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With the slowdown of Moore’s Law and the end of Dennard Scaling, computer architects

have embraced specialization as the main way forward for continuing performance and efficiency

growth previously made through traditional technology scaling. Specialization comes in several

forms including application specific specialization, domain specific specialization, and parallel

pattern specific specialization. This emergence of hardware specialization has pushed the chip

industry towards integrating a sea of heterogeneous specialized hardware units, each with its own

specialized program abstraction, into a single system on chip (SoC). However, given certain area,

power, and budget constraints, there is limited room for the number of specialized hardware units

possibly integrated into an SoC. One viable solution is to unify multiple kinds of specialization

under the same program abstraction and in the same hardware (e.g., GPGPUs). This unifying

approach essentially lowers area costs by trading off the optimality of program abstractions and

hardware implementations for individual program patterns.

In this thesis, I explore another specialization approach called evolutionary specialization that

supports multiple types of specialization in the same hardware. The evolutionary specialization

refers to starting from an optimal abstraction and micro-architecture for one program pattern and

gradually adding a minimal set of hardware changes to the existing micro-architecture to support

additional program patterns without changing their optimal abstractions. The thesis makes a case

for the evolutionary specialization through two novel architectures: big.VLITTLE and SparseZip-

per. The big.VLITTLE architecture evolves a multi-little-core system to efficiently support both

single-program multiple-data (SPMD) and single-instruction multiple-data (SIMD) program pat-

terns. The SparseZipper architecture minimally extends a modern matrix architecture specialized

for a dense general matrix multiplication (GEMM) pattern to support a sparse GEMM pattern.
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CHAPTER 1
INTRODUCTION

With the slowdown of Moore’s Law [Dub05] and the end of Dennard Scaling [DKM+02], com-

puter architects have embraced specialization as the main way forward for continuing performance

and efficiency growth previously made through traditional technology scaling [HP19,SB22]. Spe-

cialization comes in several forms including application specific specialization [LLW+06, LL18,

MSS+15], domain specific specialization [DTH20,JYPP18,CKES16,QHS+13,TBD18], and par-

allel pattern specific specialization [PZK+18, Bat10, CHM08, KJT+17, SIT+14]. This emergence

of hardware specialization has pushed the chip industry towards integrating a sea of heterogeneous

specialized hardware units, each with its own specialized program abstraction, into a single system

on chip (SoC) [HR21, SB22]. However, given certain area, power, and budget constraints, there is

limited room for the number of specialized hardware units possibly integrated into an SoC. One

viable solution is to unify multiple kinds of specialization under the same program abstraction

and in the same hardware. For example, a general-purpose graphics processing unit (GPGPU) has

evolved from a graphics-only accelerator to decently accelerate other application domains (e.g.,

machine learning and graph analytics) and parallel patterns (e.g., data-level and thread-level par-

allelism) [KDK+11, LNOM08]. This unifying approach essentially lowers area costs by trading

off the optimality of program abstractions and hardware implementations for individual program

patterns.

In this thesis, I explore another specialization approach called evolutionary specialization that

supports multiple types of specialization in the same hardware. The evolutionary specialization

approach starts from an optimal abstraction and micro-architecture for one program pattern and

gradually adds a minimal set of hardware changes to the existing micro-architecture to support

additional program patterns without impacting their optimal abstractions. This thesis motivates

the evolutionary specialization using two novel architectures: big.VLITTLE and SparseZipper. In

big.VLITTLE architectures, a multi-little-core system specialized for single-program multiple-data

(SPMD) pattern is reconfigured to support single-instruction multiple-data (SIMD) pattern with

minimal area overhead to the original hardware. In SparseZipper architectures, a programmable

systolic-array-based micro-architecture designed for accelerating dense matrix-matrix multiplica-

tion (GEMM) is repurposed so that it can efficiently perform GEMM on sparse matrices as well.
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This chapter begins by discussing the SPMD and SIMD patterns and motivating the need for

their support in modern systems. Then, I present a recent trend towards specialization for dense

and sparse GEMM patterns and how commonly those patterns exist in traditional and emerging

workload domains. I finally introduce the concept of evolutionary specialization before outlining

the key contributions of this thesis.

1.1 Specialization for SPMD and SIMD Patterns

SPMD and SIMD are by far two of the most commonly used patterns for structuring parallel

programs [MSM05]. In an SPMD program, all processing elements (PEs) execute multiple streams

of instructions derived from the same program (i.e., single program) in parallel, and each PE in-

dependently operates on its own set of data (i.e., multiple data). By sharing the same program

across all PEs, the SPMD pattern makes managing PEs and their interactions less complex for

programmers compared to executing different programs on multiple PEs (e.g., multiple-program

multiple-data or MPMD pattern). The SPMD pattern is well-suited for expressing certain task-

level parallelism in which different tasks share similar computations. In contrast, the SIMD pattern

expresses all parallelism in terms of the data (i.e., data-level parallelism). In an SIMD program,

all PEs execute the same stream of instructions (i.e., single instruction) in parallel on their own

sets of data (i.e., multiple data). For regular data-parallel programs, the SIMD pattern simplifies

managing parallel executions of all PEs by having only one instruction stream. The SIMD pattern

is most efficient for expressing regular data-level parallelism in which computations on multiple

subsets of data are the same.

1.1.1 Specialization for SPMD Pattern

An execution model for the SPMD pattern typically maps multiple PEs to logical threads, each

running on a virtual processor. A thread holds an execution context of its corresponding PE (e.g.,

which instruction in a program the PE is executing). A thread scheduler may schedule multi-

ple threads to run in parallel, and a thread may communicate with others via a synchronization

mechanism. A multi-thread scalar instruction set architecture (ISA) is a specialized abstraction

for the SPMD execution model. In such ISA, each thread has a private set of architectural states

(e.g., program counters and registers). Each thread executes a sequence of scalar instructions
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(e.g., arithmetic, memory, and control-flow instructions) independently from other threads. Those

ISAs typically support inter-thread communications via either a shared memory (e.g., using atomic

instructions) or a message passing mechanism (e.g., using message sending and receiving instruc-

tions).

A multi-thread scalar ISA is commonly implemented in shared-memory multi-core processors.

Each core in such a multi-core processor runs one or multiple hardware threads (e.g., in simultane-

ous multithreading or SMT processors) that are mapped to logical threads in the SPMD execution

model. Each hardware thread has its private program counter tracking its currently executed in-

struction and a set of registers for storing its private local data. A core can be implemented using

a simple in-order or a complex out-of-order pipeline. Different cores in a processor can have the

same implementation (i.e., homogeneous multi-core processors such as TILE64 [BEA+08] and

Ampere Altra [Whe20]) or different implementations (i.e., heterogeneous multi-core processors

such as Samsung Exynox [Gwe14b] and Qualcomm Snapdragon [Gwe14a]). The number of cores

in a multi-core processor may vary from a few to hundreds of cores (e.g., the 1024-core Adapteva

Epiphany-V [Olo16]). By integrating more but simpler cores into a single system (i.e., many-core

processors with energy-efficient little cores), we increase its specialization for the SPMD pattern.

For inter-thread communications via a shared memory, a multi-core processor is typically imple-

mented with a cache coherence support for sharing data among threads.

1.1.2 Specialization for SIMD Pattern

The SIMD pattern structures parallel programs in multiple data segments (e.g., parts of a one-

or two-dimensional array) and performs the same instruction stream across all segments. A typical

SIMD execution model maps data segments to virtual lanes sharing a global control (i.e., each

lane is an abstract execution unit). All lanes perform the same instruction stream on their local

data segments, so they always execute in lock steps. Vector ISAs (e.g., Intel AVX [int12], Arm

SVE [SBB+17], and RISC-V vector extension [RIS21]) are specialized for the SIMD pattern. A

vector length (i.e., the number of virtual lanes) can either be fixed (e.g., in packed-SIMD ISA such

as Intel AVX 512) or variable (e.g., in Arm SVE and RISC-V vector extension). In such ISA, vec-

tor registers are used to store per-lane local data while vector instructions perform operations on

the data. Vector memory instructions move data between vector registers and memory. Predication

(i.e., execution of some virtual lanes are masked off) is often supported to express control diver-
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gence between virtual lanes. Modern vector ISAs typically support cross-lane vector instructions

(e.g., vector reduction) for communicating data across virtual lanes.

A vector micro-architecture primarily consists of a physical vector register file, multiple phys-

ical lanes of arithmetic execution units, a vector memory unit, and a control core. The number

of data elements in a physical vector register is the hardware vector length. The hardware vector

length can be equal to or greater than the number of physical lanes (i.e., a lane performing the same

vector operation on different data elements over one or multiple cycles). There is a control core

managing the vector execution of all physical lanes. Regular vector memory accesses (e.g., unit-

stride vector load) are typically issued to memory ahead of time (i.e., decoupled access-execute

mechanism) to hide memory latency. A vector ISA can be implemented as either short-vector

units tightly integrated into a general-purpose processor (e.g., Intel Knights Landing [SGC+16])

or long-vector engines decoupled from their control processors (e.g., Cray-BlackWidow [Abt07]).

1.1.3 The Need for Both SPMD and SIMD Patterns

The SPMD pattern is highly flexible that it can support various types of parallelism such as

loop and fork/join parallelism with either regular or irregular control flows and memory access

patterns. This flexibility is realized in multi-thread scalar ISAs and shared-memory multi-core

micro-architectures by decoupling the execution of multiple threads. However, this decoupling

becomes inefficient when the SPMD pattern is used to support regular data parallelism (i.e., with

regular control flows and memory access patterns) since different threads redundantly perform the

same control operations and memory accesses. In contrast, the SIMD pattern is relatively rigid as

it targets mainly regular data-level parallelism. Vector ISAs and micro-architectures are special-

ized for exploiting the same control and regular memory accesses across vector lanes to minimize

redundancy in control and maximize the utilization of physical lanes in vector hardware. However,

the rigidity in both vector abstraction and hardware leads to a poor utilization of hardware resources

when the SIMD pattern is applied to highly irregular problems with control-flow divergence and

irregular memory access patterns across vector lanes.

Parallel workloads often exhibit different kinds of parallelism (e.g., task-level and data-level

parallelism) with various levels of regularity in control flows and memory accesses, which needs

both SPMD and SIMD patterns for maximizing the overall efficiency. For example, graph an-

alytics applications typically perform computation on irregular data structures (e.g., trees and
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graphs) which results in highly irregular data-dependent control flows and random memory ac-

cesses [SB13a, HN07, HKOO11]. Therefore, hardware specialization for the SPMD pattern is

in general more suitable for graph analytics workloads. In contrast, scientific computing work-

loads [SRS+12, Gal96], which typically operate on regular array and matrix data structures, often

exhibit ample amount of data-level parallelism. Therefore, it is more efficient to execute such

workloads on hardware specialized for the SIMD pattern. Modern hardware systems need to sup-

port both kinds of specialization for the SPMD and SIMD patterns to target a variety of workloads

having those patterns.

1.2 Specialization for Dense and Sparse GEMM Patterns

General matrix multiply (GEMM) is the key building block in many application domains such

as machine learning, graph analytics, and scientific computing. Based on the density of input ma-

trices (i.e., the fraction of non-zero elements in a matrix), there are two common program patterns

for GEMM: dense and sparse. Dense GEMM performs a matrix-multiply operation on matrices

stored in a two-dimensional array data structure in which all matrix elements including zero values

are represented. In contrast, the sparse GEMM pattern refers to multiplying matrices stored in a

compact data structure in which only non-zero values are represented. Some widely used compact

matrix data structures include compressed sparse row (CSR), compressed sparse column (CSC),

and coordinate (COO) formats. Due to the difference in data formats for representing dense and

sparse matrices, typical accelerators for dense and sparse GEMM patterns are quite different in

both their abstractions and hardware implementations. This section discusses architectural spe-

cialization for the two patterns.

1.2.1 Specialization for Dense GEMM Pattern

GEMM is a key building block in traditional and emerging workloads. To improve its per-

formance and efficiency, architects have been designing and integrating accelerators for the dense

GEMM pattern in modern systems. For example, Google introduced its Tensor Processing Unit

(TPU) as a co-processor next to a general-purpose CPU for accelerating training and inference ker-

nels in machine learning workloads [JYP+17,Tie20, JYK+20, JKL+23a]. At the heart of TPU is a
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large matrix-matrix multiply unit that significantly improves the performance and energy efficiency

compared to contemporary CPUs and GPGPUs. NVIDIA also integrates tensor cores specialized

for multiplying and adding matrices in its recent GPUs [CGG+21a].

The need for accelerating GEMM has pushed specialization for the dense GEMM pattern

further into modern general-purpose CPU instruction sets as well. Arm recently released its

Scalable Matrix Extension (SME) that introduces a new instruction performing an outer prod-

uct of two vectors and accumulating its results into a new two-dimensional accumulator register

state [arm23]. IBM took a similar approach in its Matrix-Multiple Assist (MMA) extension for

the Power ISA [ibm23]. Intel introduced a new Advanced Matrix Extension (AMX) that adds sev-

eral two-dimensional matrix register states called tile registers and a new matrix-matrix multiply

instruction performing a matrix multiplication on two input tile registers [int23b, NMM+22]. The

RISC-V community is also working on a matrix extension proposal [ris23] that is similar to Intel

AMX’s approach.

Regardless of programming abstractions, specialization for the dense GEMM pattern is typi-

cally implemented in hardware using a two-dimensional systolic array of multiply-add processing

elements (PEs) [JYP+17, JQS+21, NMM+22]. An implementation of a systolic array can be ei-

ther input-, weight-, or output-stationary, depending on its programming abstraction. The integra-

tion of a matrix-multiply unit and a general-purpose CPU can be either coarse-grained (e.g., as a

co-processor like TPU), medium-grained (e.g., sharing some levels of caches with the CPU), or

fine-grained (e.g., as a functional unit in the CPU’s pipeline).

1.2.2 Specialization for Sparse GEMM Pattern

As emerging workloads (e.g., machine learning and graph analytics) are processing increas-

ingly large and sparse datasets [RCK+20, NMS+19, HMD15, JYP+17, WBC+19b, Dav19, HS11,

ST15], specialization for the sparse GEMM pattern is becoming critical to maximizing work and

storage efficiency by avoiding multiplying and storing zeros. Previous work has proposed multiple

accelerators specialized for the sparse GEMM pattern, mainly based on three different dataflows:

inner product, outer product, and row-wise product. OuterSPACE implements the outer product

dataflow using tiles of processing elements to perform outer products for pairs of sparse vectors,

each including a column of the first matrix and a row of the second matrix, and to merge par-

tial output matrices [PBP+18]. MatRaptor implements the row-wise dataflow by multiplying each
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Figure 1.1: Matrix Density Spectrum Across Different Workload Domains – This figure is adopted
from [HAMP+19].

non-zero element in the first matrix with a corresponding row in the second matrix [SJL+20]. Each

group of processing elements in MatRaptor is mapped to a set of output rows, and they perform

multiplications followed by merging partial results. SIGMA is an inner-product-based acceler-

ator for sparse GEMM in deep learning applications [QSK+20]. It implements a flexible array

of dot-product engines consisting of multipliers, adders, a distribution network, and a reduction

network. There are several other accelerators specialized for the sparse GEMM pattern such as

SpArch [ZWHD20], Sextans [SCS+22], Extensor [HAMP+19], and Gamma [ZAES21].

In addition to those decoupled accelerators specialized for the sparse GEMM pattern, pre-

vious work has proposed an ISA extension called SparseCore for performing sparse computa-

tion [RCYQ22]. SparseCore introduces a set of stream registers to store information about a

sparse vector (e.g., stream length and starting addresses of key/value arrays). SparseCore sup-

ports the inner-product dataflow via a stream-intersecting instruction, and the outer-product and

row-wise product dataflows via a stream-merging instruction. SparseCore also provides a list of

stream load and store instructions to move data between stream registers and memory.

Regardless of programming abstractions, hardware specialized for the sparse GEMM pattern

typically includes processing units performing an index matching operation for intersecting key/-

value streams (i.e., in the inner-product dataflow) and/or a merge operation for merging key/-

value streams (i.e., in the outer-product and row-wise product dataflows). In addition, since sparse

GEMM computation is typically memory-bound, such accelerators are often implemented with

large on-chip scratchpads and/or data buffers to stage intermediate results and minimize memory

latency.
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1.2.3 The Need for Both Dense and Sparse GEMM Patterns

Hardware specialized for the dense GEMM pattern is efficient for processing highly dense

matrices in which most values are non-zeros due to the regularity of its two-dimensional array

data structure. This regularity enables efficient blocking/tiling approaches to keep data in fast local

storage (e.g., caches and scratchpads) and maximize data reuse. The systolic execution of dense

GEMM further increases data reuse via input or output stationary approach.

When processing highly sparse matrices, overheads of storing zeros and performing ineffectual

multiplications with zeros outweigh those benefits of dense-GEMM hardware specialization. By

storing and computing only non-zero values in highly sparse matrices, the sparse GEMM pattern

can offer significantly more efficient execution and storage than using the dense GEMM pattern.

However, the sparse GEMM pattern is not well suited for performing dense GEMM due to ex-

tra metadata (e.g., row/column indices of non-zeros) for tracking non-zero values and irregular

memory accesses to compact sparse matrix storages.

Figure 1.1 shows a variety of both traditional and emerging workload domains in a spectrum

of matrix density. The wide range of matrix density levels across those workloads motivates the

significance of efficiently supporting specialization for both dense and sparse GEMM patterns in

modern systems.

1.3 Approaches to Supporting Multiple Types of Specialization

Figure 1.2 shows a design space of different approaches and their performance trade-offs with

respect to two hypothetical program patterns A and B. The most general approach is to use a

general-purpose processor (GPP) to execute all kinds of applications with different program pat-

terns including both A and B. Since there is no specialization for either A or B, this approach often

produces the lowest performance and efficiency compared to specialized approaches. Singular

specialization refers to specializing both abstraction and micro-architecture for a single program

pattern. A singularly specialized accelerator typically gives higher performance and efficiency for

applications with its target program pattern than a GPP. In the singular specialization, multiple

micro-architectures implementing the same specialized abstraction may be possible with different

performance-area trade-offs. For example, both integrated short-vector units (e.g., Ocelot [Ten23])
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Figure 1.2: Relative Performance of Different Specialization Approaches – GPP = general-purpose processor;
abst = program abstraction; uarch = micro-architecture; The size of each box for a design point roughly represents
its relative silicon area with respect to other design points. (*) = less optimal but smaller micro-architecture with the
singular specialization approach.

and decoupled long-vector engines (e.g., Ara [PCW+22]) can implement the same vector abstrac-

tion (e.g., RISC-V vector extension), but they differ significantly in their sizes and performance

for workloads with the SIMD pattern.

In general, it is desirable to support multiple kinds of specialization for different program pat-

terns in modern systems due to the co-existence of multiple patterns across workloads and appli-

cation domains. In this section, I discuss three different approaches to supporting multiple kinds

of hardware specialization and their trade-offs: (1) heterogeneous specialization, (2) unified spe-

cialization, and (3) evolutionary specialization.

Heterogeneous Specialization – This approach refers to composing multiple singularly spe-

cialized accelerators without changing their abstractions and micro-architectures into a single sys-

tem. The heterogeneous specialization has already been seen in modern processors from mobile

systems to servers. For example, modern Qualcomm Snapdragon SoCs include multiple little cores

specialized for the SPMD pattern, vector units specialized for the SIMD pattern, tensor accelerators

and neural processing units specialized for processing deep neural networks, and image processing

units specialized for compute patterns in computer vision [CWS+14, Gwe14a, CHK+21]. Some
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examples of the heterogeneous specialization in servers are Intel Knights Landing [SGC+16] and

Cray BlackWidow [Abt07]) that consist of scalar and vector cores to support both SPMD and

SIMD patterns. Google TPU-v4 includes a SparseCore, which is specialized for sparse embed-

dings in machine learning inference, next to its systolic array specialized for the dense GEMM

pattern [JKL+23b]. By retaining each optimal abstraction and micro-architecture for individual

program pattern, this approach can achieve the highest performance for applications with the sup-

ported patterns. However, since there is no reuse across specialized hardware components, the

heterogeneous specialization is relatively expensive in terms of silicon area. In addition, it is often

challenging to determine a “perfect” on-chip area ratio among different hardware components at

the design time since the balance of the supported program patterns in workloads may change as

software evolves over time.

Unified Specialization – This approach refers to using a single unified abstraction and micro-

architecture that are generic enough to support multiple program patterns. For example, vector-

thread architectures [KBH+04a] and GPGPUs [nvi09] provide unified abstractions and micro-

architectures for supporting both the SPMD and SIMD patterns. Another example are vector

architectures and GPGPUs that support generic enough abstractions and micro-architectures to ac-

celerate both the dense GEMM pattern [LLK+19,KTD12] and the sparse GEMM pattern [FC23a,

NMAB18, WMZ+19]. Unlike the heterogeneous specialization that retains optimal abstractions

and micro-architectures for individual program patterns, the unified specialization trades off the

per-pattern optimality for the capability of supporting multiple patterns in the same abstraction

and micro-architecture. Having the same abstraction often enables a unified software stack for

multiple programs. Sharing the same micro-architecture enables hardware reuse when execut-

ing programs with different patterns, which increases hardware utilization. In addition, a unified

abstraction and micro-architecture can support more than just a set of program patterns that a het-

erogeneous system targets. Due to adopting a sub-optimal abstraction for a program pattern, the

unified specialization leaves out opportunities for software to convey potential pattern-specific op-

timizations to a corresponding micro-architecture. For example, in a GPGPU abstraction, threads

appear to execute independently with their own control flows, which hinders the abstraction from

expressing regular unit-stride memory accesses across multiple threads. In comparison to a vector

engine implementing a vector abstraction, this missing information about the inter-thread memory

access pattern makes it necessary to include expensive hardware logic to coalesce those unit-stride
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memory accesses for performance at the cost of less energy efficiency [nvi09], and further prevents

the hardware from issuing those regular memory accesses ahead of time to hide long memory la-

tency [LAB+11].

Evolutionary Specialization – This approach refers to starting from an optimal abstraction

and micro-architecture for one program pattern and gradually adding a minimal set of hardware

changes to the existing micro-architecture to support additional program patterns without chang-

ing their optimal abstractions. Since both abstraction and micro-architecture for the starting pro-

gram pattern are unchanged, the evolutionary specialization is guaranteed to retain the optimal

performance and efficiency of the singular specialization. For the additional program patterns, the

evolutionary specialization keeps the same optimal abstractions as supported in their singularly

specialized accelerators so that all program properties specific to those patterns can be conveyed to

the hardware. In comparison to the heterogeneous specialization that dedicates separate hardware

components for accelerating individual program patterns, this evolutionary specialization max-

imizes hardware reuse across multiple patterns in one single micro-architecture, which enables

higher hardware utilization and lower area costs. Since the single micro-architecture is not op-

timally specialized for the additional program patterns, it may not perform workloads with those

patterns as efficiently as a heterogeneous micro-architecture. There are two key design questions in

this approach. Firstly, what should be the starting and additional program patterns in this approach?

The answer to this question largely depends on specific situations. Generally, one could choose a

more commonly used program pattern to start with so that workloads with that pattern can perform

the best without any compromise in performance and efficiency. Secondly, what is a set of com-

mon micro-architectural features shared between the starting and additional micro-architectures?

For example, in both multi-/many-core systems and vector engines, arithmetic execution pipelines

are somewhat similar, and a per-lane slice of a vector register file could be viewed as a register file

in a scalar core. This approach may require repurposing certain hardware components in the start-

ing micro-architecture and/or rethinking how those components could be used in different ways

to implement the additional abstractions. However, the evolutionary specialization may not be

appropriate when micro-architectures specialized for the starting and additional program patterns

are radically different since the amount of extra hardware needed to support the additional patterns

would be significant.
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1.4 Thesis Overview

In this thesis, I explore the evolutionary specialization to support multiple types of specializa-

tion in a unified hardware implementation by gradually evolving an existing micro-architecture

specialized for one programming pattern to support other patterns. This thesis motivates the

evolutionary specialization using two novel architectures: big.VLITTLE and SparseZipper. In

big.VLITTLE architectures, a multi-little-core system specialized for the SPMD pattern is recon-

figured to support the SIMD pattern with minimal area overhead to the original hardware. In

SparseZipper architectures, a programmable systolic-array-based micro-architecture designed for

accelerating dense GEMM is repurposed so that it can efficiently perform GEMM on sparse ma-

trices as well.

Chapter 2 presents a multi-university chip tapeout project called CIFER that illustrates the

heterogeneous specialization approach. The CIFER chip includes heterogeneous hardware compo-

nents: multiple general-purpose cores capable of running Linux, several tiles of tiny cores designed

for exploiting massive task-level parallelism, and an embedded FPGA for application-specific ac-

celeration. This chapter details the design of many-tiny-core tiles and their integration into the

CIFER chip, which is the key contribution of a team of post-doc and students led by me at Cornell

University. Using CIFER as an example, this chapter also presents opportunities and challenges of

the heterogeneous specialization.

Chapter 3 describes my early work in supporting cycle-level modeling of multi-core RISC-V

systems in gem5, a popular cycle-level architecture simulator. Compared to the RTL modeling

used in the CIFER tapeout, this work provides a fast and flexible methodology for exploring archi-

tectural design space and evaluating big.VLITTLE and SparseZipper work in Chapter 4 and 5.

Chapter 4 presents big.VLITTLE architecture that provides on-demand data-parallel accel-

eration for mobile systems on chip. The big.VLITTLE architecture illustrates the evolutionary

specialization approach by gradually evolving (i.e., minimally adding just enough hardware com-

ponents) to a multi-core micro-architecture designed for the SPMD pattern to support a vector

abstraction designed specially for the SIMD pattern.

Chapter 5 presents the SparseZipper architecture that can efficiently accelerate the dense and

sparse GEMM patterns. The SparseZipper instruction set provides additional matrix instructions

specialized for the sparse GEMM pattern on top of existing matrix instructions specially used for
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the dense GEMM pattern. At the micro-architecture level, the SparseZipper minimally extends a

systolic array specialized for computing dense GEMM to enable sparse GEMM computation in

the same hardware.

Chapter 6 summarizes the contributions of this thesis and discusses several research directions

for future work. The primary contributions of this thesis are:

• an exploration of the evolutionary specialization that supports multiple types of hardware

specialization by gradually evolving a micro-architecture specialized for one kind of special-

ization to support other kinds of specialization without impacting their programming abstrac-

tions;

• a novel big.VLITTLE architecture, an example of the evolutionary specialization, support-

ing on-demand data-parallel acceleration via a vector abstraction in a multi-core micro-

architecture designed for the SPMD pattern; and

• a novel SparseZipper architecture, another example of the evolutionary specialization, ef-

ficiently supporting both dense and sparse GEMM computation by gradually extending an

existing matrix ISA and micro-architecture specialized for the dense GEMM pattern to sup-

port the sparse GEMM pattern.

1.5 Collaboration and Funding

I collaborated with Moyang Wang who led the heterogeneous cache-coherent systems project.

I helped model the baseline cache-coherent systems using the Ruby memory model in gem5. I

helped debug cache coherence implementation bugs in gem5. I contributed in the discussion of

several intellectual aspects of this project regarding cache coherence protocol and dynamic task

scheduling. I contributed to setting up an automated simulation flow to enable more productive

and less error-prone research. The work has been published and presented by the lead of the

project, Moyang Wang, at the 47th ACM/IEEE International Symposium on Computer Architec-

ture (ISCA) in June 2020 [WTCB20]. This work inspired our software-managed cache coherence

implementation in the CIFER chip discussed in Chapter 2.

I led the effort in the Batten Research Group (BRG) to support RISC-V ISA in gem5 with

the help of Lin Cheng. The work is discussed in details in Chapter 3. I improved gem5 to sup-
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port simulations of a multi-core RISC-V system in its system call emulation mode. I ported an

open-source RISC-V test suite from the RISC-V community into gem5 to enable instruction-level

assembly testing that was missing in the gem5 simulator. I fixed numerous bugs related to simulat-

ing multiple RISC-V threads in the in-order and out-of-order core models in gem5. I contributed

all of my development including changes in gem5 and a new set of assembly tests to the open-

source gem5 codebase. This work has been published and presented by me at the 2nd Workshop

on Computer Architecture Research with RISC-V (CARRV) held in conjunction with ISCA-45 in

2018 [TCB18].

I was part of the multi-university CIFER chip tapeout project presented in Chapter 2. CIFER is

a heterogeneous system integrated with open-source Ariane cores, an embedded FPGA contributed

by the research group led by Professor David Wentzlaff at Princeton University, and many-tiny-

core tiles contributed by BRG group led by Professor Christopher Batten at Cornell University.

The Princeton team was the overall lead of this project, and I was the lead of the BRG group in

this project. More specially, I was in charge of developing, implementing, and verifying our tiny

in-order core RTL model. I helped Moyang Wang, Xiaoyu Yan, and Eric Tang with integrating

tiny cores with their software-managed coherent caches. Together with Moyang, we constructed a

tile of tiny cores and integrated three tiny-core tiles into the final CIFER chip. With tremendous

help from Shady Agwa and Yanghui Ou, I pushed the tiny-core tiles through a standard-cell-based

ASIC toolflow for gate-level testing, preliminary timing closure, and early area analysis. I helped

Moyang develop a runtime system that enables running task-parallel programs on CIFER. The

project would not have been possible without the lead of the Princeton team including Ting-Jung

Chang, Ang Li, Fei Gao, Georgios Tziantzioulis, Jinzheng Tu, Kaifeng Xu, Paul Jackson, August

Ning, Grigory Chirkov, Marcelo Orenes-Vera, and Jonathan Balkind in top-level integration, final-

step design rule checking, and post-silicon testing. With the help of the Princeton team, I was

able to verify and evaluate the many-tiny-core tiles after we received CIFER chips back from a

fabrication plant. The work has been published and presented by the project’s general lead, Ang

Li, at the IEEE Custom and Integrated Circuits Conference (CICC) in April, 2023 [CLG+23].

I led the big.VLITTLE project presented in Chapter 4. Khalid Al-Hawaj, Nick Cebry, Yanghui

Ou, Eric Hall, and Courtney Golden contributed significantly to the project. Khalid developed the

decoupled vector engine and the integrated vector unit models used as the baseline in this work. He

assisted in developing and debugging various other gem5 components. He also contributed to the
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intellectual development of this project. Nick led the development of benchmarks from the RIVEC

benchmark suite with the help of Eric and Courtney. Yanghui contributed to the first-order VLSI

area model used to evaluate the area overhead of big.VLITTLE. The work has been published and

presented by me at the 55th ACM/IEEE International Symposium on Microarchitecture (MICRO)

in October 2022 [TAHC+22].

I led the SparseZipper project presented in Chapter 5. Joshua Randall, Krishnendra Nathella,

and Jesse Beu contributed to the initial idea that led to SparseZipper while I was doing an internship

at Arm Research. Josh continued the collaboration with me after I finished the internship, and he

provided important feedback regarding technical aspects in SparseZipper. Yanghui Ou contributed

a first-order VLSI component-based area model used to evaluate the area overhead of SparseZipper.

This work was supported in part by NSF PPoSS Award #2118709, NSF SHF Award #2008471,

DARPA POSH Award #FA8650-18-2-7852, and the Center for Applications Driving Architectures

(ADA), one of six centers of JUMP, a Semiconductor Research Corporation program co-sponsored

by DARPA, and equipment, tool, and/or physical IP donations from Intel, Xilinx, Synopsys, Ca-

dence, and ARM. The U.S. Government is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright notation theron. Any opinions, findings, and

conclusions or recommendations expressed in this publication are those of the author(s) and do not

necessarily reflect the views of any funding agency.
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CHAPTER 2
CIFER: A CHIP PROTOTYPE USING HETEROGENEOUS

SPECIALIZATION

CIFER1 is the first academic open-source multicore-eFPGA system on chip (SoC) composed of

heterogeneous architectures capable of exploiting both parallelism and specialization by integrat-

ing parallel manycore, eFPGA, and Linux-capable multicore into a single SoC. By leveraging five

open-source hardware projects [ZB19, BMF+16, TOJ+19, LW21, BLS+20], a team of postdocs,

graduate and undergraduate students across Princeton University and Cornell University designed

and finished the tapeout within seven months during the pandemic. CIFER has been taped out

using GlobalFoundries 12nm FinFET technology node on a 16mm2 (4mm⇥4mm) die and pack-

aged in a 208-pin ceramic quad flat pack. Figure 2.1 shows the CIFER die photo with annotations

showing heterogeneous components in the chip.

This chapter first presents the overall architecture of CIFER including the Linux-capable multi-

core tiles, the TinyCore tiles, the eFPGA, and the heterogeneous cache coherence. Section 2.2 then

discusses verification methodology that enabled efficient testing of individual components and the

entire CIFER chip. Section 2.3 evaluates performance and energy efficiency of CIFER compared

to other state-of-the-art chips targeting edge/IoT workloads. Finally, we conclude with discussions

on opportunities and challenges of heterogeneous specialization approach from this CIFER tapeout

experience.

2.1 CIFER Architecture

Figure 2.2 details the CIFER micro-architecture including Linux-capable multicore tiles, Tiny-

Core tiles, an eFPGA tile with its controller, a 2⇥4 on-chip mesh network, private level-one in-

struction and data caches, and a shared level-two cache distributed across multiple tiles. In this

section, we discuss architecture-level details of the multicore tile, TinyCore tile, eFPGA, and het-

erogeneous cache coherence implemented in CIFER.
1CIFER stands for Coherent Interconnect and FPGA Enabling Reuse
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Figure 2.1: CIFER System-on-Chip Die Photo – A = Ariane cores; TC = Tiny-core clusters; Ctr = FPGA controller
tile; eFPGA = Embedded FPGA.

2.1.1 Linux-Capable Multicore Tile

There are four Linux-capable multicore tiles in the CIFER chip. Each tile includes one Ariane

core that is an open-source Linux-capable processor supporting RV64GC instruction set [ZB19].

The pipeline of Ariane supports in-order issue, out-of-order write-back, and late commit for pre-

cise exceptions and interrupts that are essential for running Linux. Ariane also supports double-

precision floating-point unit (FPU). Each core has a 16KB L1 instruction cache and an 8KB L1

data cache. Coherence between an Ariane core’s private caches and the shared L2 cache is im-

plemented in hardware using the BYOC interface [BLS+20]. These Ariane cores are used for

general-purpose compute such as running an operating system, managing threads running on the

TinyCore clusters, and offloading compute tasks to the eFPGA. In addition, those Ariane cores can

be used to run applications with limited thread-level and/or irregular parallelisms that would not

be efficient to run on either the TinyCore clusters (i.e., due to low single-thread performance of a

tiny core) or eFPGA (i.e., due to reconfiguration overheads).
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Figure 2.2: CIFER System-on-Chip Architecture – A-Tile = Ariane core tiles; T-Tile = Tiny-core tiles; C-
Tile = FPGA controller tile; eFPGA = Embedded FPGA.

2.1.2 TinyCore Tile

To exploit massive thread-level parallelism, CIFER includes three TinyCore tiles, each con-

sisting of six light-weight cores, for a total of 18 tiny cores on chip. Each tiny core is a 32-bit

RV32IMAF processor with a six-stage, in-order issue, out-of-order write-back, late commit and

scalar pipeline. To address write-after-write and write-after-read hazards during out-of-order exe-

cution, each tiny core supports limited register renaming capability with 40 integer and floating-

point physical registers. Each core has a private, 4KB L1 data cache. Two adjacent cores form

a pair share a 4KB L1 instruction cache, an integer multiply-divide unit (MDU), and a single-

precision floating-point unit (FPU). A small L0 instruction buffer is added to the front-end of each

18



Figure 2.3: Modular Tiny-Core Micro-architecture – ROB = reorder buffer; RAT = register alias table; RF = register
file; ALU = integer arithmetic unit; MDU = integer multiply/divide unit; FPU = single-precision floating-point unit;
LSU = load/store unit; br = branch; reg = register; rd = read; wr = write.

tiny core to minimize the latency impact of sharing the L1 instruction cache. The sharing of area-

expensive execution units maximizes computation density in a tiny core cluster.

The implementation of tiny core is modular so that individual components in its pipeline can be

tested as standalone units. Figure 2.3 shows the modular micro-architecture of the tiny core. There

are six main pipeline stages: fetch, decode, issue, execute, write-back, and commit implemented as

individual units with well-defined interfaces with other stages, global control and data managers,

memory interfaces, and external control interface. The fetch unit handles fetching instructions

from the L1 instruction cache, predicting branch outcomes (i.e., using a simple always-not-taken

branch predictor), and redirecting the instruction stream in case of mispredictions. The decode unit

is in charge of instruction decoding and register renaming. The issue unit schedules instructions

to the back-end execution pipelines and performs register file read for source operands of issued

instructions. The execute stage includes multiple execution units for integer/floating-point arith-

metic and load/store operations. The write-back unit handles writing back data for output operands

into the register file. Finally, the commit unit monitors the head of a re-order buffer (ROB) and

tries to commit at most one instruction per cycle. Communications (e.g., instruction forwarding

and pipeline back-pressure) between two adjacent units are performed via a valid/ready interface.
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The control flow manager includes a branch table for tracking speculative branch instructions

that are waiting for their branch resolutions Once a prediction is made for a branch instruction in

the fetch unit, the branch with its prediction is added to the branch table. In addition, the control

flow manager directs the data flow manager to take a snapshot of the register alias table (RAT) so

that it can be rolled back in case the prediction is wrong. Until the branch’s outcome is resolved

later in the pipeline (i.e., in the decode stage for unconditional jump instruction and in the execute

stage for conditional branch instructions), instructions following the predicted branch are tagged

as speculative under the branch. In case of a branch misprediction, all speculative instructions

under the corresponding branch need to be squashed. Once a branch’s outcome is resolved (e.g.,

in the execute stage), the control flow manager broadcasts a clear branch (i.e., clear_br) signal

with the branch tag to related front-end and back-end stages for either killing instructions under

the branch in case of a misprediction or clearing the speculative flag in those instructions in case of

a correct prediction. If a branch is mispredicted, the control flow manager needs to direct the data

flow manager to roll back the RAT snapshot associated with the mispredicted branch instruction.

In addition to the branch table, the control flow manager includes a re-order buffer (ROB) for

tracking pending instructions waiting to commit. Instructions are inserted into the ROB when they

are dispatched in the decode stage. The commit stage monitors the ROB’s head for committing

completed instructions and potentially handling exceptions.

The data flow manager handles the data flowing across multiple stages in the pipeline. It in-

cludes a register alias table (RAT) for tracking the mapping between logical and physical registers,

a free list for maintaining a list of physical registers available for new mapping, a register file, and

a scoreboard tracking whether values for registers are ready. Register names are looked up and

updated in the decode stage. If there is no available physical register, the pipeline simply stalls.

Once an instruction is committed, the previous register name of its destination register is returned

to the free list. Once an instruction is issued, the issue unit directs the data flow manager to read the

register file for source operand values and mark its destination register as pending (i.e., its value is

not ready yet). Value bypassing happens at the end of each execution pipeline and the write-back

stage via the data flow manager. The write-back stage sends a write-back command to the data

flow manager for writing back register values once instructions complete their execution.

The tiny core pipeline also includes interfaces to external memory (caches) and control. The i-

cache and d-cache interfaces are connected to the fetch unit and the load/store unit respectively. For
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external control communications (e.g., debug and reset signals) with the rest of the chip, we imple-

mented an external control interface in each tiny core. Two special instructions (i.e., proc2mngr

and mngr2proc) are implemented so that the core can send and receive control signals through the

external control interface.

Coherence between private L1 caches and the shared L2 cache is managed explicitly in software

by inserting special cache flush and invalidation instructions. In particular, a cache flush performs

a full cache walk to write back each dirty cache line while a cache invalidation clears the valid

bits of clean cache lines. A small per-cluster private cache in the BYOC interface forwards write-

back and atomic requests from private L1D caches to the shared L2 cache. Snoop requests from

the shared L2 cache are not propagated to L1D caches due to explicit software-managed cache

invalidation and flush.

In each tiny core tile, we implemented a per-tile control logic that coordinates the execution of

tiny cores within a tile via the external control interface in each core. The control logic is respon-

sible for waking up all cores upon receiving a wakeup signal from CIFER’s top-level control and

monitoring whether those cores complete their executions. An Ariane core can wake up a tiny core

tile through a memory-mapped register interface. Once all cores in a tiny core tile complete their

tasks, the per-tile control logic updates a memory-mapped register to signal the tile is available.

2.1.3 Embedded FPGA

The eFPGA designed with PRGA [LW21] has 6720 multi-node, 6-input LUTs and 18 24Kbit,

dual-port block RAMs. Hardware designers can use an open-source RTL-to-bitstream toolchain

consisting of Yosys [Wol20], VPR [MPZ+20], and PRGA’s bitstream assembler to build acceler-

ator designs that are then mapped to the eFPGA. The eFPGA is the first silicon instantiation of

Duet [LNW23] that includes two interfaces: (1) the control register interface for a host processor

(e.g., Ariane core) to control the eFPGA via a memory-maped I/O interface; and (2) the coher-

ent memory interface supporting non-coherent, IO-coherent, or bidirectionally coherent memory

accesses of the eFPGA. Communications between the eFPGA and the rest of the system are per-

formed through the eFPGA controller. To enable fine-grain cooperative execution between the

eFPGA and other compute tiles in CIFER, atomic requests to shared memory are supported in the

eFGPA.
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2.1.4 Heterogeneous Cache Coherence

CIFER unifies heterogeneous cache coherence protocols of different processing tiles within

a fully coherent cache system. This unification minimizes the communication overhead across

those tiles, which enables fine-grained cooperative execution of heterogeneous processing elements

on chip, besides the conventional offloading programming model. Processing tiles with different

cache coherence protocols communicate over the BYOC framework in which a small per-cluster

cache (i.e., L1.5 cache) handles coherence transactions between the shared L2 cache and private

L1 cache(s) in each cluster.

To address programming challenges in using a software-managed coherence protocol imple-

mented in the tiny core tiles, we implemented a task-parallel work-stealing runtime that facilitates

parallel thread execution across Ariane and tiny cores by leveraging coherent caches. The runtime

is in charge of inserting automatically cache flush and invalidation instructions when necessary to

enable the coherence of shared data between tiny cores and the rest of the system. An eFPGA-

emulated accelerator can be efficiently invoked by simply passing the memory addresses of the

data to be processed. Depending on the computation, the accelerator can either copy a continuous

chunk of data into its BRAM scratchpad or read/write memory in a random byte-granular manner.

2.2 Verification Methodology

Integrating heterogeneous hardware IPs into a single SoC poses significant challenges in testing

not just individual IPs but also the whole systems with integrated components. For pre-silicon

verification, we used a combination of various testing strategies to rigorously stress different parts

of CIFER and the entire chip.

Unit & Integration Testing – Since we leveraged open-source hardware IPs (e.g., Ariane core,

OpenPiton for top-level cache system, PRGA for the eFPGA, and PyOCN for on-chip network),

we rely on previous verifications of those components, which reduced significantly our verification

effort. For other components such as the TinyCore tiles, we leveraged the PyMTL3 testing frame-

work to perform unit testing. For example, we developed directed test cases for individual pipeline

units and flow managers of the tiny core’s pipeline (i.e., discussed in Section 2.1.2) before the

integration of those components into a tiny core’s pipeline is tested. Such low-level fine-grained
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unit testing helped us build confidence in the correctness individual components and manage the

complexity of verifying this entire chip. Since unit testing is focused on individual components,

integration testing is focused more on verifying connections between components. One of the

most challenging verification tasks was to verify the integration of a TinyCore tile with the top-

level shared L2 cache. We developed specific test cases for invoking coherence transactions going

through the L1.5 cache of the BYOC interface.

Directed & Random Testing – We developed directed test cases to verify specific hardware be-

haviors and transactions (e.g., cache replacements and squashing behaviors triggered by a branch

misprediction in the tiny core’s pipeline). In addition to directed test cases, we relied on ran-

dom testing to cover cases that are more complex. For example, we used PyH2 testing frame-

work [JOP+20] in PyMTL3 to generate random valid RISC-V programs with arbitrarily long se-

quence of instructions. Those random test cases helped discover bugs only triggered by certain

unique sequence of transactions (e.g., nested branches with certain branch outcome patterns).

RTL & Gate-Level Testing – We used the PyMTL3 testing framework for efficiently writing

test cases in Python. The framework automatically generated Verilog testbenches from Python test

cases for RTL testing. We reused the same testbenches for post-synthesis gate-level testing.

2.3 Evaluation

Figure 2.4 shows the maximum operating frequency of each hardware component across the

range of functional supply voltage. The eFPGA’s maximum operating frequency depends on the

emulated design. Figure 2.4 shows the maximum operating frequency of a 64-bit LFSR. CIFER’s

maximum frequency is 1195MHz when running at 1.1V. Table 2.1 compares CIFER with other

state-of-the-art CPU-FPGA SoCs targeting the edge/IoT computing.

The aggregate peak performance and energy efficiency of CPUs in CIFER are 15.54 GFLOPS

at 1.1V and 53.18 GFLOPS/W at 0.7V. For the estimated power dissipation, we excluded the eF-

PGA’s configuration clock power based on our post-layout power analysis. CIFER outperforms

the next best SoC by 6.5⇥ and 1.4⇥. The eFPGA’s area efficiency is 1541 LUT6/mm2 which

is 11.2⇥ better than other synthesizable eFPGAs and only 1.3⇥ worse than the best full-custom

eFPGA. Regarding performance, the eFPGA achieved the peak of 1.92 MOPS/LUT, 126MHz

at 1.1V, 148.1 GOPS/W at 0.7V, and 97% utilization when performing a 64-point FFT. The eF-
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PGA achieved lower performance and energy efficiency than the best full-custom eFGPA for three

reasons. First, CIFER is synthesized with a standard cell library. Second, there is no hardware

multiply-accumulate unit in the eFGPA. Third, we used an open-source RTL-to-bitstream toolchain

which is likely to perform worse than a proprietary toolchain.

We measured performance and energy efficiency improvement of running real benchmarks on

the TinyCore tiles and eFPGA by offloading SORT and SHA-256 to the eFPGA, and executing

GEMM and JACOBI2D on the TinyCore tiles. Those kernels represent the edge/IoT application

domain which is the target domain of CIFER. The reported execution time includes all control

overhead (e.g., data transfer between tiles) and coherent memory access latency. For a fair energy

comparison of different components, we exclude full-chip idle power (i.e., static and clock power).

At nominal voltage, the eFPGA is 9.29⇥ better in throughput and 10.62⇥ more energy efficient

than the Ariane-only baseline while the TinyCore tiles achieved up to 7.95⇥ speedup and 7.75⇥

improvement in energy efficiency.

2.4 Conclusion

In this chapter, we present CIFER, the first academic open-source multicore-eFPGA SoC com-

posed of multiple Linux-capable cores for running general-purpose workloads, TinyCore tiles for

exploiting massive thread-level parallelism, and eFPGA for application-specific acceleration. The

chip was fabricated on a GlobalFoundries 12nm FinFET technology node. CIFER features a het-

erogeneous cache coherence implementation that enables seamless on-chip communications across

different compute tiles. For workloads with massive thread-level parallelism, our evaluation results

show that the TinyCore clusters improve their performance and energy efficiency by up to 7.95⇥

and 7.75⇥ respectively compared to a single general-purpose Ariane core. For workloads that are

well-suited for mapping to the eFPGA, we show up to 9.29⇥ and 10.62⇥ performance and energy

efficiency improvement respectively.

CIFER is an example of the heterogeneous specialization by composing heterogeneous hard-

ware components specialized for different compute patterns into an SoC. CIFER demonstrates the

key opportunities and challenges of this approach.

Opportunities for exploiting different kinds of specialization in an SoC – CIFER illustrates

the potential performance and energy efficiency benefits of integrating hardware components spe-
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cialized for different compute patterns into an SoC. Workloads with different compute patterns can

be scheduled to run on the most well-suited compute platforms to maximize their performance and

energy efficiency.

Opportunities for leveraging open-source projects to build a complex SoC – We leveraged

various open-source projects including OpenPiton [BMF+16], PyMTL3 [JIB18], PRGA [LW21],

PyOCN [TOJ+19], Ariane core [ZB19], and BYOC framework [BLS+20] to facilitate an effi-

cient and agile hardware development that enabled a team of postdocs and students across two

universities to finish the CIFER tapeout with 450+ million transistors in seven months during the

pandemic.

Opportunities for fine-grained cooperative execution paradigm – CIFER unifies hetero-

geneous cache coherence protocols of different processing units within a global, fully-coherent

system. Besides the conventional offloading model, this unification enables opportunities for fine-

grained cooperative execution across different compute platforms via a shared on-chip memory

with heterogeneous cache coherence.

Challenges in maximizing utilization of on-chip resources – The amount of hardware re-

sources dedicated to each kind of specialization is determined at the design time. Therefore, when

the balance of compute patterns in workloads is different from the design-time hardware resource

allocation, heterogeneous systems such as CIFER are likely to suffer poor hardware resource uti-

lization. More specifically in CIFER, at design time, it was virtually impossible to determine a

“perfect” area ratio of Ariane, TinyCore, and eFGPA tiles that could maximize resource utilization

when CIFER runs various workloads after the chip comes back.

Challenges in integrating and verifying heterogeneous components – While using open-

source hardware IPs lowers the design complexity of individual heterogeneous hardware compo-

nents, it is challenging to integrate them into a single chip and verify the integration. In CIFER,

we did rigorous testing to verify the functionality of whole system after integrating different hard-

ware components and found numerous bugs related to connections between TinyCore tiles and

the shared last-level cache at the top level. Besides functional verifications, timing closure is an-

other challenge in CIFER. The whole system was not able to meet the target frequency that each

individual tile could achieve in their own timing closure.
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CHAPTER 3
CYCLE-LEVEL MODELING OF MULTI-CORE RISC-V

SYSTEMS

The RISC-V ecosystem is becoming popular in both industry and academia. The ecosystem

provides rich open-source software and hardware tool chains that enable computer architects to

quickly leverage RISC-V in their research. While the RISC-V ecosystem includes functional-level,

register-transfer-level, and FPGA simulation platforms, there is currently a lack of cycle-level sim-

ulation platforms for early design-space exploration. The gem5 simulator is a popular cycle-level

simulation platform that provides reasonably flexible, fast, and accurate simulations. Previous

work has added single-core RISC-V support to gem5. This chapter presents our early work on sim-

ulating multi-core RISC-V systems in gem5. We first describe our approach to functional and tim-

ing validation of RISC-V systems in gem5. We then evaluate the performance of the gem5/RISC-V

simulator and discuss a design-space-exploration case study using gem5, the open-source RISC-V

software tool chain, and two popular task-based parallel programming frameworks. Compared

to the register-transfer-level modeling used in Chapter 2, this cycle-level modeling methodology

using gem5 enables relatively fast and efficient architecture explorations and evaluations of both

big.VLITTLE and SparseZipper architectures presented in Chapter 4 and 5.

3.1 Introduction

RISC-V is an emerging open-source software and hardware ecosystem that has gained in pop-

ularity in both industry and academia [ris18, AP14]. At the heart of the ecosystem, the RISC-V

ISA is designed to be open, simple, extensible, and free to use. The RISC-V software tool chain

includes open-source compilers (e.g., GNU/GCC and LLVM), a full Linux port, a GNU/GDB de-

bugger, verification tools, and simulators. On the hardware side, several RISC-V prototypes (e.g.,

Celerity [DXT+18]) have been published. The rapid growth of the RISC-V ecosystem enables

computer architects to quickly leverage RISC-V in their research.

Hardware modeling and simulation are critical for system design-space explorations. An ideal

model is fast to simulate, accurate, and easy to modify. However, achieving all three goals in a

single model is difficult (see Table 3.1). The RISC-V ecosystem provides functional-level mod-

els (e.g., Spike, QEMU), register-transfer-level (RTL) models (e.g., Rocket, Boom, Ariane), and
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Time to Modify Time to Simulate Accuracy

FL + + + + � �
CL + + �

RTL � � � + +

FPGA � � + + + +

Table 3.1: Different Modeling Levels and Their Trade-Offs – FL = functional-level; CL = cycle-level;
RTL = register-transfer-level. Plus and minus symbols show relative comparisons between levels.

FPGA models (e.g., Rocket Zedboard). Functional-level modeling is fast and easy to modify, but

it does not capture the timing of the target system. RTL modeling provides cycle-accurate details

of the target system at the cost of being slow to simulate and hard to modify. FPGA model-

ing provides both accurate and fast simulations but is even more challenging to modify owing to

lengthy synthesis and place-and-route times. Cycle-level modeling offers a middle ground that is

easier to modify than FPGA modeling, faster to simulate than RTL modeling, and more accurate

than functional-level modeling. Its flexibility and performance provide a good platform for early

system design-space exploration.

gem5 is a popular cycle-level simulator that supports various instruction sets including x86,

MIPS, and ARM. The simulator already provides a number of processor, cache, interconnection

network, and DRAM models. It also offers advanced simulation features such as fast-forwarding

and check-pointing. Previous work has added single-core RISC-V support to gem5 [RS17], and

our work has focused on adding multi-core RISC-V support to gem5.

In section 3.2, we describe our modifications to gem5 to support simulating multi-core RISC-V

systems. Sections 3.3 and 3.4 present our functional and timing validation of the implementation.

In Section 3.5, we describe the applications used to evaluate our work. Section 3.6 shows the

performance of gem5. Section 3.7 presents a small design-space exploration study on a hetero-

geneous multi-core system with two different task-parallel programming frameworks using the

RISC-V implementation in gem5.

3.2 Adding Multi-Core RISC-V Support to gem5

In this section, we describe our modifications to gem5 to support the thread-related system calls

(e.g., clone, futex, and exit) and RISC-V synchronization instructions (e.g., atomic memory
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operation, load-reserved, and store-conditional instructions) that are required to run multi-threaded

applications in the simulator.

3.2.1 Adding Threading System Call Support

gem5 supports two modes of simulation: full-system (FS) and system-call-emulation (SE) [BBB+11].

In FS mode, applications execute using a simulated operating system (OS) exactly as they would

on a real system. All system calls are trapped and handled by the simulated OS. In SE mode, sys-

tem calls are directly emulated within the simulator itself. When an application executes a write

system call, gem5 simply invokes a corresponding write system call using the host machine run-

ning the simulator, and no OS code is simulated. In this work, we focus only on SE mode. The

implementation of system calls in SE mode is mostly ISA-independent, so much of this code can

be directly reused to support RISC-V.

Each CPU in gem5 has a number of hardware (HW) threads. When an application executes,

each software (SW) thread is mapped to a particular HW thread. A HW thread maintains its cor-

responding SW thread’s state including its program counter (PC), its register values, and whether

the SW thread is active. Thread creation, synchronization, and termination are handled through

three system calls: clone, futex, and exit. So to run multi-threaded applications in SE mode,

we must focus on supporting these three key system calls. Other thread-related system calls such

as gettid, getgid, and getpid are completely ISA-independent and so are implemented in gem5

for RISC-V by default.

Clone System Call – In Linux, an application spawns a new thread by calling the clone system

call. The new thread can share resources with its parent thread, including the virtual memory

space, file descriptors, and other process attributes. The sharing is specified through different

flags (e.g., CLONE_VM, CLONE_FILES, and CLONE_THREAD) given to the system call. If the

CLONE_CHILD_ CLEARTID flag is set, then when a child SW thread terminates it should wake

up its parent SW thread.

When executing the clone system call in gem5’s SE mode, the simulator first finds an available

HW thread. Pointers to shared resources (e.g., page table and file descriptor table) are copied from

the calling SW thread to the new one. If non-shared resources (e.g., stack space and thread local

storage) are pre-allocated, pointers to these resources will be passed into the clone system call

and then used to initialize the SW thread. Otherwise, gem5 will allocate such resources on its own.
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After all necessary attributes and resources are initialized, gem5 activates the HW thread context,

and the new SW thread starts executing its first instruction. Most of the existing implementation of

the clone system call was leveraged to support RISC-V. We implemented some RISC-V specific

requirements including a different system call API and register file initialization process.

Futex System Call – Linux supports OS-level thread synchronization through the futex sys-

tem call. The system call supports two operations: FUTEX_WAIT and FUTEX_WAKEUP. When

a SW thread executes the FUTEX_WAIT operation, the SW thread checks if the value at a given

address still matches a given expected value. If so, the SW thread waits by sleeping. A different

SW thread can execute the FUTEX_WAKEUP operation to wake up one or more SW threads wait-

ing on a given address. The FUTEX_WAIT_BITSET and FUTEX_WAKE_BITSET flags enable a

SW thread to use a bit map to control which waiting thread(s) to wake up when performing the

FUTEX_WAKEUP operation. The bit-set flags are commonly used in some parallel programming

frameworks (e.g., OpenMP and Cilk).

In gem5’s SE mode, each futex address is associated with a list of waiting HW threads. To

execute the FUTEX_WAIT operation, gem5 puts the calling HW thread into a thread list associated

with a given futex address and then suspends the HW thread. The suspended HW thread becomes

idle. When a SW thread executes the FUTEX_WAKEUP operation on the same address, some

HW threads waiting in the thread list are woken up and re-activated. The implementation of the

futex system call is ISA-independent, so we only needed to modify it to support the bit-set flags

to selectively wake up threads. We also needed to fix a more fundamental issue in the thread

suspension and activation logic used by all gem5 CPU models. More details on our modifications

are described in Section 3.3.

Exit System Call – A SW thread calls the exit system call to terminate its execution. If the

CLONE_CHILD_CLEARTID flag was used to clone the child SW thread, then the parent SW

thread needs to be woken up.

In gem5’s SE mode, when a SW thread executes the exit system call, gem5 cleans up all

micro-architectural and architectural state belonging to the thread in the CPU pipeline. It then de-

taches the SW thread from its current HW thread, and the HW thread becomes available for future

use. If waking up its parent thread is required, gem5 performs the FUTEX_WAKEUP operation on

an address given to the clone system call that was used to create this SW thread.

31



3.2.2 Adding Synchronization Instruction Support

The RISC-V “A” standard extension for atomic instructions supports two types of synchroniza-

tion instructions: atomic memory operations (AMO) and load-reserved/store-conditionals (LR/SC) [ris18].

RISC-V supports the release consistency model and a memory fence instruction (FENCE). These

instructions and the memory model are used to synchronize threads through shared variables. Al-

though they have been recently implemented in gem5, their functionality was only validated for

single-core simulations [RS17]. In multi-core simulations, we found that some executions using

synchronization instructions implemented in the previous work could lead to race conditions and/or

thread starvation. We describe our modifications to the implementation to fix these issues.

AMO Instructions – AMO instructions (e.g., amoadd) perform read-modify-write operations

atomically to a given address. They appear to be executed in a single step with respect to all

threads.

There are two ways to implement AMO instructions: (1) locking a target cache line before per-

forming the operation using the CPU pipeline; and (2) embedding AMO arithmetic logic units

(ALU) inside private L1 caches [roc18]. We chose the second approach to implement AMO in-

structions in gem5. We modified its cache model to support executing ALU operations directly in

caches. We added a new memory request type called atomic in addition to load and store. Atomic

requests are treated as if they were normal store requests except that no data-forwarding between

an atomic request and a subsequent load request to the same address is allowed. This is due to

the fact that atomic requests carry no valid data until they are executed in caches. Similar to store

memory requests, an atomic request requires exclusive access to its target cache line through the

cache coherence protocol before updating the line in an L1 cache. The cache then executes the

request’s ALU operation and updates the cache line in one step. The exclusive access and one-step

execution inside the cache guarantees the atomicity of the AMO instruction. The previous value at

the target address is returned to the executing CPU pipeline after the atomic memory request is

completed in the cache.

LR/SC Instructions – An LR instruction reserves exclusive access to a shared address. An

SC instruction performs an update to the value at the shared address only if there is still a valid

reservation on the address. The pair of instructions is commonly used to perform lock-free atomic

read-modify-write operations. Using an LR/SC instruction pair to synchronize multiple threads is

prone to livelock. An SC instruction executed by thread A may never succeed if an LR instruction
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executed by another thread continually invalidates thread A’s reservation. RISC-V guarantees an SC

instruction will eventually succeed under certain constraints on the number and type of instructions

between an LR/SC pair [ris18].

The implementation of LR/SC in gem5 maintains a per-HW-thread list of reserved addresses.

When an LR instruction is executed in a HW thread, a snoop request is placed on a cache coherence

bus to revoke any reservation of the instruction’s target address. Once all reservations in other HW

threads are invalidated, the address is pushed into the requesting thread’s reservation list. Later,

when executing an SC instruction, the HW thread checks if the instruction’s target address still

exists in the thread’s reservation list. If so, the SC instruction succeeds, and the address is popped

off the list. Otherwise, the instruction fails. If a HW thread receives a snoop request for an address,

it revokes any matched entry in its own list. We made the reservation list structure private for each

HW thread to correctly support LR/SC in multi-core simulations. To implement RISC-V’s livelock

freedom guarantee, we modified the L1 cache to hold off processing LR snoop requests to an

address for a bounded period of time if there is an active reservation on the address.

Release Consistency Model – RISC-V supports a release consistency model [GLL+90]. Un-

der the model, memory operations are free to be re-ordered unless there is a memory fence (FENCE)

instruction between them. RISC-V also supports two memory ordering flags (acquire, release) en-

coded in two corresponding bits (aq, rl) inside AMO and LR/SC instructions. The acquire flag

prevents memory operations after an AMO or LR/SC instruction from being re-ordered with respect

to the instruction. The release flag prevents memory operations before an AMO or LR/SC instruction

from being re-ordered with respect to the instruction.

The RISC-V FENCE instruction is implemented in the current version of gem5. Its implementa-

tion prevents memory instructions after the FENCE instruction from being issued until all memory

instructions before the FENCE instruction retire. To implement the memory ordering bits embedded

in AMO and LR/SC instructions, we used gem5’s micro-operation feature that allows breaking an in-

struction into a sequence of smaller micro-operations to be executed by the CPU pipeline. Depend-

ing how aq and rl are set in an AMO or LR/SC instruction, we inserted a fence micro-operation(s)

before and/or after the AMO or LR/SC instruction. Table 3.2 shows all four configurations of aq and

rl bits, their memory ordering semantics, and their corresponding sequences of micro-operations.
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aq rl Ordering Semantics Micro-op Sequence

0 0 Relaxed AMO/LR/SC

0 1 Releasing fence; AMO/LR/SC
1 0 Acquiring AMO/LR/SC; fence
1 1 Sequentially consistent fence; AMO/LR/SC; fence

Table 3.2: Micro-Operation Sequences for AMO and LR/SC Instructions – Each sequence corresponds to a config-
uration of aq and rl bits set in the instructions and a memory ordering rule in the release consistency model.

3.3 Functional Validation

In this section, we describe our functional validation of the RISC-V implementation in gem5.

We first show a major challenge with using gem5’s current regression tests to validate the imple-

mentation. We then explain our approach and describe how we applied it to validate the function-

ality of thread-related system calls and RISC-V instructions.

Challenge – Although gem5 already has a regression test suite including some C/C++ bench-

marks and their reference outputs, using these tests to debug a complex CPU model is challenging.

A C/C++ benchmark, even a very simple one, can compile to thousands of instructions. Since a

compiler can optimize the benchmark, the generated assembly code is often hard to understand.

When the benchmark fails, tracing the problem through the large number of instructions is difficult

and time-consuming. Debugging a multi-core CPU model that runs multi-threaded applications is

even worse. A problem can appear to happen in a code region that is far from where the actual bug

occurs. Therefore, we need a better approach to validate functionality in gem5.

Approach – Instead of using C/C++ benchmarks to validate a model in gem5, we used exten-

sive, well-crafted assembly and low-level C unit tests. Each small test written in assembly code

stresses a single instruction or system call without extra complexities coming from any C/C++

library and compiler. We used low-level C unit tests to discover missing functionality that is used

in real libraries (e.g., GNU pthread library). By thoroughly testing an implementation at a low

level, we can be more certain about the correctness of each instruction and system call.

Implementation – We applied the approach to validate functionality of the single-threaded and

multi-threaded implementation of RISC-V in gem5.

For the single-threaded implementation, we leveraged an extensive assembly test suite in the

open-source RISC-V tool chain1. The RISC-V test suite is designed to run on bare metal systems
1
https://github.com/riscv/riscv-tests
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without any OS support, and it communicates to a host machine to inform test outputs. However,

gem5 simulates systems with OS support, so to integrate the suite into gem5, we added a new

testing environment that ignores the initial to-host communication setup in the original suite and

calls the exit system call with an exit status number denoting which test case fails.

For the multi-threaded implementation, we built our own assembly and low-level C unit tests.

Since we do not want to have the complexity of threading libraries (e.g., GNU pthread library)

in our assembly tests, we wrote a minimal threading library written in assembly code to simplify

developing new multi-threaded assembly tests. The library includes minimal functionality to cre-

ate, synchronize, and terminate threads using the clone, futex, and exit system calls. We first

validated the implementation of these system calls. Then we built new tests using the minimal

library to validate the implementation of AMO and LR/SC instructions on a multi-core system. The

multi-threaded tests are focused on inducing potential race conditions and other synchronization

bugs that are impossible to detect in single-threaded tests. Low-level C unit tests were built to de-

tect missing functionality used in the GNU pthread library. Each unit test is focused on a single

pthread function (e.g., pthread_create, pthread_join, and pthread_mutex_lock).

Using our approach, we were able to detect and fix numerous bugs in gem5’s CPU models

efficiently. Some of the bugs are related to incorrect suspension and resumption of HW threads

in a CPU pipeline, which would be hard to reveal, trace, and fix using only C/C++ benchmarks.

Some other bugs happened in the out-of-order CPU pipeline’s memory disambiguation unit and

load/store queue. Without the ability to control interactions between memory instructions, it would

be challenging to reproduce and trace such memory-related bugs. There were a couple of bugs

related to incorrect interpretation of the clone system call’s API. They were easily detected in our

simple assembly tests.

3.4 Timing Validation

Detailed CPU models in gem5 are meant to be used as generic models and are not validated

against an actual cycle-accurate micro-architecture [NMHS15]. Users of the models often need to

re-configure them and validate their performance against a target micro-architecture [GPD+14].

In this section, we first explain the challenges involved with timing validation for the RISC-V

implementation in gem5, before describing a general approach for such timing validation. We then
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show an example of how we validated a multiplier unit in gem5’s in-order CPU model against the

multiplier unit in the Rocket chip.

Challenge – Timing or performance validation of a CPU model in gem5 is often performed

using C/C++ benchmarks (e.g., SPEC CPU2006) [GPD+14]. Performance counters (e.g., the total

number of cycles and instructions) are used to compare the performance of the simulated system

vs. the target system. There are two main problems with this approach. First, it is often challenging

to detect a performance bug. Since this approach relies on very general performance statistics of

high-level benchmarks, different simulation errors and performance bugs can together skew the

overall performance results [NMHS15]. Second, parameters of a model can be tuned to make the

model appear to have correct timing behavior only in a small set of benchmarks [NMHS15]. When

running the model with a benchmark that heavily uses HW units that are not validated, the model’s

performance may become incorrect.

Approach – Instead of using C/C++ benchmarks to validate the performance of a whole

CPU model in gem5, we argue for an incremental validation approach using assembly micro-

benchmarks. Each micro-benchmark is carefully designed to validate a specific HW unit (e.g.,

branch predictor, multiplier, decoder, and memory load/store queue) using a sequence of instruc-

tions that heavily use the target unit. The sequence’s performance is measured through HW cycle

and instruction counters. Some techniques including cache warm-up and loop unrolling can be

applied to minimize interference from other HW units.

Implementation – In this work, we applied the approach to validate the multiplier’s perfor-

mance in gem5’s in-order CPU model against the multiplier in a Rocket chip. We configured

the Rocket chip generator to generate an in-order CPU model that has an 8-cycle iterative multi-

plier. We wrote a micro-benchmark that executes 500 mul instructions back-to-back with minimal

read-after-write dependencies. We did not use branch instructions to loop through the sequence

to prevent the branch predictor from affecting the sequence’s timing behavior. We also warmed

up the instruction cache by pre-executing the sequence to minimize interference from the memory

system. We used rdcycle and rdinstret instructions to count the number of cycles and dynamic

instructions in the sequence of interest.

For each mul instruction, the Rocket core’s iterative multiplier spends one cycle taking input

values in, eight cycles doing the multiplication, and another cycle pushing the output value to the

next pipeline stage. In total, each mul instruction takes 10 cycles to complete in the Rocket core’s
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Metrics gem5’s In-Order Model Rocket In-Order Model

DInst 503 503
CPU Cycle 5010 5003
CPI 9.96 9.95

Table 3.3: Timing Validation of the Multiplier Unit in gem5’s In-Order CPU Model against the Multiplier in
the Rocket Chip – Performance numbers are for the sequence of 500 mul instructions. DInst = Dynamic Instruction.
CPI = Cycles Per Instruction.

multiplier. The multiplier is not pipelined, so it cannot execute new mul instructions until the

current one completes. To model this iterative multiplier in gem5, we configured gem5’s in-order

CPU’s multiplier unit to have 10-cycle issue and execution latency. Table 3.3 shows performance

numbers for both models after the validation. The multiplier in gem5’s in-order model performed

close to the multiplier in the Rocket core in terms of the instruction throughput.

This validation of the multiplier unit is a starting point, and future validation of other HW

units in gem5’s CPU models are necessary. Our work suggests an incremental timing validation

approach that can be applied to gem5’s CPU models.

3.5 Evaluation Workload

We chose 13 applications from the Ligra benchmark suite [SB13b] as our workload (see Ta-

ble 3.4). Ligra is a graph processing framework designed for shared-memory systems. It sup-

ports multiple threading libraries including Cilk [int13] and OpenMP [ope08]. Ligra provides two

lightweight routines called mapEdge and mapVertex to process subsets of edges and vertices re-

spectively. Multiple subsets can be processed in parallel. Many applications in Ligra show irregular

characteristics in their parallelism and memory access patterns.

In terms of input graphs, we picked two real-world graphs called socfb-American75, which

is from a collection of Facebook networks [RA16], and Kneser_10_4_1, which is from a sparse

matrix collection [DH11]. socfb-American75 is a dense graph which has around 6,000 vertices

and 440,000 edges. Kneser_10_4_1 is a sparser graph with around 350,000 vertices and 990,000

edges.

In this work, we used four different versions of each Ligra application: Serial, OpenMP-Static

(OMP-S), OpenMP-Guided (OMP-G), and Cilk-Work-Stealing (Cilk-WS). We used the OpenMP
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Applications Input Graphs DInst (M)
Serial OMP-S OMP-G Cilk-WS

BC kneser 1152 1148 1149 1196
BFS kneser 502 502 502 523
BFSCC kneser 607 988 1079 2595
BFS-Bitvector kneser 1042 1059 1059 1082
Components kneser 1719 1719 1735 1746
MIS kneser 646 810 844 835
KCore socfb 628 641 648 1009
PageRank socfb 2858 2861 2862 3241
PageRankDelta socfb 400 401 401 441
Radii socfb 268 268 268 283
Triangle socfb 1069 1069 1069 1121
BellmanFord socfb 138 137 137 147
CF socfb 2670 2670 2670 2889

Table 3.4: List of Ligra Applications – Serial = single-threaded versions. OMP-S = multi-threaded versions using
OpenMP runtime with the static scheduling policy. OMP-G = multi-threaded versions using OpenMP runtime with
the guided scheduling policy. Cilk-WS = multi-threaded versions using Cilk runtime with the work-stealing policy.
DInst = dynamic instruction count. Multi-threaded versions are simulated on a 4-core in-order CPU in gem5. The
reported numbers are only for regions of interest that include only graph computation phases and exclude input graph
initialization phases in each application.

and Cilk task parallel runtime libraries shown in Table 3.5. We used the open-source RISC-V tool

chain including the GNU compiler and GNU libc to compile the Ligra applications. We only made

a minor modification to the compiler to be able to compile the Cilk runtime. For the OpenMP

runtime, the tool chain works out-of-the-box.

3.6 Simulator Performance

In this section, we show the performance of gem5 simulating four Ligra applications: PageR-

ank, PageRankDelta, KCore, and Triangle. We first show a performance comparison between

gem5 and the Chisel C++ RTL simulator. Then we show that using the fast-forwarding feature

provided with gem5 increased its simulation speed up to 2⇥ in the set of studied benchmarks.

Finally, we present the scalability of gem5’s performance in multi-core simulations. We ran our

experiments on a multi-core machine with Intel Xeon E5620 CPUs running at 2.40 GHz.

gem5 vs. Chisel C++ RTL Simulator – We chose the Rocket chip generator as our base-

line [AAB+16]. The generator is written in Chisel and can be configured to generate an RTL
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Runtime Chunk Size Task Assignment Work Stealing

OMP-S Fixed Static No
OMP-G Adaptive Dynamic No
Cilk-WS Fixed Dynamic Yes

Table 3.5: Threading Libraries Used in Our Experiments – Fixed chunk size = the task chunk size is fixed for a
particular parallel region. Adaptive chunk size = task chunk size is adjusted dynamically to better handle workload
imbalance within a parallel region. Static task assignment = tasks are assigned statically before entering a parallel
region. Dynamic task assignment = tasks are assigned on the fly during the execution of a parallel region. If work
stealing is available, a thread can steal tasks from other threads.

model in Verilog. Verilator is then used to compile the RTL model into a C++ cycle-accurate

model that is significantly faster than the Verilog RTL model. We used a RISC-V proxy kernel to

handle system calls executed in the Chisel C++ RTL simulator instead of simulating a full Linux

kernel for better simulation performance. Unfortunately, the proxy kernel does not support the

clone and futex system calls. Therefore, we are unable to perform a multi-threaded simulation

performance comparison between gem5 and Chisel C++ RTL simulator. For this comparison, we

used the gem5 configuration with the validated multiplier and the Rocket core as described in

Section 3.4.

We chose the single-threaded version of KCore from the Ligra benchmark suite. We measured

the end-to-end simulation time of both simulators using the time Linux command. We counted

the number of cycles and instructions simulated in the simulators using rdcycle and rdinstret

instructions. Table 3.6 shows a performance comparison between the two simulators. The Chisel

C++ RTL simulator simulated slightly more instructions than gem5 due to the extra instructions

required for executing system calls in the RISC-V proxy kernel. The Chisel C++ RTL simulator

simulated roughly 36% more cycles than gem5 did. One possible reason for the difference is that

despite using the validated multiplier in gem5, the performance of other HW units (e.g., branch

predictor, memory load/store unit, and memory system) has not been validated.

Despite differences in the absolute instruction and CPU cycle counts, the average number of

cycles per second and instructions per second provide intuition into the relative performance of

both simulators. gem5 is more than an order of magnitude faster compared to the Chisel C++ RTL

simulator. This large difference is one of the key benefits of cycle-approximate vs. cycle-accurate

simulation. To provide context, simulating 1B instructions would take almost three days when
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Figure 3.1: Performance of Different Task Scheduling Mechanisms in a Heterogeneous System

Metrics gem5 Simulator Chisel C++ RTL Simulator

DInst (M) 1125 1161
CPU Cycle (M) 1440 1956
KCPS 225 7
KIPS 175 4

Table 3.6: Performance Comparison between gem5 and Chisel C++ RTL Simulator – Both simulators run the
same single-threaded binary of KCore. DInst = dynamic instruction. KCPS = kilo CPU cycles per second. KIPS = kilo
instructions per second.

using the Chisel C++ RTL simulator, but this same simulation would take less than two hours

when using gem5.

Fast-Forwarding Simulation – gem5 can fast forward a sequence of instructions by simulating

them with a simple CPU model that only captures functional behavior and excludes the timing

behavior of the CPU pipeline, the memory system, or both. Table 3.7 shows two simple and two

detailed CPU models that are available in gem5. Switching between a simple and a detailed model

can happen on any given simulation tick. We modified gem5 to support a custom control-status

register (CSR) to enable software running on the simulator to indicate when to switch into or out

of a detailed CPU model. We used this CSR to fast forward our benchmarks during their input

graph initialization phase.

Table 3.8 shows performance improvements of gem5 when using fast-forwarding. All appli-

cations studied in this section used the same input graph, so they all had the same number of

fast-forwarded instructions. Depending on the length of the initialization phase with respect to the

full execution time, fast-forwarding results in a speedup of 1.16–2.01⇥.
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CPU Models CPU Pipeline Memory

AtomicSimpleCPU Simple Simple
TimingSimpleCPU Simple Detailed
MinorCPU Detailed In-order Detailed
DerivO3CPU Detailed Out-of-order Detailed

Table 3.7: Available CPU Models in gem5. – Simple models only simulates functional behaviors while detailed
models capture both functional and timing behaviors.

Benchmarks DInst-FF (M) DInst-Detailed (M) Speedup

PageRank 496 2858 1.16x
PageRankDelta 496 400 2.01x
KCore 496 628 1.67x
Triangle 496 1069 1.42x

Table 3.8: Performance Speedup over Full Simulations without Fast-Forwarding Mode – DInst-FF = number of
dynamic instructions that are fast-forwarded. DInst-Detailed = number of dynamic instructions that are simulated in
the detailed mode.

Performance Scalability – To understand the performance scalability of gem5 in multi-core

simulations, we ran the four benchmarks using the OpenMP runtime and the static scheduling

policy on systems with a different number of in-order CPU cores. Figure 3.2 shows the average

number of simulated instructions per second. The result shows that gem5’s performance scales

well with the number of simulated CPU cores. When simulating more CPU cores, gem5’s does

slows down a little bit since it simulates more thread communication events between cores.

3.7 Design Space Exploration

In this section, we are interested in using the implementation of RISC-V in gem5 to study how

irregular applications using different threading libraries and task scheduling policies perform on

a heterogeneous multicore system. In particular, we are interested in the relative performance of

static, guided, and work-stealing task scheduling policies for graph applications executing on a

system with both simple and complex cores [TWB16].

We used gem5 to model a quad-core cache-coherent RISC-V system with two simple in-order

and two complex out-of-order cores. Each core has its own private L1 cache. Constructing this

model is straight-forward in gem5 due to its modular design and simple Python-based configuration
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Figure 3.2: Performance of gem5 in Multi-Core Simulations

interface. We only needed to make minor changes in the Python configuration. In contrast, building

such a system in RTL would be very challenging.

We ran all 13 Ligra applications with different task scheduling policies. Figure 3.1 shows

the speedup of each configuration over the single-threaded version of Ligra applications. The

multi-threaded versions of most applications except BFSCC performed significantly better than

their single-threaded versions. In BFSCC, our selected input graph results in a large serial region.

On average, the quad-core heterogeneous system achieved a 3.53⇥ speedup over the single-core

system.

Dynamic task scheduling policies (i.e., OMP-G and Cilk-WS) generally performed better than

the static task scheduling policy. This is due to the workload imbalance in many graph applications

and the heterogeneity of the studied system. Complex and simple cores complete tasks at different

rates. A dynamic task scheduling mechanism helps balance the workload between cores, which

helps increase the overall throughput. In terms of performance, OMP-S is never the best choice for

Ligra applications except KCore and BFSCC. Most of parallel regions in KCore are highly regular,

and its tasks are light-weight. BFSCC has little parallelism, so its multi-threaded versions did not

perform much better than its single-threaded version.

3.8 Conclusion

We presented our work on simulating multi-threaded RISC-V systems in gem5. We contributed

an implementation of thread-related system calls and synchronization instructions to the exist-

ing RISC-V implementation in gem5. We also modified gem5’s CPU models to simulate multi-

threaded workloads correctly. We showed our validation approach and how we applied the ap-
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proach to validate the functional and timing behavior of the implementation. We presented gem5’s

simulation performance in comparison to the Chisel C++ RTL simulator, the simulation speedup

achieved by using the fast-forwarding feature in gem5, and gem5’s scalability in multi-core sim-

ulations. Our implementation in gem5 can run real-world applications and task parallel runtime

libraries including OpenMP and Cilk. We showed a small design space exploration to illustrate

how gem5 can help system designers explore different design options quickly.
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CHAPTER 4
big.VLITTLE: EVOLUTIONARY SPECIALIZATION FOR

MODERN VECTOR ARCHITECTURES

Single-ISA heterogeneous multi-core architectures offer a compelling high-performance and

high-efficiency solution to executing task-parallel workloads in mobile systems on chip (SoCs).

In addition to task-parallel workloads, many data-parallel applications, such as machine learn-

ing, computer vision, and data analytics, increasingly run on mobile SoCs to provide real-time

user interactions. Next-generation scalable vector architectures, such as the RISC-V Vector Ex-

tension and Arm SVE, have recently emerged as unified vector abstractions for both large- and

small-scale systems. In this chapter, we propose novel area-efficient high-performance architec-

tures called big.VLITTLE that support next-generation vector architectures to efficiently accelerate

data-parallel workloads in conventional big.LITTLE systems through the evolutionary specializa-

tion approach. big.VLITTLE architectures reconfigure multiple little cores on demand to work as

a decoupled vector engine when executing data-parallel workloads. Using the cycle-level model-

ing methodology presented in Chapter 3, we show that a big.VLITTLE system can achieve 1.6⇥

performance speedup over an area-comparable big.LITTLE system equipped with an integrated

vector unit across multiple data-parallel applications and 1.7⇥ speedup compared to an aggressive

decoupled vector engine for task-parallel workloads.

4.1 Introduction

Modern mobile systems on chip (SoCs) adopt single-ISA heterogeneous multi-core architec-

tures (e.g., Arm big.LITTLE) to offer a compelling high-performance and high-efficiency solution

for task-parallel workloads [KTR+04, KFJ+03] in many commercial devices [Gwe14b, Gwe14a,

Dem13, Gwe13, app20]. These architectures consist of several high-performance power-hungry

out-of-order big cores and multiple high-efficiency low-power in-order little cores. This ISA ho-

mogeneity and micro-architecture heterogeneity enable high performance and efficiency by seam-

lessly distributing high- and low-intensity compute tasks to high-performance and high-efficiency

cores respectively [Ran13, ZR13].

In addition to task-parallel workloads, data-parallel applications are emerging in mobile SoCs

to fully utilize their increasing compute power and sensing capabilities. Workloads such as aug-
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mented and virtual reality (AR/VR) [CDM+18, HDJ+20], natural language processing [BDVJ03,

CW08], facial and voice recognition [PVZ15], and image processing [TMB14] increasingly rely

on in-device computing power instead of cloud servers to deliver real-time interactions with hu-

mans [RSM+11,WBC+19a,ZCL+19,LCS+19,WAZ+19]. These applications often use compute-

intensive data-parallel computer vision, machine learning, and data analytic algorithms to process

a large amount of data in real time. Since mobile SoCs operate under a tight power and area

budget, such increasing computational demand poses a significant challenge to design both high-

performance and high-efficiency mobile architectures to accelerate data-parallel workloads.

The need to efficiently accelerate data-parallel workloads has led to an emergence of next-

generation scalable vector architectures exemplified by the RISC-V Vector Extension (RVV) [RIS21]

and the Arm Scalable Vector Extension (Arm SVE) [SBB+17]. Traditional vector architectures

are typically implemented as either large high-performance variable-length decoupled vector en-

gines [Rus78,DVWW05,KTHK03,TNH+06] in super-computing systems or modest area-efficient

fixed-length packed-SIMD integrated vector units (e.g., Intel AVX) in mobile and desktop systems.

Next-generation vector architectures strive to provide unified scalable vector abstractions for both

large decoupled vector engines that yield superior performance with significant area overheads

and small integrated vector units that require modest extra silicon area with modest performance

improvement compared to an out-of-order scalar core.

In this chapter, we propose novel area-efficient high-performance architectures called big.VLITTLE

that adopt next-generation vector architectures to accelerate data-parallel workloads in widely used

big.LITTLE systems. big.VLITTLE architectures achieve both high performance and area effi-

ciency by reconfiguring a cluster of little cores as a decoupled vector engine on demand when

executing data-parallel workloads. When a big.VLITTLE system executes in vector mode, its big

core fetches, decodes, and sends vector instructions to its associated cluster of little cores, which

allows decoupling memory accesses and vector computation. Little cores reconfigure their scalar

pipelines into vector execution lanes, leverage their physical register files to store vector register

elements, transform their level-one cache subsystem to provide high memory bandwidth, and work

together as a decoupled vector engine.

Due to its reconfigurability, big.VLITTLE architectures do not need to add area-expensive

components such as wide execution pipelines and vector register files typically required in large

decoupled vector engines. Compared to integrated vector units, big.VLITTLE systems can provide
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longer vector length and higher memory bandwidth, which results in better performance. When

not executing in vector mode, big.VLITTLE systems incur no performance overhead for multi-

threaded task-parallel workloads since they operate in the same way as equivalent big.LITTLE sys-

tems. Our cycle-level performance evaluation shows that a big.VLITTLE system with one big and

four little cores can achieve 1.6⇥ speedup over an area-comparable big.LITTLE system equipped

with an integrated vector unit for data-parallel workloads from the Rodinia suite [CBM+09], RiVec

suite [RHP+20], and a genomics benchmark suite. For task-parallel applications, the big.VLITTLE

system is 1.7⇥ faster than an aggressive decoupled vector engine for applications from the Ligra

benchmark suite [SB13a]. Our post-synthesis area evaluation shows the big.VLITTLE system in-

curs less than 5% overhead compared to a cluster of four little cores and their L1 private caches.

Our design space exploration shows the potential of using voltage/frequency scaling to boost the

little cores while slowing down the big core to further increase both performance and power effi-

ciency of the big.VLITTLE system.

Our key contributions include: (1) a new reconfigurable little core cluster that leverages its

existing scalar execution pipelines and reconfigures its scalar register files to operate as a high-

performance decoupled vector engine; (2) a novel reconfigurable L1 cache subsystem that can turn

private L1 data caches of little cores into a logically shared multi-bank L1 data cache for vector

execution and re-purpose SRAM arrays in L1 instruction caches as data buffers to enable high

vector memory bandwidth; (3) a detailed cycle-level performance evaluation of a big.VLITTLE

system compared to an area-comparable conventional big.LITTLE system with an integrated vec-

tor unit and an aggressive decoupled vector engine, and a VLSI-level area analysis demonstrating

the big.VLITTLE system’s area efficiency; and (4) a design space exploration showing the poten-

tial of voltage/frequency scaling in increasing performance and power efficiency of a big.VLITTLE

system.

4.2 The Resurgence of Vector Architectures

Traditional vector architectures can be classified into two classes: long-vector and packed-

SIMD architectures. A recent resurgence of interest in adopting vector abstractions for emerging

data-parallel workloads has led to next-generation vector architectures that provide unified abstrac-

tions for both high-performance and commodity systems. In this section, we discuss a taxonomy
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Features Long-Vector Packed-SIMD Next Generation

IS
A

Vector length scalable, long fixed, short scalable
Element width fixed variable variable
Predication full limited full
Cross-element ops limited full full
Memory gather/scatter full limited full

uA
rc

h

Vector register file decoupled integrated either
Speculative execution yes no either
Compute pipeline decoupled integrated either
Memory bandwidth large modest either
Memory latency high low either

Table 4.1: A Taxonomy of Vector Architectures

of both traditional and next-generation vector architectures as well as their key tradeoffs (see in

Table 4.1).

4.2.1 Long-Vector Architectures

Long-vector architectures target large-scale systems, such as supercomputers, to execute highly

data-parallel and regular workloads. Most long-vector architectures support a variable vector

length that scales with a specific implementation of the architecture [Rus78, DVWW05]. The

width of each vector element is typically fixed. Supporting cross-element instructions, such as

reducing and shuffling vector elements, requires expensive hardware due to long vector length,

so such instructions are usually not fully supported in long-vector architectures. Instead, memory

gather and scatter instructions are available to support complex data movements through memory.

Vector units in supercomputing vector machines [Rus78, Abt07, KTHK03, TNH+06, EML88]

are typically decoupled from their control cores. Vector units have separate large vector register

files and wide execution lanes. To sustain a high compute throughput and fully utilize all execution

lanes, long-vector machines require large memory bandwidth, so they are typically connected to

highly banked memory systems (e.g., 1024 memory banks [SWL+92]).

4.2.2 Packed-SIMD Architectures

Since packed-SIMD ISAs often target multimedia workloads in commodity hardware, their

vector lengths are typically limited and fixed. Early packed-SIMD architectures, such as Intel
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MMX [PW96] and SEE [int07], are designed to handle sub-word computations on general-purpose

registers. More recent packed-SIMD architectures, such as Intel AVX-128, extend their vector

lengths beyond the width of a single word (e.g., 128 bits). To support multiple SIMD operations in

a fixed hardware vector length, packed-SIMD ISAs support variable element widths to dynamically

change the effective number of elements depending on applications. For example, a 128-bit wide

packed SIMD ISA can support two 64-bit and four 32-bit operations. Since packed-SIMD ISAs

are designed for commodity hardware, their support for complex vector memory instructions, such

as gather-load and scatter-store instructions, is limited.

Packed-SIMD units are often tightly integrated with their control processors. Most of them

share the same register files (i.e., typically floating-point register files) with the control processors

although some recent short-vector units, such as ones in Intel Knights Landing [SGC+16], may

have dedicated SIMD register files. Floating-point and SIMD instructions typically share the same

execution pipelines. Since the number of vector elements is small, SIMD units typically share the

same memory interface with their control processors to private data caches. Therefore, compared

to long-vector machines, short-vector units have relatively modest memory bandwidth.

4.2.3 Next-generation Vector Architectures

Conventional vector architectures target two drastically different domains: high-performance

computing in large-scale systems and multimedia workloads in commodity hardware. However,

recent interest in data-parallel workloads have driven a trend to converge both conventional de-

sign approaches into next-generation vector architectures that are flexible enough to cover a wider

spectrum of workloads and hardware implementations [SBB+17].

Modern vector ISAs, such as the Arm Scalable Vector Extension (SVE) [SBB+17] and the

RISC-V Vector Extension (RVV) [RIS21], adopt a vector-length-agnostic (VLA) design similar

to conventional long-vector architectures. This VLA design enables such ISAs to target a wide

range of implementations with different hardware resource constraints. It also allows executing

the same vector code on multiple vector machines with different hardware vector lengths without

recompiling the code and/or rewriting compiler intrinsics. Cross-element, load-gather, and store-

scatter instructions are also supported in these ISAs to increase the overall scope of applications

that can be vectorized.
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Due to their flexibility, these next-generation vector ISAs can target both large-scale (i.e.,

decoupled from a control processor) micro-architectural implementations and small-scale (i.e.,

tightly integrated with a control processor). Example machines include Xuantie-910 [CXL+20]

and Ara [CSZ+20] implementing RVV, and Fugaku A64FX [Sat20] implementing Arm SVE.

4.3 big.VLITTLE Architectures

The reconfigurability of big.VLITTLE architectures helps achieve the performance level of

decoupled long-vector engines while minimizing area overheads as in integrated vector units. In

this section, we first provide an overview of big.VLITTLE architecture and then provide details on

how multiple aspects of a next-generation vector architecture are implemented in big.VLITTLE.

4.3.1 Architectural Overview

big.VLITTLE architectures support both scalar and vector execution modes. In the scalar

mode, big and little cores execute instructions independently as they do in conventional big.LITTLE

systems, and components added to support the vector execution mode are disabled. In the vector

mode, the big core becomes a control core, and the little cores work together as a single decou-

pled vector engine called VLITTLE. The big core executes scalar instructions while vector code

is executed in the VLITTLE engine. A vector instruction waits at a vector dispatching unit in the

big core until it is at the head of the ROB, and then is dispatched to the VLITTLE engine. If the

instruction does not write back to a scalar register, the big core can commit and remove it from the

ROB. Otherwise, the big core waits for the VLITTLE engine to respond with a scalar value, writes

the value back, wakes up any dependent instruction(s), and finally commits the vector instruction.

Although the big.VLITTLE concept is applicable to both Arm SVE and RISC-V RVV, we use

RISC-V RVV version 1.0 [RIS21] to explore the big.VLITTLE idea in the context of this chapter.

A big.VLITTLE system includes additional components to facilitate its vector execution on

top of an equivalent big.LITTLE system. Figure 4.1 shows a big.VLITTLE instance with one big,

four little cores, and additional vector-specific components. First, a vector control unit (VCU)

controls the global architectural states of a VLITTLE engine (e.g., effective vector length), com-

munications with the big core (e.g., receiving vector instructions), and the execution of all little
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CSR Description

mstatus Machine status
• vs: vector context status (off/clean/dirty)

vl Effective vector length

vtype Vector element type
• vsew: vector element width
• vta: vector tail agnostic (undisturbed/agnostic)
• vma: vector mask agnostic (undisturbed/agnostic)

Table 4.2: A subset of vector-controlling CSRs in RVV

cores. Second, a vector cross-element unit (VXU) handles inter-core data communications to sup-

port cross-element vector instructions including vector permutation and reduction. Lastly, a vector

memory unit (VMU) manages vector memory instructions by issuing requests to the memory sub-

system and delivering data to little cores. Those additional components are pipelined so that they

do not affect common critical paths and increase the cycle time of the little core cluster. Therefore,

in the scalar mode, big.VLITTLE performs exactly the same as an equivalent big.LITTLE system.

Several muxes are added to select the right input signals based on the current execution mode of

the little cores. For example, an L1 data cache takes input requests from its little core’s back-end

in the scalar mode while receiving requests from the VMU in the vector mode.

4.3.2 Vector Control Support

We envision using a simple application interface managing an OS-privilege control status reg-

ister (CSR) to switch between scalar and vector modes on demand. Applications running on the

big core can switch into or out of the vector mode by requesting the OS to change the CSR. When

switching into the vector mode, the OS allocates a group of little cores to form a VLITTLE engine,

and those cores become unavailable to other processes. If one or multiple little cores are not readily

available (e.g., busy with other processes), the OS can decide to either wait, pre-empt processes

running on those little cores, or simply allocate a light-weight integrated vector unit in the big core

for vector execution. Such OS-level resource scheduling decisions are left for future work. Once a

little core is allocated to a VLITTLE cluster, its current thread context is saved to memory, and its

pipeline is flushed. The overhead of saving a thread context into memory and flushing an in-order

short pipeline is relatively small (e.g., 500+ cycles), especially when the target vectorized region
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is large. A control register is then updated to indicate the core is now working in the vector mode.

When switching out of the vector mode, the OS returns those cores to its scheduling pool, and they

become available independent scalar cores. The switching typically happens at a coarse-grained

level (e.g., application and kernel levels) to amortize its overhead.

big.VLITTLE architectures implement a weak memory consistency model which is a work in

progress in RISC-V RVV. We introduce a vector memory fence vmfence to handle vector/scalar

memory dependencies (e.g., unit-stride vector store followed by a scalar load to the same address)

in software to avoid complex hardware checking for such dependencies between scalar and vector

pipelines. The big core executes vmfence, waits for all outstanding scalar loads and stores to retire

before sending a memory fence command to the VCU. The VCU blocks subsequent vector mem-

ory instructions from being issued to the VMU until all outstanding vector memory instructions

to retire. Effectively all scalar and vector memory instructions before vmfence in their program

order happen before all scalar and vector memory instructions after the vmfence. It is important

to note that this software-managed vector/scalar memory fence solution is common in most de-

coupled vector machines [Asa98, Abt07, EAE+02] due to their large vector lengths and decoupled

vector execution pipelines. Future auto-vectorization and compiler techniques, which are being

actively researched for next-generation vector architectures [SBB+17, AS22], can help insert vec-

tor/scalar memory fences to guarantee the correctness of applications. In addition, any efficient

hardware-managed solution for other decoupled vector machines would also be applicable to the

big.VLITTLE architecture. Vector/vector memory dependencies (e.g., unit-stride vector store fol-

lowed by an indexed vector load to the same address) are handled in hardware by the VLITTLE

engine’s VMU.

In a big.VLITTLE system, the VCU executes vsetvl that is a control instruction setting the ef-

fective vector length and vector element type. For each non-control vector instruction, the VCU

issues multiple micro-operations to little cores and the VMU (only for memory instructions). The

VCU buffers those micro-operations and their corresponding scalar data (only for vector instruc-

tions reading scalar register values) in command and data FIFO queues in order to enable decou-

pling of vector memory accesses and vector executions by issuing memory micro-operations to the

VMU ahead of time. Not all vector instructions need to carry scalar values, so the scalar data queue

needs not to be as deep as the command queue to minimize area overheads. In each cycle, the VCU

processes the oldest micro-operation from the command queue and broadcasts it and its associated
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Figure 4.2: Mapping of 32-bit Vector Elements to Scalar 64-bit Registers in Four Little Cores – xN = scalar
integer registers. fN = scalar floating point registers. vN[m] = m-th element in a vector register. Elements of the vector
register 0 are mapped to newly added physical registers x0* and f0* in little cores.

scalar data (if any) to all little cores via a shared bus as shown in Figure 4.1. This command bus is

pipelined to account for physical distance between little cores in a cluster so that it does not affect

existing critical paths in the little cores.

4.3.3 Reconfigurable Little Cores

In big.VLITTLE architectures, scalar physical registers existing in little cores are re-purposed

to implement all general vector registers except v0, which makes big.VLITTLE architectures area-

efficient by not adding area-expensive vector register files as in conventional long-vector engines.

Since v0 register is used to store mask values according to the RISC-V RVV specification, pred-

icated instructions can read up to three source operands. To avoid adding a read port to existing

register files, v0 is implemented using an extra register(s) added to each little core, which allows

predicated instructions to read mask values in parallel with reading other source operands.

To maximize the hardware vector length in big.VLITTLE architectures, both integer and floating-

point physical registers in little cores can be effectively used to support multiple vector element

groups (chimes). Vector elements of the same group are always executed together in time. The

actual number of element groups depends on the number of available physical registers in little

cores. Figure 4.2 shows an example of a VLITTLE engine with four little cores, each of which

has 32 integer and 32 floating-point physical registers (i.e., x0-x31 and f0-f31 respectively). The

VLITTLE engine supports two vector element groups. Vector elements in the first and second
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groups can be stored in the integer and floating-point registers respectively across all little cores.

In addition, multiple consecutive vector elements can be packed into the same physical scalar reg-

ister if their element width is less than the physical register’s width. Figure 4.2 shows a case in

which two 32-bit adjacent vector elements are packed into the same 64-bit physical register. With

multiple element groups and packed vector elements, the example VLITTLE engine in Figure 4.2

can support a 512-bit hardware vector length by effectively using all physical registers in four

little cores. Both optimizations increase the hardware vector length, reduce front-end instruction

overheads, and hide long execution latency induced by complex instructions (e.g., multiplication,

division, and memory instructions) in big.VLITTLE architectures.

For each vector instruction, the VCU issues multiple per-element-group micro-operations to

little cores in order. Little cores receive micro-operations from the VCU at their issue stages. Their

fetch and decode stages are not used in vector mode and hence disabled. In a little core, micro-

operations are issued to its back-end execution pipelines in order as if they were normal scalar

instructions. Except reading mask values from v0, no other change is added to a little core’s issue

stage to handle issuing micro-operations and reading operand values from the core’s register file.

Back-end execution pipelines in little cores require minimal changes to support packed vector

elements. For simple integer arithmetic micro-operations (e.g., addition), multiple vector elements

packed into the same physical register can be processed in parallel with small area overheads to

the existing little cores [Lee97]. For more complex integer micro-operations (e.g., division) and

floating-point micro-operations, we serialize the execution on different packed vector elements in

multiple cycles to avoid adding non-trivial hardware overheads to the existing little cores.

4.3.4 Cross-Element Instruction Support

The RISC-V RVV supports two types of cross-element instructions: vector permutation and

vector reduction. Vector permutation instructions (e.g., vrgather) read per-element values from a

source vector register and write them to different elements of a destination vector register. Vector

reduction instructions read per-element values from a source register, perform a reduction opera-

tion to a single value, and write it to either the first element of a destination vector register (e.g.,

vredsum) or a scalar register (e.g., vpopc).

For each vector permutation instruction, the VCU generates two micro-operations: vxread

and vxwrite per vector element group to little cores. vxread micro-operations read values of
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their source vector elements and send them to the VXU. vxwrite micro-operations wait for the

source values at the issue stage of each little core. Once receiving source values from the VXU,

vxwrite micro-operations write the values to register files in little cores.

For each vector reduction instruction, the VCU first issues per-element-group vxread micro-

operations to little cores to read values of source vector elements. The VCU then issues vxreduce

micro-operation only to the first little core to perform a reduction. Once receiving a vxreduce

micro-operation, the first little core’s issue stage receives one value for each source vector element

each cycle from the VXU, issues it to an execution pipeline, and waits for all source element values

to arrive before completing issuing the micro-operation.

In order to move values across the little cores, we implement a light-weight uni-directional ring

network connecting all little cores in the VXU. The ring network is pipelined to avoid affecting the

cycle time of existing little core cluster. Other lower-latency network topologies (e.g., crossbar)

are also viable although they may potentially incur higher area overhead compared to the uni-

directional ring topology. The VXU receives per-element source values from little cores executing

vxread micro-operations. The VXU receives requests for specific source elements from little

cores executing vxwrite and vxreduce micro-operations. Once receiving all source values, the

VXU iteratively shifts all per-element values by one hop each cycle. If a value’s source element

index matches with a request’s source element index, the value is returned to the requesting core.

The VXU completes shifting all elements after N cycles where N is the number of source vector

elements. To avoid inter-instruction deadlocks and further complexities, the VXU processes at

most one cross-element instruction at a time. Subsequent cross-element instructions must wait in

the VCU for an outstanding instruction in the VXU to complete.

4.3.5 Reconfigurable Cache Subsystem

In a big.VLITTLE system, the VMU is the interface between its VLITTLE engine and memory

subsystem. The VMU consists of a vector memory issue unit (VMIU), multiple vector memory

slice units (VMSU), a vector load unit (VLU), and a vector store unit (VSU). Each VMSU cor-

responds to a private L1 data cache of a little core. In vector mode, private L1 data caches of

all little cores work together as a logically shared cache with multiple address-interleaved slices

or banks for the entire VLITTLE engine. We adopt an addressing scheme similar to a previous

work [IKKM07] to distribute memory accesses across multiple L1 data caches. Given an effective
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address, its bank bits are located between the block offset and index bits to minimize bank conflicts

in the case of consecutive requests to adjacent cache lines. The VMU uses the bank bits to select

an L1 cache for a given address. The remaining bits and the bank bits are used as a tag in L1

caches to disambiguate cache lines properly regardless of which mode the caches operate under

and to avoid expensive cache flushes when the system switches between modes. After switching

to vector mode, a cache line that is not in the right bank will eventually either be evicted (i.e., if

not used) or migrated to the right bank (i.e., if used) by the cache coherence protocol.

For unit- and constant-stride memory instructions, their base virtual addresses are translated

in the big core before they are dispatched to the VLITTLE cluster. The big core also checks

their access ranges (i.e., spanning across multiple pages) using both base addresses and strides for

potential page faults or invalid memory accesses. This early address translation mechanism allows

the VMU to decouple unit- and constant-stride memory accesses from vector executions happening

in the little cores. However, for indexed vector memory instructions, since their index values are

stored in the VLITTLE cluster, per-element address translations happen in the little cores using

their existing address translation hardware.

To enable decoupling of memory accesses and vector execution, the VCU sends load and store

micro-operations to the VMIU as soon as it receives and processes memory instructions from its

associated big core so that load requests can be issued to memory ahead of vector executions using

their loaded values. In addition, the VCU also sends per-element-group micro-operations to little

cores to write back values from the VLU to register files (wb_ld), read and send data to the VSU

for store instructions (rd_data), and read and send memory indices to the VMIU for indexed

memory instructions (rd_idx).

Vector memory issue unit (VMIU) – The VMIU processes load and store micro-operations

from the VCU in the order they arrive. It breaks down a micro-operation into one or multiple

cache-line-sized requests depending on its base address, stride, and indices. For unit-stride and

constant-stride micro-operations, the VMIU uses their base addresses and strides to generate one

memory request for a cache line per cycle. For indexed memory micro-operations, the VMIU waits

for index values sent by rd_index micro-operations from little cores before generating memory

requests. The VMIU tries to coalesce a small number of consecutive indices (e.g., four) into a

single cache-line request in each cycle. Multiple memory requests can be generated for a memory

micro-operation if it accesses across different cache lines. Each generated memory request is
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tagged with a bit mask indicating active bytes in its cache-line-sized data. Once generated by the

VMIU, a memory request is issued to a corresponding VMSU, based on its cache line address via

a shared pipelined command bus. A small sequence number per request is sent to the VLU (for

load requests) or VSU (for store requests) so that load and store data is processed in the order of

their corresponding instructions in those units.

Vector memory slice unit (VMSU) – The VMSUs receive requests from the VMIU and op-

erate at cache-line granularity to communicate with their corresponding L1 data caches. They

also check memory dependencies between load and store requests. Each VMSU has a small

content-addressable memory (CAM) holding addresses of outstanding store requests not yet is-

sued to memory memory. Every load request arriving at a VMSU is checked against all previous

outstanding store requests for potential address overlapping using their cache-line addresses. If a

dependency is detected between a load and an outstanding store request, the load request is stalled

until the store request is sent to the memory subsystem since the load request may read data written

by the store request. Otherwise, the load request can be issued ahead of the store request to the

memory.

The VMSUs need to buffer cache-line-sized data of all outstanding load requests (i.e., wait-

ing for their cache responses) and store requests (i.e., waiting for their data from the VSU). To

maximize the memory-level parallelism and enable memory accesses to run far ahead of vector

execution, the amount of data buffering can be significant for each VMSU in memory-intensive

workloads. Therefore, to minimize area overheads, we reconfigure SRAM data arrays in L1 in-

struction caches, which are unused by little cores in the vector mode, as circular FIFO queues for

outstanding load and store requests. We simply use the SRAMs as FIFO queues and do not modify

the cache control logic to avoid any timing overhead in the caches. Each VMSU controls head and

tail pointers to its data queues and arbitrates between enqueueing and dequeueing operations since

there is one read/write port in each SRAM. A VMSU writes response data from its L1 data cache

into the load data queue and store data from the VSU into the store data queue. Once data for the

oldest load request in a VMSU is ready, the VMSU sends the data to the VLU. Similarly, once

data for the oldest store request in a VMSU is received from the VSU, the request is sent to the

corresponding L1 data cache.

Vector load unit (VLU) – The VLU receives data responses from multiple VMSUs, breaks

them down into per-core responses, and sends them to little cores. There are multiple line buffers,
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each corresponding to a VMSU, to hold ready cache-line data responses from the VMSUs. The

VLU processes data responses in the order their corresponding requests are generated by the VMIU

since little cores expect their data to arrive in order.

For each unit- and constant-stride load response, a small hardware logic uses its first vector

element index and stride information to slice its cache-line data into multiple vector-element-width

responses, which are then pushed to existing load-store queues inside corresponding little cores.

Since the VLU actively pushes data to little cores through wb_ld micro-operations, the cores can

directly read the data from their internal load queues without sending extra requests to the VLU

for the data. This reduces the latency of wb_ld micro-operations.

For indexed load micro-operations, actively pushing data to little cores from the VLU would

require extra storage for index values and more complex logic to slice, shuffle, and align data el-

ements of a cache-line response for multiple little cores. Therefore, little cores pull data from the

VLU by sending per-vector-element requests to the VLU when executing wb_ld micro-operations.

Each little core handles indexed memory wb_ld micro-operations as if they were scalar load in-

structions by leveraging its existing address calculation logic. Once receiving an indexed load

request from a little core, the VLU extracts data from one of its line buffers and returns it to the

core.

Vector store unit (VSU) – The VSU receives data elements from little cores and assembles

them into cache-line-sized data blocks for store requests. The VSU processes store requests in

the order they are issued by the VMIU. In each cycle, the VSU waits for little cores to send data

elements for the oldest store request. Each little core executes rd_data micro-operations as if they

were scalar store instructions. Per-vector-element data requests including both address and data

are sent by little cores to the VSU. The VSU takes data elements from the cores and assemble

them into a cache-line-sized data block by updating its line buffer. Once data in the line buffer is

ready, the VSU sends the data to a VMSU, based on its cache-line address.

4.4 Evaluation Methodology

In this section, we describe a set of simulated systems, our cycle-level modeling methodology,

and application benchmarks used to evaluate the performance of our big.VLITTLE architectures.
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Figure 4.3: A Decoupled Vector Engine – CmdQ = command queue; DataQ = scalar data queue; VRF = vector
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Little Core (L) • RISC-V ISA (RV64GC), single-issue, in-order
• L1I cache: 1-cycle hit latency, 2-way, 32KB
• L1D cache: 2-cycle hit latency, 2-way, 32KB

Big Core (b) • RISC-V ISA (RV64GC), 8-way-issue out-of-order, 16-entry LSQ, 90 physical integer and
90 physical floating-point registers, 60-entry ROB
• L1I cache: 1-cycle hit latency, 4-way, 64KB
• L1D cache: 2-cycle hit latency, 4-way, 64KB

L2 Cache • For the big.LITTLE and big.VLITTLE systems: 4-way, 4-bank, 8-cycle hit latency, 256KB
for each big and little core cluster
• For the decoupled vector system: 8-way, 8-bank, 8-cycle hit latency, 512KB shared by both
the big core and the vector engine

LLC Shared, 16-way, 12-cycle hit latency, 2MB

Main Memory DDR4-2400

Table 4.3: Simulator Configuration

4.4.1 Simulated Systems

We use gem5 [BBB+11, LPAA+20, TCB18], a cycle-approximate simulator, to evaluate the

performance of different hardware systems studied in this work. We use gem5’s out-of-order pro-
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1bIV One big core with an integrated vector unit
• 128-bit-long vector unit capable of issuing instructions out of order
• Two vector arithmetic execution pipelines capable of executing integer and floating point vector
instructions
• The big core’s load/store unit capable of handling 128-bit wide unit-stride memory requests

1b-4L Conventional big.LITTLE system
• One big core and a cluster of four little cores
• Private L1I and L1D cache per core
• Private L2 cache for each core cluster

1bIV-4L big.LITTLE system with an integrated vector unit
• One big core and a cluster of four little cores with L1 and L2 caches similar to 1b-4L
• The big core including the same integrated vector unit as in 1bIV

1bDV Long-vector system with a decoupled vector engine
• One big core with an aggressive decoupled vector engine
• 2048-bit-long vector engine with four vector element groups, a 8KB vector register file with eight
read and four write ports, 64-entry command queue, 16-entry load queue, 16-entry store queue, and
64-entry data buffers
• The vector engine connected directly to L2 cache

1b-4VL big.VLITTLE system
• One big core and a VLITTLE engine of four little cores with L1 and L2 caches similar to 1b-4L
• 64-entry micro-operation queue and 16-entry scalar data queue in the VLITTLE’s VCU
• 512-bit hardware vector length with two element groups, 64 entries in load data queues, and 32
entries in store data queues in VMU

Table 4.4: Evaluated Systems

Name Input
1L 1b-4L 1b-4VL vs

DIns Cycles DIns DTsk 1bDV

bc rMat_1M 332M 1.7B 800M 0.5M 1.3x
bf rMat_1M 782M 4.7B 1.4B 0.8M 2.3x
bfs rMat_1M 56M 0.3B 203M 0.2M 1.0x
bfsbv rMat_1M 113M 0.3B 241M 0.2M 1.7x
cc rMat_1M 480M 1.9B 1.0B 0.4M 1.7x
mis rMat_1M 337M 1.8B 864M 0.2M 1.1x
tc rMat_1M 748M 1.7B 1.0B 0.1M 2.4x
prd rMat_1M 3.9B 23.9B 5.9B 2.8M 3.2x
geomean 1.7x

Table 4.5: Task-Parallel Applications – All task-parallel applications are taken from Ligra suite [SB13a]. DIns = dy-
namic instruction count in billions; DTsk = dynamic task count in millions; Cycles = cycle count in billions.
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cessor model for our simulated big core and our in-house model to simulate in-order single-issue

little cores. Our simulated cache subsystem is based on an Arm AMBA 5 CHI cache-coherent

model provided in gem5 [gem21], and we use its simple network model for our simulated on-chip

network. We model one-cycle address translation overhead per memory access (i.e., assuming

memory accesses always hit in level-one TLBs) for all evaluated designs. For performance evalu-

ations in Section 4.5, we keep the big core, little cores, and caches running at the same frequency

(i.e., 1GHz) to isolate micro-architecture-level behaviors of all designs from potential performance

impacts of voltage/frequency scaling. In Section 4.7, we then explore a performance/power design

space when considering voltage/frequency scaling of big and little core clusters. Table 4.3 shows

the details of our simulated processors and memory subsystem.

Table 4.4 shows a list of evaluated systems and their configurations. 1bIV supports next-

generation vector architectures by integrating a small vector unit into its big core. The integrated

vector unit supports 128-bit hardware vector length that is similar to a typical SIMD width in

common mobile SoCs (e.g., Samsung M3 [RBGZ19]) implementing traditional packed-SIMD ar-

chitectures such as Arm NEON. This unit also leverages two of its existing execution pipelines in

its associated big core for vector execution and shares the same data cache port with the big core to

minimize area overheads. This unit exemplifies future modest integrated vector units implement-

ing next-generation vector architectures [SBB+17]. 1b-4L is a conventional big.LITTLE system

including one big and four little cores without any vector execution support. 1bIV-4L includes a

big core with an integrated vector unit and a cluster of four little cores.

1bDV is a long-vector system with a decoupled vector engine connected to a big core, which

is similar to aggressive vector machines such as Tarantula [EAE+02]. Figure 4.3 shows its vector

engine’s micro-architectural details. 1bDV includes a large vector register file (i.e., 2048-bit vector

length), wide multi-lane execution pipelines (e.g., 16 arithmetic operations can be processed in

parallel on 32-bit vector elements), a high-bandwidth connection to an L2 cache that can support

more requests in parallel than L1 caches, and deep command and data buffers to aggressively

decouple memory accesses from vector computation. Those significant resources enable best-in-

class performance for data-parallel workloads at the cost of extra silicon area.

1b-4VL is a big.VLITTLE system that has an equivalent area compared to 1bIV-4L. To ensure

no cycle time penalty to the existing little cores, we conservatively model fully pipelined commu-

nication paths between multiple vector-specific components and the cores. For example, it takes
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a full cycle to broadcast a command from the VCU to all little cores, to send a request from the

VMIU to a VMSU, to send data from a core to the VSU and the VXU, and to forward a data

response from the VLU to a core. We added a fixed penalty of 500 cycles to the beginning of each

vector region to account for switching overheads (e.g., saving thread contexts and flusing little core

pipelines).

4.4.2 Application Benchmarks

We evaluate the systems using eight task-parallel applications from Ligra benchmark suite [SB13a]

and eight data-parallel applications from Rodinia suite [CBM+09], RiVec suite [RHP+20], and a

genomics benchmark suite. We also study three data-parallel kernels to further understand the

performance of the simulated systems. vvadd and mmult do vector addition and matrix multipli-

cation respectively. saxpy performs a single-precision A⇥X +Y on two vectors. Table 4.6 and

Table 4.5 summarize these applications and kernels. The set of studied applications and kernels

represent real-world workloads running in mobile SoCs such as smartphones, drones, and AR/VR

systems. For example, backprop performs a forward classification on fully connected layers, and

kmeans clusters items into similar groups. Both algorithms are used in machine learning mobile

applications. particlefilter is an image processing algorithm tracking an object in each frame of

an input video, which can be used to do image processing in smartphones and AR/VR headsets.

blackscholes and jacobi2d are data analytics applications that represent big-data processing work-

loads such as natural language processing. sw (i.e., Smith-Waterman) implements a local genome

sequence alignment algorithm that finds regions of similarity between reference and query DNA

sequences. Graph analytics are important to perform fast on-device analysis of large datasets in

mobile devices without relying on the cloud.

For data-parallel applications and kernels, we manually vectorize them using RISC-V RVV

vector intrinsics supported in LLVM 13. We parallelize task-parallel applications using a task

runtime system (i.e., similar to Intel TBB [Rei07] and Cilk Plus [int13]) implementing a random

work-stealing algorithm that helps distribute tasks dynamically and evenly across heterogeneous

cores. Since the 1bIV-4L system can support both vector execution on its big core and scalar

tasks on its little cores, we implement both scalar and vectorized versions of each data-parallel

application. The task-parallel runtime system dynamically chooses which version of a task to run

depending on which core executes the task.
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Figure 4.4: Speedup over 1L – 1L = one little core; 1b = one big core; 1bIV = one big core with an integrated vector
unit; 1b-4L = one big & four little cores; 1bIV-4L = one big core with an integrated vector unit & four little cores;
1bDV = one big core with a decoupled vector engine; 1b-4VL = big.VLITTLE system with one big and a VLITTLE
engine of four little cores.

4.5 Performance Evaluation

In this section, we describe our cycle-level performance results comparing the 1b-4VL system

to the 1bIV-4L and 1b-DV baseline systems for both task-parallel and data-parallel workloads.

We then analyze performance impacts of multiple vector element groups, packed vector element

support, and reconfigurable cache subsystem on the 1b-4VL system’s performance.

4.5.1 Overall Performance

Figure 4.4 shows the overall performance of all simulated systems normalized to 1L for both

sets of task-parallel and data-parallel applications.
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Figure 4.5: Number of Instruction Fetch Requests to Memory – All numbers are normalized to 1bDV.
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Figure 4.6: Normalized Number of Data Requests to Memory – All numbers are normalized to 1bDV.
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Task-parallel applications – 1bIV-4L and 1b-4VL perform the same since they both execute

the same scalar code without using their integrated vector unit and VLITTLE vector engine respec-

tively. In scalar mode, 1b-4VL simply bypasses all additional vector-specific components, which

incurs no performance overheads. 1bIV-4L and 1b-4VL are able to achieve 1.7⇥ speedup over the

1bDV system since the 1bDV system is able to use only its big core to execute scalar code. Since

not all workloads can be efficiently vectorized (e.g., irregular graph applications) and task-parallel

applications remain an important set of workloads in mobile SoCs, it is hard to justify a large

decoupled vector engine in small mobile SoCs to accelerate only data-parallel applications. Both

1bIV-4L and 1b-4VL are more efficient than 1bDV in using their computing resources with the help

of the work-stealing runtime system that dynamically distributes tasks to available cores.

Data-parallel applications – The 1b-4VL system performs 1.6⇥ faster than 1bIV-4L while

being able to achieve roughly half of 1bDV’s performance. The 1bDV system supports 2048-bit

hardware vector length that is significantly larger than the 128-bit vector length of the integrated

vector unit in 1bIV-4L and the 512-bit vector length of 1b-4VL. The larger a hardware vector length

is, the better a system can amortize its front-end instruction overheads by performing more compu-

tation per vector instruction. Figure 4.5 shows that across all vectorized kernels and applications,

1bDV and 1b-4VL perform significantly fewer instruction fetch requests than the 1bIV-4L system

does. In addition, the four little cores in 1bIV-4L independently execute tasks, which results in

duplicated instruction fetches among the four little cores and runtime overheads to dynamically

distribute tasks across the system.

The 1bDV supports higher compute throughput using its wide execution pipelines that are ca-

pable of performing up to 16 arithmetic operations on 32-bit data elements in parallel. In contrast,

1bIV-4L’s integrated vector unit is able to perform four operations on 32-bit data elements per

cycle, and its four little cores can issue four scalar instructions in total per cycle. Meanwhile, 1b-

4VL can perform eight simple integer arithmetic and multiplication operations, and four complex

integer and floating-point operations per cycle on 32-bit vector elements. Moreover, 1b-4VL and

1bDV support respectively two and four element groups that can effectively hide the latency of

complex instructions (e.g., multiplication and division) in compute-intensive workloads such as

mmult, blackscholes, jacobi-2d, and lavamd (see Table 4.6).

1b-4VL and 1bDV systems are also able to fetch data more efficiently from memory than

1bIV-4L does. Figure 4.6 shows the normalized number of data memory requests in the three
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Figure 4.7: Average Execution Time Breakdown of Four Little Cores in 1b-4VL – 1c = 1b-4VL with one chime
(vector element group); 1c+sw = 1b-4VL with one chime & packed vector elements; 2c+sw = 1b-4VL with two chimes
& packed vector elements; busy = cycles in which little cores are not stalled; simd = stalled cycles due to lock-step
issuing of micro-ops in the VCU; raw_mem = stalled cycles due to waiting for memory; raw_llfu = stalled cycles
due to little cores waiting for long-latency micro-ops to complete; struct = stalled cycles due to structural hazards;
xelem = stalled cycles due to cross-element micro-ops; misc = other stalled cycles (e.g., no micro-op from the VCU).

systems. For workloads with regular memory access patterns (i.e., using unit-stride and constant-

stride memory instructions) such as vvadd, saxpy, pathfinder, and lavamd, 1b-4VL and 1bDV can

efficiently fetch multiple per-element pieces of data using a single wide memory request. In con-

trast, the integrated vector unit’s limited hardware vector length, the scalar execution of four little

cores, and runtime overheads in the 1bIV-4L system require significantly more memory requests

compared to both 1b-4VL and 1bDV.

4.5.2 Reconfigurable Compute Pipeline

To evaluate performance impacts of packed-vector-element support and multiple vector ele-

ment groups on the performance of 1b-4VL, we study three configurations: (1) 1c - one element

group and no packed element support, (2) 1c+sw - one element group with packed element sup-
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port, and (3) 2c+sw - two element groups with packed element support. Figure 4.7 shows their

execution time breakdown.

Since all studied data-parallel applications use 32-bit data types, enabling packed-vector-element

support effectively doubles the 1b-4VL’s hardware vector length and increases its compute through-

put. This reduces the number of executed instructions, which results in less dependency stalls (e.g.,

raw_mem and raw_llfu cycles in saxpy, pathfinder, and lavamd). In addition, the utilization of ex-

ecution pipelines in little cores is increased since more per-element arithmetic operations can be

performed in the same cycle (e.g., integer addition) and back to back in consecutive cycles (e.g.,

floating-point multiplication).

The 2c+sw configuration introduces a second element group to 1b-4VL compared to the 1c+sw

configuration. The second element group helps hide the long latency of complex instructions such

as floating-point multiplication by overlapping the execution of the first and second element group,

which reduces further read-after-write dependency stalled cycles in compute-intensive applications

such as blackscholes, particlefilter, and lavamd. Some of memory latency can be hidden as well in

memory-intensive workloads such as saxpy, jacobi-2d, and pathfinder since more memory requests

from multiple element groups can be in flight at the same time. In some cases such as vvadd and

backprop, adding the second element group slightly increases simd stalled cycles. The little cores

run out of sync due to more memory requests conflicting for resources (e.g., accessing the same

L1D bank) in the cache subsystem, which eventually stalls the VCU from issuing micro-operations

in lock step to all little cores.

4.5.3 Performance Impacts of Data Buffering

We evaluate performance impacts of data buffering in the 1b-4VL system by varying the size

of its VMU’s load and store data queues. Figure 4.8 shows that by increasing the amount of data

buffering in the VMU, the performance of memory-intensive workloads such as vvadd, saxpy,

pathfinder, and backprop can be improved significantly. Supporting larger load and store data

queues allows more in-flight memory requests to fully take advantage of the available bandwidth

provided by the logically shared multi-bank L1 data cache in the VLITTLE engine. This enables

more decoupling of memory accesses and arithmetic computation, which can effectively hide long

memory latency in memory-sensitive workloads. However, deep data buffering comes at signif-

icant area cost. Our technique to re-purpose SRAM data arrays in L1 instruction caches, which
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Figure 4.8: Performance Impacts of VMU’s Load Data Queue (LDQ) and Store Data Queue (SDQ)

are otherwise unused in the vector mode, as data buffers for load and store requests provides an

area-efficient way to unlock more memory-level parallelism and memory-computation decoupling

without adding non-trivial area overheads.

4.6 Area Evaluation

In this section, we first evaluate area overheads of additional vector-specific components in the

1b-4VL system using a post-systhesis area model. We then estimate the area of the 1bDV system

by referencing an open-source RISC-V decoupled vector machine.

Methodology – We use a post-synthesis component-level area modeling methodology to eval-

uate area overheads of extra hardware added to support a VLITTLE engine composed of four little

cores. We implement key components of the VLITTLE engine in RTL. We use two different RTL

models for the little core: simple and Ariane [ZB19]. The simple core is our in-house single-

issue in-order processor implementing RISC-V RV64IMAF. The Ariane model is an open-source

Linux-capable RISC-V RV64G in-order core. For L1 instruction and data caches, we use a 32KB

two-way set-associative cache model that is configured to support either 64-bit or 512-bit data
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Component
Area Simple Ariane

(k µm2) 4L 4VL 4L 4VL

Simple core 26.1 ⇥4 ⇥4
Ariane core 41.8 ⇥4 ⇥4
32KB L1I with 64b data path 40.3 ⇥4 ⇥4 ⇥4 ⇥4
32KB L1D with 64b data path 40.3 ⇥4 ⇥4
32KB L1D with 512b data path 41.6 ⇥4 ⇥4
VXU: Ring network 0.3 ⇥1 ⇥1
VMU: 2.9 ⇥1 ⇥1

• Micro-op & command queues 1.7
• Store-address CAM 0.8
• Line buffers 0.4

VCU: 2.0 ⇥1 ⇥1
• Micro-op queue 1.0
• Data queue 1.0

Total 427.0 437.4 489.8 500.1
4VL vs. 4L overhead 2.4% 2.1%

Table 4.7: Post-Synthesis Area Results – 4L = a cluster of four little cores with L1I and L1D caches; 4VL = a
VLITTLE engine with four little cores, L1I, and L1D caches.

path. For the VCU and VMU, we model multiple micro-operation, scalar data, command queues,

and store address CAM according to the configuration of the 1b-4VL system shown in Table 4.4.

For the VXU, we implement a unidirectional 64-bit-wide ring network. We then use a commercial

standard-cell-based toolflow in a 12-nm technology node to generate post-synthesis area results.

Area overheads of big.VLITTLE – Table 4.7 shows the detailed area comparison between a

cluster of four little cores and an equivalent VLITTLE engine. The 4VL engine only adds around

2% area overhead (i.e., 2.4% if using the simple little cores and 2.1% if using Ariane little cores)

compared to the 4L cluster including their private L1 data and instruction caches. The main area

overheads come from the VCU and VMU that includes multiple FIFO queues for micro-operations,

scalar data, and VMU commands. For a complete big.LITTLE system including a big core, its

private L1 and L2 caches, and interconnect network, we expect the area overhead of big.VLITTLE

architectures to be less than 1% of the entire system.

First-order area estimate of 1bDV – We reference Ara [CSZ+20], an open-source decoupled

vector machine, to estimate the area of our simulated decoupled vector engine. We use an Ara

configuration that includes eight 64-bit compute lanes that are equivalent to the 16x 32-bit lanes

in our simulated decoupled vector engine in the 1bDV, which makes the areas of the two vector
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engines comparable. The work reported that the Ara configuration has an area of around 6,000

kilo-gates (kGE) (i.e., 738 kGE per lane) and that an Ariane core without its L1 caches has an area

of 524 kGE. Table 4.7 shows that one L1 32KB cache’s area is roughly the same as one Ariane

core’s area without caches. Therefore, a cluster of four Ariane cores with their L1 instruction and

data caches is as large as an eight-64-bit-lane Ara vector engine (i.e., roughly 6,000 kGE). Since

our VLITTLE cluster incurs less than 3% of area overhead compared to a cluster of four Ariane

cores with their L1 caches, a four-core VLITTLE cluster’s area is comparable to the simulated

decoupled vector engine used in 1bDV. More detailed area analysis of the 1bDV system is left for

future work.

4.7 Power & Energy Evaluation

In this section, we first qualitatively evaluate power and energy efficiency of big.VLITTLE

architectures. We then explore the potential of voltage/frequency scaling to further improve the

performance and power efficiency of big.VLITTLE architectures for data-parallel workloads.

4.7.1 Qualitative Power and Energy Efficiency Analysis

In terms of power, a big.VLITTLE system leverages existing little core pipelines (i.e., func-

tional units and register files) for vector execution and the big core for scalar control flow. Extra

vector-specific components mainly consist of small FIFO command/data buffers and control log-

ics, and they can be power-gated in the scalar mode to avoid leakage power. In the vector mode,

front-end components (e.g., fetch, decode stages, and branch predictor) in little cores and control

logic in instruction caches are not used, so they do not contribute to the overall dynamic power

consumption. Therefore, we do not anticipate a big.VLITTLE system to draw significantly more

power than an equivalent big.LITTLE system.

Regarding energy efficiency, by reconfiguring little cores as a medium-sized decoupled vector

engine, big.VLITTLE architectures can reduce significantly the number of instruction and data

memory accesses due to less dynamic instructions (Figure 4.5) and wider data memory requests

(Figure 4.6). This reduction translates directly to less energy consumed in the memory subsys-

tem for data-parallel workloads compared to an equivalent big.LITTLE system with an integrated
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Big core Little core

Frequency Avg Power Frequency Avg Power
(GHz) (W) (GHz) (W)

b0 0.8 0.432 l0 0.6 0.043
b1 1.0 0.591 l1 0.8 0.059
b2 1.2 0.841 l2 1.0 0.095
b3 1.4 1.205 l3 1.2 1.450

Table 4.8: Average Power Consumption of a Big and Little Core at Multiple Voltage/Frequency Levels – The
average power consumption of a big and little core at different voltage/frequency levels was reported in previous
work [VSP+17]. The work used an Odroid XU+E board that includes a Samsung Exynos 5410 SoC and per-cluster
voltage/current sensors for the measurement. This SoC consists of four big Arm Cortex-A7 cores and four little
Arm Cortex-A15 cores. The power consumption was measured by running 26 benchmarks on all cores at different
frequencies (i.e., 500-1200MHz for the little cores and 800-1500MHz for the big cores at corresponding appropriate
voltage levels).

vector unit. In addition, higher performance at a similar power consumption yields higher en-

ergy efficiency. Previous work [LSFJ06, LAB+11] has also studied and reported the energy effi-

ciency of vector architectures. Future work can explore a more detailed power/energy evaluation

of big.VLITTLE.

4.7.2 Voltage/Frequency Scaling Design Space Exploration

Methodology – We assume the voltage/frequency of the big and little core clusters can be

scaled independently, which is similar to typical commercial big.LITTLE systems (e.g., Samsung

Exynos [KKCL13] and Qualcomm Snapdragon [Gwe14a]). We use previously reported average

power consumption of a big and little core at different voltage/frequency levels [VSP+17] to esti-

mate the average power consumption of the big and little core clusters in our simulated big.LITTLE

and big.VLITTLE systems. Table 4.8 shows the selected voltage/frequency levels for big and lit-

tle core clusters and their corresponding average power consumption as reported in the previous

work. In this design space exploration study, we assume that both 1bIV-4L and 1b-4VL have simi-

lar average power consumption compared to 1b-4L. To estimate the power consumption of 1bDV,

we reference the decoupled vector engine in Tarantula [EAE+02]. The work reported its vector

engine consumed roughly 40% more power than its out-of-order super-scalar core. Both the vec-

tor engine and the out-of-order core were clocked at the same frequency, which is similar to our

simulated 1bDV system. We assume the same power consumption ratio between the big core and
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Figure 4.9: Performance of 1bIV-4L and 1b-4VL at Different Voltage/Frequency Scaling Levels for Big and
Little Cores – All studied voltage/frequency levels (i.e., {b0,b1,b2,b3} and {l0, l1, l2, l3}) are shown in Table 4.8.
The performance numbers show speedup over 1L system running at 1GHz. The color scaling for each application is
the same for both 1bIV-4L and 1b-4VL.

its decoupled vector engine at different voltage/frequency levels. More accurate power models for

all designs are left for future work.

Performance impacts of voltage/frequency scaling – Figure 4.9 show the performance of

1bIV-4L and 1b-4VL at different combinations of voltage/frequency levels for big and little core

clusters. For 1bIV-4L, whether to boost the big core or the little core cluster for higher performance

depends on specific workloads and existing voltage/frequency levels. For example, in blackscholes,

boosting the big core cluster (e.g., from (b1, l1) to (b2, l1)) always yields better performance than
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Figure 4.10: Execution Time and Estimated Power Consumption of 1b-4VL at Different Voltage/Frequency
Levels – Each performance-power data point corresponds to a combination of big and little core’s voltage/frequency
levels shown in Table 4.8.

Figure 4.11: Execution Time and Estimated Power Consumption of Multiple Designs at Different Frequencies
– The dotted lines show Pareto frontier curves. Each performance-power data point corresponds to a combination of
big and little core’s voltage/frequency levels shown in Table 4.8.

74



boosting the little core cluster (e.g., from (b1, l1) to (b1, l2)). In contrast, in sw, boosting the little

core cluster is more beneficial than boosting the big core cluster.

For 1b-4VL, boosting the big core cluster while keeping the voltage/frequency level of the little

core cluster yields insignificant performance benefits across all applications except sw. Different

from 1bIV-4L in which both the big and little cores work together on the main computation, in 1b-

4VL, the big core mainly works as a control core for the VLITTLE engine that handles all heavy

vector computation. Slowing down the big core to a certain limit does not cause the VLITTLE

engine to stall since the engine has a deep command buffer and long vector length. For sw, since

only 69% of the work is vectorized (see VOp in Table 4.6) and the rest is executed by the big core,

boosting the big core while keeping the little cores running at the same voltage/frequency level

helps increase the overall performance.

Performance and power consumption trade-offs – Figure 4.10 shows the performance and

estimated average power consumption of all studied voltage/frequency combinations for 1b-4VL.

Boosting the little core cluster and slowing down the big core help 1b-4VL achieve the Pareto

optimal performance/power curve. Given a certain power budget, the power saved by lowering

down the big core’s speed can be used to boost the little cores that execute most of the vector

computation in data-parallel workloads. This power trading translates to higher performance and

efficiency for 1b-4VL.

Figure 4.11 shows performance/power data points for all designs including 1bDV, 1b-4L, 1bIV-

4L, and 1b-4VL. In the low-power region (i.e., less than 1W), 1b-4VL stays on the Pareto optimal

performance/power curve across all data-parallel applications. For 1bDV, despite its ability to

deliver high performance for data-parallel applications, its power-hungry decoupled vector engine

makes it not feasible in the low-power region. In the high-power region (i.e., more than 1W), 1b-

4VL is able to get close to the performance/power efficiency of 1bDV. It is important to note that

unlike 1bDV, 1b-4VL does not sacrifice the performance of important task-parallel applications to

achieve this power/performance efficiency for data-parallel workloads (see Section 4.5).

4.8 Related Work

Rockcress [BAPS21] extends many-core architectures with vector-like execution support by

dynamically grouping multiple small cores together into vector groups executing the same stream
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of instructions. Different from big.VLITTLE, Rockcress targets scale-out many-core systems with

scratchpads and mesh-based tiled network by loosely coupling multiple cores in a vector group

together, which requires frequent intra-vector-group synchronizations, a nontrivial amount of data

buffering, and a dedicated instruction-forwarding network in each core’s scratchpad as the group

size grows. In contrast, big.VLITTLE architectures aim to provide vector execution in small mo-

bile systems, which allows a small number of OS-capable little cores in a VLITTLE engine to

execute strictly in lock step, which greatly simplifies its design and implementation. Rockcress

adopts a non-standard vector-thread abstraction [KBH+04a] and requires extensive compiler-level

support to insert implicit instruction barriers so that its scalar cores do not run out of resources in

vector mode. In contrast, big.VLITTLE architectures support next-generation vector architectures

and compilers out of the box.

Vector-thread architectures [KBH+04a, KBH+04b, KBA08, BAA08, LAB+11] enable a SIMD-

like micro-architecture to execute MIMD code. They propose a non-standard hybrid vector/thread

ISA abstraction that would require non-trivial programming model and compiler support. Vector-

thread architectures strive to achieve a single abstraction for both task- and data-parallel work-

loads with certain trade-offs in performance, programmability, and energy efficiency. In contrast,

big.VLITTLE provides both multi-thread and vector solutions in a single micro-architecture to

provide the best multi-thread support when running task-parallel workloads and the most efficient

vector support when running data-parallel applications.

Cray X1 [DVWW05] provides options to group multiple vector engines into a single long-

vector machine, which is more applicable to large-scale super-computing systems already equipped

with vector engines than to small mobile SoCs. Taking an opposite approach compared to big.VLITTLE

architectures, vector lane threading [RSOK06] reconfigures multiple lanes in a vector engine as in-

dividual scalar cores that can execute independently from each other. Similarly, Libra [PPPM12]

attempts to overcome the inflexibility of SIMD accelerators by allowing different lanes to work in

either SIMD or VLIW execution styles.

Some prior work has proposed to gang multiple scalar threads dynamically to amortize their

front-end instruction overheads [KJT04,GCC+08,LFB+10,MBW14,KJT+17,KBH+04a,KBH+04b,

KBA08]. While preserving the simplicity of multi-thread programming abstractions, those ap-

proaches spend extra energy at run time to dynamically align multiple streams of scalar execution.

Some other reconfigurable architectures aim to exploit both thread-level and instruction-level par-
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allelism such as CoreFusion [IKKM07], MorphCore [KSH+12], and others [GFAM10, KSG+07,

TBS08, TCS20]. Unlike big.VLITTLE architectures, they do not explore data-level parallelism.

4.9 Conclusion

This chapter has demonstrated that big.VLITTLE architectures offer a compelling high-performance

and area-efficient solution to accelerating data-parallel workloads in heterogeneous multi-core mo-

bile systems. The reconfigurability of big.VLITTLE architectures resolves the fundamental tension

between performance and area in implementing next-generation vector architectures, which opens

up opportunities to provide the performance level of decoupled vector engines for data-parallel

workloads in small mobile systems without sacrificing either valuable silicon area on chips or

performance of task-parallel workloads. This work provides a small but important step toward a

future era of efficient next-generation vector architecture support in mobile SoCs. Future research

can explore the scalability of big.VLITTLE architectures beyond the scope of mobile SoCs.
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CHAPTER 5
SparseZipper: EVOLUTIONARY SPECIALIZATION FOR

MODERN MATRIX ARCHITECTURES

General matrix multiply (GEMM) is the key building block in many different domains includ-

ing machine learning, graph analytics, and scientific computing. There have been many solutions

in both general-purpose and domain-specific architectures accelerating GEMM with dense input

matrices. However, matrices in workloads are not always dense. In fact, many traditional and

emerging workload domains such as neural network models, graph analytics, and scientific sim-

ulations operate on sparse matrices where the majority of values are zeros. Sparse matrices are

typically stored in compact formats with metadata indicating positions of non-zero values, which

makes them incompatible with built-in dense matrix engines without first uncompressing the ma-

trices. Previous work has proposed several ISA extensions on CPUs to accelerate sparse computa-

tions. In this work, rather than designing a completely new ISA extension for sparse computations

on CPUs, we propose SparseZipper that enhances the existing matrix extensions specialized for

dense GEMM to accelerate sparse GEMM (SpGEMM) through the evolutionary specialization ap-

proach. SparseZipper targets the key bottleneck, which is merging partial sparse vectors, streams

of key-value pairs, in a conventional SpGEMM algorithm for data-parallel architectures. At the

core of SparseZipper is its ability to efficiently merge such streams in parallel by leveraging in-

place matrix registers to store parts of concurrent streams and built-in systolic array to merge those

streams together. To facilitate that merge operation, we propose a minimal set of additional ar-

chitectural states to keep track of active streams and matrix instructions to move streams between

matrix registers and memory. Our performance evaluations using the cycle-level modeling method-

ology presented in Chapter 3 show SparseZipper achieves 5.98⇥ and 2.61⇥ speedup over a scalar

hash-based implementation of SpGEMM and a vectorized SpGEMM version respectively.

5.1 Introduction

General matrix multiply (GEMM) is the key building block in many different domains in-

cluding machine learning, graph analytics, and scientific computing. Therefore, countless solu-

tions in both general-purpose and domain-specific architectures have been proposed to accelerate

dense GEMM (i.e., most values in matrices are non-zeros) with various trade-offs in generality,
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programmability, compute density, performance, and energy efficiency [JYP+17, Tie20, CYES19,

JYK+20, CGG+21b]. CPU vendors have recently introduced matrix extensions such as Intel’s

Advanced Matrix Extension (AMX) [int23b, NMM+22, JQS+21], Arm’s Scalable Matrix Exten-

sion (SME) [arm23], and IBM’s Matrix-Multiply Assist (MMA) [ibm23] to their ISAs for dense

GEMM acceleration. The RISC-V community has also put forward a proposal for a new matrix ex-

tension [ris23]. Compared to domain-specific processors (DSPs), those matrix extensions attempt

to strike a balance between generality and specialization on CPUs that are still widely deployed

for processing dense GEMM in edge devices [WBC+19b] and large-scale servers [HBB+18].

However, matrices in workloads are not always dense. In fact, many recent neural network

models [RCK+20, NMS+19, HMD15, JYP+17, WBC+19b], real-world graph analytics [Dav19,

HS11, ST15], and scientific simulations [CGM+96, Gal96] operate on sparse matrices where the

majority of values are zeros. In addition, matrix densities (i.e., the percentage of non-zero values

in a matrix) vary dramatically across domains (e.g., from 10�6% density in matrices representing

social graphs to 50% density in matrices used in neural network models [HAMP+19]). Such low

levels of matrix density prevent us from computing GEMM for sparse matrices efficiently on CPUs

using the recently introduced matrix extensions since most multiply operations are ineffectual (i.e.,

multiplying with zero). Moreover, sparse matrices are typically stored in compact formats (e.g.,

compressed sparse row (CSR)) with metadata indicating positions of non-zero values, which makes

them incompatible with built-in dense matrix engines without first uncompressing the matrices.

Previous work has proposed several ISA extensions on CPUs to accelerate sparse computa-

tions. SparseCore [RCYQ22] is a stream-based ISA extension designed specifically for sparse

computations, but it requires substantial architectural changes (e.g., stream registers and stream

value processing units) without being able to support dense computations. VEGETA proposes to

extend the recent matrix extensions to accelerate sparse/dense matrix multiplication (SpMM) in

addition to dense computations [JDB+23]. However, VEGETA is limited to SpMM and DNN-

specific sparsity structures, and it is not applicable to SpGEMM and general sparse matrices with

vastly different density levels and structures.

In this work, rather than designing a completely new ISA extension for sparse computations

on CPUs, we propose SparseZipper that enhances the existing matrix extensions to accelerate the

general sparse matrix-matrix multiplication (SpGEMM) with arbitrary sparsity levels and struc-

tures. SparseZipper targets the key bottleneck, which is merging partial sparse vectors, in a con-
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ventional SpGEMM algorithm for data-parallel architectures [LYA18,LWAQ19,FC23a,WMZ+19,

LV14, DBM+15]. Each partial sparse vector is considered as a stream of keys (i.e., representing

row/column indices of non-zeros in a matrix) and corresponding non-zero values. At the core of

SparseZipper is its ability to efficiently merge such streams in parallel by leveraging in-place ma-

trix registers to store parts of concurrent streams and built-in systolic array to merge those streams

together. In order to facilitate that merge operation, we propose a minimal set of additional ar-

chitectural states to keep track of active streams and matrix instructions to move streams between

matrix registers and memory. Our performance evaluations show SparseZipper achieves 5.98⇥ and

2.61⇥ speedup over a scalar hash-based implementation of SpGEMM and a vectorized SpGEMM

version respectively.

Contributions – Our key contributions include: (1) an ISA extension called SparseZipper

that includes new matrix instructions to efficiently support sorting and merging key-value streams,

a main operation in merge-based SpGEMM algorithm on matrices represented in CSR or CSC

formats, (2) a merge-based SpGEMM implementation using the proposed matrix instructions, (3)

a minimal set of micro-architectural changes to an integrated systolic array to support the new

stream sorting and merging instructions, and (4) a detailed cycle-level performance evaluation

showing benefits of using the new instructions in accelerating SpGEMM.

5.2 Background: Modern Matrix Architectures

The ever-growing importance of GEMM performance and efficiency in emerging workloads

such as machine learning has driven architects to design and integrate accelerators for dense

GEMM in modern systems. For example, Google introduced its Tensor Processing Unit (TPU)

as a co-processor next to a general-purpose CPU for accelerating training and inference ker-

nels in machine learning workloads [JYP+17, Tie20, JYK+20, JKL+23a]. At the heart of TPU

is a large matrix-matrix multiply unit that significantly improves the performance and energy

efficiency of multiplying two dense matrices compared to contemporary CPUs and GPGPUs.

NVIDIA also integrates tensor cores specialized for multiplying and adding matrices in its recent

GPUs [CGG+21a].

The need for accelerating GEMM has pushed specialization for dense GEMM further into

modern general-purpose CPU instruction sets as well. Arm recently released its Scalable Matrix
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Figure 5.1: A Baseline Systolic Array Micro-architecture for Accelerating Dense GEMM – PE = processing
element.

Extension (SME) that introduces a new instruction performing an outer product of two vectors and

accumulating its results into a new two-dimensional accumulator register state [arm23]. IBM took

a similar approach in its Matrix-Multiple Assist (MMA) extension for the Power ISA [ibm23].

Intel introduced a new Advanced Matrix Extension (AMX) that adds several two-dimensional

matrix register states called tile registers and a new matrix-matrix multiply instruction performing

a matrix multiplication on two input tile registers [int23b, NMM+22]. The RISC-V community is

also working on a matrix extension proposal [ris23] that is similar to Intel AMX’s approach.

Regardless of programming abstractions (e.g., accelerator-based interfaces and instruction sets),

specialization for dense GEMM is typically implemented in hardware using a two-dimensional

systolic array consisting of multiply-add processing elements (PEs) [JYP+17,JQS+21,NMM+22].

An implementation of a systolic array can be either input-, weight-, or output-stationary (i.e., which

input/output matrix stays inside the systolic array throughout the computation), depending on its

programming abstraction. The integration of a matrix-multiply unit and a general-purpose CPU

can be either coarse-grained (e.g., as a co-processor like TPU), medium-grained (e.g., sharing some

levels of caches with the CPU), or fine-grained (e.g., as a functional unit in the CPU’s pipeline).
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Figure 5.2: Compressed Sparse Row Format

Figure 5.1 shows a weight-stationary systolic array for accelerating dense GEMM. The array

consists of multiple PEs connected in a two-dimensional mesh network. Each PE receives input

data from its west and north input ports, sends output value (i.e., partial sum of an output matrix el-

ement) to its south neighbor PE, and forwards input data to its east neighbor PE. Each PE consists

of a weight register for keeping weight values that are multiplied with input values over multi-

ple iterations in a weight-stationary GEMM implementation. In addition, a multiply-accumulate

(MAC) unit is used to multiply a weight value (i.e., in the weight register) with an input value (i.e.,

from the west input port) and accumulate the result into an output value (i.e., from the north input

port). There are skew buffers in the west and north input ports so that input data are staggered in

time when entering the systolic array.

5.3 Background: Sparse General Matrix Multiplication

Sparse general matrix multiplication (SpGEMM) is a commonly used building block in various

application domains including graph analytics [Dav19, HS11, ST15], machine learning [RCK+20,

NMS+19, HMD15, JYP+17, WBC+19b], and scientific computing [CGM+96, Gal96]. This sec-

tion describes widely used data structures for representing sparse matrices, various algorithms for

multiplying two sparse matrices, and their trade-offs.

5.3.1 Sparse Matrix Formats

Since most elements in a sparse matrix are zeros, it is efficient to store only non-zero elements

to minimize the amount of required storage and also avoid ineffectual computation (i.e., multiply-
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ing with zero). The most common data structures for storing a sparse matrix are coordinate format

(COO), compressed sparse row (CSR), and compressed sparse column (CSC). They are the de-

fault data structures in many widely used linear algebra libraries such as Intel Math Kernel Library

(MKL) [WZS+14], CUSPARSE [NCVK10], and Matlab [GMS92].

COO format stores a list of tuples including row index, column index, and value of non-zero

elements in a sparse matrix. Typically, the list is kept sorted by either row indices, column indices,

or a combination of both row and column indices for more efficient lookups and memory accesses.

Further improving the storage efficiency, compared to COO, CSR format groups per-row non-

zero elements so that the row indices for elements in the same row can be further compressed.

Figure 5.2 shows an example of CSR format. Non-zero elements in each row are represented by

a stream of keys (i.e., column indices) and values (i.e., element data). Typically, elements in a

stream are sorted by their keys, and streams of adjacent rows are placed consecutively in memory

to form the column index and value arrays. The row pointer array consists of pointers indicating

where each row starts in the column index and value arrays. CSC format is similar to CSR format

except that non-zero elements are compressed by columns.

In addition to those general sparse matrix formats, there are numerous other sparse matrix for-

mats specialized for certain structures of non-zero elements and/or target architectures [BVWH14,

HDUZ21, GMFC21, SJL+20, CLY+18]. However, such specialized matrix formats often incur

format converting overheads, and their performance is not portable across different matrices and

architectures. In this chapter, we target CSR and CSC formats that are storage-efficient and widely

used sparse matrix formats.

5.3.2 SpGEMM Dataflows

Figure 5.3 shows common dataflows for SpGEMM: inner-product, outer-product, and row-

wise-product (also known as Gustavson’s algorithm).

Inner-product dataflow – This dataflow computes each element in the output matrix one at

a time by doing a dot product between two vectors (i.e., a row in matrix A and a corresponding

column in matrix B), as shown in Figure 5.3. Since there is no data dependency among output

elements, the inner-product dataflow is highly parallelizable by computing multiple dot products

for different output elements in parallel. In addition, this dataflow also has good data locality for

the output matrix but low data reuse for the input matrices. One major downside of this approach
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Figure 5.3: Different SpGEMM Dataflows – Non-zero elements in the input matrices (i.e., A and B) and the output
matrix (i.e., C) are colored. Zero elements are left blank. In each computation step, involved matrix elements are
shown within the dark borders.

is the inefficiency of doing a dot product between two sparse vectors. Since input matrices are

sparse, the output matrix is likely to have few non-zero elements. Therefore, most of the dot

products result in zeros. Furthermore, the dot product of two sparse vectors requires intersecting

two lists of indices, and this index matching is highly inefficient due to the high sparsity of a row

and a column in the input matrices.

Outer-product dataflow – Unlike the inner-product dataflow, the outer-product dataflow com-

putes partial results for the entire output matrix at each step by doing an outer product between a

column in matrix A and a corresponding row in matrix B, as shown in Figure 5.3. Partial results are

combined into a single final output matrix C. All non-zero elements in a column in matrix A and a

row in matrix B are used to generate non-zero elements in matrix C, so the outer-product dataflow

avoids the problem of ineffectual index matching operations in the inner-product dataflow. Mul-

tiple outer-product operations on different pairs of matrix A’s columns and matrix B’s rows can

happen in parallel. However, combining partial outer-product results typically requires complex

synchronizations, and this step is often a performance bottleneck in this approach. Despite having

good input data reuse, the outer-product dataflow has low output data reuse, and the aggregate

memory space of all partial output matrices is often much larger than the final output matrix’s size.

Row-wise-product dataflow – The row-wise-product dataflow computes each row of the out-

put matrix at a time by multiplying a row in matrix A (sparse vector) with the entire matrix B,

as shown in Figure 5.3. Similar to the outer-product dataflow, this row-wise-product dataflow is

work-efficient since it processes only non-zero input elements that contribute to generating non-
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Dataflow
Data Access Efficiency Sparse Format Algorithmic Efficiency

Mtx A Mtx B Mtx C Mtx A Mtx B Mtx C Time Space

Inner-product Low High High CSR CSC Either Low High
Outer-product High High Low CSC CSR CSR High Low
Row-wise-product High Low High CSR CSR CSR High Medium

Table 5.1: Trade-offs Among Different SpGEM Dataflows

zero output elements. In each step, a multiplication between a sparse vector and a sparse matrix

may require merging some partial output vectors into a final row in the output matrix. How-

ever, compared to the two-dimensional matrix merging step in the outer-product dataflow, merging

partial one-dimensional sparse vectors is much less complex and requiring much less temporary

memory space, which may fit in on-chip caches. The row-wise-product dataflow has relatively

poor data reuse of matrix B since column indices of non-zero elements in each row in matrix A are

used to access corresponding rows in matrix B. Finally, unlike both the inner-product and outer-

product approaches, the row-wise-product dataflow does not require input matrices to be stored in

two different formats: CSR and CSC. All input and output matrices can be consistently stored in

CSR, so there is no need for converting between sparse matrix formats.

Table 5.1 summarizes trade-offs among the three SpGEMM dataflows. In this work, we con-

sider only the row-wise-product dataflow since it is relatively work-efficient by avoiding the ex-

tremes in both inner-product and outer-product dataflows.

5.3.3 Row-Wise Product Algorithms

There are three common algorithms to implement the row-wise-product dataflow for SpGEMM:

array-based, hash-based, and expand-sort-compress algorithms.

Array-based row-wise SpGEMM – This is also known as sparse accumulator algorithm

(SPA) [GMS92]. Figure 5.4 shows an example of how this algorithm works. The algorithm uses

a set of three dense arrays that have the same size as the number of columns in the output matrix.

The first two arrays store accumulated values and valid flags. When a key-value tuple is inserted,

it accesses the two arrays by the key. If the flag for the key is false (i.e., no valid value has been

added for this key yet), it overwrites the corresponding entry in the accumulated value array and

sets the flag to true. Otherwise, the new value is added to the existing value. The third array stores
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Figure 5.4: Array-Based SpGEMM Algorithm

Figure 5.5: Expand-Sort-Compress Algorithm with the Block Size of Two Rows – Non-zero elements are colored
in the input and output matrices. Zero elements are left blank. A block of two adjacent rows in the matrix A and their
corresponding rows in the matrix B are expanded, sorted, and compressed together to generate output values for the
two rows in the output matrix C. All rows involved in the current computation step are shown within the dark borders.

inserted keys in the order they are first added to the list. Those keys are also indices to the value

and flag arrays. After all key-value tuples are inserted, we can iterate through the key array to

construct an unsorted list of key-value output list. The list is then sorted by keys to produce one

row of the output matrix. The flag array needs to be reset before processing the next matrix row.

Hash-based row-wise SpGEMM – Another common approach to accumulate sparse values

in row-wise SpGEMM is using a hash table [AFW16, DTR18]. Key-value tuples are inserted into

a hash table based on their hashed keys. Similar to the array-based row-wise SpGEMM, key-value

tuples in the hash table are not sorted, so a final sorting step is needed to generate an output matrix

with per-row non-zero elements sorted by their column indices.
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Expand-Sort-Compress (ESC) algorithm – ESC algorithm was initially proposed for per-

forming SpGEMM on GPUs [DOB15,WMZ+19] and later adopted to vector architectures [FC23b,

LWAQ19]. Figure 5.5 shows an example of how this ESC algorithm works. Unlike the array-based

and hash-based SpGEMM algorithms, more than one row of the input matrix A and output matrix

C can be processed together to increase the amount of work that can be parallelized or vectorized.

Intermediate results of multiplications are expanded in triples of row index, column index, and

value. The list of triples are then sorted by their row and then column indices. Triples with dupli-

cate key (i.e., same row and column indices) are compressed into one entry with the values being

accumulated in the final output.

5.4 SparseZipper Instruction Set Extension

In this section, we first describe a merge-based SpGEMM that fuses the sorting and compress-

ing steps of the ESC algorithm into one merging step. The merging step is similar to a typical

merge sort algorithm except that two key-value tuples with the same key are combine into one

tuple. We then propose and specify an instruction set extension that can accelerate this merging

procedure. The extension is built on top of the existing matrix instruction set that is designed for

accelerating dense GEMM.

5.4.1 Merge-Based SpGEMM

In the ESC algorithm, one or multiple adjacent rows of an output matrix can be processed at a

time. Figure 5.6 shows an example of using the ESC algorithm to produce one row of the output

matrix C. Partial results for an i-th row in matrix C are generated by multiplying each non-zero

element A[i][j] in an i-th row of matrix A with all non-zero elements B[j][k] in a j-th row

of matrix B. After this expansion phase, for each row in matrix C, we get a list of tuples, each

of which is a pair of a column index (or key) and a partial value. Each list of key-value tuples is

called a stream. We then combine this stream of partial results into a single sorted stream of unique

key-value pairs representing non-zero elements in an i-th row of matrix C.

Section 5.3 describes one way of combining those partial key-value pairs by first sorting the

list by keys (e.g., using radix sort), then compressing adjacent tuples with duplicate keys, and
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Figure 5.6: Multiple Steps Merge Partial Results for a Row in Output Matrix C – Each tuple is a pair of a column
index (i.e., key) and a partial value. A list of tuples, called a stream, represents all partial results after multiplying
each non-zero in a row of matrix A (e.g., colored elements in the row with black borders) and all non-zeros in the
corresponding rows (e.g., rows with black borders) in matrix B. A stream is split into multiple groups of adjacent
tuples (i.e., ones with the same color), and each group is called a partition of the stream.

Figure 5.7: Multiple Steps to Merge Two Sorted Partitions of Key/Value Tuples – Each step processes two chunks
of at most N elements (e.g., four in this example), one chunk from each input partition, and generates one output
chunk.
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finally adding up values having the same keys. Figure 5.6 shows another approach that performs

a merging operation. First, the list is split into equally sized partitions of tuples. Tuples in each

partition are then sorted by their keys. Finally, adjacent partitions are merged together in multiple

reduction steps to form a final sorted streams of tuples, as shown in Figure 5.6. Each reduction step

reduces the number of partitions by half while increasing the size of each partition. This sorting

and merging procedure is similar to a typical merge sort algorithm except that tuples with duplicate

keys are combined in each sorting and merging step. Therefore, the final stream of tuples may have

fewer elements than the original expanded list of partial results.

In each stream, two sorted partitions of tuples can be merged by repeatedly comparing two

tuples with the smallest keys, one from each partition. The tuple with a smaller key is moved from

its input partition into the output partition. If the two tuples have the same key, their values are

added up, and the tuple of the key and the sum value is added to the output partition. Finally, both

tuples with the same key are removed from their input partitions. The process continues until both

partitions run out of tuples.

Instead of processing one tuple from each partition at a time, we can load and merge two chunks

of N tuples, one chunk from each partition, in one step. Figure 5.7 shows an example of merging

two long sorted partitions of tuples by repeatedly merging two N-element chunks, one from each

tuple, at a time. It is important to note that we may not be able to move all N tuples from each

partition in one step. For example, in step one (in Figure 5.7), three tuples (4, 1), (6, 7), and (8, 3)

from partition one cannot be moved to the output partition since their keys are greater than every

key from the current chunk in partition zero. Instead, those tuples are merged in a subsequent step.

The number of tuples that we can advance at the end of a step in each partition is data-dependent.

In the next sections, we propose a new instruction set extension called SparseZipper for accel-

erating the two primitive operations in this merge-based approach to SpGEMM: (1) stream sorting

(i.e., sorting N tuples of keys and values) and (2) stream merging (i.e., merging two sorted parti-

tions of key-value tuples in a stream).

5.4.2 Architectural Register States

SparseZipper extends a matrix instruction set designed for dense GEMM and a vector instruc-

tion set, so it inherits both vector and matrix register states from the base vector and matrix ISAs.

Without the loss of generality, in this work, we use the RISC-V vector extension [RIS21] as the
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Figure 5.8: Logical Mapping Between Key/Value Streams and Matrix Registers – Only chunks of key/value tuples
with dashed borders are held in the two matrix registers. The vector register V0 stores the total number of elements in
the four streams.

base vector ISA and a base matrix instruction set inspired by Intel AMX [int23b] and a proposed

RISC-V matrix extension [ris23].

Matrix registers – The base matrix ISA supports eight general-purpose two-dimensional ma-

trix registers (also known as tile registers) named TR0, TR1, TR2, TR3, TR4, TR5, TR6, and TR7.

The length in bits for a row in a matrix register is the same as the number of bits in a single vector

register (i.e., VLEN) as defined in the RISC-V vector extension. In the scope of this thesis, we limit

the size in bits of each element (i.e., ELEN) in a vector register to 32 bits to simplify our description

of SparseZipper. A complete matrix instruction set may support other element bit widths such

as 8, 16, and 64 bits. There are R = V LEN/ELEN elements in a row of a matrix register. We

assume that each matrix register has the same number of rows as the number of elements in a row.

Therefore, the total number of elements in a matrix register is R2.

Mapping streams to matrix and vector registers – SparseZipper enables processing multi-

ple streams of key-value tuples in parallel by mapping those streams to different rows of matrix

registers. Figure 5.8 shows an example of this stream-register mapping. Matrix register TR0 stores

keys, and matrix register TR1 stores values. Each row of a matrix register is mapped to a stream.

Since matrix registers have a limited size defined by the hardware vector length and a stream can

be arbitrarily long, only a chunk of each stream can be held in matrix registers and processed at

a time. SparseZipper uses existing vector registers to store other information about those streams

(e.g., vector register V0 in Figure 5.8 stores the number of tuples in each stream).

Special-purpose counter vector registers – In addition to registers in the base vector and

matrix ISAs, SparseZipper introduces a set of four light-weight special-purpose input and output

counter vector registers: IC0, IC1, OC0, and OC1. Their usage is specified in details in the following

instruction set specification. Since each counter in a counter vector register counts up to the max

90



Instructions Description

Matrix Instructions for Dense GEMM (base matrix ISA)
mmult.tt td1, ts2, ts3 Multiply matrices in ts2 and ts3 and accumulate results into td1

mlse.t td1, 0(rs1), rs2, vs3 Load matrix data into td1 using a constant stride rs2
msse.t ts1, 0(rs1), rs2, vs3 Store matrix data from ts1 using a constant stride rs2

Matrix Instructions for Sparse GEMM (SparseZipper ISA extension)
mszipk.tt td1, td2, vs1, vs2 Merge keys in td1 and td2

mszipv.tt td1, td2, vs1, vs2 Merge values in td1 and td2 based on last key merging results
mssortk.tt td1, td2, vs1, vs2 Sort keys in td1 and td2

mssortv.tt td1, td2, vs1, vs2 Sort values in td1 and td2 base on last key sorting results
mlxe.t td1, 0(rs1), vs2, vs3 Load data into td1 using indices in vs2

msxe.t ts1, 0(rs1), vs2, vs3 Store data from ts1 using indices in vs2

mmv.vi vd, cimm Move values from an input counter vector IC[cimm] to vd

mmv.vo vd, cimm Move values from an output counter vector OC[cimm] to vd

Table 5.2: List of Matrix Instructions – The set of instructions for dense GEMM are inspired by the Intel AMX
specification [int23b] and RISC-V matrix extension proposal [ris23]. This work proposes the set of instructions for
sparse GEMM.

number of elements (i.e., R) in a row of a matrix register, each counter is log2 R-bit wide. Therefore,

each counter vector register has R⇥ log2 R bits in total.

5.4.3 Instruction Set Specification

Table 5.2 summarizes a list of matrix instructions for both dense and sparse GEMM. The base

matrix ISA includes three matrix instructions: (1) matrix multiply mmult.tt, (2) strided matrix

load mlse.t, and (3) strided matrix store msse.t for accelerating dense GEMM. Their syntax,

encodings, and semantics are shown in Figure 5.9. SparseZipper extends the base matrix ISA

by adding four groups of new matrix instructions: (1) indexed matrix load/store instructions, (2)

stream sorting instructions, (3) stream merging/zipping instructions, and (4) counter vector move

instructions.

Indexed matrix load/store instructions – SparseZipper introduces two new memory instruc-

tions to move data of multiple streams between matrix registers and memory. Figure 5.10 shows

the syntax, encodings, and semantics of the indexed matrix load (i.e., mlxe.t) and store (i.e.,

msxe.t) instructions. Unlike dense GEMM in which memory accesses to adjacent rows of a dense

matrix are regular and distanced by a constant stride, in the merge-based SpGEMM, streams of

key-value tuples often have different lengths and are located at arbitrary memory locations. There-
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1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 array<esize>[dim][dim] src_op_0 = TREG[ts2] # first input matrix

4 array<esize>[dim][dim] src_op_1 = TREG[ts3] # second input matrix

5 array<esize>[dim][dim] dst_op = TREG[td1] # output matrix

6 for i = 0 to dim-1:

7 for j = 0 to dim-1:

8 float tmp = float(dst_op[i][j])

9 for k = 0 to dim-1:

10 tmp += float(src_op_0[i][k]) * float(src_op_1[k][j])

11 dst_op[i][j] = tmp

1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 integer src_op_0 = SREG[rs1] # base address

4 integer src_op_1 = SREG[rs2] # stride

5 array<esize>[dim] src_op_2 = VREG[vs3] # row lengths

6 array<esize>[dim][dim] dst_op = TREG[td1] # output matrix

7 for row = 0 to dim-1:

8 integer addr = src_op_0 + row * src_op_1

9 integer rlen = min(dim, src_op_2[row])

10 for col = 0 to rlen-1:

11 dst_op[row][col] = MEM[addr + col * esize]

1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 integer src_op_0 = SREG[rs1] # base address

4 integer src_op_1 = SREG[rs2] # stride

5 array<esize>[dim] src_op_2 = VREG[vs3] # row lengths

6 array<esize>[dim][dim] src_op_3 = TREG[ts1] # input matrix

7 for row = 0 to dim-1:

8 integer addr = src_op_0 + row * src_op_1

9 integer rlen = min(dim, src_op_2[row])

10 for col = 0 to rlen-1:

11 MEM[addr + col * esize] = src_op_3[row][col]

Figure 5.9: Syntax, Encodings, and Semantics of Instructions in the Base Matrix ISA – SREG = scalar registers;
VREG = vector registers; TREG = matrix registers; MEM = memory.
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1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 integer src_op_0 = SREG[rs1] # base address

4 array<esize>[dim] src_op_1 = VREG[vs2] # index

5 array<esize>[dim] src_op_2 = VREG[vs3] # partition lengths

6 array<esize>[dim][dim] dst_op = TREG[td1] # output matrix

7 for row = 0 to dim-1:

8 integer addr = src_op_0 + src_op_1[row]

9 integer rlen = min(dim, src_op_2[row])

10 for col = 0 to rlen-1:

11 dst_op[row][col] = MEM[addr + col * esize]

1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 integer src_op_0 = SREG[rs1] # base address

4 array<esize>[dim] src_op_1 = VREG[vs2] # index

5 array<esize>[dim] src_op_2 = VREG[vs3] # partition lengths

6 array<esize>[dim][dim] src_op_3 = TREG[ts1] # input matrix

7 for row = 0 to dim-1:

8 integer addr = src_op_0 + row * src_op_1

9 integer rlen = min(dim, src_op_2[row])

10 for col = 0 to rlen-1:

11 MEM[addr + col * esize] = src_op_3[row][col]

Figure 5.10: Syntax, Encodings, and Semantics of Indexed Load/Store Instructions in SparseZipper –
SREG = scalar registers; VREG = vector registers; TREG = matrix registers; MEM = memory.

fore, mlxe.t and msxe.t take two vector operands: vs2 specifying memory locations (i.e., byte

offsets to a base address) and vs3 holding stream lengths.

Stream sorting instructions – SparseZipper introduces two new instructions called mssortk.tt

(i.e., stream sorting for keys) and mssortv.tt (i.e., stream sorting for values) to sort multiple

chunks of key-value tuples (i.e., up to the maximum number of elements in a row of a matrix regis-

ter). Figure 5.11 and Figure 5.12 show their syntax, encodings, and semantics. The two instructions

work together by first sorting keys (i.e., duplicate keys are combined) and then shuffling values

(i.e., values with duplicate keys are added up) based on the key reordering done by mssortk.tt.

In order to pass the key reordering information between mssortk.tt and mssortv.tt instruc-

tions, SparseZipper adds an abstract special-purpose architectural state that captures how input
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1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 array<esize>[dim][dim] src_op_0 = TREG[ts1] # 1st input matrix

4 array<esize>[dim][dim] src_op_1 = TREG[ts2] # 2nd input matrix

5 array<esize>[dim] src_op_2 = VREG[vs1] # lengths of 1st input chunks

6 array<esize>[dim] src_op_3 = VREG[vs2] # lengths of 2nd input chunks

7 array<esize>[dim][dim] dst_op_0 = TREG[td1] # 1st output matrix

8 array<esize>[dim][dim] dst_op_1 = TREG[td2] # 2nd output matrix

9 # input-output index maps to be produced

10 array<map<integer,integer>>[dim] idx_map_0

11 array<map<integer,integer>>[dim] idx_map_1

12

13 for i = 0 to dim-1:

14 integer inp_len_0 = min(dim, src_op_2[i])

15 integer inp_len_1 = min(dim, src_op_3[i])

16 # insert keys into ordered sets

17 set<esize> key_set_0

18 set<esize> key_set_1

19 key_set0.insert(src_op_0[i][0:inp_len_0])

20 key_set1.insert(src_op_1[i][0:inp_len_1])

21 # update index maps

22 for j = 0 to inp_len_0:

23 idx_map_0[i].insert(j, key_set_0.index(src_op_0[i][j]))

24 for j = 0 to inp_len1:

25 idx_map_1[i].insert(j, key_set_1.index(src_op_1[i][j]))

26 # update counter vectors

27 integer out_len_0 = key_set_0.size()

28 integer out_len_1 = key_set_1.size()

29 OC0[i] = out_len_0

30 OC1[i] = out_len_1

31 # update dst_op

32 dst_op_0[i][0:out_len_0] = key_set_0[0:out_len_0]

33 dst_op_1[i][0:out_len_1] = key_set_1[0:out_len_1]

Figure 5.11: Syntax, Encoding, and Semantic of mssortk.tt Instruction in SparseZipper – SREG = scalar
registers; VREG = vector registers; TREG = matrix registers; MEM = memory; OC* = output counter vector registers;
set = data structure storing an ordered list of unique values; map = key-value map data structure.
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1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 array<esize>[dim][dim] src_op_0 = TREG[ts1] # 1st input matrix

4 array<esize>[dim][dim] src_op_1 = TREG[ts2] # 2nd input matrix

5 array<esize>[dim] src_op_2 = VREG[vs1] # lengths of 1st input chunks

6 array<esize>[dim] src_op_3 = VREG[vs2] # lengths of 2nd input chunks

7 array<esize>[dim][dim] dst_op_0 = TREG[td1] # 1st output matrix

8 array<esize>[dim][dim] dst_op_1 = TREG[td2] # 2nd output matrix

9 # input-output index map produced by last mssortk.tt

10 array<map<integer,integer>>[dim] idx_map_0

11 array<map<integer,integer>>[dim] idx_map_1

12

13 for i = 0 to dim-1:

14 integer out_len_0 = OC0[i] # 1st output chunk's length produced by last mssortk.tt

15 integer out_len_1 = OC1[i] # 2nd output chunk's length produced by last mssortk.tt

16 # initialize dst_op

17 for j = 0 to out_len_0:

18 dst_op_0[i][j] = float(0)

19 for j = 0 to out_len_1:

20 dst_op_1[i][j] = float(0)

21 # update dst_op

22 integer inp_len_0 = min(dim, src_op_2[i])

23 integer inp_len_1 = min(dim, src_op_3[i])

24 for j = 0 to inp_len_0:

25 out_idx = idx_map_0[i][j]

26 dst_op_0[i][out_idx] += float(src_op_0[i][j])

27 for j = 0 to inp_len_1:

28 out_idx = idx_map_1[i][j]

29 dst_op_1[i][out_idx] += float(src_op_1[i][j])

Figure 5.12: Syntax, Encoding, and Semantic of mssortv.tt Instruction in SparseZipper – SREG = scalar
registers; VREG = vector registers; TREG = matrix registers; MEM = memory; OC* = output counter vector registers;
map = key-value map data structure.

keys are reordered in each chunk of key-value tuples. This state is intentionally left abstract in

the SparseZipper ISA as a list of maps of input-output indices (e.g., idx_map_0 and idx_map_1

in Figure 5.11 and Figure 5.12), so an implementation of SparseZipper can freely choose how

to implement this state. Section 5.5 later discusses one implementation of this state using a sys-

tolic array. Instruction mssortk.tt also updates the output counter vector registers with the new

lengths of sorted output chunks since an output chunk may be shorter than its input chunk (i.e.,

tuples with duplicate keys are combined).
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1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 array<esize>[dim][dim] src_op_0 = TREG[ts1] # 1st input matrix

4 array<esize>[dim][dim] src_op_1 = TREG[ts2] # 2nd input matrix

5 array<esize>[dim] src_op_2 = VREG[vs1] # lengths of 1st input chunks

6 array<esize>[dim] src_op_3 = VREG[vs2] # lengths of 2nd input chunks

7 array<esize>[dim][dim] dst_op_0 = TREG[td1] # 1st output matrix

8 array<esize>[dim][dim] dst_op_1 = TREG[td2] # 2nd output matrix

9 # input-output index maps to be produced

10 array<map<integer,integer>>[dim] idx_map_0

11 array<map<integer,integer>>[dim] idx_map_1

12

13 for i = 0 to dim-1:

14 integer inp_len_0 = min(dim, src_op_2[i])

15 integer inp_len_1 = min(dim, src_op_3[i])

16 set<esize> key_set # ordered set of keys from both streams

17 IC0[i] = 0 # initialize 1st input counter

18 IC1[i] = 0 # initialize 2nd input counter

19 # insert keys into the ordered set

20 for j = 0 to inp_len_0:

21 if (src_op_0[i][j] <= src_op_1[i][inp_len_1]):

22 key_set.insert(src_op_0[i][j])

23 IC0[i] += 1

24 for j = 0 to inp_len_1:

25 if (src_op_1[i][j] <= src_op_0[i][inp_len_0]):

26 key_set.insert(src_op_1[i][j])

27 IC1[i] += 1

28 # update index maps

29 for j = 0 to inp_len_0:

30 idx_map_0[i].insert(j, key_set.index(src_op_0[i][j]))

31 for j = 0 to inp_len_1:

32 idx_map_1[i].insert(j, key_set.index(src_op_1[i][j]))

33 # update dst_op and output counter vectors

34 integer out_len_0 = key_set.size() if (key_set.size() <= dim) else dim

35 integer out_len_1 = 0 if (key_set.size() <= dim) else (dim - key_set.size())

36 for j = 0 to out_len_0:

37 dst_op_0[i][j] = key_set[j]

38 for j = 0 to out_len_1:

39 dst_op_1[i][j] = key_set[out_len_0 + j]

40 # update output counter vectors

41 OC0[i] = out_len_0

42 OC1[i] = out_len_1

Figure 5.13: Syntax, Encoding, and Semantic of mszipk.tt Instruction in SparseZipper – SREG = scalar reg-
isters; VREG = vector registers; TREG = matrix registers; MEM = memory; IC* = input counter vector registers;
OC* = output counter vector registers; set = data structure storing an ordered list of unique values; map = key-value
map data structure.
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1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 array<esize>[dim][dim] src_op_0 = TREG[ts1] # 1st input matrix

4 array<esize>[dim][dim] src_op_1 = TREG[ts2] # 2nd input matrix

5 array<esize>[dim] src_op_2 = VREG[vs1] # lengths of 1st input chunks

6 array<esize>[dim] src_op_3 = VREG[vs2] # lengths of 2nd input chunks

7 array<esize>[dim][dim] dst_op_0 = TREG[td1] # 1st output matrix

8 array<esize>[dim][dim] dst_op_1 = TREG[td2] # 2nd output matrix

9 # input-output index map produced by last mszipk.tt

10 array<map<integer,integer>>[dim] idx_map_0

11 array<map<integer,integer>>[dim] idx_map_1

12

13 for i = 0 to dim-1:

14 # initialize dst_op

15 integer out_len_0 = OC0[i]

16 integer out_len_1 = OC1[i]

17 integer out_len = out_len_0 + out_len_1

18 # initialize a temporary array for accumulating values

19 array<esize>[out_len] accum_arr

20 for j = 0 to out_len - 1:

21 accum_arr[j] = float(0)

22 # update accum_arr

23 for j = 0 to inp_len_0:

24 out_idx = idx_map_0[i][j]

25 accum_arr[out_idx] += float(src_op_0[i][j])

26 for j = 0 to inp_len_1:

27 out_idx = idx_map_1[i][j]

28 accum_arr[out_idx] += float(src_op_1[i][j])

29 # update dst_op

30 for j = 0 to out_len_0 - 1:

31 dst_op_0[i][j] = accum_arr[j]

32 for j = 0 to out_len_1 - 1:

33 dst_op_1[i][j] = accum_arr[out_len_0 + j]

Figure 5.14: Syntax, Encoding, and Semantics of mszipv.tt Instruction in SparseZipper – SREG = scalar
registers; VREG = vector registers; TREG = matrix registers; MEM = memory; IC* = input counter vector registers;
OC* = output counter vector registers; map = key-value map data structure.
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1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 integer src_imm = cimm # counter vector index

4 array<esize>[dim] dst_op = VREG[vd] # output vector

5 for i = 0 to dim-1:

6 dst_op[i] = IC0[i] if src_imm == 0 else IC1[i] # copy from output counter vector reg

1 integer esize = 32 # element size in bits

2 integer dim = MAX_VLEN / esize # matrix dimension in elements

3 integer src_imm = cimm # counter vector index

4 array<esize>[dim] dst_op = VREG[vd] # output vector

5 for i = 0 to dim-1:

6 dst_op[i] = OC0[i] if src_imm == 0 else OC1[i] # copy from output counter vector reg

Figure 5.15: Syntax, Encoding, and Semantics of Counter Vector Move Instructions in SparseZipper –
VREG = vector registers;

Stream merging/zipping instructions – SparseZipper provides two instructions called mszipk.tt

(i.e., stream merging for keys) and mszipv.tt (i.e., stream merging for values) to merge sorted

partitions of key-value tuples in a stream. Figure 5.13 and Figure 5.14 show their syntax, en-

codings, and semantics. Similar to mssortk.tt and mssortv.tt, the two zipping instructions

work together by first zipping keys (i.e., duplicate keys are combined) and then shuffling values

(i.e., values with duplicate keys are added up). The key reordering information is also captured

by an abstract special-purpose architectural state (e.g., idx_map_0 and idx_map_1 in Figure 5.13

and Figure 5.14) that is produced by mszipk.tt and then consumed by mszipv.tt. Instruction

mszipk.tt updates input counter vector registers with the number of tuples that have been merged

from each input partition. The output counter vector registers are also updated with the number of

elements in each merged output partition.

Counter vector move instructions – In order to extract special-purpose input and output

counter vectors (i.e., for updating stream lengths), SparseZipper provides two move instructions

that move values from a counter vector register into a general-purpose vector register. Figure 5.15

shows their syntax, encoding, and semantics.
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5.4.4 Code Examples

In this section, we show how to use the proposed SparseZipper instruction set extension to sort

and merge key-value tuples in multiple streams in parallel.

Sorting key-value tuples – Figure 5.16 shows a RISC-V assembly code snippet of sorting key-

value tuples in chunks across multiple streams. Each stream is partitioned into multiple chunks of

at most VL key-value tuples. By mapping each stream to a row in matrix registers, we can process

a VL number of streams in parallel. Parallelism also happens in each stream by sorting tuples from

two adjacent chunks together. Figure 5.16 only shows the most inner loop that processes one set of

chunks across VL streams at a time. The most outer loop iterates through groups of VL streams.

First, keys and values of the current working set of tuples are loaded into matrix registers using

mlxe.tt instruction (i.e., in lines 10-13). Register tr0 and tr2 hold input keys while register

tr1 and tr3 hold corresponding input values. A set of vector registers are used to track lengths

and beginning indices of input and output chunks in the working set. Then instruction mssortk.tt

sorts two sets of keys (i.e., in tr0 and tr2) and writes the sorted keys into the same matrix registers

(i.e., in line 15). Duplicate keys are combined into a single key, so there may be fewer tuples in an

output chunk than there are in its input chunk. Instruction mssortk.tt writes the number of tuples

in each output chunk in the output counter vector registers OC0 and OC1. Instruction mmv.vo moves

the counter values into general-purpose vector registers (i.e., in lines 17-18). Following instruction

mssortk.tt that defines the position where each key in an input chunk appears in its output

chunk, mssortv.tt (i.e., line 16) shuffles values in the input chunk to the correct positions of

their corresponding keys in the output chunk. Values having duplicate keys are added up. Finally,

keys and values in output chunks are written back to memory using instruction msxe.t (i.e., in

lines 20-23). The most inner loop then continues processing the next two adjacent chunks across

the VL streams.

Merging streams of key-value tuples – Figure 5.17 shows a RISC-V assembly code snippet

of the most inner loop merging partitions of key-value tuples across VL number of streams. Each

stream consists of multiple partitions, and a pair of adjacent partitions in a stream are merged into

one output partition. Since a partition may have an arbitrary length, only a chunk of at most VL

tuples from each partition is loaded into matrix registers and processed at each iteration of the most

inner loop. The inner loop continues until all tuples in the current working set of input partitions
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1 # a0, a1: base address of input key and value arrays

2 # a2, a3: base address of output key and value arrays

3 # v0, v1: lengths of the 1st and 2nd input chunks

4 # v2, v3: pointers to the 1st and 2nd input chunks

5 # v4, v5: lengths of the 1st and 2nd output chunks

6 # v6, v7: pointers to the 1st and 2nd output chunks

7 # v8, v9: index of the current set of chunk pairs and the numbers of chunk pairs

8 loop:

9 # load

10 mlxe.t tr0, 0(a0), v2, v0 # load keys of the 1st input chunks

11 mlxe.t tr1, 0(a1), v2, v0 # load values of the 1st input chunks

12 mlxe.t tr2, 0(a0), v3, v1 # load keys of the 2nd input chunks

13 mlxe.t tr3, 0(a1), v3, v1 # load values of the 2nd input chunks

14 # sort

15 mssortk.tt tr0, tr2, v0, v1 # sort keys of the 1st and 2nd input chunks

16 mssortv.tt tr1, tr3, v0, v1 # sort values of the 1st and 2nd input chunks

17 mmv.vo v4, 0x0 # get lengths of the 1st output chunks

18 mmv.vo v5, 0x1 # get lengths of the 2nd output chunks

19 # store

20 msxe.t tr0, 0(a2), v6, v4 # store keys of the 1st output chunks

21 msxe.t tr1, 0(a3), v6, v4 # store values of the 1st output chunks

22 msxe.t tr2, 0(a2), v7, v5 # store keys of the 2nd output chunks

23 msxe.t tr3, 0(a3), v7, v5 # store values of the 2nd output chunks

24 # check if we finish all pairs

25 vadd.vx v8, v8, 0x2

26 vmsltu.vv v10, v8, v9

27 vpopc.m a4, v10

28 bnez a4, loop

Figure 5.16: Sorting Chunks of Keys and Values from Multiple Streams in Parallel Using the Proposed Matrix
Instructions – This code snippet only shows the most inner loop that iterating through the working set of chunks bor-
dered by the dash lines. VL = vector length; a{0..4} = scalar registers; v{0..9} = vector registers; tr{0..3} = ma-
trix registers.
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1 # a0, a1: base address of input key and value arrays

2 # a2, a3: base address of output key and value arrays

3 # v0, v1: lengths of the 1st and 2nd input paritions

4 # v2, v3: pointers to the 1st and 2nd input paritions

5 # v4: lengths of the output chunks

6 # v5: pointers to the output chunks

7 loop:

8 # load

9 mlxe.t tr0, 0(a0), v2, v0 # load chunks of keys from 1st input partitions

10 mlxe.t tr1, 0(a1), v2, v0 # load chunks of values from 1st input partitions

11 mlxe.t tr2, 0(a0), v3, v1 # load chunks of keys of 2nd input partitions

12 mlxe.t tr3, 0(a1), v3, v1 # load chunks of values of 2nd input partitions

13 # zip

14 mszipk.tt tr0, tr2, v0, v1 # zip keys of 1st and 2nd input chunks

15 mszipv.tt tr1, tr3, v0, v1 # zip values of 1st and 2nd input chunks

16 mmv.vi v6, 0x0 # get number of zipped input elements (1st chunks)

17 mmv.vi v7, 0x1 # get number of zipped input elements (2nd chunks)

18 mmv.vo v8, 0x0 # get number of output elements (1st part)

19 mmv.vo v9, 0x1 # get number of output elements (2nd part)

20 vsub.vv v0, v0, v6 # update input lengths (1st chunks)

21 vsub.vv v1, v1, v7 # update input lengths (2nd chunks)

22 vadd.vv v2, v2, v6 # bump input pointers (1st chunks)

23 vadd.vv v3, v3, v7 # bump input pointers (2nd chunks)

24 # store

25 msxe.t tr0, 0(a2), v5, v8 # store keys of 1st output chunks

26 msxe.t tr1, 0(a3), v5, v8 # store values of 1st output chunks

27 vadd.vv v5, v5, v8 # bump output pointers

28 msxe.t tr2, 0(a2), v5, v9 # store keys of 2nd output chunks

29 msxe.t tr3, 0(a3), v5, v9 # store values of 2nd output chunks

30 vadd.vv v5, v5, v9 # bump output pointers

31 ...

32 vpopc.m a4, v10 # count the number of active pairs of partitions

33 bnez a4, loop

Figure 5.17: Zipping Partitions of Keys and Values across Multiple Streams in Parallel Using the Pro-
posed Matrix Instructions – VL = vector length (i.e., four elements in this example); a{0..4} = scalar registers;
v{0..10} = vector registers; tr{0..3} = matrix registers.
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across all VL streams are merged. An outer loop iterates through pairs of adjacent partitions across

VL streams.

In each step of the most inner loop shown in Figure 5.17, keys and values from two chunks of

at most VL tuples from two partitions in each stream are loaded into matrix registers using mlxe.t

instruction (i.e., lines 9-12). Register tr0 and tr2 hold input keys while register tr1 and tr3

hold corresponding input values. A set of vector registers are used to track lengths and beginning

indices of input and output chunks in the current working set. Then instruction mszipk.tt merges

two sets of sorted keys (i.e., in tr0 and tr2) into one set of sorted keys (i.e., duplicate keys are

combined into one key). The output set of keys is stored in the same matrix registers tr0 and tr2.

If the output set has more than VL number of keys (i.e., larger than the number of elements a row

in a matrix register can hold), tr0 holds the first VL keys, and tr2 holds the rest of the keys in

the output set. Two output counter vector registers OC0 and OC1 are updated with the number of

keys each row of tr0 and tr2 has after mszipk.tt is executed. Line 18-19 uses mmv.vo to move

values from the output counter vector registers into general-purpose vector registers. As explained

previously, not all tuples from an input chunk can be merged in each step. Therefore, mszipk.tt

also updates two input counter vector registers IC0 and IC1 to indicate numbers of tuples that

have been merged from input chunks. Following mszipk.tt that merges keys from each pair of

input chunks into an ordered set of output keys, mszipv.tt (in line 15) shuffles values from input

chunks of tuples (i.e., in tr1 and tr3), based on the reordering of keys. Values with duplicate keys

are added up in the output set of tuples. Finally, keys and values in output chunks are written back

to memory using instruction msxe.t (i.e., in lines 25-30).

5.5 SparseZipper Micro-Architecture

This section details the SparseZipper micro-architecture that extends the baseline systolic array

specialized for dense GEMM (discussed in Section 5.2) to support the set of proposed instructions

for accelerating sparse GEMM presented in Section 5.4. We first describe the novel systolic ex-

ecutions of sorting and merging one pair of key-value lists using a systolic array in Section 5.5.1

and 5.5.2. We then discuss how to process multiple pairs of key-value lists stored in multiple

rows of matrix registers in Section 5.5.3. Finally, we present a minimal set of micro-architectural

changes in the baseline systolic array to realize those systolic executions in Section 5.5.4.
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5.5.1 Systolic Execution of Sorting a Pair of Key-Value Lists

Figure 5.18 shows an example of a systolic execution of mssortk instruction using a 3⇥3

systolic array to independently sort two unsorted list of keys in an ascending order cycle by cycle.

In cycle 0, the two input lists of keys are located in the west and north sides of the systolic array.

Similar to the systolic execution of a dense GEMM, input values are streamed into the systolic

array in a skewed pattern. The two sorted output lists of keys come out from the east and south

sides of the systolic array. All PEs are connected in the same way as in the baseline systolic array.

Each PE receives input data in its west and north input ports, and it sends output data through its

east and south output ports.

For mssortk instruction, a list of input keys are streamed through the systolic array in two

passes: sorting and compressing. In the sorting pass, keys are sorted in an ascending order. Since

a list of keys may contain multiple duplicates (e.g., the north-side input list in Figure 5.18), the

sorting pass detects and combines those duplicates into one single key. If duplicates exist, the

sorted list of output keys will be shorter than the unsorted list of input keys since duplicated keys

are excluded and becoming invalid. Those invalid keys may exist in between valid output keys after

the first pass. The compressing pass then moves invalid output keys to the end of an output list so

that sorted valid keys are placed consecutively without invalid keys in between. For example, in

Figure 5.18, after the sorting pass, the north-side input list of {5, 8, 5} comes out of the systolic in

the east side as {5, d, 8} (i.e., d indicates excluded duplicated key(s)). After the compressing pass,

the partial output list becomes {5, 8, d} in the south side of the systolic array. For both mssortk

and mssortv instructions, north-side inputs come out from east side after the sorting pass. Then

they are re-streamed into the systolic array from the west side, and they finally come out from the

south side after the compressing pass.

Given a list of keys, mssortk generates an ordering in which keys and values should be placed

in output lists. Instruction mssortv then follows the ordering to sort its list of values. The systolic

array uses a set of micro-architectural states in each PE to keep track of the ordering. In each PE,

those states encode the direction in which west-side and north-side input data should be routed

towards and whether the data should be combined due to duplicates. In each PE, given a pair

of incoming inputs, there are four possible states: initial (i.e., no data routing between input and

output ports), forwarding, switching, and combining. In the forwarding state, a PE routes west-side

and north-side input data to the east and south output ports respectively. In the switching state, a
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Figure 5.18: Cycle-by-Cycle Systolic Execution of mssortk in a 3⇥3 Systolic Array for Two Unsorted Lists of
Keys – PE states: F = forward, X = switch, C = combine; W_IC = west input counter; N_IC = north input counter;
E_OC = east output counter; S_OC = south output counter; d = duplicate key that is excluded; Counters in red indicate
they are updated in corresponding cycles. PEs in gray are inactive. PEs in blue are zipping keys. PEs in purple are
compressing valid output keys. Keys in red come from the north input. Keys in green come from the west input. Keys
in west and east sides are ordered from bottom to top. Keys in north and south sides are ordered from left to right.
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PE routes west-side and north-side input data to the south and east output ports respectively. In the

combining state, a PE combines input data (i.e., producing a single output key for mssortk, and

adding up two input values for mssortv) into a single output. The combined data is routed to the

south output port, and the east-side output data is flagged as duplicated. Since each input data is

streamed through the systolic array twice, each PE needs to keep track of states for both sorting

and compressing passes.

The west- and north-side input lists are sorted independently using either the bottom-left or top-

right half of the systolic array. PEs on the main diagonal always switch their input data so that keys

and values from the two input lists are not intermixed. In each PE, the sorting and compressing

algorithm works by comparing two input keys and routing the larger one to the east output port and

the smaller one to the south output port. Overall, larger keys and their values flow to the east side

while smaller keys and their values flow to the south side of the systolic array. If two input keys

are equal, an output flagged as invalid is sent through the east output port of an PE. In subsequent

PEs, an invalid input is considered larger than any valid data and, therefore, always routed to the

east output port unless both input data are invalid (i.e., in this case, a PE simply forwards the two

invalid inputs to the output ports). Therefore, after the compressing pass, invalid data flow to the

end of an output list, and all valid output data stay consecutively in its beginning part.

Instruction mssortk also updates a set of counters tracking the number of valid input and

output data elements: west-input (W_IC), north-input (N_IC), east-output (E_OC), and south-output

(S_OC) counters as shown in Figure 5.18. Input counters (i.e., W_IC and N_IC) are incremented

when output elements appear in the east and south output sides of the systolic array after a sorting

pass. For example, in Figure 5.18, in cycle 4, 5 and 6, W_IC counts the number of valid elements

(i.e., in red) coming from the west side, and N_IC counts the number of valid elements (i.e., in

green) coming from the north side. Output counters (i.e., E_OC and S_OC) are updated when

output elements come out of the systolic array after a compressing pass (e.g., in cycles 8-10 in

Figure 5.18).

Similar to mssortk, mssortv instruction streams input values through the systolic array twice.

However, instead of making comparisons of input values, mssortv routes values based on the

states previously generated by mssortk instruction when sorting corresponding keys. Therefore,

values flow through the systolic array in the same pattern as their keys. In a PE, if the state is

combining, two input values are added up. The accumulated value is then forwarded to the PE’s
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south output port while an invalid value is generated for the east output port. Instruction mssortv

does not update the input and output counters.

5.5.2 Systolic Execution of Merging a Pair of Sorted Key-Value Lists

Figure 5.19 shows an example of a systolic execution of mszipk instruction using a 3⇥3 sys-

tolic array to merge two sorted key-value lists into one sorted list. In cycle 0, the two input lists

of sorted keys are placed in the west and north sides of the systolic array. Keys in the west-side

list are ordered from bottom to top with the smallest key staying at the bottom while keys in the

north-side list are ordered from left to right with the smallest key staying on the left. The final

output list is stored in two parts. The part with smaller keys (e.g., {2, 3, 5} in Figure 5.19) are

located in the east-side output while the other part with larger keys (e.g., {8} in Figure 5.19) are

stored in the south-side output.

In this merging operation, input keys flow through the systolic array in two passes: merging

and compressing. The merging pass generates a list of sorted keys with possible duplicated keys to

be excluded (i.e., invalid output keys) in between valid output keys. The compressing pass moves

those invalid keys to the end of the list so that valid output keys stay in consecutive positions.

Unlike the sorting pass in the sorting operation, the merging pass intermixes keys from both input

key-value lists. PEs on the main diagonal in the merging pass work exactly the same as other

PEs in the array instead of always doing north-to-east and west-to-south routing as in the sorting

pass of the sorting operation. Similar to the sorting operation, larger keys and their values flow

to the east side while smaller keys and their values flow to the south side of the systolic array.

The compressing pass of this merging operation works exactly the same as discussed earlier in

Section 5.5.1.

Unlike the sorting operation, not all valid input keys become valid output keys, as discussed

in Section 5.4.1. Keys from a list that are greater than every key in the other list need to be

excluded since we do not know yet their positions after the current merging step. For example, in

Figure 5.19, the key 9 from the west-side input list is excluded from the output list (i.e., becoming

an x in cycle 4) since it is greater than every key from the north-side list. In order to detect such

keys to be excluded, each key is tagged with two extra bits to track (1) from which input side the

key comes from (i.e., source bit) and (2) whether the key has been compared with another larger

or equal key from the other input side yet (i.e., merge bit). The merge bit is initially set to false
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Figure 5.19: Cycle-by-Cycle Systolic Execution of mszipk in a 3⇥3 Systolic Array for Two Sorted Lists of
Keys – PE states: F = forward, X = switch, C = combine; W_IC = west input counter; N_IC = north input counter;
E_OC = east output counter; S_OC = south output counter; d = duplicate key that is excluded; x = unmergeable key;
Counters in red indicate they are updated in corresponding cycles. PEs in gray are inactive. PEs in blue are merging
keys. PEs in purple are compressing valid output keys. Keys in red come from the north input. Keys in green come
from the west input. Keys in west and east sides are ordered from bottom to top. Keys in north and south sides are
ordered from left to right.

107



1 mssortk.tt tr0, tr2, v0, v1 # sort keys of the 1st and 2nd input chunks

2 mssortv.tt tr1, tr3, v0, v1 # sort values of the 1st and 2nd input chunks

Figure 5.20: Cycle-by-Cycle Systolic Execution of Sorting Multiple Key-Value Lists in a 3⇥3 Systolic Array –
PEs performing key-value sorting are annotated with letter s. PEs performing key-value compression are annotated
with letter c. PEs in gray color are idle. Otherwise, the color of a PE refers to a set of rows in matrix registers that the
PE is processing. Time in cycles progresses from left to right and top to bottom. The code snippet is extracted from
the sorting code in Figure 5.16.

for each key and flipped to true when a PE detects a larger or equal key from the other input side.

After the merging pass, if the merge bit is still false, the key becomes invalid and excluded from

the output list.

Input and output counters are updated in the same way as in the sorting operation (e.g., in cycles

4-6 and cycles 8-10 in Figure 5.19). W_IC and N_IC count the numbers of mergeable keys from the

west-side and north-side input lists respectively. E_OC and S_OC count the numbers of valid output

keys in the east-side and south-side output lists respectively.

5.5.3 Merging and Sorting Multiple Pairs of Key-Value Lists

Section 5.5.1 and 5.5.2 detail the systolic executions of sorting and merging a pair of key-value

lists. This section discusses how multiple pairs of key-value lists can be processed in parallel using

the systolic array.

Figure 5.20 shows the cycle-by-cycle systolic execution of sorting multiple key-value lists. The

cycle-by-cycle behaviors of merging multiple key-value lists are similar to the one of the sorting
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Figure 5.21: SparseZipper Systolic Array Micro-architecture – Components and wires added to support sparse
computation are in red; PE = processing element; popc = population counting logic; W_IC = west input counter
vector; N_IC = north input counter vector; E_OC = east output counter vector; S_OC = south output counter vector.

operation. As explained in Section 5.4.2, multiple key-value streams are mapped to multiple rows

in a matrix register for parallel processing. Each row in a matrix register in Figure 5.20 corresponds

to a chunk of a key-value stream. First, keys are sorted (i.e., by mssortk), and then values are

shuffled (i.e., by mssortv) based on the outcome of mssortk.

Data elements from adjacent rows enter the systolic array in consecutive cycles to maximize

the systolic array’s utilization. There are one-cycle stalls in cycle 4 and cycle 11 since it takes

one extra cycle to route data from the west/south output sides at the end of a sorting pass to the

east/north input sides at the beginning of a compressing pass. Since mssortk and mssortv are

typically executed back to back, the systolic array can schedule to start the following mssortv

as soon as the top-left-corner PE finishes its last key-compressing operation (e.g., in cycle 8 in

Figure 5.20).
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5.5.4 Micro-architectural Extension to the Baseline Systolic Array

Figure 5.21 shows micro-architectural changes for sparse computation on top of the baseline

systolic array specialized for dense GEMM (shown in Figure 5.1).

We add a second output port to the matrix register file to support the sorting and merging

instructions as each of those instructions has two output operands. Since each physical matrix

register is quite large (e.g., 1KB for a 16⇥16 32-bit-element matrix register), the matrix register

file may consist of multiple SRAM banks, one for each physical matrix register. Therefore, adding

an additional write port to the register file simply requires an extra crossbar instead of adding an

extra write port to each SRAM bank which would incur significant area overheads. In order to

retrieve the east-side output data from the systolic array, we add a second deskew buffer. For

mszipk and mszipv, data in the west-bound input and east-bound output needs to be reversed.

Therefore, simple crossbar networks are added to the west and east sides of the systolic array.

As explained in Section 5.5.2, additional control bits (i.e., source, duplicate and merge bits)

are tagged along with each data element for tracking its input source and whether the element is

duplicated and mergeable. Therefore, we add a three-bit control path between any two PEs on

top of the existing data path. For routing data between a sorting/merging pass and a compressing

pass, two loop-back paths are added to connect east and south output sides to the west and north

input sides respectively. Each path is pipelined via an extra register to account for its long distance

between two sides of the systolic array.

Four input and output vectors of N counters are added to track the number of valid input and

output elements for N rows of matrix registers. Each counter counts up to N (i.e., the number

of elements in a row), so a vector of N counters is N ⇥ log2 N bit wide. The population counting

logic uses output control signals from the systolic array and increments corresponding input/output

counters.

In each PE, we slightly modify the existing adder to compare north- and west-side input keys.

An additional control unit uses the comparison outcome to make a routing decision (i.e., either

forwarding, switching, or combining inputs) and route data from input to output ports by control-

ling the two output multiplexers. The control unit also updates the duplicate and merge bits based

on the source bit and the comparison outcome. We use the same adder for adding up values for

mssortv and mszipv instructions in case of combining inputs. We repurpose the weight register

in each PE to store routing states (i.e., initial, forwarding, switching, and combining). Each state
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CPU • RISC-V ISA (RV64GC)
• 8-way out-of-order issue
• 72-entry LQ, 56-entry SQ, 96-entry IQ & 224-entry ROB
• 180 physical integer, 168 physical floating-point & 128 physical 512-bit vector registers
• Two 512-bit-wide SIMD execution units

Matrix Unit • A systolic array with 16⇥16 processing elements (PEs)
• Each PE has a single-precision multiply-accumulate (MAC) unit
• 16 physical matrix registers

Caches • L1I cache: 8-way, 32KB & 2-cycle hit latency
• L1D cache: 8-way, 32KB & 2-cycle hit latency
• L2 cache: 4-way, 4-bank, 256KB & 8-cycle hit latency
• LLC: 8-way, 8-bank, 512KB & 8-cycle hit latency

Memory DDR4-2400

Table 5.3: Baseline System Configuration – LQ = Load queue; SQ = Store queue; IQ = Issue queue; ROB = Reorder
buffer; LLC = Last-level cache. The CPU and caches are loosely modeled after Intel Skylake CPU [int23a, Fog12].
The matrix unit is based on previous work on an implementation of Intel AMX [JQS+21] and Intel Sapphire
Rapids [NMM+22].

requires two bits to encode. Each pair of rows from two input matrix registers needs to store two

states for their sorting/merging and compressing passes. Therefore, for N pairs of rows, we need a

total of N ⇥4 bits for all the routing states (e.g., 64 bits in total if the hardware vector length is 16

elements).

5.6 Evaluation Methodology

In this section, we describe our simulated systems, cycle-level modeling methodology, and a

matrix dataset used to evaluate the performance of SparseZipper architecture.

5.6.1 Simulated Systems

We use gem5 [BBB+11, LPAA+20, TCB18], a cycle-approximate simulator, to evaluate the

performance of SparseZipper architecture in this work. Table 5.3 details the configuration of our

baseline system. We use gem5’s out-of-order core and configure it to loosely model Intel Sky-

lake CPU [int23a, Fog12], an aggressive high-performance out-of-order CPU with 512-bit SIMD

support for accelerating compute-intensive workloads like GEMM in high-end servers and data
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Figure 5.22: Out-Of-Order Core Pipeline with an Integrated Systolic Array for Executing Matrix Instructions

centers. We model two 512-bit-wide SIMD execution units integrated into the CPU pipeline for

vector execution. Vector instructions can be speculatively executed out-of-order. The simulated

cache subsystem is based on Arm AMBA 5 CHI cache model provided in gem5 [gem21].

Baseline systolic array for dense GEMM – For matrix instruction support, we model a sys-

tolic array with 16⇥16 PEs based on previous work on an implementation of Intel AMX [JQS+21]

and Intel Saphhire Rapids [NMM+22]. Each PE consists of a double-precision multiply-accumulate

(MAC) unit with a latency of four CPU cycles. There are 16 physical two-dimensional matrix reg-

isters, each capable of storing 16⇥16 32-bit data elements (i.e., for a total of 1KB). The baseline

matrix register file supports two read ports and one write port for the mmult.tt instruction. Since

each matrix register is quite large, a viable physical implementation of the matrix register file can

include several one-read one-write SRAM blocks, one for each matrix register, and a crossbar for

reading and writing row(s) of matrix registers. Similar to scalar and vector registers, matrix reg-

isters can be renamed so that matrix instructions in the base matrix ISA (i.e., mmult.tt, mlse.t,

and msse.t) can be executed out-of-order. Constant-stride matrix load and store instructions (i.e.,

mlse.t and msse.t) are decomposed into row-wise unit-stride memory micro-ops that are exe-
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Matrix # Rows NNZs Density
Per Row Per 16 Rows

Avg Inp Inp NNZ Avg Avg Out Work / Avg Avg Work
NNZ Variation Work NNZ Out NNZ Work Variation

p2p 63K 148K 3.78E-05 2.36 1.86 8.60 8.59 1.00 0.14K 2.26
wiki 8K 104K 1.51E-03 12.50 3.16 547.52 220.70 2.48 8.76K 2.06
soc 76K 509K 8.84E-05 6.71 3.88 526.09 271.20 1.94 8.48K 1.43
ca-cm 23K 187K 3.49E-04 8.08 1.32 178.66 101.82 1.75 2.86K 1.35
ndwww 326K 930K 8.76E-06 2.85 1.95 29.42 12.63 2.33 0.78K 1.30
patents 241K 561K 9.69E-06 2.33 1.28 10.83 9.48 1.14 0.20K 1.29
ca-cs 227K 1628K 3.15E-05 7.16 1.48 164.38 72.68 2.26 2.63K 0.98
email 37K 184K 1.37E-04 5.01 1.76 163.04 89.30 1.83 2.64K 0.88
scircuit 171K 959K 3.28E-05 5.61 0.78 50.74 30.54 1.66 0.81K 0.48
bcsstk17 11K 220K 1.83E-03 20.03 0.45 445.71 56.58 7.88 7.13K 0.38
usroads 129K 331K 1.98E-05 2.56 0.31 7.18 5.45 1.32 0.11K 0.31
p3d 14K 353K 1.93E-03 26.10 0.53 870.85 218.85 3.98 13.93K 0.24
cage11 39K 560K 3.66E-04 14.32 0.31 225.13 97.59 2.31 3.60K 0.08
m133-b3 200K 800K 2.00E-05 4.00 0.00 16.00 15.90 1.01 0.26K 0.00

Table 5.4: Evaluated Datasets – p2p = p2p-Gnutella31; wiki = wiki-Vote; soc = soc-Epinions1; ca-cm = ca-CondMat;
ndwww = NotreDame_www; patents = patents_main; ca-cs = coAuthorsCiteseer; email = email-Enron; p3d = pois-
son3Da; Avg = average; Variation = coefficient variation, ratio of the standard deviation to the mean; Inp = input;
Out = output; Density = ratio of non-zero values to all values in a matrix; NNZ = number of non-zero values; Avg
Out NNZ = average number of non-zero values in an output matrix row; Work = number of multiplications needed to
compute one output row or one group of 16 consecutive output rows; In this work, we multiply each square matrix
with itself. Table entries are sorted by the avg work variation in a descending order.

cuted in the same way as unit-stride vector memory instructions. Figure 5.22 shows the integration

of the matrix register file and systolic array in the O3 CPU pipeline.

Extended systolic array for sparse GEMM – We model a non-speculative execution of

stream sorting and merging instructions (e.g., mssortk.tt and mszipk.tt) to simplify the hard-

ware implementation of special-purpose registers (e.g., input and output counter vectors as dis-

cussed in Section 5.4). Those instructions wait until they are at the ROB’s head (i.e., no longer

speculative) before they are issued to the systolic array for execution. Once issued, those instruc-

tions are placed into a retirement queue waiting for their execution (i.e., with no possible exception

as defined by the SparseZipper ISA) to finish, and subsequent instructions can continue to commit.

We model extending the matrix register file’s crossbar to support the second write port. We model

a latency of one CPU cycle in each PE to process one pair of input data when the PE executes the

sorting and merging instructions since those instructions do not use the PE’s long-latency floating-
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point multipler. Similar to constant-stride matrix memory instructions, indexed matrix load/store

instructions (i.e., mlxe.t and msxe.t) are broken into row-wise micro-ops that are executed by

the core’s load/store unit.

5.6.2 SpGEMM Implementations

Scalar SpGEMM – We evaluate two scalar row-wise implementations of SpGEMM: scl-array

and scl-hash using a dense array [GMS92] and a hash table respectively for accumulating interme-

diate non-zero values in each output row (as discussed in Section 5.3). In scl-hash, we use linear

probing to solve hash collision (i.e., storing value to the next available position in the hash table

in case of collision). For both scl-array and scl-hash, after all intermediate non-zeros are accumu-

lated for each output row, they are sorted by their column indices using a quick sort routine from

the C++ standard library.

Vectorized ESC-based SpGEMM – We ported a vectorized implementation of SpGEMM

from prior work [FC23b]. This vectorized SpGEMM implementation called vec-radix is based

on a radix-sort-based ESC algorithm (i.e., ESC algorithm is described in Section 5.3). The vec-

radix is vectorized using the RISC-V vector extension. The output matrix is divided into multiple

blocks of consecutive rows. In vec-radix, there is a preprocessing step that calculates the amount

of work (i.e., the number of multiplications) for each output row and groups multiple consecutive

rows into one block based on a given configurable target block size. The preprocessing step is also

necessary for allocating enough temporary memory space for intermediate non-zeros generated in

the expansion step. A too small block size limits the amount of parallelism that can be vectorized

while a too large block size can lead to thrashing the caches. In order to pick the best block size, we

sweep multiple block sizes for each input matrix and report the one yielding the best performance.

In the sorting phase which is typically the most time-consuming step in the ESC algorithm, vec-

radix uses a vectorized radix sort algorithm [ZB91] to sort intermediate non-zeros by their row and

then column indices. Finally, the compressing phase uses constant-stride memory instructions to

combine adjacent intermediate non-zeros sharing the same row and column indices into one final

non-zero value.

Merge-based SpGEMM using SparseZipper instructions – We implemented two versions

of the merge-based SpGEMM (i.e., discussed in Section 5.4) using the proposed SparseZipper

instruction set extension: mtx-merge and mtx-merge-rsort. Similar to vec-radix, both calculate the
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amount of work for each output row to allocate enough temporary memory space for intermediate

results in a preprocessing step. Different from mtx-merge, mtx-merge-rsort sorts row indices by

their amount of work calculated in the preprocessing step so that output rows with similar amount

of work can be computed together. Once all output rows are computed, they need to be re-sorted

by their row indices so that non-zeros in the final output matrix are ordered by their row indices.

The sorting is done using a quick sort routine from the C++ standard library. In both mtx-merge

and mtx-merge-rsort, the expansion phase is vectorized using the RISC-V vector extension while

the merge phase is implemented using the proposed SparseZipper instructions.

5.6.3 Matrix Datasets

We evaluate SparseZipper using a set of matrices, shown in Table 5.4, taken from SuiteS-

parse [DH11] across multiple domains such as road networks, scientific simulations, and social

networks. This collection of matrices represents a variety of sparsity levels and patterns (e.g., vari-

ations in number of non-zeros across matrix rows). In this work, we multiply each matrix with

itself, which is a common evaluation method used in prior work [SJL+20, PBP+18, ZAES21]. Ta-

ble 5.4 reports the amount of work, the number of multiplications needed, for each output row (i.e.,

in per-row avg work column) and for each group of 16 output rows (i.e., in per-16-row avg work

column). We also report the ratio of work to the number of non-zero values in an output matrix

row (i.e., in work / output NNZ column). This ratio shows the degree in which duplicates in a list

of intermediate non-zero values are compressed into a final list of unique non-zero values in an

output matrix row.

5.7 Evaluation

In this section, we first discuss our cycle-level performance of the mtx-merge and mtx-merge-

rsort in comparison to both scalar (i.e., scl-array and scl-hash) and vector (i.e., vec-radix) baseline

implementations. We then qualitatively analyze area overheads of SparseZipper micro-architecture

with respect to the baseline hardware designed for accelerating dense GEMM.
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Figure 5.23: Speedup over Scalar Baseline Using Hash Table

5.7.1 Performance Evaluation

Figure 5.23 shows the relative performance of all SpGEMM implementations evaluated in this

work. On average, mtx-merge achieves 12.13⇥, 5.98⇥, 2.61⇥ speedup over the three baseline ver-

sions scl-array, scl-hash and vec-radix respectively. Figure 5.24 shows the execution time break-

down in different execution phases of the vec-radix, mtx-merge, and mtx-merge-rsort versions.

Figure 5.25 and 5.26 show the number of accesses to L1 data cache and its hit rate respectively.

Figure 5.27 shows the normalized number of dynamic mssortk and mssortv instructions in the

mtx-merge and mtx-merge-rsort implementations.

Performance of the scalar baseline SpGEMM implementations – On average, scl-hash is

2.03⇥ faster than scl-array. For matrices that have relatively sparse outputs (e.g., p2p, patents,

usroads, and ndwww), using a hash table (in scl-hash) to accumulate sparse non-zero values is

significantly more efficient than using a dense array (in scl-array) since each output matrix row has
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Figure 5.24: Execution Time Breakdown – The preprocessing phase quantifies per-output-row amount of work,
divides the work across into multiple row blocks (i.e., only in vec-radix), and allocates temporary memory space.
The stream expansion phase performs all multiplications and generates intermediate outputs. The stream sorting phase
sorts and compresses the intermediate outputs (i.e., only in mtx-merge*).

a few non-zero values (i.e., shown in the average output NNZ column in Table 5.4). In scl-array,

accesses to the dense array are scattered randomly, which leads to low L1 data cache hit rates (e.g.,

less than 20% for ndwww, patents, and usroads as shown in Figure 5.26). In contrast, for those

sparse output matrices, scl-hash uses much smaller hash tables that help improve significantly L1

data cache hit rates (e.g., close to 100% for ndwww, patents, and usroads). A hash table’s size is

based on the amount of work per output matrix row (i.e., shown in the per-row average work in

Table 5.4) calculated in a preprocessing step.

117



Figure 5.25: Number of L1 Data Cache Accesses

However, for matrices that have relatively dense outputs (e.g., wiki, soc, bcsstk17, and p3d),

scl-array performs better than scl-hash. The main reason is that accesses to a hash table for a

relatively dense output matrix cause frequent hash collisions that incur extra overheads due to

linear probing. In addition, those relatively dense matrices are typically smaller in sizes, which

helps improve the L1 cache hit rates.

Performance of the vectorized SpGEMM implementation – On average, vec-radix is 4.65⇥

and 2.29⇥ faster than scl-array and scl-hash respectively. Figure 5.24 shows the execution time

breakdown of vec-radix in multiple steps. Across all matrices, the combination of stream sorting

(i.e., sorting key-value tuples) and output generation (i.e., compressing adjacent tuples with dupli-

cate keys and generating final output matrix rows) dominates the total execution time of vec-radix.

For bcsstk17, vec-radix is slightly worse than scl-hash. The main reason is that bcsstk17 has a
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Figure 5.26: L1 Data Cache Hit Rate

high ratio of per-row work to the per-row number of output non-zeros (i.e., 7.88 as shown in Ta-

ble 5.4), indicating a high number of intermediate results that share the same keys and are finally

compressed into a few non-zero values. It is relatively inefficient to sort uncompressed key-value

tuples with many duplicate keys in the stream sorting step.

Performance of the merge-based SpGEMM using SparseZipper instructions – The mtx-

merge version is 2.60⇥ faster than the vec-radix implementation. Figure 5.24 shows the execution

time breakdown of mtx-merge in multiple steps. The preprocessing and stream expansion steps in

mtx-merge are similar to the ones in vec-radix. The use of the newly proposed sorting and merging

instructions in SparseZipper is focused on reducing the execution time of the stream sorting step

which dominates the execution time of vec-radix. This reduction is shown in Figure 5.24 in almost

all matrices except wiki. It is important to note that the execution time for output generation is
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Figure 5.27: Number of Dynamic mssortk and mszipk Instructions.

decreased as well since mtx-merge combines tuples with duplicate keys while performing a merge

sort on those tuples. This avoids a separate tuple compression step which is part of the output

generation as in vec-radix.

One key reason for the better performance of mtx-merge is that the merge-based SpGEMM

takes advantage of loading and storing chunks of consecutive data using the new indexed matrix

load/store instructions (i.e., mlxe and msxe). Each row of a matrix register is either loaded or

stored using a unit-stride vector memory micro-operation that minimizes the number of cache

line accesses per chunk of data. In contrast, vec-radix uses a vectorized radix sort algorithm that

performs both long-stride and indexed vector memory accesses that span across multiple cache

lines, which results in multiple cache line accesses per vector memory instruction. Figure 5.25
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shows the significant reduction in the number of L1 data cache accesses between vec-radix and

mtx-merge across all evaluated matrices.

Despite efficient unit-stride vector memory accesses, mtx-merge has lower L1 data cache hit

rates than vec-radix as shown in Figure 5.26 for some matrices (e.g., wiki, soc, email, bcsstk17,

and p3d). Those matrices have relatively large numbers of intermediate results to merge per output

matrix row, as shown in the per-row average work in Table 5.4. Since mtx-merge exploits paral-

lelism across multiple output matrix rows (i.e., up to VLEN number of rows can be processed in

parallel), mtx-merge has larger aggregate working set (i.e., the average work per 16 rows in Ta-

ble 5.4) at a time than vec-radix, which causes more L1 data cache misses. However, the latency

of those misses can be hidden since indexed matrix load instructions can be issued out of order as

soon as the next address offsets are produced by either mssortk or mszipk instruction. For other

matrices (e.g., p2p, patents, usroads, and m133-b3) that have relatively low amount of work per

row, the L1 data cache hit rate in mtx-merge is close to the one in vec-radix.

Since mtx-merge processes multiple key-value streams (i.e., mapped to multiple adjacent matrix

rows) in lock steps, any variation in the lengths of those streams could impact its performance

which is determined by the processing time of the longest stream in the group. Table 5.4 shows

the work variation, a ratio of the work standard deviation to the work mean, within a group of 16

consecutive matrix rows. The higher the work variation is, the more unbalanced the stream lengths

of adjacent matrix rows in a group are. The relatively high work variation in wiki and soc explains

the relatively low performance of mtx-merge compared to vec-radix. Although matrix p2p has the

highest work variation, mtx-merge performs well for this matrix since the average per-row work is

low. This low per-row amount of work minimizes the performance impact of high work variation

since it takes, on average, one iteration to finish processing one key-value stream in p2p.

To further demonstrate the performance impact of high work variation, we sort all matrix rows

by the per-row amount of work in mtx-merge-rsort. It is important to note that we do not actually

shuffle an input matrix’s data but simply sort row indices. Rows with similar amount of work

are then processed together. At the end, it is necessary to shuffle the output matrix’s data based

on row indices so that the final output data are sorted by their row indices. Figure 5.24 shows

the execution breakdown of mtx-merge-rsort. By processing rows with similar amount of work

together, the stream sorting time in mtx-merge-rsort is significantly reduced for matrices that have

high work variation (e.g., wiki, soc, ndww, and ca-cm). Figure 5.27 shows the reduction in dy-
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Component
Area

Baseline SparseZipper
(k µm2)

Baseline PE (with a 32-bit MAC unit) 0.45 ⇥ 256
SparseZipper PE (with a 32-bit MAC unit) 0.51 ⇥ 256
Skew buffer (16-lane) 3.16 ⇥ 2 ⇥ 2
Deskew buffer (16-lane) 3.16 ⇥ 1 ⇥ 2
Matrix register (16 ⇥ 512b) 0.96 ⇥ 16 ⇥ 16
Popc logic 0.45 ⇥ 1

Total 140.16 158.00
SparseZipper vs. baseline overhead 12.72%

Table 5.5: Post-synthesis Area Estimates of SparseZipper Components – PE = processing element;
MAC = multiply-accumulate; The estimated area numbers are for a 16⇥16 systolic array (256 PEs in total) and
512-bit vector length.

namic instruction counts of mssortk and mszipk across matrices with high work variation. This

reduction correlates to less number of iterations required to sort and merge key-value streams due

to more balanced work across rows processed in a group. For cage11, mtx-merge-rsort results in

a minimal reduction in the stream sorting time since it has low work variation. For usroads and

m133-b3, since their average amount of work per row is less than the vector length (i.e., 16), mtx-

merge and mtx-merge-rsort finish sorting each stream in one iteration on average (i.e., only a few

dynamic mszipk instructions).

The row sorting and output data shuffling cause significant overheads in mtx-merge-rsort. First,

row indices are sorted by a serial quick-sort routine provided in the standard C++ library, which

explains its high execution time. Future work may extend SparseZipper to include instructions that

are similar to the stream merging and sorting without combining key-value tuples with duplicate

keys for accelerating a standard merge-sort routine that could potentially lower the row sorting

overhead. Second, processing rows in an order different from how their data are laid out in memory

causes a slight increase in the stream expansion time (e.g., in patents and scircuit) due to poor

spatial locality between rows.

5.7.2 Area Evaluation

Methodology – We use a post-synthesis component-level area modeling methodology to eval-

uate area overheads of exta hardware added to a baseline 16⇥16 systolic array to implement

SparseZipper. We implement area-significant components of the systolic array in RTL. Each PE
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includes a 32-bit single-precision floating-point multiply-accumulate unit. We model extra control

logic added to a PE to support for the stream sorting and merging operations. Each skew/deskew

buffer is used to stagger input and output data coming in and going out of the systolic array. We

model each buffer as an array of 16 shift registers with their sizes ranging from one to 16 entries.

For this evaluation, we assume 16 rows, each is 512-bit wide (i.e., 16⇥ 32-bit data elements), in

a matrix register and a total of 16 physical matrix registers. Regarding the popc logic, we imple-

mented an array of 16 five-bit counters (i.e., counting up to 16) and a list of counter vector registers

(i.e., 16 ⇥ 5 bits per register).

Aver overheads of SparseZipper – Table 5.5 shows the detailed area comparison between

SparseZipper and the baseline using our first-order component-based area modeling methodology.

In overall, a 16⇥16 SparseZipper implementation adds around 12.72% area overhead compared to

the baseline implementation with the same systolic array’s dimensions. When considering a com-

plete system including an out-of-order core, its vector engine and vector register file, its caches, and

memory, we expect the percentage of extra area added to the baseline systolic array for supporting

SparseZipper to be much lower.

5.8 Related Work

Extending systolic arrays to support sparse computation – There have been various pro-

posals to extend a systolic-array-based micro-architecture to support sparse matrix computation.

NVIDIA introduces sparse tensor cores that accelerate multiplying a sparse matrix that has a

specific sparsity pattern with a dense matrix [PSR21, CGG+21a]. The sparse input matrix must

have two zeros out of four contiguous elements (i.e., 50% density) so that non-zeros can be com-

pressed using light-weight metadata tracking their positions in a block of four contiguous elements.

VEGETA further extends the support for more flexible sparsity patterns (i.e., N:4 and N:M struc-

tures) [JDB+23]. VEGETA stores a compressed input matrix with its metadata in a systolic array

and streams the other input matrix stored in a dense format into the array in a skewed manner.

Each PE needs to perform index matching operations to either skip or perform a multiplication.

The output matrix is stored in a dense format. Similar to SparseZipper, VEGETA targets fine-grain

GEMM accelerators using matrix instruction set extensions (e.g., Intel AMX). Unlike NVIDIA’s

sparse tensor core and VEGETA, SparseZipper targets sparse-matrix and sparse-matrix multipli-
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Figure 5.28: Normalized Number of Multiplications Performed in Different Sparsity Compression Levels– All
numbers are normalized to the number of multiplications needed when representing both input matrices in a sparse
format. In dense-dense, both matrices are stored in a dense format. In sparse(1:4)-dense and sparse(1:16)-dense,
one matrix is stored in a sparse format with certain compression levels (i.e., one non-zero in a block of four or 16
contiguous elements), and the other is stored in a dense format.

cation with both matrices being highly sparse (i.e., much less than 1% density) and unstructured

(i.e., no specific sparsity structure is assumed in the design of SparseZipper).

Figure 5.28 shows the computation demand (i.e., in the number of multiplications) of multi-

plying two matrices stored in different sparsity compression levels. SparseZipper stores both input

matrices in a sparse format, which is the baseline in the figure. Sparse(1:4)-dense and sparse(1:16)-

dense configurations represent two compression levels that can be supported in VEGETA. Dense-

dense configuration represents a conventional systolic array that processes matrices in a dense

format. Since our target matrix datasets are high sparse, the amount of computation needed to

multiply a matrix stored in a sparse format with another matrix stored in a dense format is multiple

orders of magnitude higher than the case in which both matrices are stored in a sparse format.

SparseZipper complements the NVIDIA’s sparse tensor core and VEGETA by expanding the spec-

trum of sparsity level and structure supports towards highly sparse and unstructured matrices.

Sparse-TPU [HPA+20] proposed an offline column packing algorithm that merges sparse columns

to minimize the number of zeros mapped to a systolic array. The proposed systolic array supports

conditional execution to skip multiplications for values that do not have matching indices. How-
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ever, Sparse-TPU explicitly targets sparse-matrix dense-vector multiplication kernel, not sparse-

matrix sparse-matrix multiplication as in SparseZipper. STA [LWM20] proposed a new block-

sparse format that targets matrices with an upper limit on the number of non-zeros in a block of

elements. In contrast, SparseZipper does not make any assumption on the sparsity structure of

input matrices.

Software-only proposal to accelerate sparse GEMM on existing systolic arrays – Guo et al.

proposed a software-only tiling optimization for DNN-specific sparse GEMM on existing systolic-

array-based dense GEMM accelerators [GHL+20]. Their pruning algorithm enforces a particular

tile-wise sparsity pattern on pruned DNN models so that dense tiles can be mapped directly to

an underlying systolic array without any hardware support. However, this pruning algorithm is

specific to DNN and only works for sparse matrices generated from pruned DNN models. In

contrast, SparseZipper targets more general sparse matrices from various domains such as graph

analytics that may not have a particular sparsity pattern.

Coarse-grain dense GEMM accelerators – The ever-growing importance of GEMM per-

formance and efficiency in emerging workloads motivates the needs for coarse-grain accelerators

for dense GEMM. Google includes a large systolic array of multiply-accumulate units (MAC)

in its Tensor Processing Unit (TPU), a co-processor next to a general-purpose CPU, for accel-

erating training and inference kernels [JYP+17, Tie20, JYK+20, JKL+23a]. Other examples of

coarse-grain dense GEMM accelerators include Eyeriss [CKES16] and Amazon AWS neuron

core [aws23]. However, those accelerators are highly inefficient in supporting sparse GEMM due

to their rigid structure of underlying systolic array, lack of sparse format support, and inability to

skip ineffectual multiplications.

Coarse-grain sparse GEMM accelerators – Previous work has proposed various coarse-grain

accelerators mainly based on three different dataflows of implementing sparse GEMM: inner prod-

uct, outer product, and row-wise product. OuterSPACE implements the outer product dataflow us-

ing tiles of processing elements to perform outer products for pairs of sparse vectors (i.e., each pair

includes a column of the first matrix and a row of the second matrix) and to merge partial output

matrices [PBP+18]. MatRaptor implements the row-wise dataflow by multiplying each non-zero

element in the first matrix with a corresponding row in the second matrix [SJL+20]. Each group of

processing elements in MatRaptor is mapped to a set of output rows, and they perform multiplica-

tions followed by merging partial results. SIGMA is an inner-product-based accelerator for sparse
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GEMM in deep learning applications [QSK+20]. It implements a flexible array of dot-product en-

gines consisting of multipliers, adders, a distribution network, and a reduction network. There are

several other accelerators specialized for SMMP such as SpArch [ZWHD20], Sextans [SCS+22],

Extensor [HAMP+19], and Gamma [ZAES21]. Different from those decoupled SpGEMM accel-

erators, SparseZipper takes a more programmable approach that extends an existing matrix ISA

for supporting SpGEMM. In addition, instead of adding dedicated hardware specialized just for

SpGEMM, SparseZipper micro-architecture can be built on top of existing systolic arrays special-

ized for dense GEMM without adding much hardware to support SpGEMM.

Fine-grain dense GEMM accelerators – Arm recently released its Scalable Matrix Extension

(SME) that introduces a new instruction performing an outer product of two vectors and accu-

mulating its results into a new two-dimensional accumulator register state [arm23]. IBM took a

similar approach in its Matrix-Multiple Assist (MMA) extension for the Power ISA [ibm23]. Intel

introduced a new Advanced Matrix Extension (AMX) that adds several two-dimensional matrix

register states called tile registers and a new matrix-matrix multiply instruction performing a ma-

trix multiplication on two input tile registers [int23b, NMM+22]. The RISC-V community is also

working on a matrix extension proposal [ris23] that is similar to Intel AMX’s approach. Intel re-

cently launched its Sapphire Rapids architecture that includes a matrix engine specialized for dense

GEMM. RASA is an academic proposal for integrating a systolic array into a general-purpose out-

of-order processor for accelerating dense GEMM [JQS+21]. SparseZipper proposes to extend

such matrix abstractions and micro-architectures to support sparse GEMM without introducing

significant area overheads.

Fine-grain sparse GEMM accelerators – SparseCore is a proposed ISA extension for sparse

tensor computation [RCYQ22]. SparseCore introduces new stream registers, stream load/store

instructions, and stream merging/intersecting instructions for accelerating sparse tensor computa-

tion. The merging instructions in SparseZipper were inspired by SparseCore. Unlike SparseCore,

instead of adding large stream registers, SparseZipper leverages existing matrix states (i.e., matrix

registers) designed for dense GEMM to store parts of key-value streams. In addition, SparseZip-

per does not add dedicated sparse processing units for merging and intersecting key-value streams.

Instead, SparseZipper minimally modifies an existing systolic array designed for dense GEMM to

support merging key-value streams for SpGEMM.
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5.9 Conclusion

This chapter has demonstrated performance benefits of minimally extending a matrix ISA and

a systolic array micro-architecture originally designed for dense GEMM to support sparse GEMM.

The SparseZipper ISA introduces new stream sorting and merging instructions to enable sorting

and merging key-value streams representing sparse vectors in the merge-based sparse GEMM al-

gorithm with matrices represented in CSR or CSC formats. SparseZipper leverages existing matrix

registers to store parts of key-value streams and minimally extends a systolic array to support the

stream sorting and merging instructions. Future research can explore opportunities to add instruc-

tions specialized for certain sparsity structures (e.g., structured sparsity in deep learning workloads)

and sparse formats other than CSR and CSC (e.g., COO and block-compress-sparse row). Regard-

ing supporting the COO format, one potential extension could be to support sorting and merging

tuples with two keys (i.e., row and column indices) and one value in the same systolic array. Tuples

are sorted by row indices and then by column indices. Another line of future research is to improve

the utilization of a systolic array when it performs the sorting or merging instructions.
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CHAPTER 6
CONCLUSION

In this thesis, I discussed and explored the evolutionary specialization that supports multiple

types of specialization in the same hardware by gradually evolving an existing micro-architecture

specialized for one programming pattern to support other patterns. I, then, motivated the evo-

lutionary specialization through two novel architectures: big.VLITTLE and SparseZipper. In

big.VLITTLE architectures, a multi-little-core system specialized for single-program multiple-data

(SPMD) pattern is reconfigured to support single-instruction multiple-data (SIMD) pattern with

minimal area overhead to the original hardware. In SparseZipper architectures, a programmable

systolic-array-based micro-architecture designed for accelerating dense matrix-matrix multiplica-

tion (GEMM) is repurposed so that it can efficiently perform GEMM on sparse matrices as well.

In this chapter, I summarize my thesis contributions, discuss lessons learned regarding the evolu-

tionary specialization, and present some thoughts on potential future research directions based on

the insights in this thesis.

6.1 Thesis Summary and Contributions

The thesis began by discussing the trend towards specialization in response to the slowdown

of Moore’s Law and the end of Dennard Scaling. There are two conventional approaches to sup-

porting multiple kinds of specialization in an SoC: heterogeneous and unified specialization. First,

the heterogeneous specialization refers to composing multiple singularly specialized accelerators

without impacting their abstractions and micro-architectures. By retaining the same optimal ab-

stractions and micro-architectures for individual program patterns, this approach can achieve the

highest performance for applications with the supported patterns. However, given certain area,

power, and budget constraints, there is limited room for the number of specialized hardware units

possibly integrated into an SoC. Second, the unified specialization refers to using a single unified

abstraction and micro-architecture that are generic enough to support multiple program patterns.

Having the same abstraction often enables a unified software stack for multiple programs. Sharing

the same micro-architecture enables hardware reuse when executing programs with different pat-

terns, which increases hardware utilization. However, due to adopting a sub-optimal abstraction

for a program pattern, the unified specialization leaves out opportunities for software to convey po-
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tential pattern-specific optimizations to a corresponding micro-architecture. This thesis explores

another approach called evolutionary specialization. This approach refers to starting from an op-

timal abstraction and micro-architecture for one program pattern and gradually adding a minimal

set of hardware changes to an existing micro-architecture to support additional program patterns

without impacting their optimal abstractions. Since both abstraction and micro-architecture for the

starting program pattern are unchanged, the evolutionary specialization retains the optimal perfor-

mance and efficiency for that pattern as in the singular specialization. For the additional program

patterns, the evolutionary specialization keeps the same optimal abstractions as supported in their

singularly specialized accelerators so that all program properties specific to those patterns can be

conveyed to and potentially exploited in hardware.

I then presented CIFER, the first academic open-source multicore-eFPGA SoC composed of

multiple Linux-capable cores for running general-purpose workloads, TinyCore tiles for exploiting

massive thread-level parallelism, and eFPGA for application-specific acceleration. The chip was

fabricated on a GlobalFoundries 12nm FinFET technology node. CIFER features a heterogeneous

cache coherence implementation that enables seamless on-chip communications across different

compute tiles. For workloads with massive thread-level parallelism, our evaluation results show

that the TinyCore clusters improve their performance and energy efficiency by up to 7.95⇥ and

7.75⇥ respectively compared to a single general-purpose Ariane core. For workloads that are

well-suited for mapping to the eFPGA, we show up to 9.29⇥ and 10.62⇥ performance and energy

efficiency improvement respectively. CIFER demonstrates opportunities for exploiting different

kinds of specializations in an SoC, leveraging open-source projects and IPs to ease the process

of building a complex SoC, and cooperating executions of heterogeneous hardware units seam-

lessly in a single system. However, CIFER also presents challenges in adopting the heterogeneous

specialization regarding maximizing utilization of on-chip resources, integrating heterogeneous

components into a single system, and verifying the system as a whole.

Using CIFER as a motivation for the evolutionary specialization, I then presented big.VLITTLE

architectures that support both the SPMD and SIMD patterns in the same system. The big.VLITTLE

architectures offer a compelling high-performance and area-efficient solution to accelerating data-

parallel workloads in heterogeneous multi-core mobile systems. The reconfigurability of big.VLITTLE

architectures resolves the fundamental tension between performance and area in implementing

next-generation vector architectures, which opens up opportunities to provide the performance
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level of decoupled vector engines for data-parallel workloads in small mobile systems without

sacrificing either valuable silicon area on chips or performance of task-parallel workloads.

Lastly, I described SparseZipper that extends a matrix ISA and a systolic array micro-architecture

originally specialized for computing dense GEMM to support sparse GEMM. The SparseZipper

ISA introduces new stream sorting and merging instructions to enable sorting and merging key-

value streams representing sparse vectors in sparse GEMM computation. SparseZipper leverages

existing matrix registers to store parts of key-value streams and minimally extends a systolic ar-

ray to support the stream sorting and merging instructions. Our performance evaluations show

SparseZipper achieves 5.98⇥ and 2.61⇥ speedup over a scalar hash-based implementation of

sparse GEMM and a vectorized sparse GEMM version respectively.

The primary contributions of this thesis are:

• an exploration of the evolutionary specialization that supports multiple types of hardware

specialization by gradually evolving a micro-architecture specialized for one kind of special-

ization to support other kinds of specialization without impacting their programming abstrac-

tions;

• a novel big.VLITTLE architecture, an example of the evolutionary specialization, support-

ing on-demand data-parallel acceleration via a vector abstraction in a multi-core micro-

architecture designed for the SPMD pattern; and

• a novel SparseZipper architecture, another example of the evolutionary specialization, ef-

ficiently supporting both dense and sparse GEMM computation by gradually extending an

existing matrix ISA and micro-architecture specialized for the dense GEMM pattern to sup-

port the sparse GEMM pattern.

6.2 Discussions on Evolutionary Specialization

In this section, I discuss several aspects of the evolutionary specialization approach from my

experience in designing and implementing big.VLITTLE and SparseZipper architectures.

How to choose a combination of program patterns? This is arguably the most important

question when computer architects consider the evolutionary specialization approach. While the
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answer to this question largely depends on certain situations, there are aspects in existing pattern-

specific singular accelerators that may help us figure out whether a single evolutionary accelerator

for those patterns would be beneficial. Firstly, are there enough similarities across abstractions and

micro-architectures of those singular accelerators? In big.VLITTLE architectures, a set of scalar

registers from multiple threads could be collectively viewed as a vector register file. Each scalar

register file from a thread corresponds to a slice of a vector register file per virtual lane. A vector

arithmetic instruction could be viewed as a collection of multiple scalar instructions that execute

together. In SparseZipper, similarities between a matrix register and a collection of key-value

streams are not as obvious and heavily dependent on how the underlying systolic array is repur-

posed to perform key-value sorting and merging operations. For example, the systolic execution

of key merging and sorting operations requires independent streams of keys to be mapped to mul-

tiple rows in a matrix register so that those rows can be processed by the systolic array in parallel.

This specific execution style inhibits mapping one single stream of keys to an entire matrix regis-

ter. If abstractions and micro-architectures of singular accelerators are fundamentally different, the

evolutionary specialization is likely to be a wrong approach since hardware can hardly be shared

between those accelerators. Secondly, program patterns that could benefit from the evolutionary

specialization may come from the same application domain. For example, in SparseZipper, both

dense and sparse GEMMs perform the same matrix-matrix multiplication operation on two ma-

trices although their algorithms and data structures are drastically different. This similarity in the

use of program patterns makes the evolutionary specialization an attractive solution. Depending

on certain datasets, the hardware can flexibly support either pattern without adding too much area

overhead.

Overheads to the starting micro-architecture – One key design goal of the evolutionary

specialization approach is to minimally impact the starting micro-architecture in performance, en-

ergy efficiency, and area. For example, in big.VLITTLE architectures, supporting cross-element

instructions requires a careful consideration of how underlying little cores could communicate

without adding too much overhead. In the end, big.VLITTLE architectures adopted a light-weight

uni-directional ring network to minimize area and timing overhead to the existing cluster of lit-

tle cores. This design decision trades off performance of workloads with the SIMD pattern for

the minimal overhead. Another example is the support for compressing duplicate keys and val-

ues in SparseZipper. One naive solution is to add extra hardware logics that compress keys and
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values based on a valid mask to the east and south bound outputs of the systolic array. How-

ever, this solution would require a shuffling network to move data across lanes in each output,

which could potentially introduce high area overhead to the baseline systolic array. In SparseZip-

per, uncompressed keys and values are passed through the systolic array one more time, which

incurs higher latency in merging and sorting operations without adding too much area overhead.

At one extreme, if enough hardware is added to maximize performance of additional patterns, an

evolutionary accelerator could become a heterogeneous system of multiple singular accelerators

with their own hardware. A thorough design space exploration is necessary to understand such

performance/area/energy trade-offs in the evolutionary specialization approach.

Potentials and limitations of evolutionary specialization – Evolutionary specialization could

be a compelling solution when considering patterns sharing similar architectural features in an

SoC that has a tight area budget (e.g., big.VLITTLE architectures targeting mobile SoCs). In

addition, evolutionary specialization could be an attractive solution to effectively amortize area

overhead of a large singular accelerator by maximizing its utilization. For example, a 16⇥16 array

of PEs, each including a floating-point multiply-accumulate unit, is significant in terms of area

with respect to its host processor. SparseZipper extends the array’s usability for a broader set of

matrices, which amortizes this high area cost of the original systolic array. However, in general,

evolutionary designs are relatively more complex than simply composing existing singular designs

as in the heterogeneous specialization. This complexity may impact the software stack as well.

For example, in big.VLITTLE architectures, a reconfiguration of a multi-little-core cluster requires

some heavy-weight system-level operations such as making those cores not available for software

threads and switching them into the vector mode. In the end, the evolutionary specialization is one

tool that computer architects should consider in the era of hardware specialization.

6.3 Future Work

In this section, I discuss some potential future research directions based on insights provided

in this thesis.

Decoupling executions of little cores in big.VLITTLE in the vector mode – The work pre-

sented in Chapter 4 conservatively couples multiple little cores as vector lanes by letting them

execute vector instructions in lock steps. A little core in a group needs to wait for other cores be-
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fore it can start executing the next vector micro-operation. This coupling helps reduce the hardware

complexity by having less control logics to sync up multiple cores. However, this coupling may

leave out opportunities to let some cores run ahead of others in the case of control and memory

access divergence. A limited decoupling of little cores could be beneficial to the performance of

big.VLITTLE in executing irregular data-parallel workloads.

Exploring performance benefits of decoupling a SparseZipper engine from its host pro-

cessor – Chapter 5 assumes a systolic array integrated in an out-of-order processor and sharing the

same cache hierarchy. Since sparse GEMM is memory bound, matrix load and store instructions

are limited by the bandwidth of the core’s leve-one cache. Future work may consider a decoupled

SparseZipper engine that is attached to level-two or last-level caches for higher memory band-

width. A decoupled design may come with certain challenges such as supporting exceptions and

address translations for matrix load/store instructions.

Sharing a SparseZipper engine between multiple cores – Since the engine is relatively large,

sharing it between multiple cores can amortize its area overhead especially when those cores do

not perform GEMM computation most of the time. Some interesting research questions regarding

this sharing include: (1) at what granularity (e.g., kernel, instruction levels) the engine should be

shared between cores, (2) how to support multiple contexts without simply adding more matrix

registers which are area-expensive, and (3) whether spatial sharing, in which multiple threads use

subsets of PEs at the same time, would be beneficial.

Supporting other sparse matrix formats and high-dimensional tensor operations – The

SparseZipper architecture presented in this thesis supports CSR/CSC sparse matrix format. Future

work may further extend the baseline systolic array to support other sparse matrix formats such as

COO and block compressed sparse row (BCSR) and data flows based on those formats. In addition

to matrix computation, the proposed sorting and merging operations in SparseZipper could be

extended to support high-dimension tensor operations with more than two dimensions. In high-

dimension tensor operations, a key-value tuple may include several keys, one for index in each

dimension. The proposed SparseZipper engine could be extended to support sorting and merging

key-value streams with more than one key per tuple.
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