

# big.VLITTLE: On-Demand Data-Parallel Acceleration for Mobile Systems on Chip

Tuan Ta\*, Khalid Al-Hawaj, Nick Cebry, Yanghui Ou, Eric Hall, Courtney Golden, Christopher Batten

MICRO-55 - Oct 3<sup>rd</sup>, 2022

### **Emerging Data-Parallel Workloads in big.LITTLE SoCs**



## big.LITTLE architectures dominating mobile SoCs

# Emerging data-parallel workloads moving to edge devices





(source: Intel)





(source: Qualcomm)

How to efficiently accelerate data-parallel workloads on tight area and power budget in big.LITTLE SoCs?

### The Resurgence of Vector Architectures





#### **Traditional Long-Vector Archs**

- Scalable & long vector length
- Large & decoupled vector engines
- High performance

#### **Traditional Packed-SIMD Archs**

- Fixed & short vector length
- Small & integrated vector units
- Low area overhead

#### **Next-gen Vector Archs**

- Scalable vector length
- Either high-performance or lowarea-overhead designs

### big.VLITTLE Design Goals



- ✓ Next-gen vector architectures
- ✓ Low area overhead as integrated packed-SIMD units
- ✓ High performance as decoupled long-vector engines
- ✓ No performance overhead for task-parallel workloads



### **On-Demand Vector Execution**



#### **Thread Mode**



#### **Vector Mode**





- Non-vectorized task-parallel workloads
- Exploit thread-level parallelism (TLP)
- Cores execute independently

- Vectorized data-parallel workloads
- Exploit data-level parallelism (DLP)
- Little cores execute as vector lanes
- Big core handles scalar control flow

### big.VLITTLE Micro-Architecture – Compute





### big.VLITTLE Micro-Architecture – Memory





### **Baseline & big.VLITTLE Systems**



#### big.LITTLE w/ Integrated Vector Unit



#### **Integrated Vector Unit**

- 128-bit vector length
- Exec pipelines:
  - 2x 4-lane 32-bit, or
  - 2x 2-lane 64-bit
- Speculative & out-of-order issue
- Similar to 128-bit packed SIMD unit

#### **Big Core w/ Decoupled Vector Engine**



#### **Decoupled Vector Engine**

- 2048-bit vector length
- 3x 16-lane 32-bit exec pipelines
- Comparable to Tarantula

#### big.VLITTLE



#### **VLITTLE Engine**

- 512-bit vector length
- 4x little cores
- 2x element groups (chimes)
- Packed sub-word elements

### Task- & Data-Parallel Applications







#### **Vectorized Data-Parallel Applications**



- Irregular task-parallel graph applications
- Ligra suite

- Regular data-parallel applications
- Rodinia, RiVEC & Genomics suites

Both types of applications are equally important in modern mobile SoCs

### big.LITTLE w/ Integrated Vector Unit







Exploit only thread-level parallelism

#### **Vectorized Data-Parallel Applications**



Exploit both thread-level and data-level parallelism

- TLP across big and little cores
- DLP in the big core's integrated vector unit

Work-stealing between threads to maximize performance & utilization



### Big core w/ Decoupled Vector Engine





No vector code → can only utilize the big core

Best-in-class performance for vectorized workloads

Decoupled vector engine is specialized for data-level parallelism

### big.VLITTLE - Reconfigure to Adapt to Both





Work as big.LITTLE system to exploit TLP

Work as a decoupled vector engine to exploit DLP

big.VLITTLE bridges the performance gap between integrated vector unit and decoupled vector engine through on-demand reconfigurability

### big.VLITTLE Brings Area & Power Efficiency



#### Area Overheads of big.VLITTLE



Less than 3% area overhead compared to four little cores and their L1 caches

#### Performance vs Power Consumption for Data-Parallel Applications (geomean) at Different Voltage/Frequency Points



**Estimated Power Consumption (W)** 

- big.VLITTLE is more power-efficient than big.LITTLE w/ integrated vector unit
- big.VLITTLE is close to decoupled vector engine in terms of power efficiency



More details are in the paper

### big.VLITTLE: Takeaways





- Reconfigure on demand to maximize performance of both task- and data-parallel workloads
- Leverage little cores as vector lanes in vector mode
- Reconfigure existing parts of L1 caches to deliver high memory throughput in vector mode
- Higher performance per area and power than a big.LITTLE system with an integrated vector unit
- Close to decoupled vector engine which is best-inclass for DLP in terms of area and power efficiency without trading off task-parallel performance

This work was supported in part by NSF, the Center for Applications Driving Architectures (ADA), one of six centers of JUMP, a Semiconductor Research Corporation program co-sponsored by DARPA, and equipment, tool, and/or physical IP donations from Intel, Synopsys, and Cadence.