage Domains for Power-Constrained Processors. Design
Automation Conf., Jun 2012.

[24] W. Godycki et al. Enabling Realistic Fine-Grain Voltage Scaling
with Reconfigurable Power Distribution Networks. Int’l Symp. on
Microarchitecture, Dec 2014.

[25] P. Greenhalgh. Big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7. EE Times, Oct 2011.

[26] E. Grochowski et al. Best of Both Latency and Throughput. Int’l
Conf. on Computer Design, Oct 2004.

[27] L. Gwennap. Renesas Mobile Goes Big (and Little). Microprocessor
Report, The Linley Group, Feb 2013.

[28] L. Gwennap. Qualcomm Tips Cortex-A57 Plans: Snapdragon 810
Combines Eight 64-Bit CPUs, LTE Baseband. Microprocessor
Report, The Linley Group, Apr 2014.

[29] L. Gwennap. Samsung First with 20 nm Processor. Microprocessor
Report, The Linley Group, Sep 2014.

[30] R. H. Halstead. Implementation of Multilisp: Lisp on a Multi-
Processor. Symp. on Lisp and Functional Programming, Oct 1984.

[31] M. Hill and M. Marty. Amdahl’s Law in the Multicore Era. IEEE
Computer, 41(7):33–38, Jul 2008.

[32] C. Isci et al. An Analysis of Efficient Multi-Core Global Power
Management Policies: Maximizing Performance for a Given Power
Budget. Int’l Symp. on Microarchitecture, Dec 2006.

[33] C. Isci and M. Martonosi. Live, Runtime Phase Monitoring and
Prediction on Real Systems with Application to Dynamic Power
Management. Int’l Symp. on Microarchitecture, Dec 2006.

[34] R. Jevtic et al. Per-Core DVFS with Switched-Capacitor Converters
for Energy Efficiency in Manycore Processors. IEEE Trans. on Very
Large-Scale Integration Systems, 23(4):723–730, Apr 2015.

[35] J. A. Joao et al. Bottleneck Identification and Scheduling in
Multi-Threaded Applications. Int’l Conf. on Architectural Support
for Programming Languages and Operating Sys., Mar 2012.

[36] J. A. Joao et al. Utility-Based Acceleration of Multithreaded
Applications on Asymmetric CMPs. Int’l Symp. on Computer
Architecture, Jun 2013.

[37] N. Jovanović and M. A. Bender. Task Scheduling in Distributed
Systems by Work Stealing and Mugging – A Simulation Study. Int’l
Conf. on Information Technology Interfaces, Jun 2002.

[38] D. Kanter. Haswell’s FIVR Extends Battery Life. Microprocessor
Report, The Linley Group, Jun 2013.

[39] W. Kim, D. Brooks, and G.-Y. Wei. A Fully-Integrated 3-Level
DC-DC Converter for Nanosecond-Scale DVFS. IEEE Journal of
Solid-State Circuits, 47(1):206–219, Jan 2012.

[40] W. Kim et al. System-Level Analysis of Fast, Per-Core DVFS Using
On-Chip Switching Regulators. Int’l Symp. on High-Performance
Computer Architecture, Feb 2008.

[41] K. Krewell. ARM Pairs Cortex-A7 With A15: Big.Little Combines
A5-Like Efficiency With A15 Capability. Microprocessor Report,
The Linley Group, Nov 2011.

[42] R. Kumar et al. Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power Reduction. Int’l
Symp. on Microarchitecture, Dec 2003.

[43] R. Kumar et al. Single-ISA Heterogeneous Multi-Core Architectures
for Multithreaded Workload Performance. Int’l Symp. on Computer
Architecture, Jun 2004.

[44] N. Lakshminarayana, J. Lee, and H. Kim. Age-Based Scheduling for
Asymmetric Multiprocessors. Int’l Conf. on High Performance
Networking and Computing, Nov 2009.

[45] H.-P. Le et al. A Sub-ns Response Fully Integrated Battery-
Connected Switched-Capacitor Voltage Regulator Delivering
0.19 W/mm2 at 73% Efficiency. Int’l Solid-State Circuits Conf., Feb
2013.

[46] H.-P. Le, S. R. Sanders, and E. Alon. Design Techniques for Fully
Integrated Switched-Capacitor DC-DC Converters. IEEE Journal of
Solid-State Circuits, 46(9):2120–2131, Sep 2011.

[47] I.-T. A. Lee, A. Shafi, and C. E. Leiserson. Memory-Mapping
Support for Reducer Hyperobjects. Symp. on Parallel Algorithms
and Architectures, Jun 2012.

[48] J. Li, J. F. Martinez, and M. C. Huang. The Thrifty Barrier:
Energy-Aware Synchronization in Shared-Memory Multiprocessors.
Int’l Symp. on High-Performance Computer Architecture, Feb 2004.

[49] S. Li et al. The McPAT Framework for Multicore and Manycore
Architectures: Simultaneously Modeling Power, Area, and Timing.
ACM Trans. on Architecture and Code Optimization, 10(1):5:1–5:29,
Apr 2013.

[50] A. Lukefahr et al. Heterogeneous Microarchitectures Trump Voltage
Scaling for Low-Power Cores. Int’l Conf. on Parallel Architectures
and Compilation Techniques, Aug 2014.

[51] T. N. Miller et al. Booster: Reactive Core Acceleration For
Mitigating the Effects of Process Variation and Application
Imbalance in Low-Voltage Chips. Int’l Symp. on High-Performance
Computer Architecture, Feb 2012.

[52] T. Y. Morad et al. Performance, Power Efficiency and Scalability of
Asymmetric Cluster Chip Multiprocessors. Computer Architecture
Letters, 5(1), Jan 2006.

[53] S. Olivier et al. UTS: An Unbalanced Tree Search Benchmark. Int’l
Workshop on Lanaguages and Compilers for Parallel Computing,
Nov 2006.

[54] J. Park et al. Accurate Modeling and Calculation of Delay and
Energy Overheads of Dynamic Voltage Scaling in Modern
High-Performance Microprocessors. Int’l Symp. on Low-Power
Electronics and Design, Aug 2010.

[55] H. Ribic and Y. D. Liu. Energy-Efficient Work-Stealing Language
Runtimes. Int’l Conf. on Architectural Support for Programming
Languages and Operating Sys., Mar 2014.

[56] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible Architectural
Support for Fine-Grain Scheduling. Int’l Conf. on Architectural
Support for Programming Languages and Operating Sys., Mar 2010.

[57] J. Shun et al. Brief Announcement: The Problem Based Benchmark
Suite. Symp. on Parallel Algorithms and Architectures, Jun 2012.

[58] A. A. Sinkar et al. Low-Cost Per-Core Voltage Domain Support for
Power-Constrained High-Performance Processors. IEEE Trans. on
Very Large-Scale Integration Systems, 22(4):747–758, Apr 2014.

[59] M. A. Suleman et al. Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures. Int’l Conf. on Architectural
Support for Programming Languages and Operating Sys., Mar 2009.

[60] K. Van Craeynest et al. Scheduling Heterogeneous Multi-cores
Through Performance Impact Estimation (PIE). Int’l Symp. on
Computer Architecture, Jun 2012.

[61] T. von Eicken et al. Active Messages: A Mechanism for Integrated
Communication and Computation. Int’l Symp. on Computer
Architecture, May 1992.

[62] X. Wang and J. F. Martinez. XChange: A Market-Based Approach to
Scalable Dynamic Multi-Resource Allocation in Multicore
Architectures. Int’l Symp. on High-Performance Computer
Architecture, Feb 2015.

[63] D. H. Woo and H.-H. S. Lee. Extending Amdahl’s Law for
Energy-Efficient Computing in the Many-Core Era. IEEE Computer,
41(12):24–31, Dec 2008.

[64] G. Yan et al. AgileRegulator: A Hybrid Voltage Regulator Scheme
Redeeming Dark Silicon for Power Efficiency in a Multicore
Architecture. Int’l Symp. on High-Performance Computer
Architecture, Feb 2012.

