
big.VLITTLE: On-Demand Data-Parallel Acceleration
for Mobile Systems on Chip

Tuan Ta, Khalid Al-Hawaj, Nick Cebry, Yanghui Ou, Eric Hall, Courtney Golden, and Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{qtt2,ka429,nfc35,yo96,ewh73,ckg35,cbatten}@cornell.edu

Abstract—Single-ISA heterogeneous multi-core architectures
offer a compelling high-performance and high-efficiency solu-
tion to executing task-parallel workloads in mobile systems on
chip (SoCs). In addition to task-parallel workloads, many data-
parallel applications, such as machine learning, computer vi-
sion, and data analytics, increasingly run on mobile SoCs to
provide real-time user interactions. Next-generation scalable
vector architectures, such as the RISC-V Vector Extension and
Arm SVE, have recently emerged as unified vector abstractions
for both large- and small-scale systems. In this paper, we pro-
pose novel area-efficient high-performance architectures called
big.VLITTLE that support next-generation vector architectures
to efficiently accelerate data-parallel workloads in conventional
big.LITTLE systems. big.VLITTLE architectures reconfigure
multiple little cores on demand to work as a decoupled vec-
tor engine when executing data-parallel workloads. Our results
show that a big.VLITTLE system can achieve 1.6� performance
speedup over an area-comparable big.LITTLE system equipped
with an integrated vector unit across multiple data-parallel ap-
plications and 1.7� speedup compared to an aggressive decou-
pled vector engine for task-parallel workloads.

I. INTRODUCTION

Modern mobile systems on chip (SoCs) adopt single-
ISA heterogeneous multi-core architectures (e.g., Arm
big.LITTLE) to offer a compelling high-performance and
high-efficiency solution for task-parallel workloads [36, 38]
in many commercial devices [3, 14, 21–23]. These architec-
tures consist of several high-performance power-hungry out-
of-order big cores and multiple high-efficiency low-power
in-order little cores. This ISA homogeneity and micro-
architecture heterogeneity enable high performance and ef-
ficiency by seamlessly distributing high- and low-intensity
compute tasks to high-performance and high-efficiency cores
respectively [51, 72].

In addition to task-parallel workloads, data-parallel appli-
cations are emerging in mobile SoCs to fully utilize their in-
creasing compute power and sensing capabilities. Workloads
such as augmented and virtual reality (AR/VR) [12, 24], nat-
ural language processing [7, 13], facial and voice recogni-
tion [47], and image processing [65] increasingly rely on in-
device computing power instead of cloud servers to deliver
real-time interactions with humans [42, 49, 68, 69, 71]. These
applications often use compute-intensive data-parallel com-
puter vision, machine learning, and data analytic algorithms
to process a large amount of data in real time. Since mobile
SoCs operate under a tight power and area budget, such in-
creasing computational demand poses a significant challenge
to design both high-performance and high-efficiency mo-
bile architectures to accelerate data-parallel workloads.

The need to efficiently accelerate data-parallel workloads
has led to an emergence of next-generation scalable vector

architectures exemplified by the RISC-V Vector Extension
(RVV) [53] and the Arm Scalable Vector Extension (Arm
SVE) [61]. Traditional vector architectures are typically im-
plemented as either large high-performance variable-length
decoupled vector engines [15, 32, 56, 63] in super-computing
systems or modest area-efficient fixed-length packed-SIMD
integrated vector units (e.g., Intel AVX) in mobile and desk-
top systems. Next-generation vector architectures strive to
provide unified scalable vector abstractions for both large de-
coupled vector engines that yield superior performance with
significant area overheads and small integrated vector units
that require modest extra silicon area with modest perfor-
mance improvement compared to an out-of-order scalar core.

In this paper, we propose novel area-efficient high-
performance architectures called big.VLITTLE that adopt
next-generation vector architectures to accelerate data-
parallel workloads in widely used big.LITTLE systems.
big.VLITTLE architectures achieve both high performance
and area efficiency by reconfiguring a cluster of little cores as
a decoupled vector engine on demand when executing data-
parallel workloads. When a big.VLITTLE system executes
in vector mode, its big core fetches, decodes, and sends vec-
tor instructions to its associated cluster of little cores, which
allows decoupling memory accesses and vector computation.
Little cores reconfigure their scalar pipelines into vector exe-
cution lanes, leverage their physical register files to store vec-
tor register elements, transform their level-one cache subsys-
tem to provide high memory bandwidth, and work together
as a decoupled vector engine.

Due to its reconfigurability, big.VLITTLE architectures do
not need to add area-expensive components such as wide ex-
ecution pipelines and vector register files typically required
in large decoupled vector engines. Compared to integrated
vector units, big.VLITTLE systems can provide longer vec-
tor length and higher memory bandwidth, which results in
better performance. When not executing in vector mode,
big.VLITTLE systems incur no performance overhead for
multi-threaded task-parallel workloads since they operate in
the same way as equivalent big.LITTLE systems. Our cycle-
level performance evaluation shows that a big.VLITTLE
system with one big and four little cores can achieve
1.6� speedup over an area-comparable big.LITTLE sys-
tem equipped with an integrated vector unit for data-parallel
workloads from the Rodinia suite [10], RiVec suite [50], and
a genomics benchmark suite. For task-parallel applications,
the big.VLITTLE system is 1.7� faster than an aggressive de-
coupled vector engine for applications from the Ligra bench-
mark suite [58]. Our post-synthesis area evaluation shows the

1

Appears in the Proceedings of the 55th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-55), October 2022



big.VLITTLE system incurs less than 5% overhead compared
to a cluster of four little cores and their L1 private caches. Our
design space exploration shows the potential of using volt-
age/frequency scaling to boost the little cores while slowing
down the big core to further increase both performance and
power efficiency of the big.VLITTLE system.

Our key contributions include: (1) a new reconfigurable
little core cluster that leverages its existing scalar execution
pipelines and reconfigures its scalar register files to operate
as a high-performance decoupled vector engine; (2) a novel
reconfigurable L1 cache subsystem that can turn private L1
data caches of little cores into a logically shared multi-bank
L1 data cache for vector execution and re-purpose SRAM ar-
rays in L1 instruction caches as data buffers to enable high
vector memory bandwidth; (3) a detailed cycle-level perfor-
mance evaluation of a big.VLITTLE system compared to
an area-comparable conventional big.LITTLE system with
an integrated vector unit and an aggressive decoupled vec-
tor engine, and a VLSI-level area analysis demonstrating
the big.VLITTLE system’s area efficiency; and (4) a design
space exploration showing the potential of voltage/frequency
scaling in increasing performance and power efficiency of a
big.VLITTLE system.

II. THE RESURGENCE OF VECTOR ARCHITECTURES

Traditional vector architectures can be classified into two
classes: long-vector and packed-SIMD architectures. A re-
cent resurgence of interest in adopting vector abstractions for
emerging data-parallel workloads has led to next-generation
vector architectures that provide unified abstractions for both
high-performance and commodity systems. In this sec-
tion, we discuss a taxonomy of both traditional and next-
generation vector architectures as well as their key tradeoffs
(see in Table I).

A. Long-Vector Architectures
Long-vector architectures target large-scale systems, such

as supercomputers, to execute highly data-parallel and regular
workloads. Most long-vector architectures support a variable
vector length that scales with a specific implementation of
the architecture [15, 56]. The width of each vector element is
typically fixed. Supporting cross-element instructions, such
as reducing and shuffling vector elements, requires expensive
hardware due to long vector length, so such instructions are
usually not fully supported in long-vector architectures. In-
stead, memory gather and scatter instructions are available to
support complex data movements through memory.

Vector units in supercomputing vector machines [1, 16, 32,
56, 63] are typically decoupled from their control cores. Vec-
tor units have separate large vector register files and wide ex-
ecution lanes. To sustain a high compute throughput and fully
utilize all execution lanes, long-vector machines require large
memory bandwidth, so they are typically connected to highly
banked memory systems (e.g., 1024 memory banks [59]).

B. Packed-SIMD Architectures
Since packed-SIMD ISAs often target multimedia work-

loads in commodity hardware, their vector lengths are typ-

TABLE I. A TAXONOMY OF VECTOR ARCHITECTURES

Features Long
vector

Packed
SIMD

Next
generation

IS
A

Vector length scalable, long fixed, short scalable
Element width fixed variable variable
Predication full limited full
Cross-element ops limited full full
Memory gather/scatter full limited full

uA
rc

h

Vector register file decoupled integrated either
Speculative execution yes no either
Compute pipeline decoupled integrated either
Memory bandwidth large modest either
Memory latency high low either

ically limited and fixed. Early packed-SIMD architectures,
such as Intel MMX [48] and SEE [25], are designed to handle
sub-word computations on general-purpose registers. More
recent packed-SIMD architectures, such as Intel AVX-128,
extend their vector lengths beyond the width of a single word
(e.g., 128 bits). To support multiple SIMD operations in
a fixed hardware vector length, packed-SIMD ISAs support
variable element widths to dynamically change the effective
number of elements depending on applications. For exam-
ple, a 128-bit wide packed SIMD ISA can support two 64-bit
and four 32-bit operations. Since packed-SIMD ISAs are de-
signed for commodity hardware, their support for complex
vector memory instructions, such as gather-load and scatter-
store instructions, is limited.

Packed-SIMD units are often tightly integrated with their
control processors. Most of them share the same register
files (i.e., typically floating-point register files) with the con-
trol processors although some recent short-vector units, such
as ones in Intel Knights Landing [60], may have dedicated
SIMD register files. Floating-point and SIMD instructions
typically share the same execution pipelines. Since the num-
ber of vector elements is small, SIMD units typically share
the same memory interface with their control processors to
private data caches. Therefore, compared to long-vector
machines, short-vector units have relatively modest memory
bandwidth.

C. Next-generation Vector Architectures

Conventional vector architectures target two drastically
different domains: high-performance computing in large-
scale systems and multimedia workloads in commodity hard-
ware. However, recent interest in data-parallel workloads
have driven a trend to converge both conventional design
approaches into next-generation vector architectures that are
flexible enough to cover a wider spectrum of workloads and
hardware implementations [61].

Modern vector ISAs, such as the Arm Scalable Vector
Extension (SVE) [61] and the RISC-V Vector Extension
(RVV) [53], adopt a vector-length-agnostic (VLA) design
similar to conventional long-vector architectures. This VLA
design enables such ISAs to target a wide range of implemen-
tations with different hardware resource constraints. It also
allows executing the same vector code on multiple vector ma-
chines with different hardware vector lengths without recom-

2



piling the code and/or rewriting compiler intrinsics. Cross-
element, load-gather, and store-scatter instructions are also
supported in these ISAs to increase the overall scope of ap-
plications that can be vectorized.

Due to their flexibility, these next-generation vector ISAs
can target both large-scale (i.e., decoupled from a control pro-
cessor) micro-architectural implementations and small-scale
(i.e., tightly integrated with a control processor). Example
machines include Xuantie-910 [11] and Ara [9] implement-
ing RVV, and Fugaku A64FX [57] implementing Arm SVE.

III. BIG.VLITTLE ARCHITECTURES

The reconfigurability of big.VLITTLE architectures helps
achieve the performance level of decoupled long-vector en-
gines while minimizing area overheads as in integrated vec-
tor units. In this section, we first provide an overview of
big.VLITTLE architecture and then provide details on how
multiple aspects of a next-generation vector architecture are
implemented in big.VLITTLE.

A. Architectural Overview

big.VLITTLE architectures support both scalar and vector
execution modes. In the scalar mode, big and little cores ex-
ecute instructions independently as they do in conventional
big.LITTLE systems, and components added to support the
vector execution mode are disabled. In the vector mode, the
big core becomes a control core, and the little cores work to-
gether as a single decoupled vector engine called VLITTLE.
The big core executes scalar instructions while vector code is
executed in the VLITTLE engine. A vector instruction waits
at a vector dispatching unit in the big core until it is at the head
of the ROB, and then is dispatched to the VLITTLE engine.
If the instruction does not write back to a scalar register, the
big core can commit and remove it from the ROB. Otherwise,
the big core waits for the VLITTLE engine to respond with a
scalar value, writes the value back, wakes up any dependent
instruction(s), and finally commits the vector instruction. Al-
though the big.VLITTLE concept is applicable to both Arm
SVE and RISC-V RVV, we use RISC-V RVV version 1.0 [53]
to explore the big.VLITTLE idea in the context of this paper.

A big.VLITTLE system includes additional components
to facilitate its vector execution on top of an equivalent
big.LITTLE system. Figure 1 shows a big.VLITTLE instance
with one big, four little cores, and additional vector-specific
components. First, a vector control unit (VCU) controls the
global architectural states of a VLITTLE engine (e.g., effec-
tive vector length), communications with the big core (e.g.,
receiving vector instructions), and the execution of all little
cores. Second, a vector cross-element unit (VXU) handles
inter-core data communications to support cross-element vec-
tor instructions including vector permutation and reduction.
Lastly, a vector memory unit (VMU) manages vector memory
instructions by issuing requests to the memory subsystem and
delivering data to little cores. Those additional components
are pipelined so that they do not affect common critical paths
and increase the cycle time of the little core cluster. There-
fore, in the scalar mode, big.VLITTLE performs exactly the

same as an equivalent big.LITTLE system. Several muxes
are added to select the right input signals based on the cur-
rent execution mode of the little cores. For example, an L1
data cache takes input requests from its little core’s back-end
in the scalar mode while receiving requests from the VMU in
the vector mode.

B. Vector Control Support
We envision using a simple application interface manag-

ing an OS-privilege control status register (CSR) to switch
between scalar and vector modes on demand. Applications
running on the big core can switch into or out of the vector
mode by requesting the OS to change the CSR. When switch-
ing into the vector mode, the OS allocates a group of little
cores to form a VLITTLE engine, and those cores become
unavailable to other processes. If one or multiple little cores
are not readily available (e.g., busy with other processes), the
OS can decide to either wait, pre-empt processes running on
those little cores, or simply allocate a light-weight integrated
vector unit in the big core for vector execution. Such OS-level
resource scheduling decisions are left for future work. Once a
little core is allocated to a VLITTLE cluster, its current thread
context is saved to memory, and its pipeline is flushed. The
overhead of saving a thread context into memory and flush-
ing an in-order short pipeline is relatively small (e.g., 500+
cycles), especially when the target vectorized region is large.
A control register is then updated to indicate the core is now
working in the vector mode. When switching out of the vector
mode, the OS returns those cores to its scheduling pool, and
they become available independent scalar cores. The switch-
ing typically happens at a coarse-grained level (e.g., applica-
tion and kernel levels) to amortize its overhead.

big.VLITTLE architectures implement a weak memory
consistency model which is a work in progress in RISC-V
RVV. We introduce a vector memory fence vmfence to han-
dle vector/scalar memory dependencies (e.g., unit-stride vec-
tor store followed by a scalar load to the same address) in
software to avoid complex hardware checking for such de-
pendencies between scalar and vector pipelines. The big core
executes vmfence, waits for all outstanding scalar loads and
stores to retire before sending a memory fence command to
the VCU. The VCU blocks subsequent vector memory in-
structions from being issued to the VMU until all outstanding
vector memory instructions to retire. Effectively all scalar
and vector memory instructions before vmfence in their pro-
gram order happen before all scalar and vector memory in-
structions after the vmfence. It is important to note that
this software-managed vector/scalar memory fence solution
is common in most decoupled vector machines [1, 4, 17] due
to their large vector lengths and decoupled vector execution
pipelines. Future auto-vectorization and compiler techniques,
which are being actively researched for next-generation vec-
tor architectures [2, 61], can help insert vector/scalar mem-
ory fences to guarantee the correctness of applications. In
addition, any efficient hardware-managed solution for other
decoupled vector machines would also be applicable to the
big.VLITTLE architecture. Vector/vector memory dependen-
cies (e.g., unit-stride vector store followed by an indexed vec-

3



Tag
Array Data

Array

L1
I

C
nt

rl

D
pa

th Tag
Array Data

Array
L1

D

C
nt

rl

D
pa

th

Front End

Little Core 0
Back EndIssue Front End

Little Core 3
Back EndIssue

VLU

VCU

VMIU

B
ig

 C
or

e
VXU

Line Buffer

VMSU 0

...

...

Tag
Array Data

Array

L1
I

C
nt

rl

D
pa

th Tag
Array Data

Array

L1
D

C
nt

rl

D
pa

th

Line Buffer

Line Buffer

VMSU 3

VSU

...
VMU SA

Q

SA
Q

Uo
pQ

Da
ta

Q

Uo
pQ

Figure 1. A big.VLITTLE system with One Big and Four LITTLE Cores – VCU = vector control unit; VXU = vector cross-element unit;
VMU = vector memory unit; VMIU = vector memory issue unit; VMSU = vector memory slice unit; VLU = vector load unit; VSU = vector
store unit; UopQ = micro-operation queue; DataQ = scalar data queue; SAQ = store-address queue. Components added to support the vector
mode are shaded.

tor load to the same address) are handled in hardware by the
VLITTLE engine’s VMU.

In a big.VLITTLE system, the VCU executes vsetvl that
is a control instruction setting the effective vector length and
vector element type. For each non-control vector instruction,
the VCU issues multiple micro-operations to little cores and
the VMU (only for memory instructions). The VCU buffers
those micro-operations and their corresponding scalar data
(only for vector instructions reading scalar register values)
in command and data FIFO queues in order to enable de-
coupling of vector memory accesses and vector executions
by issuing memory micro-operations to the VMU ahead of
time. Not all vector instructions need to carry scalar val-
ues, so the scalar data queue needs not to be as deep as the
command queue to minimize area overheads. In each cycle,
the VCU processes the oldest micro-operation from the com-
mand queue and broadcasts it and its associated scalar data (if
any) to all little cores via a shared bus as shown in Figure 1.
This command bus is pipelined to account for physical dis-
tance between little cores in a cluster so that it does not affect
existing critical paths in the little cores.

C. Reconfigurable Little Cores

In big.VLITTLE architectures, scalar physical registers ex-
isting in little cores are re-purposed to implement all gen-
eral vector registers except v0, which makes big.VLITTLE
architectures area-efficient by not adding area-expensive vec-
tor register files as in conventional long-vector engines. Since
v0 register is used to store mask values according to the
RISC-V RVV specification, predicated instructions can read
up to three source operands. To avoid adding a read port to
existing register files, v0 is implemented using an extra reg-
ister(s) added to each little core, which allows predicated in-
structions to read mask values in parallel with reading other
source operands.

v1[0] v1[1]

v31[0] v31[1] v31[2] v31[3]

v1[2] v1[3]

v31[4] v31[5]

v1[4] v1[5]

v31[6] v31[7]

v1[6] v1[7]x1

x31

... ... ... ...

v1[8] v1[9]

v31[8] v31[9] v31[10] v31[11]

v1[10] v1[11]

v31[12] v31[13]

v1[12] v1[13]

v31[14] v31[15]

v1[14] v1[15]f1

f31

... ... ... ...

Core 0 Core 1 Core 2 Core 3

v0[0] v0[1] v0[2] v0[3] v0[4] v0[5] v0[6] v0[7]

v0[8] v0[9] v0[10] v0[11] v0[12] v0[13] v0[14] v0[15]

x0*

f0*

Figure 2. Mapping of 32-bit Vector Elements to Scalar 64-bit Regis-
ters in Four Little Cores – xN = scalar integer registers. fN = scalar
floating point registers. vN[m] = m-th element in a vector register.
Elements of the vector register 0 are mapped to newly added physi-
cal registers x0* and f0* in little cores.

To maximize the hardware vector length in big.VLITTLE
architectures, both integer and floating-point physical regis-
ters in little cores can be effectively used to support multiple
vector element groups (chimes). Vector elements of the same
group are always executed together in time. The actual num-
ber of element groups depends on the number of available
physical registers in little cores. Figure 2 shows an example
of a VLITTLE engine with four little cores, each of which
has 32 integer and 32 floating-point physical registers (i.e.,
x0-x31 and f0-f31 respectively). The VLITTLE engine sup-
ports two vector element groups. Vector elements in the first
and second groups can be stored in the integer and floating-
point registers respectively across all little cores. In addition,
multiple consecutive vector elements can be packed into the
same physical scalar register if their element width is less
than the physical register’s width. Figure 2 shows a case in
which two 32-bit adjacent vector elements are packed into the
same 64-bit physical register. With multiple element groups
and packed vector elements, the example VLITTLE engine
in Figure 2 can support a 512-bit hardware vector length

4



by effectively using all physical registers in four little cores.
Both optimizations increase the hardware vector length, re-
duce front-end instruction overheads, and hide long execution
latency induced by complex instructions (e.g., multiplication,
division, and memory instructions) in big.VLITTLE architec-
tures.

For each vector instruction, the VCU issues multiple per-
element-group micro-operations to little cores in order. Little
cores receive micro-operations from the VCU at their issue
stages. Their fetch and decode stages are not used in vector
mode and hence disabled. In a little core, micro-operations
are issued to its back-end execution pipelines in order as if
they were normal scalar instructions. Except reading mask
values from v0, no other change is added to a little core’s issue
stage to handle issuing micro-operations and reading operand
values from the core’s register file.

Back-end execution pipelines in little cores require mini-
mal changes to support packed vector elements. For simple
integer arithmetic micro-operations (e.g., addition), multiple
vector elements packed into the same physical register can be
processed in parallel with small area overheads to the existing
little cores [39]. For more complex integer micro-operations
(e.g., division) and floating-point micro-operations, we serial-
ize the execution on different packed vector elements in mul-
tiple cycles to avoid adding non-trivial hardware overheads to
the existing little cores.

D. Cross-Element Instruction Support
The RISC-V RVV supports two types of cross-element in-

structions: vector permutation and vector reduction. Vector
permutation instructions (e.g., vrgather) read per-element
values from a source vector register and write them to differ-
ent elements of a destination vector register. Vector reduction
instructions read per-element values from a source register,
perform a reduction operation to a single value, and write it
to either the first element of a destination vector register (e.g.,
vredsum) or a scalar register (e.g., vpopc).

For each vector permutation instruction, the VCU gener-
ates two micro-operations: vxread and vxwrite per vector
element group to little cores. vxread micro-operations read
values of their source vector elements and send them to the
VXU. vxwrite micro-operations wait for the source values
at the issue stage of each little core. Once receiving source
values from the VXU, vxwrite micro-operations write the
values to register files in little cores.

For each vector reduction instruction, the VCU first issues
per-element-group vxread micro-operations to little cores to
read values of source vector elements. The VCU then is-
sues vxreduce micro-operation only to the first little core
to perform a reduction. Once receiving a vxreduce micro-
operation, the first little core’s issue stage receives one value
for each source vector element each cycle from the VXU, is-
sues it to an execution pipeline, and waits for all source el-
ement values to arrive before completing issuing the micro-
operation.

In order to move values across the little cores, we imple-
ment a light-weight uni-directional ring network connecting
all little cores in the VXU. The ring network is pipelined

to avoid affecting the cycle time of existing little core clus-
ter. Other lower-latency network topologies (e.g., crossbar)
are also viable although they may potentially incur higher
area overhead compared to the uni-directional ring topology.
The VXU receives per-element source values from little cores
executing vxread micro-operations. The VXU receives re-
quests for specific source elements from little cores executing
vxwrite and vxreduce micro-operations. Once receiving
all source values, the VXU iteratively shifts all per-element
values by one hop each cycle. If a value’s source element
index matches with a request’s source element index, the
value is returned to the requesting core. The VXU completes
shifting all elements after N cycles where N is the number
of source vector elements. To avoid inter-instruction dead-
locks and further complexities, the VXU processes at most
one cross-element instruction at a time. Subsequent cross-
element instructions must wait in the VCU for an outstanding
instruction in the VXU to complete.

E. Reconfigurable Cache Subsystem
In a big.VLITTLE system, the VMU is the interface be-

tween its VLITTLE engine and memory subsystem. The
VMU consists of a vector memory issue unit (VMIU), mul-
tiple vector memory slice units (VMSU), a vector load unit
(VLU), and a vector store unit (VSU). Each VMSU corre-
sponds to a private L1 data cache of a little core. In vector
mode, private L1 data caches of all little cores work together
as a logically shared cache with multiple address-interleaved
slices or banks for the entire VLITTLE engine. We adopt
an addressing scheme similar to a previous work [27] to
distribute memory accesses across multiple L1 data caches.
Given an effective address, its bank bits are located between
the block offset and index bits to minimize bank conflicts in
the case of consecutive requests to adjacent cache lines. The
VMU uses the bank bits to select an L1 cache for a given ad-
dress. The remaining bits and the bank bits are used as a tag
in L1 caches to disambiguate cache lines properly regardless
of which mode the caches operate under and to avoid expen-
sive cache flushes when the system switches between modes.
After switching to vector mode, a cache line that is not in the
right bank will eventually either be evicted (i.e., if not used)
or migrated to the right bank (i.e., if used) by the cache co-
herence protocol.

For unit- and constant-stride memory instructions, their
base virtual addresses are translated in the big core before
they are dispatched to the VLITTLE cluster. The big core
also checks their access ranges (i.e., spanning across multi-
ple pages) using both base addresses and strides for potential
page faults or invalid memory accesses. This early address
translation mechanism allows the VMU to decouple unit- and
constant-stride memory accesses from vector executions hap-
pening in the little cores. However, for indexed vector mem-
ory instructions, since their index values are stored in the
VLITTLE cluster, per-element address translations happen in
the little cores using their existing address translation hard-
ware.

To enable decoupling of memory accesses and vector ex-
ecution, the VCU sends load and store micro-operations to

5



the VMIU as soon as it receives and processes memory in-
structions from its associated big core so that load requests
can be issued to memory ahead of vector executions using
their loaded values. In addition, the VCU also sends per-
element-group micro-operations to little cores to write back
values from the VLU to register files (wb_ld), read and send
data to the VSU for store instructions (rd_data), and read
and send memory indices to the VMIU for indexed memory
instructions (rd_idx).

Vector memory issue unit (VMIU) – The VMIU pro-
cesses load and store micro-operations from the VCU in the
order they arrive. It breaks down a micro-operation into one
or multiple cache-line-sized requests depending on its base
address, stride, and indices. For unit-stride and constant-
stride micro-operations, the VMIU uses their base addresses
and strides to generate one memory request for a cache line
per cycle. For indexed memory micro-operations, the VMIU
waits for index values sent by rd_index micro-operations
from little cores before generating memory requests. The
VMIU tries to coalesce a small number of consecutive in-
dices (e.g., four) into a single cache-line request in each cy-
cle. Multiple memory requests can be generated for a mem-
ory micro-operation if it accesses across different cache lines.
Each generated memory request is tagged with a bit mask in-
dicating active bytes in its cache-line-sized data. Once gen-
erated by the VMIU, a memory request is issued to a corre-
sponding VMSU, based on its cache line address via a shared
pipelined command bus. A small sequence number per re-
quest is sent to the VLU (for load requests) or VSU (for store
requests) so that load and store data is processed in the order
of their corresponding instructions in those units.

Vector memory slice unit (VMSU) – The VMSUs receive
requests from the VMIU and operate at cache-line granular-
ity to communicate with their corresponding L1 data caches.
They also check memory dependencies between load and
store requests. Each VMSU has a small content-addressable
memory (CAM) holding addresses of outstanding store re-
quests not yet issued to memory memory. Every load re-
quest arriving at a VMSU is checked against all previous out-
standing store requests for potential address overlapping us-
ing their cache-line addresses. If a dependency is detected
between a load and an outstanding store request, the load re-
quest is stalled until the store request is sent to the memory
subsystem since the load request may read data written by the
store request. Otherwise, the load request can be issued ahead
of the store request to the memory.

The VMSUs need to buffer cache-line-sized data of all
outstanding load requests (i.e., waiting for their cache re-
sponses) and store requests (i.e., waiting for their data from
the VSU). To maximize the memory-level parallelism and
enable memory accesses to run far ahead of vector execu-
tion, the amount of data buffering can be significant for each
VMSU in memory-intensive workloads. Therefore, to mini-
mize area overheads, we reconfigure SRAM data arrays in L1
instruction caches, which are unused by little cores in the vec-
tor mode, as circular FIFO queues for outstanding load and
store requests. We simply use the SRAMs as FIFO queues

and do not modify the cache control logic to avoid any timing
overhead in the caches. Each VMSU controls head and tail
pointers to its data queues and arbitrates between enqueue-
ing and dequeueing operations since there is one read/write
port in each SRAM. A VMSU writes response data from its
L1 data cache into the load data queue and store data from
the VSU into the store data queue. Once data for the oldest
load request in a VMSU is ready, the VMSU sends the data
to the VLU. Similarly, once data for the oldest store request
in a VMSU is received from the VSU, the request is sent to
the corresponding L1 data cache.

Vector load unit (VLU) – The VLU receives data re-
sponses from multiple VMSUs, breaks them down into per-
core responses, and sends them to little cores. There are mul-
tiple line buffers, each corresponding to a VMSU, to hold
ready cache-line data responses from the VMSUs. The VLU
processes data responses in the order their corresponding re-
quests are generated by the VMIU since little cores expect
their data to arrive in order.

For each unit- and constant-stride load response, a small
hardware logic uses its first vector element index and stride
information to slice its cache-line data into multiple vector-
element-width responses, which are then pushed to existing
load-store queues inside corresponding little cores. Since
the VLU actively pushes data to little cores through wb_ld

micro-operations, the cores can directly read the data from
their internal load queues without sending extra requests to
the VLU for the data. This reduces the latency of wb_ld

micro-operations.

For indexed load micro-operations, actively pushing data
to little cores from the VLU would require extra storage for
index values and more complex logic to slice, shuffle, and
align data elements of a cache-line response for multiple lit-
tle cores. Therefore, little cores pull data from the VLU by
sending per-vector-element requests to the VLU when exe-
cuting wb_ld micro-operations. Each little core handles in-
dexed memory wb_ld micro-operations as if they were scalar
load instructions by leveraging its existing address calcula-
tion logic. Once receiving an indexed load request from a
little core, the VLU extracts data from one of its line buffers
and returns it to the core.

Vector store unit (VSU) – The VSU receives data ele-
ments from little cores and assembles them into cache-line-
sized data blocks for store requests. The VSU processes store
requests in the order they are issued by the VMIU. In each
cycle, the VSU waits for little cores to send data elements for
the oldest store request. Each little core executes rd_data

micro-operations as if they were scalar store instructions. Per-
vector-element data requests including both address and data
are sent by little cores to the VSU. The VSU takes data el-
ements from the cores and assemble them into a cache-line-
sized data block by updating its line buffer. Once data in the
line buffer is ready, the VSU sends the data to a VMSU, based
on its cache-line address.

6



D
ec

od
e

Issue

V
R

F 
W

rit
e

C
om

m
it

Int ALU
FPU & Int Mul

Div & Red
LSU

CmdQ

DataQ

R
eq

Q Index Queue

Data QueueSt
or

e 
Q

ue
ue

Lo
ad

 Q
ue

ue

Issue Unit

Slicing &
Shuffling Unit

Load Request
Metadata

Line BufferLine Buffer

Line Buffer

Request Unit

VMU
V

R
F 

R
ea

d

D
is

pa
tc

h

Big Core

L2

D
at

a 
B

uf
fe

r

Figure 3. A Decoupled Vector Engine – CmdQ = command queue;
DataQ = scalar data queue; VRF = vector register file; Int ALU = in-
teger arithmetic & logic unit; FPU = floating-point unit; Int Mul = in-
teger multiplication unit; Div = division unit; Red = reduction unit;
LSU = load store unit; ReqQ = request queue.

TABLE II. SIMULATOR CONFIGURATION

Little Core (L) • RISC-V ISA (RV64GC), single-issue, in-order
• L1I cache: 1-cycle hit latency, 2-way, 32KB
• L1D cache: 2-cycle hit latency, 2-way, 32KB

Big Core (b) • RISC-V ISA (RV64GC), 8-way-issue out-of-order,
16-entry LSQ, 90 physical integer and 90 physical
floating-point registers, 60-entry ROB
• L1I cache: 1-cycle hit latency, 4-way, 64KB
• L1D cache: 2-cycle hit latency, 4-way, 64KB

L2 Cache • For the big.LITTLE and big.VLITTLE systems:
4-way, 4-bank, 8-cycle hit latency, 256KB for each
big and little core cluster
• For the decoupled vector system: 8-way, 8-bank,
8-cycle hit latency, 512KB shared by both the big
core and the vector engine

LLC Shared, 16-way, 12-cycle hit latency, 2MB

Main Memory DDR4-2400

IV. EVALUATION METHODOLOGY

In this section, we describe a set of simulated systems, our
cycle-level modeling methodology, and application bench-
marks used to evaluate the performance of our big.VLITTLE
architectures.

A. Simulated Systems
We use gem5 [8,44,62], a cycle-approximate simulator, to

evaluate the performance of different hardware systems stud-
ied in this work. We use gem5’s out-of-order processor model
for our simulated big core and our in-house model to simulate
in-order single-issue little cores. Our simulated cache subsys-
tem is based on an Arm AMBA 5 CHI cache-coherent model
provided in gem5 [18], and we use its simple network model
for our simulated on-chip network. We model one-cycle ad-
dress translation overhead per memory access (i.e., assuming
memory accesses always hit in level-one TLBs) for all eval-

TABLE III. EVALUATED SYSTEMS

1bIV One big core with an integrated vector unit
• 128-bit-long vector unit capable of issuing instructions
out of order
• Two vector arithmetic execution pipelines capable of
executing integer and floating point vector instructions
• The big core’s load/store unit capable of handling 128-bit
wide unit-stride memory requests

1b-4L Conventional big.LITTLE system
• One big core and a cluster of four little cores
• Private L1I and L1D cache per core
• Private L2 cache for each core cluster

1bIV-4L big.LITTLE system with an integrated vector unit
• One big core and a cluster of four little cores with L1 and
L2 caches similar to 1b-4L
• The big core including the same integrated vector unit as
in 1bIV

1bDV Long-vector system with a decoupled vector engine
• One big core with an aggressive decoupled vector engine
• 2048-bit-long vector engine with four vector element
groups, a 8KB vector register file with eight read and four
write ports, 64-entry command queue, 16-entry load queue,
16-entry store queue, and 64-entry data buffers
• The vector engine connected directly to L2 cache

1b-4VL big.VLITTLE system
• One big core and a VLITTLE engine of four little cores
with L1 and L2 caches similar to 1b-4L
• 64-entry micro-operation queue and 16-entry scalar data
queue in the VLITTLE’s VCU
• 512-bit hardware vector length with two element groups,
64 entries in load data queues, and 32 entries in store data
queues in VMU

TABLE IV. TASK-PARALLEL APPLICATIONS

Name Input 1L 1b-4L 1b-4VL vs

DIns Cycles DIns DTsk 1bDV

bc rMat_1M 332M 1.7B 800M 0.5M 1.3x
bf rMat_1M 782M 4.7B 1.4B 0.8M 2.3x
bfs rMat_1M 56M 0.3B 203M 0.2M 1.0x
bfsbv rMat_1M 113M 0.3B 241M 0.2M 1.7x
cc rMat_1M 480M 1.9B 1.0B 0.4M 1.7x
mis rMat_1M 337M 1.8B 864M 0.2M 1.1x
tc rMat_1M 748M 1.7B 1.0B 0.1M 2.4x
prd rMat_1M 3.9B 23.9B 5.9B 2.8M 3.2x
geomean 1.7x

All task-parallel applications are taken from Ligra suite [58]. DIns = dy-
namic instruction count in billions; DTsk = dynamic task count in millions;
Cycles = cycle count in billions.

uated designs. For performance evaluations in Section V, we
keep the big core, little cores, and caches running at the same
frequency (i.e., 1GHz) to isolate micro-architecture-level be-
haviors of all designs from potential performance impacts of
voltage/frequency scaling. In Section VII, we then explore
a performance/power design space when considering volt-
age/frequency scaling of big and little core clusters. Table II
shows the details of our simulated processors and memory
subsystem.

Table III shows a list of evaluated systems and their con-
figurations. 1bIV supports next-generation vector architec-
tures by integrating a small vector unit into its big core.
The integrated vector unit supports 128-bit hardware vector

7



TABLE V. DATA-PARALLEL APPLICATIONS

Su
ite 1L 1bDV 1bIV-4L 1b-4VL vs

Name Input DIns Cyc DIns VIns ctrl ialu imul fpu xe us st idx prd DOp VOp VPar WInf ArInt DIns VIns DTsk 1bIV 1bIV-4L

vvadd k 8.4M 75.5M 210M 1.6M 42% 20 20 0 0 0 60 0 0 0 35.1M 97% 22.3 0.47 0.33 52M 10% 4.3K 4.0x 2.6x
saxpy k 8.4M 75.5M 291M 1.6M 50% 17 0 0 33 0 50 0 0 0 42.9M 98% 27.2 0.57 0.67 50M 16% 4.3K 2.9x 2.2x
mmult k 512x512 1.08B 3.18B 18.9M 44% 25 25 25 0 0 25 0 0 0 416M 97% 22.0 0.39 2.00 567M 18% 23.4K 2.7x 2.4x

k-means ro 10Kx34 4.65B 13.6B 67.9M 46% 1 13 ⇠0 57 ⇠0 ⇠0 21 7 1 2.01B 98% 29.6 0.43 2.41 2.8B 25% 11.7K 1.4x 1.2x
pathfinder ro 5Mx10 1.08B 2.92B 22.5M 50% 31 37 0 0 0 31 0 0 25 510M 98% 22.7 0.47 1.20 764M 16% 36.9K 4.0x 3.0x
jacobi-2d rv 2Kx10 1.59B 9.64B 35.4M 44% 8 17 0 42 17 17 ⇠0 0 0 942M 98% 26.6 0.59 4.50 1.1B 16% 640 2.8x 2.4x
blackscholes rv 2.5M 726M 2.75B 10.6M 90% 4 13 0 72 0 3 8 0 5 567M 100% 53.5 0.78 7.48 467M 26% 2.0K 1.8x 1.1x
lavamd rv 4x4x4 1.05B 3.58B 25.0M 79% 7 11 0 57 0 5 20 0 5 966M 99% 38.7 0.92 2.72 680M 29% 64 2.0x 1.2x
backprop ro 524K 1.17B 16.4B 21.5M 39% 13 ⇠0 0 44 0 12 31 0 0 484M 97% 22.5 0.41 1.00 1.2B 11% 130 1.5x 1.5x
particlefilter rv 6K 1.24B 3.52B 43.1M 51% 1 72 1 26 0 ⇠0 ⇠0 ⇠0 ⇠0 1.41B 99% 32.8 1.14 200.9 906M 16% 3.9K 2.8x 1.1x
sw ge 2048 1.34B 2.09B 132.7M 4% 10 58 2 0 10 10 12 0 9 404M 69% 3.0 0.30 3.20 932M 6% 1.0K 1.7x 1.8x

geomean 2.1x 1.6x

1L = one little core; 1bIV, 1bIV-4L, 1bDV and 1b-4VL = see Table III; ro = Rodinia; rv = RiVEC; ge = Genomics; DIns = dynamic instruction count in regions
of interest; Cyc = cycle count; VIns = percent of dynamic instructions that are of vector type; ctrl = vector control instructions; ialu = vector integer ALU
instructions; imul = vector integer multiplication and division instructions; fpu = vector floating-point instructions; xe = vector cross-element instructions;
us = unit-stride memory instructions; st = constant-stride instructions; idx = indexed memory instructions; prd = predicated instructions; DOp = total number
of performed operations (i.e., scalar instructions + vector instructions ⇥ active vector length); VOp = percent of operations performed by a vector unit;
VPar = logical parallelism (i.e., the total number of performed operations divided by the total dynamic instructions in vectorized code); WInf = work inflation
(i.e., the total number of performed operations divided by the total dynamic instructions in scalar code); ArInt = arithmetic intensity (i.e., arithmetic operations
/ memory operations); DTsk = dynamic number of parallel tasks; geomean = calculated for Rodinia, RiVec, and genomics applications.

length that is similar to a typical SIMD width in common mo-
bile SoCs (e.g., Samsung M3 [55]) implementing traditional
packed-SIMD architectures such as Arm NEON. This unit
also leverages two of its existing execution pipelines in its
associated big core for vector execution and shares the same
data cache port with the big core to minimize area overheads.
This unit exemplifies future modest integrated vector units
implementing next-generation vector architectures [61]. 1b-
4L is a conventional big.LITTLE system including one big
and four little cores without any vector execution support.
1bIV-4L includes a big core with an integrated vector unit and
a cluster of four little cores.

1bDV is a long-vector system with a decoupled vector en-
gine connected to a big core, which is similar to aggressive
vector machines such as Tarantula [17]. Figure 3 shows its
vector engine’s micro-architectural details. 1bDV includes a
large vector register file (i.e., 2048-bit vector length), wide
multi-lane execution pipelines (e.g., 16 arithmetic operations
can be processed in parallel on 32-bit vector elements), a
high-bandwidth connection to an L2 cache that can support
more requests in parallel than L1 caches, and deep command
and data buffers to aggressively decouple memory accesses
from vector computation. Those significant resources enable
best-in-class performance for data-parallel workloads at the
cost of extra silicon area.

1b-4VL is a big.VLITTLE system that has an equivalent
area compared to 1bIV-4L. To ensure no cycle time penalty
to the existing little cores, we conservatively model fully
pipelined communication paths between multiple vector-
specific components and the cores. For example, it takes a
full cycle to broadcast a command from the VCU to all lit-
tle cores, to send a request from the VMIU to a VMSU, to
send data from a core to the VSU and the VXU, and to for-
ward a data response from the VLU to a core. We added a
fixed penalty of 500 cycles to the beginning of each vector
region to account for switching overheads (e.g., saving thread
contexts and flusing little core pipelines).

B. Application Benchmarks

We evaluate the systems using eight task-parallel applica-
tions from Ligra benchmark suite [58] and eight data-parallel
applications from Rodinia suite [10], RiVec suite [50], and a
genomics benchmark suite. We also study three data-parallel
kernels to further understand the performance of the simu-
lated systems. vvadd and mmult do vector addition and matrix
multiplication respectively. saxpy performs a single-precision
A⇥X +Y on two vectors. Table V and Table IV summarize
these applications and kernels. The set of studied applications
and kernels represent real-world workloads running in mo-
bile SoCs such as smartphones, drones, and AR/VR systems.
For example, backprop performs a forward classification on
fully connected layers, and kmeans clusters items into similar
groups. Both algorithms are used in machine learning mobile
applications. particlefilter is an image processing algorithm
tracking an object in each frame of an input video, which can
be used to do image processing in smartphones and AR/VR
headsets. blackscholes and jacobi2d are data analytics appli-
cations that represent big-data processing workloads such as
natural language processing. sw (i.e., Smith-Waterman) im-
plements a local genome sequence alignment algorithm that
finds regions of similarity between reference and query DNA
sequences. Graph analytics are important to perform fast on-
device analysis of large datasets in mobile devices without
relying on the cloud.

For data-parallel applications and kernels, we manually
vectorize them using RISC-V RVV vector intrinsics sup-
ported in LLVM 13. We parallelize task-parallel applications
using a task runtime system (i.e., similar to Intel TBB [52]
and Cilk Plus [26]) implementing a random work-stealing al-
gorithm that helps distribute tasks dynamically and evenly
across heterogeneous cores. Since the 1bIV-4L system can
support both vector execution on its big core and scalar tasks
on its little cores, we implement both scalar and vectorized
versions of each data-parallel application. The task-parallel

8



runtime system dynamically chooses which version of a task
to run depending on which core executes the task.

V. PERFORMANCE EVALUATION

In this section, we describe our cycle-level performance
results comparing the 1b-4VL system to the 1bIV-4L and 1b-
DV baseline systems for both task-parallel and data-parallel
workloads. We then analyze performance impacts of mul-
tiple vector element groups, packed vector element support,
and reconfigurable cache subsystem on the 1b-4VL system’s
performance.

A. Overall Performance
Figure 4 shows the overall performance of all simulated

systems normalized to 1L for both sets of task-parallel and
data-parallel applications.

Task-parallel applications – 1bIV-4L and 1b-4VL perform
the same since they both execute the same scalar code without
using their integrated vector unit and VLITTLE vector engine
respectively. In scalar mode, 1b-4VL simply bypasses all ad-
ditional vector-specific components, which incurs no perfor-
mance overheads. 1bIV-4L and 1b-4VL are able to achieve
1.7⇥ speedup over the 1bDV system since the 1bDV system
is able to use only its big core to execute scalar code. Since
not all workloads can be efficiently vectorized (e.g., irregu-
lar graph applications) and task-parallel applications remain
an important set of workloads in mobile SoCs, it is hard to
justify a large decoupled vector engine in small mobile SoCs
to accelerate only data-parallel applications. Both 1bIV-4L
and 1b-4VL are more efficient than 1bDV in using their com-
puting resources with the help of the work-stealing runtime
system that dynamically distributes tasks to available cores.

Data-parallel applications – The 1b-4VL system per-
forms 1.6⇥ faster than 1bIV-4L while being able to achieve
roughly half of 1bDV’s performance. The 1bDV system sup-
ports 2048-bit hardware vector length that is significantly
larger than the 128-bit vector length of the integrated vec-
tor unit in 1bIV-4L and the 512-bit vector length of 1b-4VL.
The larger a hardware vector length is, the better a system
can amortize its front-end instruction overheads by perform-
ing more computation per vector instruction. Figure 5 shows
that across all vectorized kernels and applications, 1bDV and
1b-4VL perform significantly fewer instruction fetch requests
than the 1bIV-4L system does. In addition, the four little cores
in 1bIV-4L independently execute tasks, which results in du-
plicated instruction fetches among the four little cores and
runtime overheads to dynamically distribute tasks across the
system.

The 1bDV supports higher compute throughput using its
wide execution pipelines that are capable of performing up
to 16 arithmetic operations on 32-bit data elements in par-
allel. In contrast, 1bIV-4L’s integrated vector unit is able to
perform four operations on 32-bit data elements per cycle,
and its four little cores can issue four scalar instructions in
total per cycle. Meanwhile, 1b-4VL can perform eight sim-
ple integer arithmetic and multiplication operations, and four
complex integer and floating-point operations per cycle on

32-bit vector elements. Moreover, 1b-4VL and 1bDV support
respectively two and four element groups that can effectively
hide the latency of complex instructions (e.g., multiplication
and division) in compute-intensive workloads such as mmult,
blackscholes, jacobi-2d, and lavamd (see Table V).

1b-4VL and 1bDV systems are also able to fetch data more
efficiently from memory than 1bIV-4L does. Figure 6 shows
the normalized number of data memory requests in the three
systems. For workloads with regular memory access patterns
(i.e., using unit-stride and constant-stride memory instruc-
tions) such as vvadd, saxpy, pathfinder, and lavamd, 1b-4VL
and 1bDV can efficiently fetch multiple per-element pieces
of data using a single wide memory request. In contrast, the
integrated vector unit’s limited hardware vector length, the
scalar execution of four little cores, and runtime overheads
in the 1bIV-4L system require significantly more memory re-
quests compared to both 1b-4VL and 1bDV.

B. Reconfigurable Compute Pipeline
To evaluate performance impacts of packed-vector-element

support and multiple vector element groups on the perfor-
mance of 1b-4VL, we study three configurations: (1) 1c - one
element group and no packed element support, (2) 1c+sw -
one element group with packed element support, and (3)
2c+sw - two element groups with packed element support.
Figure 7 shows their execution time breakdown.

Since all studied data-parallel applications use 32-bit data
types, enabling packed-vector-element support effectively
doubles the 1b-4VL’s hardware vector length and increases
its compute throughput. This reduces the number of exe-
cuted instructions, which results in less dependency stalls
(e.g., raw_mem and raw_llfu cycles in saxpy, pathfinder, and
lavamd). In addition, the utilization of execution pipelines in
little cores is increased since more per-element arithmetic op-
erations can be performed in the same cycle (e.g., integer ad-
dition) and back to back in consecutive cycles (e.g., floating-
point multiplication).

The 2c+sw configuration introduces a second element
group to 1b-4VL compared to the 1c+sw configuration. The
second element group helps hide the long latency of complex
instructions such as floating-point multiplication by overlap-
ping the execution of the first and second element group,
which reduces further read-after-write dependency stalled cy-
cles in compute-intensive applications such as blackscholes,
particlefilter, and lavamd. Some of memory latency can be
hidden as well in memory-intensive workloads such as saxpy,
jacobi-2d, and pathfinder since more memory requests from
multiple element groups can be in flight at the same time.
In some cases such as vvadd and backprop, adding the sec-
ond element group slightly increases simd stalled cycles. The
little cores run out of sync due to more memory requests con-
flicting for resources (e.g., accessing the same L1D bank) in
the cache subsystem, which eventually stalls the VCU from
issuing micro-operations in lock step to all little cores.

C. Performance Impacts of Data Buffering
We evaluate performance impacts of data buffering in

the 1b-4VL system by varying the size of its VMU’s load

9



Figure 4. Speedup over 1L - 1L = one little core; 1b = one big core; 1bIV = one big core with an integrated vector unit; 1b-4L = one big
& four little cores; 1bIV-4L = one big core with an integrated vector unit & four little cores; 1bDV = one big core with a decoupled vector
engine; 1b-4VL = big.VLITTLE system with one big and a VLITTLE engine of four little cores.

~ ~ ~ ~ ~ ~ ~ ~ ~~

Figure 5. Number of Instruction Fetch Requests to Memory - All numbers are normalized to 1bDV.

~ ~~

Figure 6. Normalized Number of Data Requests to Memory - All numbers are normalized to 1bDV.

Figure 7. Average Execution Time Breakdown of Four Little Cores in 1b-4VL – 1c = 1b-4VL with one chime (vector element group);
1c+sw = 1b-4VL with one chime & packed vector elements; 2c+sw = 1b-4VL with two chimes & packed vector elements; busy = cycles in
which little cores are not stalled; simd = stalled cycles due to lock-step issuing of micro-ops in the VCU; raw_mem = stalled cycles due to
waiting for memory; raw_llfu = stalled cycles due to little cores waiting for long-latency micro-ops to complete; struct = stalled cycles due
to structural hazards; xelem = stalled cycles due to cross-element micro-ops; misc = other stalled cycles (e.g., no micro-op from the VCU).

10



Figure 8. Performance Impacts of VMU’s Load Data Queue (LDQ) and Store Data Queue (SDQ)

and store data queues. Figure 8 shows that by increas-
ing the amount of data buffering in the VMU, the perfor-
mance of memory-intensive workloads such as vvadd, saxpy,
pathfinder, and backprop can be improved significantly. Sup-
porting larger load and store data queues allows more in-
flight memory requests to fully take advantage of the avail-
able bandwidth provided by the logically shared multi-bank
L1 data cache in the VLITTLE engine. This enables more
decoupling of memory accesses and arithmetic computation,
which can effectively hide long memory latency in memory-
sensitive workloads. However, deep data buffering comes at
significant area cost. Our technique to re-purpose SRAM
data arrays in L1 instruction caches, which are otherwise
unused in the vector mode, as data buffers for load and
store requests provides an area-efficient way to unlock more
memory-level parallelism and memory-computation decou-
pling without adding non-trivial area overheads.

VI. AREA EVALUATION

In this section, we first evaluate area overheads of addi-
tional vector-specific components in the 1b-4VL system us-
ing a post-systhesis area model. We then estimate the area
of the 1bDV system by referencing an open-source RISC-V
decoupled vector machine.

Methodology – We use a post-synthesis component-level
area modeling methodology to evaluate area overheads of ex-
tra hardware added to support a VLITTLE engine composed
of four little cores. We implement key components of the
VLITTLE engine in RTL. We use two different RTL models
for the little core: simple and Ariane [70]. The simple core
is our in-house single-issue in-order processor implementing
RISC-V RV64IMAF. The Ariane model is an open-source
Linux-capable RISC-V RV64G in-order core. For L1 instruc-
tion and data caches, we use a 32KB two-way set-associative
cache model that is configured to support either 64-bit or 512-
bit data path. For the VCU and VMU, we model multiple
micro-operation, scalar data, command queues, and store ad-
dress CAM according to the configuration of the 1b-4VL sys-
tem shown in Table III. For the VXU, we implement a unidi-
rectional 64-bit-wide ring network. We then use a commer-
cial standard-cell-based toolflow in a 12-nm technology node
to generate post-synthesis area results.

TABLE VI. POST-SYNTHESIS AREA RESULTS

Component Area Simple Ariane

(k µm2) 4L 4VL 4L 4VL

Simple core 26.1 ⇥4 ⇥4
Ariane core 41.8 ⇥4 ⇥4
32KB L1I with 64b data path 40.3 ⇥4 ⇥4 ⇥4 ⇥4
32KB L1D with 64b data path 40.3 ⇥4 ⇥4
32KB L1D with 512b data path 41.6 ⇥4 ⇥4
VXU: Ring network 0.3 ⇥1 ⇥1
VMU: 2.9 ⇥1 ⇥1
• Micro-op & command queues 1.7
• Store-address CAM 0.8
• Line buffers 0.4

VCU: 2.0 ⇥1 ⇥1
• Micro-op queue 1.0
• Data queue 1.0

Total 427.0 437.4 489.8 500.1
4VL vs. 4L overhead 2.4% 2.1%

4L = a cluster of four little cores with L1I and L1D caches; 4VL = a VLIT-
TLE engine with four little cores, L1I, and L1D caches.

Area overheads of big.VLITTLE – Table VI shows the
detailed area comparison between a cluster of four little cores
and an equivalent VLITTLE engine. The 4VL engine only
adds around 2% area overhead (i.e., 2.4% if using the simple
little cores and 2.1% if using Ariane little cores) compared
to the 4L cluster including their private L1 data and instruc-
tion caches. The main area overheads come from the VCU
and VMU that includes multiple FIFO queues for micro-
operations, scalar data, and VMU commands. For a com-
plete big.LITTLE system including a big core, its private L1
and L2 caches, and interconnect network, we expect the area
overhead of big.VLITTLE architectures to be less than 1% of
the entire system.

First-order area estimate of 1bDV – We reference
Ara [9], an open-source decoupled vector machine, to esti-
mate the area of our simulated decoupled vector engine. We
use an Ara configuration that includes eight 64-bit compute
lanes that are equivalent to the 16x 32-bit lanes in our simu-
lated decoupled vector engine in the 1bDV, which makes the
areas of the two vector engines comparable. The work re-
ported that the Ara configuration has an area of around 6,000
kilo-gates (kGE) (i.e., 738 kGE per lane) and that an Ari-
ane core without its L1 caches has an area of 524 kGE. Ta-

11



ble VI shows that one L1 32KB cache’s area is roughly the
same as one Ariane core’s area without caches. Therefore,
a cluster of four Ariane cores with their L1 instruction and
data caches is as large as an eight-64-bit-lane Ara vector en-
gine (i.e., roughly 6,000 kGE). Since our VLITTLE cluster
incurs less than 3% of area overhead compared to a cluster of
four Ariane cores with their L1 caches, a four-core VLITTLE
cluster’s area is comparable to the simulated decoupled vec-
tor engine used in 1bDV. More detailed area analysis of the
1bDV system is left for future work.

VII. POWER & ENERGY EVALUATION

In this section, we first qualitatively evaluate power and
energy efficiency of big.VLITTLE architectures. We then ex-
plore the potential of voltage/frequency scaling to further im-
prove the performance and power efficiency of big.VLITTLE
architectures for data-parallel workloads.

A. Qualitative Power and Energy Efficiency Analysis
In terms of power, a big.VLITTLE system leverages ex-

isting little core pipelines (i.e., functional units and register
files) for vector execution and the big core for scalar con-
trol flow. Extra vector-specific components mainly consist
of small FIFO command/data buffers and control logics, and
they can be power-gated in the scalar mode to avoid leakage
power. In the vector mode, front-end components (e.g., fetch,
decode stages, and branch predictor) in little cores and control
logic in instruction caches are not used, so they do not con-
tribute to the overall dynamic power consumption. Therefore,
we do not anticipate a big.VLITTLE system to draw signifi-
cantly more power than an equivalent big.LITTLE system.

Regarding energy efficiency, by reconfiguring little cores
as a medium-sized decoupled vector engine, big.VLITTLE
architectures can reduce significantly the number of instruc-
tion and data memory accesses due to less dynamic instruc-
tions (Figure 5) and wider data memory requests (Figure 6).
This reduction translates directly to less energy consumed
in the memory subsystem for data-parallel workloads com-
pared to an equivalent big.LITTLE system with an integrated
vector unit. In addition, higher performance at a similar
power consumption yields higher energy efficiency. Previ-
ous work [40, 41] has also studied and reported the energy
efficiency of vector architectures. Future work can explore a
more detailed power/energy evaluation of big.VLITTLE.

B. Voltage/Frequency Scaling Design Space Exploration

Methodology – We assume the voltage/frequency of the
big and little core clusters can be scaled independently, which
is similar to typical commercial big.LITTLE systems (e.g.,
Samsung Exynos [31] and Qualcomm Snapdragon [22]). We
use previously reported average power consumption of a big
and little core at different voltage/frequency levels [67] to es-
timate the average power consumption of the big and little
core clusters in our simulated big.LITTLE and big.VLITTLE
systems. Table VII shows the selected voltage/frequency lev-
els for big and little core clusters and their corresponding av-
erage power consumption as reported in the previous work.

TABLE VII. AVERAGE POWER CONSUMPTION OF A BIG AND
LITTLE CORE AT MULTIPLE VOLTAGE/FREQUENCY LEVELS

Big core Little core
Frequency Avg Power Frequency Avg Power

(GHz) (W) (GHz) (W)

b0 0.8 0.432 l0 0.6 0.043
b1 1.0 0.591 l1 0.8 0.059
b2 1.2 0.841 l2 1.0 0.095
b3 1.4 1.205 l3 1.2 1.450

The average power consumption of a big and little core at different volt-
age/frequency levels was reported in previous work [67]. The work used an
Odroid XU+E board that includes a Samsung Exynos 5410 SoC and per-
cluster voltage/current sensors for the measurement. This SoC consists of
four big Arm Cortex-A7 cores and four little Arm Cortex-A15 cores. The
power consumption was measured by running 26 benchmarks on all cores
at different frequencies (i.e., 500-1200MHz for the little cores and 800-
1500MHz for the big cores at corresponding appropriate voltage levels).

In this design space exploration study, we assume that both
1bIV-4L and 1b-4VL have similar average power consump-
tion compared to 1b-4L. To estimate the power consumption
of 1bDV, we reference the decoupled vector engine in Taran-
tula [17]. The work reported its vector engine consumed
roughly 40% more power than its out-of-order super-scalar
core. Both the vector engine and the out-of-order core were
clocked at the same frequency, which is similar to our simu-
lated 1bDV system. We assume the same power consumption
ratio between the big core and its decoupled vector engine
at different voltage/frequency levels. More accurate power
models for all designs are left for future work.

Performance impacts of voltage/frequency scaling –
Figure 9 show the performance of 1bIV-4L and 1b-4VL at dif-
ferent combinations of voltage/frequency levels for big and
little core clusters. For 1bIV-4L, whether to boost the big
core or the little core cluster for higher performance depends
on specific workloads and existing voltage/frequency levels.
For example, in blackscholes, boosting the big core cluster
(e.g., from (b1, l1) to (b2, l1)) always yields better perfor-
mance than boosting the little core cluster (e.g., from (b1, l1)
to (b1, l2)). In contrast, in sw, boosting the little core cluster
is more beneficial than boosting the big core cluster.

For 1b-4VL, boosting the big core cluster while keeping
the voltage/frequency level of the little core cluster yields
insignificant performance benefits across all applications ex-
cept sw. Different from 1bIV-4L in which both the big and lit-
tle cores work together on the main computation, in 1b-4VL,
the big core mainly works as a control core for the VLITTLE
engine that handles all heavy vector computation. Slowing
down the big core to a certain limit does not cause the VLIT-
TLE engine to stall since the engine has a deep command
buffer and long vector length. For sw, since only 69% of the
work is vectorized (see VOp in Table V) and the rest is exe-
cuted by the big core, boosting the big core while keeping the
little cores running at the same voltage/frequency level helps
increase the overall performance.

Performance and power consumption trade-offs – Fig-
ure 10 shows the performance and estimated average power
consumption of all studied voltage/frequency combinations

12



Figure 9. Performance of 1bIV-4L and 1b-4VL at Different Voltage/Frequency Scaling Levels for Big and Little Cores - All studied volt-
age/frequency levels (i.e., {b0,b1,b2,b3} and {l0, l1, l2, l3}) are shown in Table VII. The performance numbers show speedup over 1L system
running at 1GHz. The color scaling for each application is the same for both 1bIV-4L and 1b-4VL.

Figure 10. Execution Time and Estimated Power Consumption of 1b-4VL at Different Voltage/Frequency Levels - Each performance-power
data point corresponds to a combination of big and little core’s voltage/frequency levels shown in Table VII.

Figure 11. Execution Time and Estimated Power Consumption of Multiple Designs at Different Frequencies - The dotted lines show Pareto
frontier curves. Each performance-power data point corresponds to a combination of big and little core’s voltage/frequency levels shown in
Table VII.

13



for 1b-4VL. Boosting the little core cluster and slowing down
the big core help 1b-4VL achieve the Pareto optimal perfor-
mance/power curve. Given a certain power budget, the power
saved by lowering down the big core’s speed can be used to
boost the little cores that execute most of the vector computa-
tion in data-parallel workloads. This power trading translates
to higher performance and efficiency for 1b-4VL.

Figure 11 shows performance/power data points for all
designs including 1bDV, 1b-4L, 1bIV-4L, and 1b-4VL. In
the low-power region (i.e., less than 1W), 1b-4VL stays on
the Pareto optimal performance/power curve across all data-
parallel applications. For 1bDV, despite its ability to deliver
high performance for data-parallel applications, its power-
hungry decoupled vector engine makes it not feasible in the
low-power region. In the high-power region (i.e., more than
1W), 1b-4VL is able to get close to the performance/power
efficiency of 1bDV. It is important to note that unlike 1bDV,
1b-4VL does not sacrifice the performance of important task-
parallel applications to achieve this power/performance effi-
ciency for data-parallel workloads (see Section V).

VIII. RELATED WORK

Rockcress [6] extends many-core architectures with
vector-like execution support by dynamically grouping mul-
tiple small cores together into vector groups executing the
same stream of instructions. Different from big.VLITTLE,
Rockcress targets scale-out many-core systems with scratch-
pads and mesh-based tiled network by loosely coupling mul-
tiple cores in a vector group together, which requires frequent
intra-vector-group synchronizations, a nontrivial amount of
data buffering, and a dedicated instruction-forwarding net-
work in each core’s scratchpad as the group size grows. In
contrast, big.VLITTLE architectures aim to provide vector
execution in small mobile systems, which allows a small
number of OS-capable little cores in a VLITTLE engine
to execute strictly in lock step, which greatly simplifies
its design and implementation. Rockcress adopts a non-
standard vector-thread abstraction [34] and requires extensive
compiler-level support to insert implicit instruction barriers
so that its scalar cores do not run out of resources in vector
mode. In contrast, big.VLITTLE architectures support next-
generation vector architectures and compilers out of the box.

Vector-thread architectures [5, 33–35, 40] enable a SIMD-
like micro-architecture to execute MIMD code. They pro-
pose a non-standard hybrid vector/thread ISA abstraction
that would require non-trivial programming model and com-
piler support. Vector-thread architectures strive to achieve
a single abstraction for both task- and data-parallel work-
loads with certain trade-offs in performance, programmabil-
ity, and energy efficiency. In contrast, big.VLITTLE pro-
vides both multi-thread and vector solutions in a single micro-
architecture to provide the best multi-thread support when
running task-parallel workloads and the most efficient vector
support when running data-parallel applications.

Cray X1 [15] provides options to group multiple vector
engines into a single long-vector machine, which is more
applicable to large-scale super-computing systems already

equipped with vector engines than to small mobile SoCs.
Taking an opposite approach compared to big.VLITTLE ar-
chitectures, vector lane threading [54] reconfigures multiple
lanes in a vector engine as individual scalar cores that can
execute independently from each other. Similarly, Libra [46]
attempts to overcome the inflexibility of SIMD accelerators
by allowing different lanes to work in either SIMD or VLIW
execution styles.

Some prior work has proposed to gang multiple scalar
threads dynamically to amortize their front-end instruction
overheads [19, 30, 33–35, 37, 43, 45]. While preserving the
simplicity of multi-thread programming abstractions, those
approaches spend extra energy at run time to dynamically
align multiple streams of scalar execution. Some other recon-
figurable architectures aim to exploit both thread-level and
instruction-level parallelism such as CoreFusion [27], Mor-
phCore [28], and others [20,29,64,66]. Unlike big.VLITTLE
architectures, they do not explore data-level parallelism.

IX. CONCLUSION

This paper has demonstrated that big.VLITTLE architec-
tures offer a compelling high-performance and area-efficient
solution to accelerating data-parallel workloads in hetero-
geneous multi-core mobile systems. The reconfigurability
of big.VLITTLE architectures resolves the fundamental ten-
sion between performance and area in implementing next-
generation vector architectures, which opens up opportunities
to provide the performance level of decoupled vector engines
for data-parallel workloads in small mobile systems with-
out sacrificing either valuable silicon area on chips or per-
formance of task-parallel workloads. This work provides a
small but important step toward a future era of efficient next-
generation vector architecture support in mobile SoCs. Future
research can explore the scalability of big.VLITTLE architec-
tures beyond the scope of mobile SoCs.

ACKNOWLEDGMENTS

This work was supported in part by NSF PPoSS Award
#2118709, NSF SHF Award #2008471, and the Center for
Applications Driving Architectures (ADA), one of six cen-
ters of JUMP, a Semiconductor Research Corporation pro-
gram co-sponsored by DARPA, and equipment, tool, and/or
physical IP donations from Intel, Synopsys, and Cadence.
The authors acknowledge and thank Alejandro Rico and Jose
Joao for their valuable feedback. The authors also thank
Tiago Muck for his help in understanding the implementa-
tion of Arm CHI protocol in gem5 and Moyang Wang for
his baseline work-stealing runtime system. We also thank the
PyMTL3 team for their help in implementing RTL models
in PyMTL3 and the RISC-V community for RISC-V vector
extension support in GNU and LLVM toolchains. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright no-
tation theron. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of any fund-
ing agency.

14



X. ARTIFACT APPENDIX

A. Abstract

This guide describes how to set up and run experiments to
reproduce the cycle-level timing results shown in Section V
and Section VII. More specifically, this appendix provides:

• How to access a Docker image and a README file used
to run the experiments

• Import a Docker image containing necessary tools (e.g.,
python, GNU toolchain, and LLVM)

• Build our custom gem5 simulator
• Build the applications and kernels reported in Table IV

and V
• Run the experiment to reproduce performance results re-

ported in Figure 4, 5, 6, 7, 8, 9, 10, and 11.

B. Artifact check-list

• Program: Our custom gem5 simulator, along with all
applications and kernels reported in Table IV and V, are
included in the Docker image.

• Compilation: We include a python-based flow to com-
pile both gem5, applications, and kernels in the Docker
image. More details can be found in the README file.

• Binary: We provide pre-built RISC-V GNU toolchain
and LLVM compiler in the Docker image. Once the
Docker image is started, gem5 and application binaries
can be generated using our compilation flow.

• Data set: All necessary data sets are included in the
Docker image. More details are included in the README
file.

• Run-time environment: We ran our simulations on
a system with Centos-7, devtoolset-7, and python-3.7.4.
We expect our workflows to work on different Linux dis-
tros (e.g., Ubuntu) and with newer toochains. However,
we have not tested them on any system other than above
one.

• Hardware: We have tested our simulation flow on
x86_64 machines with Intel processors.

• Execution: We provide scripts to run all performance
experiments and to produce results as described in the
paper. A more detailed description is provided in the
README file.

• Output: Running the scripts as instructed in the
README file generates multiple plots that should be sim-
ilar to Figure 4, 5, 6, 7, 8, 9, 10, and 11.

• Experiments: All experiments using our custom gem5
simulator are captured in our simulation workflow. De-
tails about how to use the workflow can be found in the
README file.

• Required disk space: The Docker image takes about
16 GB of disk space once loaded. It is recommended to
have at least 20 GB of free disk space to run all simula-
tions using the Docker image.

• Workflow preparation time: The compilation and
simulation workflows are already provided in the Docker
image. Please refer to the README file for more details.

• Simulation time: There are roughly 1000 gem5 sim-
ulation runs to produce all performance results reported
in the paper. The shortest simulation took about 15 min-
utes while the longest simulation took approximately 20
hours on an Intel Xeon E7-8867 v4 CPU. Each simula-
tion run is single-thread, and we recommend running as
many simulations as possible in parallel. Please refer to
our README file regarding how to run multiple simula-
tions in parallel using our workflow.

• Publicly available: A pre-built Docker image con-
taining all source code and necessary environment setup
is publicly available at https://doi.org/10.5281/
zenodo.7029093.

• Code licenses: Berkeley-style open source License;
MIT Licence; Creative Commons Attribution 4.0 Inter-
national

• Workflow framework: We use doit, a Python-based
automation tool, to automate running our simulations.

• Archive DOI: 10.5281/zenodo.7029093

C. Description

• How to access: A Docker image containing source
code and pre-built software dependencies and its corre-
sponding README file are publicly available at: https:
//doi.org/10.5281/zenodo.7029093.

• Hardware dependencies: There is no restriction
on hardware dependencies for running our simulations.
However, we have only tested our simulation flow on
x86_64 machines with Intel processors.

• Software dependencies: We have tested our simulation
flow on Centos-7 with devtoolset-7 and python-3.7.4.
All dependencies (e.g., RISC-V GNU toolchain, LLVM
14.0.0, and Python-3.7.4) are pre-built and provided in
the Docker image.

• Datasets: We include datasets used by our applications
and kernels in the Docker image.

• Models: Our provided gem5 source code includes de-
tailed cycle-level models of the little core, big core, de-
coupled vector unit, integrated vector unit, VLITTLE
engine, cache subsystem, on-chip network, and DRAM
as described in Table II and III.

D. Installation

Please refer to the README file for details about how to load
and set up the provided Docker image. The image provides
necessary environment software dependencies to build gem5
and cross-compile applications. Our README file shows how
to build gem5 and applications steps by steps using our com-
pilation workflow.

15



E. Experiment workflow
We use doit, a Python-based automation tool, to manage

running our simulations. Detailed instructions on how to use
our workflows are provided in the README file. We also pro-
vide multiple scripts to process raw simulation data and plot
the generated performance results. The README file also pro-
vides instructions on how to use our scripts.

F. Evaluation and expected results
Our provided simulation flow and data processing

scripts can reproduce results reported in Section V.
All plots are generated in the following directory
/usr/local/artifacts/scripts/plots in the Docker
image:

• plot-perf.svg – Speedup of all studied systems over
1L shown in Figure 4.

• plot-inst_reqs_breakdown.svg and
plot-data_reqs_breakdown.svg – Normalized
numbers of instruction fetch and data requests to
memory shown in Figure 5 and 6.

• plot-amc_exec_time_breakdown.svg – Average
execution time breakdown of four little cores in 1b-4VL
configuration as shown in Figure 7.

• plot-lsq_perf.svg – Performance impacts of
VMU’s load and store data queues as shown in Figure 8.

• plot_freq_perf_heatmap.py – Performance of
1bIV-4L and 1b-4VL at different voltage/frequency
scaling levels as shown in Figure 9.

• plot_freq_power.py – Execution time and esti-
mated power consumption of all designs at differ-
ent voltage/frequency scaling levels as shown in Fig-
ure 10 and 11.

16



REFERENCES

[1] Abts, Dennis and Bataineh, Abdulla and Scott, Steve and Faanes,
Greg and Schwarzmeier, Jim and Lundberg, Eric and Johnson, Tim
and Bye, Mike and Schwoerer, Gerald. The Cray BlackWidow: A
Highly Scalable Vector Multiprocessor. ACM/IEEE Conference on
Supercomputing (SC), Nov 2007.

[2] N. Adit and A. Sampson. Performance Left on the Table: An
Evaluation of Compiler Auto-Vectorization for RISC-V. IEEE Micro,
2022.

[3] Apple Unleashes M1. Online Webpage, 2020.
[4] K. Asanović. Vector Microprocessors. Ph.D. Thesis, EECS

Department, University of California, Berkeley, 1998.
[5] C. Batten, H. Aoki, and K. Asanović. The Case for Malleable Stream

Architectures. Workshop on Streaming Systems (WSS), Nov 2008.
[6] P. Bedoukian, N. Adit, E. Peguero, and A. Sampson.

Software-Defined Vector Processing on Manycore Fabrics. Int’l
Symp. on Microarchitecture (MICRO), Oct 2021.

[7] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A Neural
Probabilistic Language Model. The Journal of Machine Learning
Research, 13, 2003.

[8] N. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 Simulator. SIGARCH Computer Architecture News (CAN),
39(2):1–7, Aug 2011.

[9] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini.
Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector
Processor With Multiprecision Floating-Point Support in 22-nm
FD-SOI. TVLSI, 28(2):530–543, 2020.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, , and
K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous
Computing. Int’l Symp. on Workload Characterization (IISWC), Oct
2009.

[11] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z. Hao,
J. Luo, Z. Chen, C. Li, Y. Pu, J. Meng, X. Yan, Y. Xie, and X. Qi.
Xuantie-910: A Commercial Multi-core 12-stage Pipeline
Out-of-order 64-bit High Performance RISC-V Processor with
Vector Extension: Industrial Product. Int’l Symp. on Computer
Architecture (ISCA), Jun 2020.

[12] H. Chen, Y. Dai, H. Meng, Y. Chen, and T. Li. Understanding the
Characteristics of Mobile Augmented Reality Applications. Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS),
Apr 2018.

[13] R. Collobert and J. Weston. A Unified Architecture for Natural
Language Processing: Deep Neural Networks with Multitask
Learning. Int’l Conference on Machine Learning (ICML), Jul 2008.

[14] M. Demler. MediaTek Steps Up to Tablets: MT8135 Brings
Heterogeneous Multiprocessing to Big.Little. Microprocessor
Report, Aug 2013.

[15] T. H. Dunigan, J. S. Vetter, J. B. White, and P. H. Worley.
Performance Evaluation of the Cray X1 Distributed Shared-Memory
Architecture. IEEE Micro, 25(1):30–40, 2005.

[16] C. Eoyang, R. H. Mendez, and O. M. Lubeck. The Birth of the
Second Generation: the Hitachi S-820/80. Conference on
Supercomputing, 1988.

[17] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt,
I. Hernandez, T. Juan, G. Lowney, M. Mattina, and A. Seznec.
Tarantula: A Vector Extension to the Alpha Architecture. Int’l Symp.
on Computer Architecture (ISCA), Jun 2002.

[18] Arm’s AMBA 5 CHI Ruby Model in gem5. Online Webpage,
accessed Nov 20, 2021.

[19] J. Gonzalez, Q. Cai, P. Chaparro, G. Magklis, R. N. Rakvic, and
A. Gonzalez. Thread fusion. Int’l Symp. on Low-Power Electronics
and Design (ISLPED), Aug 2008.

[20] S. Gupta, S. Feng, A. Ansari, and S. Mahlke. Erasing Core
Boundaries for Robust and Configurable Performance. Int’l Symp. on
Microarchitecture (MICRO), Oct 2010.

[21] L. Gwennap. Renesas Mobile Goes Big (and Little). Microprocessor
Report, Feb 2013.

[22] L. Gwennap. Qualcomm Tips Cortex-A57 Plans: Snapdragon 810
Combines Eight 64-Bit CPUs, LTE Baseband. Microprocessor
Report, Apr 2014.

[23] L. Gwennap. Samsung First with 20 nm Processor. Microprocessor
Report, Sep 2014.

[24] M. Huzaifa, R. Desai, X. Jiang, J. Ravichandran, F. Sinclair, and S. V.
Adve. Exploring Extended Reality with ILLIXR: A New Playground
for Architecture Research. arXiv preprint arXiv:2004.04643, 2020.

[25] Intel SSE4 Programming Reference. Intel Reference Manual, 2007.
[26] Intel Cilk Plus Language Extension Specification, Version 1.2. Intel

Reference Manual, Sep 2013.
[27] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core Fusion:

Accommodating Software Diversity in Chip Multiprocessors. Int’l
Symp. on Computer Architecture (ISCA), Jun 2007.

[28] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N. Patt.
MorphCore: An Energy-Efficient Microarchitecture for High
Performance ILP and High Throughput TLP. Int’l Symp. on
Microarchitecture (MICRO), Dec 2012.

[29] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan,
D. Gulati, D. Burger, and S. W. Keckler. Composable Lightweight
Processors. Int’l Symp. on Microarchitecture (MICRO), Dec 2007.

[30] J. Kim, S. Jiang, C. Torng, M. Wang, S. Srinath, B. Ilbeyi,
K. Al-Hawa, and C. Batten. Using Intra-Core Loop-Task
Accelerators to Improve the Productivity and Performance of
Task-Based Parallel Programs. Int’l Symp. on Microarchitecture
(MICRO), Oct 2017.

[31] M. Kim, H. Kim, H. Chung, and K. Lim. Samsung Exynos 5410
Processor-Experience the Ultimate Performance and Versatility.
White Paper, 2013.

[32] K. Kitagawa, S. Tagaya, Y. Hagihara, and Y. Kanoh. A Hardware
Overview of SX-6 and SX-7 Supercomputer. NEC Research &
Development Journal, 44(1):2–7, Jan 2003.

[33] R. Krashinsky, C. Batten, and K. Asanović. Implementing the Scale
Vector-Thread Processor. ACM Trans. on Design Automation of
Electronic Systems (TODAES), 13(3), Jul 2008.

[34] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris,
J. Casper, and K. Asanović. The Vector-Thread Architecture. Int’l
Symp. on Computer Architecture (ISCA), Jun 2004.

[35] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris,
J. Casper, and K. Asanović. The Vector-Thread Architecture. IEEE
Micro, 24(6):84–90, Nov/Dec 2004.

[36] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen.
Single-ISA Heterogeneous Multi-Core Architectures: The Potential
for Processor Power Reduction. Int’l Symp. on Microarchitecture
(MICRO), Dec 2003.

[37] R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-Core Chip
Multiprocessing. Int’l Symp. on Microarchitecture (MICRO), Dec
2004.

[38] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-ISA Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance. Int’l Symp. on Computer
Architecture (ISCA), Jun 2004.

[39] R. Lee. Multimedia Extensions for General-purpose Processors.
IEEE Workshop on Signal Processing Systems (SiPS) Design and
Implementation, 1997.

[40] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanović. Exploring the Tradeoffs between Programmability and
Efficiency in Data-Parallel Accelerator Cores. Int’l Symp. on
Computer Architecture (ISCA), Jun 2011.

[41] C. Lemuet, J. Sampson, J. Francios, and N. Jouppi. The Potential
Energy Efficiency of Vector Acceleration. Int’l Conf. on High
Performance Networking and Computing (Supercomputing), Nov
2006.

17



[42] Y. Leng, C.-C. Chen, Q. Sun, J. Huang, and Y. Zhu. Energy-efficient
Video Processing for Virtual Reality. Int’l Symp. on Computer
Architecture (ISCA), Jun 2019.

[43] G. Long, D. Franklin, S. Biswas, P. Oritz, J. Oberg, D. Fan, and F. T.
Chong. Minimal Multi-threading: Finding and Removing Redundant
Instructions in Multi-threaded Processors. Int’l Symp. on
Microarchitecture (MICRO), Dec 2010.

[44] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann,
S. Bharadwaj, G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho,
J. Castrillon, L. Chen, N. Derumigny, S. Diestelhorst, W. Elsasser,
C. Escuin, M. Fariborz, A. Farmahini-Farahani, P. Fotouhi,
R. Gambord, J. Gandhi, D. Gope, T. Grass, A. Gutierrez,
B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes,
A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh,
Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli,
M. Moreto, T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris,
L. E. Olson, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke,
M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair,
T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas,
W. Wang, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and
Éder F. Zulian. The gem5 Simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152, 2020.

[45] M. Mckeown, J. Balkind, and D. Wentzlaff. Execution Drafting:
Energy Efficiency Through Computation Deduplication. Int’l Symp.
on Microarchitecture (MICRO), Dec 2014.

[46] Y. Park, J. J. K. Park, H. Park, and S. Mahlke. Libra: Tailoring SIMD
Execution Using Heterogeneous Hardware and Dynamic
Configurability. Int’l Symp. on Microarchitecture (MICRO), Oct
2012.

[47] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep Face Recognition,
2015.

[48] A. Peleg and U. Weiser. MMX Technology Extension to the Intel
Architecture. IEEE Micro, 16(4):42–50, 1996.

[49] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan. Odessa: Enabling Interactive Perception Applications
on Mobile Devices. Int’l Conference on Mobile Systems,
Applications, and Services, Jun 2011.

[50] C. Ramírez, C. A. Hernández, O. Palomar, O. Unsal, M. A. Ramírez,
and A. Cristal. A RISC-V Simulator and Benchmark Suite for
Designing and Evaluating Vector Architectures. ACM Trans. on
Architecture and Code Optimization (TACO), 17(4):1–30, 2020.

[51] R. Randhawa. Software Techniques for ARM big. LITTLE Systems.
Arm Whitepaper, 2013.

[52] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly, 2007.

[53] RISC-V Vector Extension (Version 0.10). Online Webpage, 2021.
[54] S. Rivoire, R. Schultz, T. Okuda, and C. Kozyrakis. Vector Lane

Threading. Int’l Conference on Parallel Processing (ICPP), Aug
2006.

[55] J. Rupley, B. Burgess, B. Grayson, and G. D. Zuraski. Samsung M3
Processor. IEEE Micro, 39(2):37–44, 2019.

[56] R. M. Russel. The Cray-1 Computer System. Communications of the
ACM, 21(1):63–72, Jan 1978.

[57] M. Sato. The Supercomputer “Fugaku” and Arm-SVE Enabled
A64FX Processor for Energy Efficiency and Sustained Application
Performance. Int’l Symp. on Parallel and Distributed Computing
(ISPDC), 2020.

[58] J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. Symp. on Principles and practice of
Parallel Programming (PPoPP), Feb 2013.

[59] M. L. Simmons, H. J. Wasserman, O. M. Lubeck, C. Eoyang,
R. Mendez, H. Harada, and M. Ishiguro. A Performance Comparison
of Four Supercomputers. Communications of the ACM, 1992.

[60] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y.-C. Liu. Knights
Landing: Second-Generation Intel Xeon Phi Product. IEEE Micro,
36(2):34–46, 2016.

[61] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid,
A. Rico, and P. Walker. The ARM Scalable Vector Extension. IEEE
Micro, 37(2), 2017.

[62] T. Ta, L. Cheng, and C. Batten. Simulating Multi-Core RISC-V
Systems in gem5. Workshop on Computer Architecture Research
with RISC-V, 2018.

[63] S. Tagaya, M. Nishida, T. Hagiwara, T. Yanagawa, Y. Yokoya,
H. Takahara, J. Stadler, M. Galle, and W. Bez. The NEC SX-8 Vector
Supercomputer System. High Performance Computing on Vector
Systems, May 2006.

[64] D. Tarjan, M. Boyer, and K. Skadron. Federation: Repurposing
Scalar Cores for Out-Of-Order Instruction Issue. Design Automation
Conf. (DAC), Jun 2008.

[65] R. Thabet, R. Mahmoudi, and M. H. Bedoui. Image Processing on
Mobile Devices: An Overview. Int’l Image Processing, Applications
and Systems Conference (IPAS), Nov 2014.

[66] A. Tino, C. Collange, and A. Seznec. SIMT-X: Extending
Single-Instruction Multi-Threading to Out-of-Order Cores. ACM
Trans. on Architecture and Code Optimization (TACO), 17(2), 2020.

[67] E. Vasilakis, I. Sourdis, V. Papaefstathiou, A. Psathakis, and M. G.
Katevenis. Modeling Energy-Performance Tradeoffs in ARM big.
LITTLE Architectures. Int’l Symp. on Power and Timing Modeling,
Optimization and Simulation (PATMOS), Sep 2017.

[68] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra. High-throughput CNN Inference on Embedded ARM
Big.LITTLE Multicore Processors. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 39(10), 2019.

[69] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu,
L. Qiao, B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang,
Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. Machine
Learning at Facebook: Understanding Inference at the Edge. Int’l
Symp. on High-Performance Computer Architecture (HPCA), Feb
2019.

[70] F. Zaruba and L. Benini. The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-bit
RISC-V Core in 22-nm FDSOI Technology. IEEE Trans. on Very
Large-Scale Integration Systems (TVLSI), 27(11):2629–2640, 2019.

[71] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang. Edge
Intelligence: Paving the Last Mile of Artificial Intelligence with Edge
Computing. Proceedings of the IEEE, 107(8):1738–1762, 2019.

[72] Y. Zhu and V. J. Reddi. High-Performance and Energy-Efficient
Mobile Web Browsing on Big/Little Systems. Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb 2013.

18


