
PyOCN: A Unified Framework for
Modeling, Testing, and Evaluating On-Chip Networks

Cheng Tan, Yanghui Ou, Shunning Jiang, Peitian Pan, Christopher Torng, Shady Agwa, Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{ct535, yo96, sj634, pp482, clt67, sr972, cbatten}@cornell.edu

Abstract—There is a growing interest in the open-source hard-
ware movement to amortize non-recurring engineering costs by us-
ing plug-and-play system-on-chip (SoC) designs, where the com-
munication among different components is provided by an on-
chip interconnection network. Unfortunately, building an on-
chip network (OCN) that is suitable for a specific SoC design re-
quires the exploration of a large number of design options and
involves diverse research methodologies to evaluate performance,
area, energy, and timing. In this paper, we propose PyOCN,
a unified framework that vertically integrates multiple research
methodologies to enable productively exploring the OCN design
space. PyOCN is the first comprehensive framework for model-
ing (e.g., functional-level, cycle-level, and register-transfer-level),
testing (e.g., unit testing, integration testing, and property-based
random testing), and evaluating (e.g., simulating, generating, and
characterizing) on-chip interconnection networks. We use a case
study based on a 64-terminal butterfly network to illustrate the key
features of PyOCN and to demonstrate the framework’s potential
in productively modeling, testing, and evaluating OCNs.

I. INTRODUCTION

On-chip networks (OCNs) play a significant role in chip de-
sign across many different domains. Embedded SoCs can in-
clude tens of homogeneous or heterogeneous cores to meet
performance and power requirements [18, 41], high-end cloud
servers can include tens to hundreds of cores to enable high-
performance computing [8, 44], and accelerators can include
hundreds of processing elements for domain-specific comput-
ing [12, 13, 26, 30]. At the same time, the costs of chip design
and verification are rising. In response, there is growing inter-
est in open-source hardware design based on plug-and-play SoC
frameworks, where the communication between components is
provided by an on-chip interconnection network.

Unfortunately, building an OCN that is suitable for a specific
SoC design requires exploring a large design space (e.g., net-
work size, channel bandwidth, topologies, routing algorithms,
flow control schemes, arbitration techniques, physical floor-
planning, and wire routing) using a combination of high- and
low-level modeling to accurately estimate performance, area,
energy, and timing. For example, OCN cycle-level simulators
are widely used today and provide rich configuration options for
early-stage design-space exploration [1,3,10,21,42]. However,
the convenience in using CL models must be balanced against
decreased accuracy and no path to real hardware implementa-
tions. There are a number of OCN register-transfer-level (RTL)
generators that produce synthesizable Verilog to drive an evalu-
ation of area, energy, and timing [11,15–17,29,35]. These low-
level generators can be difficult to use and lack support for fast
simulation. Some OCN design frameworks combine various re-
search methodologies together to facilitate design space explo-
ration [6, 37]. However, area, energy, and timing characteriza-

tion in these frameworks is often based on high-level first-order
modeling. There is a growing need for a vertically integrated
OCN framework that can effectively characterize performance,
area, energy, and timing across a large design space.

This paper presents PyOCN, a unified framework for model-
ing, testing, and evaluating on-chip interconnection networks.
The concrete contributions of this work are the following:
(1) PyOCN enables multi-level modeling to facilitate rapid
design-space exploration and OCN implementation; (2) Py-
OCN provides sophisticated test harnesses for testing OCN de-
signs modeled at different abstraction levels; (3) PyOCN can
simulate OCNs at various abstraction levels, generate synthe-
sizable Verilog, and drive a commercial standard-cell-based
toolflow for characterizing OCN area, energy, and timing.

II. RELATED WORK

Table I summarizes the state-of-the-art OCN research
methodologies and compares them to PyOCN.

A. Modeling OCNs
Existing state-of-the-art OCN simulators struggle to balance

rapid design-space exploration (requiring high-level design ab-
stractions) and accurate estimation of area, energy, and timing
(requiring low-level detailed modeling).

CL Modeling – Many widely used on-chip network simula-
tors use CL modeling for early design-space exploration while
verifying functional- and cycle-level behavior [1, 3, 10, 21, 31,
42]. Unfortunately, these simulators do not support RTL mod-
eling and cannot easily generate synthesizable Verilog, which
is essential for accurate evaluation of area, energy, and timing.
As an exception, Noxim [9] is a cycle-level OCN simulator de-
veloped in SystemC with some capacity for power estimation.
All basic elements of the OCN in Noxim are also modeled in
VHDL and are synthesized with a 65 nm CMOS standard cell
library at 1GHz to provide statistical power analysis.

RTL Modeling – On the other hand, OCN generators use
RTL modeling to accurately characterize area, energy, and tim-
ing, but they lack the high-level design abstractions that enable
fast design-space exploration [11,29,35]. For example, OpenS-
MART [29] is an OCN RTL generator for a wide range of dif-
ferent network configurations. Unfortunately, simulating gen-
erated RTL can easily limit rapid design-space exploration over
large parameter space.

PL Modeling – Finally, OCN frameworks rarely take
physical-level (PL) modeling considerations into account (e.g.,
macro- and micro-floorplanning), which is critical for ef-
fectively building complex OCNs. One exception is SUN-
MAP [33], which enables PL modeling in OCN generation and
uses a floorplanning algorithm [2] to minimize the estimated
area and wire lengths for specific applications.

Appears in the Proceedings of the 37th IEEE Int’l Conf. on Computer Design (ICCD-37), November 2019

TABLE I. COMPARISON WITH PRIOR ART

Framework
Modeling Testing Evaluating Open-

sourceLang. Topology Routing FL CL RTL PL Unit Int. PBT. Sim. RTL
Gen.

ASIC
Char.

Si
m

ul
at

io
n

BookSim2
[21] C++ Xbar, Ring, (C)Mesh,

Butterfly, Torus, Tree
DOR,

Customized

Garnet
[3]

C++,
Python

Xbar, Mesh,
Customized

DOR,
Customized

Noxim
[9] SystemC Mesh, Butterfly,

Wireless
DOR, Odd-Even,

Dyad routing

G
en

er
at

io
n

FlexNoC
[17] ? Application-

specific n/a ? ? ?

NoCGEN
[11] HDL Mesh, Customized

topology DOR routing ? ? ?

Connect
[35] BSV Customized

topology
Customized

routing ? ? ?

OpenPiton
[4] Verilog Xbar,

Mesh DOR routing

Netmaker
[34]

System-
Verilog Mesh DOR routing

OpenSMART
[29]

BSV
Chisel

Mesh, Customized
topology

DOR, Source
routing

OpenSoC Fabric
[16] Chisel Mesh, Flattened

butterfly
DOR routing,
Concentration

C
ha

ra
ct

.

DSENT
[40] C++ n/a n/a

Orion2.0
[23] C++ n/a n/a

COSI
[37] C++ Application-

specific n/a

NetChip
[6] SystemC Application-

specific n/a ? ? ?

PyOCN PyMTL
Xbar, Ring, (C)Mesh,

Butterfly, Torus,
Customized topology

DOR, Source,
Customized

routing

Different state-of-the-art research methodologies for designing OCNs, which are categorized into three groups (i.e., Simulation, Generation, and
Characterization). , , and indicate the corresponding feature is not supported, partially supported, and fully supported, respectively. For
example, OpenSoC Fabric can generate synthesizable Verilog () but relies on VCS for simulation (). In contrast, the simulation in PyOCN
allows the test bench to be written in Python and eliminates any semantic gap. Lang. = language; FL = functional level; CL = cycle level; RTL =
register-transfer level; PL = physical level; Unit = unit testing; Int. = integration testing; PBT. = property-based random testing; Sim. = simulation;
RTL Gen. = RTL generation; ASIC Char. = ASIC characterization.

B. Testing OCNs
Debugging OCNs can be time-consuming and tedious, as

common problems (e.g., deadlock, fairness) can be hard to trig-
ger and the resulting trace can often contain hundreds of pack-
ets. Most OCN simulation, generation and characterization
frameworks lack robust testing infrastructure to validate model
correctness. Most of these frameworks only contain simple tests
for a single router or a specific network instance. Many frame-
works lack an automatic and systematic way to verify outputs.

C. Evaluating OCNs
Simulating OCNs – Simulation is provided by most OCN

simulators using CL modeling [1, 3, 10, 21, 31, 42]. Some mul-
ticore simulators [7, 39] also integrate dedicated on-chip net-
work simulators. Conventional OCN generators that generate
synthesizable RTL code do not have the ability to simulate the
generated model. They often require other Verilog or SystemC
simulators to drive the simulation.

Generating OCNs – ARM’s CoreLink Interconnect [15] and
Arteris FlexNoC [17] are two commercial OCN generators that

target mobile applications. NoCGEN [11] can generate VHDL
code for both 2D and 3D mesh topologies based on a user-
defined OCN specification in XML file format but with very
limited configuration options. Connect [35] focuses on generat-
ing OCNs optimized for FPGA implementations. All the above
OCN generators are closed-source, leading to limited visibility
into the implementation details and the inability to extend the
framework. Open-source OCN generators are emerging as part
of the open-source hardware movement. OpenPiton [4] is an
open-source many-core research framework that contains three
2D mesh OCNs to ensure deadlock-free operation and provide
communication between the tiles for cache coherence, I/O and
memory traffic, and inter-core interrupts. Netmaker [34] is writ-
ten in SystemVerilog and passes parameters by including a sin-
gle parameter file in all modules. It provides testbenches and
simulation for the entire OCN. OpenSMART [29] is an open-
source OCN generator implemented in BSV and Chisel. It can
generate SMART NoCs [28] to enable single-cycle multi-hop
traversals in arbitrary topologies. However, no FL and CL sim-
ulation is provided in these prior works. OpenSoC Fabric [16]

OCN
Config.

FL
model

CL
model

RTL
model

PL
model

SoC
Simulator

Test
Harness

Network
Lib.

Channel
Lib.

Router
Lib.

InputUnit
Lib.

RouteUnit
Lib.

SwitchUnit
Lib.

OutputUnit
Lib.

PyOCN
Std. Lib

PyOCN
Simulator

PyMTL
Sim. Pass

PyMTL
Sim. Pass

PyMTL
Sim. Pass

PyMTL
Gen. Pass

PyMTL
Place. Pass

EDA
toolflow

CL Perf.
stats

RTL Perf.
stats

AET
stats

Floor-
plan

Verilog

Ch
ar
ac
te
ri
zi
ng

Generating

Unit
Tester

PBRT
Tester

Integration
Tester

PyOCN
EDA script

Te
st
in
g

Modeling

Evaluating

Simulating

Param.
System

PyMTL
Elaborate

Figure 1. Overview of PyOCN Framework – PyOCN provides a library of OCN components to compose networks. PyOCN also provides unit test
for each building block and integration test for the target OCNs. Property-based random test (PBRT) is used for stress testing network models. An
OCN simulator is implemented for simulating different OCNs and backend scripts are provided to drive the EDA toolflows for area, energy, and
timing characterization. PyOCN also features a parameterization system facilitating easy OCN configuration. Green components are included as
part of the PyMTL framework. Orange components are added as part of the PyOCN framework.

provides an open-source OCN generator implemented in Chisel.
It can generate both software (C++) and hardware (Verilog)
models but without a native simulator. Users must work in mul-
tiple languages when writing testbenches in C++ or Verilog.

Parameterization is clearly a first-order concern in OCN sim-
ulators and generators. Most existing tools implement parame-
terization using a declarative OCN specification (e.g., configu-
ration parameters in XML file format). Developers need to care-
fully modify the configuration file to make sure the new param-
eters can be properly passed down the hierarchy. This signifi-
cantly increases the development effort especially for designing
complex OCNs where different modules share the same param-
eter name (namespace collision) or the same modules produce
differently parameterized outputs.

Characterizing OCNs – Power- and area-models (e.g.,
Orion [43], Orion2.0 [23], DSENT [40]) are widely used to
characterize complete OCNs or OCN components (e.g., routers,
channels) early in the design cycle. These frameworks can also
be integrated into OCN generator frameworks for high-level
optimization. For instance, COSI [37] is a synthesis frame-
work for OCNs that embeds the power and area models de-
rived from Orion to facilitate the OCN optimization. However,
COSI targets synthesis without support for higher-level model-
ing. Similarly, SUNMAP [33] leverages XPipes [5] and Orion’s
power model to automatically generate SystemC descriptions of
power-optimized network components. NetChip [6] integrates
SUNMAP with the XPipesCompiler [20] to generate synthe-
sizable Verilog for OCN designs. HotSniper [36] allows in-
terval thermal simulation of many-cores. However, generation
of synthesizable Verilog is not supported. High-level area, en-
ergy, and timing models enable early characterization, how-
ever, the lack of a detailed implementation leads to signifi-
cant inaccuracy [24, 25] and iterative development (Orion se-
ries [23, 25, 43]).

III. PYOCN FRAMEWORK

PyOCN is a unified framework for modeling, testing, and
evaluating on-chip interconnection networks. Figure 1 shows
an overview of the PyOCN framework and illustrates its tight
integration with PyMTL [22, 32].

PyOCN extends the PyMTL framework with additional fea-
tures suitable for OCN design-space exploration. Highly pa-
rameterized and modularized OCN components, modeled in
FL, CL, RTL, and PL, serve as a standard library for building
OCNs (see Section IV). In addition, PyOCN provides a com-
prehensive testing methodology based on unit testing, integra-
tion testing, and property-based random testing to test the FL,
CL and RTL models (see Section V). To evaluate different OCN
designs, PyOCN can generate synthesizable Verilog with the
geometry information for floorplanning based on the RTL and
PL models via the generation pass and placement pass (see Sec-
tion VI). A parameterization system is implemented to allow
developers to flexibly parameterize any module instance. For
characterizing OCN components and networks, PyOCN pro-
vides a set of electronic-design automation (EDA) scripts to
drive a commercial standard-cell-based toolflows.

PyMTL is a unified hardware modeling framework. It lever-
ages Python for behavioral specification, structural elabora-
tion, and verification, enabling a rapid code-test-debug cycle
for hardware modeling. PyMTL allows a designer to write the
design under test (DUT) and test bench completely in Python
for simulation and only transit to the traditional HDL workflow
to push the DUT through an FPGA/ASIC toolflow. The simu-
lation engine written in Python drastically reduces the iterative
development cycle and eliminates any semantic gap.

IV. PYOCN FOR MODELING OCNS

PyOCN provides a library of modular basic building blocks
to compose OCNs. As shown in Figure 2, a router is composed

.

.

.

.

.

.

.

.

.
Channel Input

Unit
Output
Unit

Channel Input
Unit

Output
Unit

Channel Input
Unit

Output
Unit

Switch
Unit

Switch
Unit

Switch
Unit

Route
Unit

Route
Unit

Route
Unit

Figure 2. PyOCN Generic Router Architecture

1 def ringnet_fl(src_pkts):
2 nterminals = len(src_pkts)
3 dst_pkts = [[] for _ in range(nterminals)]
4

5 for packets in src_pkts:
6 for pkt in packets:
7 dst_pkts[pkt.dst].append(pkt)
8 return dst_pkts

Figure 3. FL Implementation of Ring Network – Simply redistributes
an array of packet lists based on the destination field of each packet.

of input units, route units, switch units, and output units. All
these basic components have standardized latency insensitive
interfaces so that each component can easily be replaced by
user-customized components to create new networks. For ex-
ample, if we want to implement a ring network with on/off flow
control, instead of reimplementing the whole router, we only
need to implement an input unit and an output unit that sup-
ports on/off flow control and swap them into the standard ring
network which uses credit-based flow control. The modular de-
sign approach also makes it easy to unit test the router, since we
can test each basic component in isolation before we integrate
them into a router.

By leveraging PyMTL, PyOCN is capable of modeling and
generating OCNs at different levels of abstraction, including
FL, CL, and RTL, in a unified environment, which enables a
user to rapidly take an OCN design from concept to imple-
mentation. This section describes PyOCN’s modeling approach
spanning FL, CL, and RTL modeling.

Functional-Level Modeling – An FL network is essentially
a magic crossbar. Figure 3 illustrates the FL implementation
of a mesh network. PyOCN provides FL network models to
enable early-stage validation and fast emulation of the model.
We can write tests, check them first against the FL network, and
then reuse these tests to verify CL and RTL networks at later
design stages. Developing test cases with validation against FL
network improves the credibility of these test cases. In other
words, if the CL or RTL networks fail a test, it is more likely
due to an error in the CL or RTL implementation, rather than an
incorrect test case. Furthermore, our FL networks can also be
composed with lower-level (i.e., CL and RTL) cores, memories,
and accelerators to help develop end-to-end software that runs
correctly on an SoC model.

Cycle-Level Modeling – PyOCN provides CL networks to
facilitate rapid design-space exploration of cycle-level perfor-

1 class SwitchUnitCL(Component):
2 def construct(s, pkt_t, num_inports):
3

4 # Local parameters
5 s.num_inports = num_inports
6

7 # Interface
8 s.get = [\
9 CallerIfc(pkt_t) for _ in range(num_inports)]

10 s.give = \
11 CalleeIfc(pkt_t, method=s.give_, rdy=s.give_rdy)
12

13 # Components
14 s.priority = list(range(num_inports))
15

16 for i in range(num_inports):
17 s.add_constraints(M(s.get[i]) == M(s.give))
18

19 def give_rdy(s):
20 for i in range(s.num_inports):
21 if s.get[i].rdy():
22 return True
23 return False
24

25 def give_(s):
26 for i in s.priority:
27 if s.get[i].rdy():
28 s.priority.append(s.priority.pop(i))
29 return s.get[i]()

Figure 4. CL Implementation of SwitchUnit – It is parametrized by
the packet type and the number of inputs. It uses a list of integers
s.priority to model a round-robin arbiter.

mance across a wide range of microarchitectural parameters,
such as topology, routing algorithm, channel latency, type/size
of input queues, and type of arbiters. The CL networks are built
with the CL version of basic components. Figure 4 illustrates
the implementation of a CL switch unit. Instead of using an
arbiter, it simply instantiates a list of integers to model a round-
robin arbiter. Our CL model is almost cycle-accurate (see Table
II for an example), since most of the CL building blocks are
cycle-accurate.

Register-Transfer-Level Modeling – PyOCN also provides
RTL implementations of multiple networks for cycle-accurate
performance evaluation and ASIC/FPGA synthesis. Similar to
CL networks, the RTL networks are composed using the RTL
version of the basic building blocks. Figure 5 shows the imple-
mentation of an RTL switch unit in the PyMTL domain-specific
language (DSL). PyMTL provides primitives similar to other
hardware description languages: port-based interfaces for mod-
ule encapsulation, structural connectivity for module composi-
tion, and combinational and synchronous concurrent blocks for
logic description.

Physical-Level Modeling – Physical-level modeling (e.g.,
macro-/micro- floorplanning, cell tiling) is critical for effec-
tively building complex OCNs. Without this kind of modeling,
the structure in datapaths is destroyed by the automated place-
and-route tools producing sub-optimal quality-of-results. We
added a PyMTL placement pass to facilitate the physical-level
modeling of the target network. The placement pass collects
the geometry information of each network component and gen-
erates the floorplan script as shown in Figure 6.

1 class SwitchUnitRTL(Component):
2 def construct(s, pkt_t, num_inports):
3 # Local Parameters
4 sel_width = clog2(num_inports)
5 sel_t = mk_bits(sel_width)
6 grant_t = mk_bits(num_inports)
7

8 # Interface
9 s.get = [GetIfc(pkt_t) for _ in range(num_inports)]

10 s.send = SendIfc(pkt_t)
11

12 # Components
13 s.arbiter = RoundRobinArbiterEn(num_inports)
14 s.mux = Mux(pkt_t, num_inports)(
15 out = s.send.msg,
16)
17 s.encoder = Encoder(num_inports, sel_width)(
18 in_ = s.arbiter.grants,
19 out = s.mux.sel,
20)
21

22 # Connections
23 for i in range(num_inports):
24 s.connect(s.get[i].rdy, s.arbiter.reqs[i])
25 s.connect(s.get[i].msg, s.mux.in_[i])
26

27 @s.update
28 def up_arb_send_en():
29 s.arbiter.en = \
30 (s.arbiter.grants > grant_t(0)) & s.send.rdy
31 s.send.en = \
32 (s.arbiter.grants > grant_t(0)) & s.send.rdy
33

34 @s.update
35 def up_get_en():
36 for i in range(num_inports):
37 s.get[i].en = s.get[i].rdy & s.send.rdy & \
38 (s.mux.sel == sel_t(i))

Figure 5. RTL Implementation of SwitchUnit – The switch unit im-
plementation reuses the RTL arbiter, encoder, and mux from PyMTL’s
standard library.

V. PYOCN FOR TESTING OCNS

PyOCN provides extensive test suites to unit test the basic
network components as well as complete network instances.
The highly modular design of PyOCN enables rigorous unit
testing for each basic building block.

In addition, our test suites can be easily reused across all
modeling levels including FL, CL, and RTL because the gen-
erated networks at different levels all have standardized inter-
faces. Since PyMTL is embedded in Python, PyOCN is able
to leverage powerful python packages to facilitate test-driven
design of our OCN models. In our framework, we extensively
use pytest [38] to generate and drive test cases and hypothe-
sis [19] to perform property-based random testing. This section
describes PyOCN’s testing strategy spanning unit, integration,
and property-based random testing.

Unit Testing – PyOCN provides unit tests not only for all
network components such as routers and channels, but for basic
components like input units and switch units. Figure 7 shows a
simple example of one unit test for a router in a 4×4 mesh net-
work. It simply injects two packets into the router and checks
if they are ejected from the correct output ports. The pytest
@parametrize decorator generates a number of test configu-

1 class RingNetworkRTL(Component):
2 def construct(s, pkt_t, pos_t, nrouters, chnl_lat=0):
3 ...
4 def elaborate_physical(s):
5 N = s.nrouters
6 chnl_len = s.channels[0].dim.w
7 for i, r in enumerate(s.routers):
8 if i < (N / 2):
9 r.dim.x = i ∗ (r.dim.w + chnl_len)

10 r.dim.y = 0
11 else:
12 r.dim.x = (N − i − 1) ∗ (r.dim.w + chnl_len)
13 r.dim.y = r.dim.h + chnl_len
14 s.dim.w = N/2 ∗ r.dim.w + (N/2 − 1) ∗ chnl_len
15 s.dim.h = 2 ∗ r.dim.h + chnl_len

Figure 6. Physical Elaboration – Floorplanning code for parameteriz-
able ring network. Geometry information is propagated hierarchically
from each router and channel instance in the network component.

1 @pytest.mark.parametrize(
2 'pos_x, pos_y',
3 product([0, 1, 2, 3], [0, 1, 2, 3])
4)
5 def test_simple_4x4(pos_x, pos_y):
6 ncols = 4; nrows = 4
7 pkt_t = mk_mesh_pkt(ncols, nrows, nvcs=2)
8

9 src_pkts = [
10 # src_x y dst_x y opaque vc payload
11 pkt_t(0, 0, 1, 1, 0, 0, 0xfaceb00c),
12 pkt_t(0, 2, 3, 3, 0, 0, 0xdeadface),
13]
14

15 th = TestHarness(pkt_t, src_pkts)
16 # Use the elegant parameter system
17 th.set_param("top.construct",
18 ncols=ncols, nrows=nrows,
19 pos_x=pos_x, pos_y=pos_y,
20)
21 run_sim(th)

Figure 7. Unit Test for a Router in 4×4 Mesh - This simple test case
injects two packets into the router. The test harness instantiates the
router, injects the packets, and checks if the packets are ejected from
the correct output ports.

rations from a single test definition. In this case, it generates
16 test cases that test routers with all possible positions in a
4×4 network. This test can be used for testing both CL and
RTL routers. It can be reused for testing torus routers as well.
The only change we need to make is to change the type of the
design-under-test (DUT) in the test harness.

Integration Testing – PyOCN provides similar tests that in-
tegrate basic components into a router, compose routers and
channels into a network, and then test the network as a whole.
Many test cases are reusable across different topologies as they
share the same FL model and have the same interfaces. RTL
networks can reuse test cases for CL networks as PyMTL sup-
ports multi-level composition of CL and RTL interfaces.

Property-based Random Testing – Property-based ran-
dom testing was first popularized by the Haskell library
QuickCheck [14]. It works by using a type-based random data
generator for all inputs and checking if the DUT violates the
given specification. Figure 8 illustrates a simple example of

1 @hypothesis.given(
2 ncols = st.integers(2, 8),
3 nrows = st.integers(2, 8),
4 pkts = st.data(),
5)
6 def test_hypothesis(ncols, nrows, pkts):
7 Pkt = mk_mesh_pkt(ncols, nrows, nvcs=2)
8

9 pkts_lst = pkts.draw(
10 st.lists(mesh_pkt_strat(ncols, nrows)),
11 label= "pkts"
12)
13

14 src_pkts = mk_src_pkts(ncols, nrows, pkts_lst)
15 dst_pkts = meshnet_fl(ncols, nrows, src_pkts)
16 th = TestHarness(Pkt, ncols, nrows,
17 src_pkts, dst_pkts)
18 run_sim(th)

Figure 8. Property-Based Random Testing for Mesh Network Genera-
tor – This test shows a simple example of how PyOCN leverages hy-
pothesis to test network generators. The test function randomly con-
figures a mesh network and draws a list of packets as input. It verifies
the DUT’s output against the FL model which serves as an oracle.

how PyOCN leverages hypothesis, an open-source property-
based random testing framework for Python. This tests more
than a single network instance. Rather, it randomly configures
mesh networks with different sizes on the fly and verifies the
generated networks against the golden reference, which in this
case is the FL model. Hypothesis produces readable and min-
imal counter-examples when encountering a failure. If it finds
an example failing the specification, it takes that example and
keeps simplifying it until it finds a minimal example that still
triggers the problem.

VI. PYOCN FOR EVALUATING OCNS

In addition to modeling and testing OCNs, PyOCN also sup-
ports evaluating OCNs using a combination of simulation (for
cycle-level or cycle-accurate performance analysis), generation
(for producing synthesizable RTL), and characterization (for
area, energy, and timing analysis).

Simulating OCNs – The simulation in PyOCN is powered
by PyMTL’s simulation pass, which allows the test bench to be
written in Python and eliminates any semantic gap. The sim-
ulation pass statically schedules and then calls the @s.update
blocks every cycle. The PyOCN simulator can issue packets
into different OCNs with different traffic patterns (e.g., uniform
random (urandom), neighbor, partition by two (partition2), and
complement) at different injection rates.

Generating OCNs – PyOCN leverages the translation pass
in PyMTL to generate synthesizable Verilog from RTL OCN
models. PyOCN’s parameterization system facilitates the con-
figuration process of OCN components. In PyOCN, model im-
plementations are defined as Python classes. The constructor
registers each module in a dictionary based on its name and hier-
archical position. The parameterization system can modify any
parameter in any module registered in the dictionary by tagging
a specific hierarchical component name with parameters. So in-
stead of tediously carrying all the parameters down through the
whole hierarchy during construction, developers are able to pa-
rameterize only a set of components or any single component

TABLE II. MULTI-LEVEL SIMULATION

Injection Rate 0.01 0.1 0.2 0.3 0.4

Performance 17.9 15.5 14.2 13.3 13.0
Accuracy 86% 87% 87% 97% 74%

Normalized simulation performance (simulated cycles per second) and
accuracy of average latency measurement modeled in CL with respect
to RTL. The accuracy of the CL model is slightly degraded under very
high load. The ideal throughput for the mesh network is 0.5.

in the middle of hierarchy after construction but before elabora-
tion. During elaboration time, models are elaborated based on
the updated parameters in each module.

Characterizing OCNs – PyOCN generates both synthesiz-
able Verilog and a corresponding floorplan script that can be
used to drive a commercial standard-cell-based toolflow for
area, energy, and timing characterization. The PyOCN frame-
work includes scripts for various commercial tools including
Synopsys Design Compiler, Cadence Innovus, and Synopsys
PrimeTime PX in order to synthesize, place, route, and estimate
energy for the given design. PyOCN leverages open-source
physical IP libraries including the 45 nm NanGate standard-cell
library and the FreePDK45 physical design kit.

PyOCN’s integration with a standard-cell-based toolflow en-
ables highly accurate measurement of area, energy, and tim-
ing for the placed-and-routed gate-level netlist. Specifically,
area and timing are both estimated post-place-and-route after
meeting timing with Cadence Innovus’s internal signoff-quality
static timing analysis engines. Energy is estimated using Syn-
opsys PrimeTime PX with the RTL-level switching activity in-
formation (provided by PyOCN) and the post-place-and-route
gate-level netlist. The tool statistically propagates annotated
switching activity to intermediate nodes before using gate/in-
terconnect and parasitic RC information to estimate energy.

VII. CASE STUDY

With the help of PyOCN’s standard library, an OCN can
be easily configured and modeled at various abstraction levels.
Currently, PyOCN supports crossbar, ring, mesh, concentrated
mesh, torus, and butterfly topology models with extensive test-
ing infrastructure. In this case study, we explore an OCN tar-
geting a 64-terminal system.

PyOCN provides an OCN simulator for different topologies
modeled at various levels. A developer can initially simulate
the target design in CL to quickly estimate performance. Ta-
ble II shows that the simulation speed for a 64-terminal mesh in
CL is over 10× faster than an equivalent RTL model. The sim-
ulated performance of different topologies modeled in RTL is
shown in Figure 9. In this case study, we choose to optimize for
a unified random (i.e., Urandom) traffic pattern which might be
representative of general memory traffic over an OCN intercon-
necting private L1 caches and a tiled, shared L2 cache. Given
this context, we chose a butterfly OCN for further analysis.

PyOCN supports OCN characterization by providing scripts
that semi-automatically takes the generated Verilog and net
activity file to drive a standard-cell-based electronic-design-
automation (EDA) toolflow for area, energy, and timing analy-
sis. In this case study, we choose to use the FreePDK45 with the

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

N
et

w
or

k
la

te
nc

y
(c

yc
le

s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

ring

bfly

mesh

cmesh

torus

Injection Rate
(a) urandom (b) partition2 (c) neighbor (d) complement

Figure 9. RTL Simulation Results – Average latency at different injection rates across different network topologies with 64 terminals. Mesh and
torus both have eight rows and eight columns. Butterfly is 4-ary 3-fly. All topologies parameterize the channel latency as a single cycle and the
router pipeline as a single cycle. Ring and torus leverage virtual channels to avoid deadlock.

0
4000

8000
12000

16000

1 2 3 4 5 6 7 8 9 10
Number of Router Ports

0
1
2
3
4
5

1 2 3 4 5 6 7 8 9 10
Number of Router Ports

(a) area (µm2) (b) energy/packet (pJ/pkt)

Figure 10. Router Characterization – Characterization of area and en-
ergy for routers with different number of input and output ports target-
ting a 500 MHz clock frequency. The channel bandwidth is 32 b/cycle.
During the RTL simulation, we generate hundreds of packets that tra-
verse from each inport to each outport without contention. The dumped
net activity file is passed into the EDA toolflow to drive the energy
analysis.

Nangate standard cell library. Figure 10 shows the area-energy
analysis for a router with an increasing number of ports. Gener-
ally, the higher-radix routers require more area and energy per
packet. We eventually decided to implement a 4-ary 3-fly rather
than a 2-ary 6-fly as the zero load latency of 4-ary 3-fly is half
the 2-ary 6-fly.

To place a 4-ary 3-fly butterfly, we group routers in the same
row together as a router group and place them on the chip as
shown in Figure 11, which is similar to the placement of the flat-
tened butterfly topology proposed in [27]. PyOCN’s PL mod-
eling can provide explicit geometry information for the place-
ment of each router. We reserve 1 mm between router groups
to provide enough space for the terminals. We initially target
500 MHz and set the channel latency to be one meaning that
there is no channel queues between routers.

However, using the EDA toolflow revealed that a 2 ns timing
constraint is not possible due to long channels between some
router groups. The corresponding critical path starts from the
input unit of Router28, goes through the channel, and ends at
the input unit of Router46, with a negative slack of 0.13 ns.
Although the channel between Router28 and Router47 seems
longer according to the logical layout, the EDA toolflow’s rout-
ing algorithm ultimately meant the critical path was limited by
the channel from Router28 to Router46. One straightforward
way to break such critical paths is to add channel queues to
channels that violate the timing constraint.

RG0 RG1 RG2 RG3

RG4 RG5 RG6 RG7

RG8 RG9 RG10 RG11

RG12 RG13 RG14 RG15

…
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

R32

R33

R34

R35

R36

R37

R38

R39

R40

R41

R42

R43

R44

R45

R46

R47

RG0

RG1

RG2

RG3

RG4

RG5

RG6

RG7

RG8

RG9

RG10

RG11

RG12

RG13

RG14

RG15

Figure 11. 4-ary 3-fly Butterfly Network – The routers in the same rows
can be recognized as a router group, which can be placed onto the chip
based on the placement proposed in [27]. For simplicity, we use single
line with two arrows to indicate bidirectional data delivery.

1 net = BFlyNetworkRTL(pkt_t, k_ary=4, n_fly=3)
2 critical_paths= [
3 "channels[82]",
4 "channels[114]",
5 ...
6]
7 for c in critical_paths:
8 net.set_param(f'top.{c}.construct', hops=2)
9 net.elaborate()

Figure 12. Parameterization System Example – We collect all the criti-
cal paths violating the timing constraint reported by the EDA toolflow,
add them into the critical_paths, and use set_param to change
the number of channel queues on these channels.

Figure 13. Post Place-and-Route Layout of 4-ary 3-fly Butterfly – The
routers are highlighted. The floorplan is generated based on PyOCN
PL modeling. PyOCN also provides script to semi-automatically drive
the EDA toolflow to generate the final layout. The area is 4.8 mm x
4.6 mm and the operating frequency is 500 MHz @ 45 nm.

The parameterization system of PyOCN enables us to easily
configure any network components without touching the source
code of the target OCN design. As shown in Figure 12, only
a few lines before the elaboration of the target OCN is needed
to add channel queues to specific channels. Figure 13 shows
the final layout of our target butterfly OCN, where the target
frequency is achieved.

VIII. CONCLUSION

This paper has introduced PyOCN, a unified framework
for simulating, testing, and characterizing on-chip intercon-
nection networks. PyOCN is the first open-source framework
for modeling (e.g., functional-level, cycle-level, and register-
transfer-level), testing (e.g., unit testing, integration testing,
and property-based random testing), and evaluating (e.g., sim-
ulating, generating, and characterizing) on-chip interconnec-
tion networks. PyOCN is an open-source framework and
is available online at https://github.com/cornell-brg/
pymtl3-net.

ACKNOWLEDGMENTS

This work was supported in part by NSF CRI Award
#1512937, DARPA POSH Award #FA8650-18-2-7852, and
equipment, tool, and/or physical IP donations from Intel, Syn-
opsys, and Cadence. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation theron. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily re-
flect the views of any funding agency.

REFERENCES

[1] P. Abad, P. Prieto, L. G. Menezo, A. Colaso, V. Puente, and J.-Á.
Gregorio. Topaz: An Open-Source Interconnection Network Simulator
for Chip Multiprocessors and Supercomputers. Int’l Symp. on
Networks-on-Chip (NOCS), May 2012.

[2] S. N. Adya and I. L. Markov. Fixed-outline floorplanning: enabling
hierarchical design. IEEE Trans. on Very Large-Scale Integration
Systems (TVLSI), Dec 2003.

[3] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GARNET: A Detailed
On-Chip Network Model inside a Full-System Simulator. Int’l Symp. on
Performance Analysis of Systems and Software (ISPASS), Apr 2009.

[4] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, M. Matl, and D. Wentzlaff.
OpenPiton: An Open Source Manycore Research Framework. Int’l
Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Apr 2016.

[5] D. Bertozzi and L. Benini. Xpipes: A Network-on-Chip Architecture
for Gigascale Systems-on-Chip. IEEE Circuits and Systems Magazine,
Sep 2004.

[6] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou,
L. Benini, and G. D. Micheli. NoC Synthesis Flow for Customized
Domain Specific Multiprocessor Systems-on-Chip. IEEE Trans. on
Parallel and Distributed Systems (TPDS), 16(2):113–129, 2005.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 Simulator.
SIGARCH Computer Architecture News (CAN), 39(2):1–7, Aug 2011.

[8] J. Bolaria. Xeon Phi Targets Supercomputers. Microprocessor Report,
The Linley Group, Sep 2012.

[9] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. Noxim:
An Open, Extensible and Cycle-Accurate Network on Chip Simulator.
Int’l Conf. on Application-Specific Systems, Architectures, and
Processors (ASAP), Jul 2005.

[10] J. Chan, G. Hendry, A. Biberman, K. Bergman, and L. P. Carloni.
Phoenixsim: A Simulator for Physical-Layer Analysis of Chip-Scale
Photonic Interconnection Networks. Design, Automation, and Test in
Europe (DATE), Mar 2010.

[11] J. Chan and S. Parameswaran. NoCGEN: A Template based Reuse
Methodology for Networks on Chip Architecture. Int’l Conf. on VLSI
Design, Jan 2004.

[12] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam.
DianNao: A Small-Footprint High-Throughput Accelerator for
Ubiquitous Machine-Learning. Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Mar 2014.

[13] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An
Energy-Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks. Int’l Solid-State Circuits Conf. (ISSCC), Feb 2016.

[14] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. ACM SIGPLAN Notices,
46(4):53–64, 2011.

[15] CoreLink Interconnect. accessed Sep 20, 2019.
https://developer.arm.com/ip-products/system-ip/corelink-interconnect.

[16] F. Fatollahi-Fard, D. Donofrio, G. Michelogiannakis, and J. Shalf.
Opensoc Fabric: On-Chip Network Generator: Using Chisel to
Generate a Aarameterizable On-Chip Interconnect Fabric. Int’l
Workshop on Network on Chip Architectures, Dec 2014.

[17] Arteris FlexNoC Interconnect IP. Online Webpage, accessed Sep 20,
2019.

[18] P. Greenhalgh. Big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7. EE Times, Oct 2011.
http://www.eetimes.com/document.asp?doc_id=1279167.

[19] Most testing is ineffective - Hypothesis. accessed Sep 20, 2019.
https://hypothesis.works.

[20] A. Jalabert, S. Murali, L. Benini, and G. D. Micheli. ×pipesCompiler: A
Tool for Instantiating Application Specific Networks on Chip. Design,
Automation, and Test in Europe (DATE), Feb 2004.

[21] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. E. Shaw, J. Kim, and W. J. Dally. A Detailed and Flexible
Cycle-Accurate Network-on-Chip Simulator. Int’l Symp. on
Performance Analysis of Systems and Software (ISPASS), Apr 2013.

[22] S. Jiang, B. Ilbeyi, and C. Batten. Mamba: Closing the Performance
Gap in Productive Hardware Development Frameworks. Design
Automation Conf. (DAC), Jun 2018.

[23] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A Fast and
Accurate NoC Power and Area Model for Early-Stage Design Space
Exploration. Design, Automation, and Test in Europe (DATE), Apr
2009.

[24] A. B. Kahng, B. Lin, and S. Nath. Explicit Modeling of Control and
Data for Improved NoC Router Estimation. Design Automation Conf.
(DAC), Jun 2012.

[25] A. B. Kahng, B. Lin, and S. Nath. ORION3.0: A Comprehensive NoC
Router Estimation Tool. IEEE Embedded Systems Letters (ESL), Feb
2015.

[26] M. Karunaratne, C. Tan, A. Kulkarni, T. Mitra, and L.-S. Peh.
Dnestmap: Mapping Deeply-Nested Loops on Ultra-Low Power
CGRAs. Design Automation Conf. (DAC), Jun 2018.

[27] J. Kim, J. Balfour, and W. Dally. Flattened Butterfly Topology for
On-Chip Networks. Int’l Symp. on Microarchitecture (MICRO), Aug
2007.

[28] T. Krishna, C.-H. O. Chen, W.-C. Kwon, and L.-S. Peh. SMART:
Single-Cycle Multihop Traversals over A Shared Network on Chip.
IEEE Micro, 34(3):43–56, 2014.

[29] H. Kwon and T. Krishna. Opensmart: Single-Cycle Multi-Hop NoC
Generator in BSV and Chisel. Int’l Symp. on Performance Analysis of
Systems and Software (ISPASS), Apr 2017.

[30] H. Kwon, A. Samajdar, and T. Krishna. Maeri: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects. Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Mar 2018.

[31] M. Lis, K. S. Shim, M. H. Cho, P. Ren, O. Khan, and S. Devadas.
DARSIM: A Parallel Cycle-Level NoC Simulator. Workshop on
Modeling, Benchmarking and Simulation (MOBS), Jun 2010.

[32] D. Lockhart, G. Zibrat, and C. Batten. PyMTL: A Unified Framework
for Vertically Integrated Computer Architecture Research. Int’l Symp.
on Microarchitecture (MICRO), Dec 2014.

[33] S. Murali and G. D. Micheli. SUNMAP: A Tool for Automatic
Topology Selection and Generation for NoCs. Design Automation Conf.
(DAC), Jul 2004.

[34] NetmakerWiki. accessed Sep 20, 2019.
http://www-dyn.cl.cam.ac.uk/ rdm34/wiki/index.php.

[35] M. K. Papamichael and J. C. Hoe. CONNECT: Re-examining
Conventional Wisdom for Designing NoCs in the Context of FPGAs.
Int’l Symp. on Field Programmable Gate Arrays (FPGA), Feb 2013.

[36] A. Pathania and J. Henkel. HotSniper: Sniper-Based Toolchain for
Many-Core Thermal Simulations in Open Systems. IEEE Embedded
Systems Letters (ESL), Aug 2018.

[37] A. Pinto, L. P. Carloni, and A. Sangiovanni-Vincentelli. COSI: A
Framework for the Design of Interconnection Networks. Design,
Automation, and Test in Europe (DATE), Oct 2008.

[38] PyTest. Online Webpage, 2014 (accessed Oct 1, 2014).

[39] P. Ren, M. Lis, M. H. Cho, K. S. Shim, C. W. Fletcher, O. Khan,
N. Zheng, and S. Devadas. Hornet: A Cycle-Level Multicore Simulator.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 31(6):890–903, 2012.

[40] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.
Peh, and V. Stojanovic. DSENT-A Tool Connecting Emerging
Photonics with Electronics for Opto-Electronic Networks-on-Chip
Modeling. Int’l Symp. on Networks-on-Chip (NOCS), May 2012.

[41] C. Tan, M. Karunaratne, T. Mitra, and L.-S. Peh. Stitch: Fusible
Heterogeneous Accelerators Enmeshed with Many-Core Architecture
for Wearables. Int’l Symp. on Computer Architecture (ISCA), Jun 2018.

[42] A. Tran and B. Baas. NoCTweak: A Highly Parameterizable Simulator
for Early Exploration of Performance and Energy of Networks
On-Chip. Technical Report ECE-VCL-2012-2, VLSI Computation Lab,
ECE Department, University of California, Davis.

[43] H. Wang, L.-S. Peh, and S. Malik. Orion: A Power-Performance
Simulator for Interconnection Networks. Int’l Symp. on
Microarchitecture (MICRO), Nov 2002.

[44] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi GF100 GPU
Architecture. IEEE Micro, 31(2):50–59, Mar/Apr 2011.

