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Abstract—Hardware specialization is an increasingly com-
mon technique to enable improved performance and energy ef-
ficiency in spite of the diminished benefits of technology scal-
ing. This paper proposes a new approach called explicit loop
specialization (XLOOPS) based on the idea of elegantly en-
coding inter-iteration loop dependence patterns in the instruc-
tion set. XLOOPS supports a variety of inter-iteration data-
and control-dependence patterns for both single and nested
loops. The XLOOPS hardware/software abstraction requires
only lightweight changes to a general-purpose compiler to gen-
erate XLOOPS binaries and enables executing these binaries on:
(1) traditional microarchitectures with minimal performance
impact, (2) specialized microarchitectures to improve perfor-
mance and/or energy efficiency, and (3) adaptive microarchitec-
tures that can seamlessly migrate loops between traditional and
specialized execution to dynamically trade-off performance vs.
energy efficiency. We evaluate XLOOPS using a vertically inte-
grated research methodology and show compelling performance
and energy efficiency improvements compared to both simple
and complex general-purpose processors.

I. INTRODUCTION

Serious physical design issues are breaking down tradi-
tional abstractions in computer architecture and motivating
an increasing emphasis on hardware specialization. At the
same time, computer architects have long realized the impor-
tance of focusing on the key loops that often dominate appli-
cation performance. These two trends have led to a diverse ar-
ray of specialized hardware for exploiting intra- and/or inter-
iteration loop dependence patterns.

Hardware specialization to exploit intra-iteration loop
dependence patterns usually involves custom instructions
and/or small reprogrammable functional units well-suited to
accelerating common sequences of operations within an it-
eration. Examples include application-specific instruction-
set processors [1, 6] and techniques for subgraph execu-
tion [4,11]. Hardware specialization to exploit inter-iteration
loop dependence patterns focuses at a higher level on how dif-
ferent loop iterations interact. Examples include data-parallel
accelerators which exploit loops with no inter-iteration de-
pendences [8, 17, 34] and thread-level speculation which ex-
ploit loops with infrequent inter-iteration dependences [19,
30, 31]. Coarse-grained reconfigurable arrays [10, 13] and
weakly programmable application-specific accelerators [33]
target both intra- and inter-iteration loop dependence patterns.

All of these proposals must carefully navigate the tension
between less efficient general architectures and more effi-
cient specialized architectures. Some argue for exposing as
much of the specialized microarchitecture as possible to en-
able flexible software configuration while maintaining effi-
ciency [7, 12]. Unfortunately, this comes at the expense of
a clean hardware/software abstraction; highly configurable
specialized architectures are often tightly coupled to a spe-

cific microarchitectural implementation. A key research chal-
lenge involves creating clean hardware/software abstractions
that are highly flexible, yet still enable efficient execution on
both traditional and specialized microarchitectures.

To address this challenge, we focus on architectural spe-
cialization for inter-iteration loop dependence patterns. Inter-
iteration data-dependence patterns include loops with no
inter-iteration dependences and loops with inter-iteration de-
pendences encoded through registers and/or memory. An in-
teresting data-dependence pattern often found in graph al-
gorithms involves iterations that manipulate a shared data
structure such that the iterations can be executed in any or-
der as long as their updates to memory appear atomic to the
other iterations. Inter-iteration control-dependence patterns
include loops that terminate based on comparing an induction
variable to a loop-invariant fixed bound, or loops that termi-
nate based on a data-dependent-exit condition. An interesting
control-dependence pattern found in more irregular worklist-
based algorithms involves a loop induction variable compared
to a dynamic bound that is monotonically increased during
the loop execution. The inter-iteration dependence pattern
for a given loop will be a combination of a specific data- and
control-dependence pattern, and nested loops can be captured
using the composition of multiple loop patterns.

In this paper, we explore explicit loop specialization
(XLOOPS) which is based on the idea of explicitly en-
coding inter-iteration loop dependence patterns in the in-
struction set to enable exploiting fine-grain loop-level par-
allelism. Section II describes our approach for designing
XLOOPS instruction sets, compilers, and microarchitectures.
Our XLOOPS instruction set can encode: data-dependence
patterns where the loops can appear to execute in any order
both concurrently or atomically; data-dependence patterns
where the loops must preserve ordering constraints expressed
through either register or memory dependences; and control-
dependence patterns based on fixed and dynamic bounds. Our
XLOOPS compiler uses programmer annotations to automat-
ically generate an efficient XLOOPS binary. The XLOOPS
abstraction enables XLOOPS binaries to execute on either
traditional microarchitectures with minimal performance im-
pact or on specialized microarchitectures that exploit fine-
grain loop-level parallelism to improve performance and en-
ergy efficiency. This abstraction also enables adaptive exe-
cution where a loop is seamlessly migrated by hardware be-
tween traditional and specialized microarchitectures in order
to find the optimal performance/efficiency trade-off.

To make the case for XLOOPS, we use a vertically inte-
grated evaluation methodology. Section III describes the ap-
plication kernels we use for evaluation and modifications to
an LLVM-based compiler to support XLOOPS. Section IV



#pragma xloop unordered
for ( i=0; i<N; i++ )

C[i] = A[i] * B[i]

(a) xloop.uc Code

#pragma xloop ordered
for ( X=0, i=0; i<N; i++ )

X += A[i]; B[i] = X

(b) xloop.or Code

#pragma xloop ordered
for ( i=K; i<N; i++ )

A[i] = A[i] * A[i-K]

(c) xloop.om Code

#pragma xloop atomic
for ( i=0; i<N; i++ )

B[A[i]]++; D[C[i]]++

(d) xloop.ua Code

W[0] = root of tree
w_ptr = &W[1]
M = 1

#pragma xloop unordered
for ( i=0; i<M; i++ )

work( W[i] )

l_ptr = W[i]->left_ptr
if ( l_ptr != 0 )

*amo_inc(w_ptr) = l_ptr
M++

r_ptr = W[i]->right_ptr
if ( r_ptr != 0 )

*amo_inc(w_ptr) = r_ptr
M++

(e) xloop.uc.db Code

1 L:
2 lw r2, 0(rA)
3 lw r3, 0(rB)
4 mul r4, r2, r3
5 sw r4, 0(rC)
6 addiu.xi rA, 4
7 addiu.xi rB, 4
8 addiu.xi rC, 4
9 addiu r1, r1, 1

10 xloop.uc r1, rN, L

(f) xloop.uc Asm

1 L:
2 lw r2, 0(rA)
3 addu rX, r2, rX
4 sw rX, 0(rB)
5 addiu.xi rA, 4
6 addiu.xi rB, 4
7 addiu r1, r1, 1
8 xloop.or r1, rN, L

(g) xloop.or Asm

1 move r1, rK
2 sll r2, rK, 0x2
3 addu r3, rA, r2
4 L:
5 lw r4, 0(r3)
6 lw r5, 0(rA)
7 mul r6, r4, r5
8 sw r6, 0(r3)
9 addiu.xi r3, 4

10 addiu.xi rA, 4
11 addiu r1, r1, 1
12 xloop.om r1, rN, L

(h) xloop.om Asm

1 L:
2 lw r6, 0(rA)
3 lw r7, 0(r6)
4 addiu r7, r7, 1
5 sw r7, 0(r6)
6 addiu.xi rA, rA, 4
7 lw r6, 0(rC)
8 lw r7, 0(r6)
9 addiu r7, r7, 1

10 sw r7, 0(r6)
11 addiu.xi rC, rC, 4
12 addiu r1, r1, 1
13 xloop.ua r1, rN, L

(i) xloop.ua Asm

Figure 1. XLOOPS Instruction Set Examples – Unless otherwise specified, a fixed-bound control-dependence pattern is assumed. (a,f) xloop.uc encodes
an unordered-concurrent data-dependence pattern, addiu.xi encodes a simple associative loop-carried dependence; (b,g) xloop.or encodes an ordered-
through-registers data-dependence pattern, line 3 captures the loop-carried dependence through rX; (c,h) xloop.om encodes an ordered-through-memory data-
dependence pattern, line 6 depends on an earlier instance of line 8; (d,i) xloop.ua encodes an unordered-atomic data-dependence pattern; (e) xloop.uc.db
encodes an unordered-concurrent data-dependence with a dynamic-bound control-dependence pattern, amo_inc() uses an atomic memory operation to incre-
ment the tail pointer of the worklist by four.

describes the cycle-level modeling of XLOOPS microarchi-
tectures that support traditional, specialized, and adaptive ex-
ecution. Section V describes the register-transfer-level (RTL)
implementation of a simple XLOOPS microarchitecture ca-
pable of specialized execution and area, energy, and timing
analysis using a commercial ASIC CAD toolflow.

Using specialized execution, XLOOPS is able to achieve
2.5× or higher speedup at similar or better energy efficiency
for most application kernels compared to a simple single-
issue in-order processor with only 40% area overhead. Com-
pared to aggressive two- and four-way out-of-order proces-
sors, XLOOPS is able to achieve 1.5–3× improvement in en-
ergy efficiency while having speedups in the range of 1.25–
2.5× on most application kernels. Adaptive execution en-
ables applications that perform worse with specialized execu-
tion to automatically migrate to the general-purpose proces-
sor for increased performance at reduced energy efficiency.

The primary contributions of this work are: (1) we propose
an elegant new XLOOPS hardware/software abstraction that
explicitly encodes inter-iteration loop dependence patterns;
(2) we describe an XLOOPS compiler based on lightweight
modifications to a general-purpose compiler; (3) we pro-
pose new XLOOPS microarchitectures that enable tradi-
tional, specialized, and adaptive execution; and (4) we evalu-
ate XLOOPS using a vertically integrated methodology.

II. XLOOPS: EXPLICIT LOOP SPECIALIZATION

In this section, we describe the instruction set and compiler
modifications required for XLOOPS, and we propose vari-
ous XLOOPS microarchitectures to enable traditional, spe-
cialized, and adaptive execution.

A. XLOOPS Instruction Set

The XLOOPS instruction set is carefully designed to en-
able efficient execution on both traditional general-purpose
processors (serial execution) and specialized microarchitec-
tures (parallel execution). The XLOOPS instruction set is

TABLE I. XLOOPS INSTRUCTION SET EXTENSIONS

xloop.{d}.{c} rI, rN, L goto L if R[rI] 6= R[rN]
addiu.xi rX, imm R[rX] ← R[rX] + imm
addu.xi rX, rT R[rX] ← R[rX] + R[rT]

Loop body is defined as the static sequence of instructions between L and the
xloop instruction. {d} suffix indicates data-dependence pattern: uc = un-
ordered concurrent, or = ordered through registers, om = ordered through
memory, orm = ordered through registers and memory, ua = unordered-
atomic. {c} suffix indicates control-dependence pattern: no suffix implies
fixed bound, db = dynamic bound. R[rT] must be a loop-invariant value.

formed by extending a general-purpose instruction set with
the instructions shown in Table I. The key idea is to express
inherent loop-level parallelism by encoding inter-iteration
data- and control-dependence patterns using variants of the
xloop instruction. All xloop instructions encode the notion
of a parallel loop body which is defined as the static instruc-
tion sequence between a given label L and the address of the
xloop instruction. It is undefined for the label L to point to
an address greater than or equal to the address of the xloop
instruction. Figure 1 uses short pseudocode and assembly
examples to illustrate how these instructions are used in prac-
tice. The suffixes for the xloop instruction indicate the data-
and control-dependence patterns. An xloop can contain ar-
bitrary instructions including: arithmetic operations, mem-
ory operations, atomic memory operations (AMOs), mem-
ory fences, control flow, nested xloops, and system calls
(although this is not recommended). Currently, the xloop
instruction only supports fixed- and dynamic-bound control-
dependence patterns; we leave exploring data-dependent-exit
control-dependence patterns to future work. An xloop can-
not write live-in registers and all live-out register values are
undefined once the loop is finished executing, meaning an
xloop must store results in memory.
xi Instruction – Mutual induction variables (MIVs) are

variables that can be computed as a linear function of a loop
induction variable. Modern compilers include a loop-strength



reduction pass that transforms expensive MIV computations
into cheap iterative operations. Naively using such optimiza-
tions can impose extra, potentially unnecessary inter-iteration
dependences, but avoiding such optimizations can introduce
non-trivial address computation overhead, especially when
working with multi-dimensional arrays. The cross-iteration
instructions (denoted with an xi suffix) explicitly encode
MIVs to allow hardware to handle MIVs either iteratively
or in parallel using specialized logic. Note that the register
operand R[rT] in an addu.xi instruction must be a loop-
invariant value. The instructions on lines 6–8 in Figure 1(f)
illustrate the use of the xi instruction.
xloop.uc Instruction – An xloop.uc encodes an

unordered-concurrent data-dependence pattern. The itera-
tions can appear to execute concurrently and in any order.
Data races are possible, but atomic memory operations can
provide efficient synchronization if required. Figure 1(a,f)
illustrates using an xloop.uc for element-wise vector multi-
plication. The XLOOPS ISA specifies that an addiu writing
the loop induction variable (e.g., line 9) does not impose an
ordering constraint.
xloop.or Instruction – An xloop.or encodes an

ordered-through-registers data-dependence pattern. We term
registers that impose ordering constraints as cross-iteration
registers (CIRs). The value in a CIR for a given iteration
must be the same as if the xloop was executed serially. Any
general-purpose register can act as a CIR. The CIRs must be
read at least once and can be written zero or more times. As
an exception to the restriction on xloop register live-outs,
each CIR is guaranteed to have the same value as a serial
execution when the loop is finished. As with an xloop.uc,
there are no ordering constraints with respect to memory, so
memory races are possible. Figure 1(b,g) illustrates using an
xloop.or to implement parallel-prefix summation with rX
as a CIR.
xloop.om Instruction – An xloop.om encodes an

ordered-through-memory data-dependence pattern. Values
read and written to memory must be the same as if the loop
was executed serially. Since an xloop.om guarantees a spe-
cific order with respect to memory, there can be no race con-
ditions. For example, if each iteration updates different por-
tions of a shared data structure, then iterations may occasion-
ally conflict in which case the updates are guaranteed to oc-
cur in the same order as if the loop was executed serially.
Figure 1(c,h) illustrates using an xloop.om to implement a
simple loop where the load instruction on line 6 in iteration i
depends on the store instruction on line 8 in iteration i-K. An
xloop.orm encodes a pattern that combines ordering through
registers and memory.
xloop.ua Instruction – An xloop.ua encodes an

unordered-atomic data-dependence pattern. The iterations
can appear to execute in any order, but their memory updates
must appear to execute atomically. While race conditions are
not possible, the results can be non-deterministic since the
hardware is free to reorder iterations. This data-dependence
pattern is often found in graph algorithms that manipulate a
shared data structure where the iterations can execute in any

order given that iterations update memory atomically. Fig-
ure 1(d,i) illustrates using an xloop.ua to modify two his-
tograms with a single atomic update.
xloop.*.db Instruction – The above data-dependence

patterns assume a fixed-bound control-dependence pattern.
An xloop.*.db encodes a different inter-iteration control-
dependence pattern where iterations are allowed to monoton-
ically increase the loop bound. Figure 1(e) illustrates using
an xloop.uc.db to perform work on a binary tree using a
worklist-based implementation. Each iteration uses an AMO
to reserve space at the tail of the worklist before adding new
nodes and incrementing the loop bound. This example could
also be encoded as an outer for loop with an inner xloop.uc
to iterate over the nodes in a given level of the tree, but using
an xloop.uc.db results in a more natural mapping and can
enable more efficient specialized execution.

The XLOOPS instruction set provides precise exceptions
at the instruction level within an xloop iteration. This
means exceptions within a loop iteration are guaranteed
to occur in order with respect to the other instructions in
that loop iteration. Exceptions in different iterations of an
xloop.{uc,ua,or} can occur in any order; exceptions in
different iterations of an xloop.{om,orm} are guaranteed to
occur in the same order as a serial execution.

The XLOOPS ISA is a clean hardware/software ab-
straction that provides significant freedom when designing
XLOOPS compilers and XLOOPS microarchitectures. Any
given loop can usually be encoded in multiple ways. For ex-
ample, any valid xloop.uc is also a valid xloop.or, any
valid xloop.ua is also a valid xloop.om, and any fixed-
bound xloop is a valid xloop.orm. Software should choose
the “least restrictive” inter-iteration dependence pattern to en-
able execution on simpler specialized microarchitectures and
to give hardware the most freedom in choosing how to exe-
cute the xloop. Specialized execution of xloop.om is more
complex than xloop.or which in turn is more complex than
an xloop.uc, so an architect can choose to only support spe-
cialized execution for an xloop.uc and use traditional exe-
cution for the remaining patterns. Similarly, the maximum
number of instructions in an xloop is not part of the instruc-
tion set; while software should target fine-grain loops, it is
perfectly fine to generate a relatively large loop body (e.g.,
200 instructions). A specific microarchitecture can always
fall back to a traditional execution if the xloop is too large.
Finally, the XLOOPS instruction set enables cleanly nesting
xloops. Software can provide hints to the hardware to indi-
cate which xloop might be best for specialized execution, or
the hardware might adaptively explore specialized executions
for different xloops.

B. XLOOPS Compiler

The XLOOPS compiler currently uses programmer in-
serted annotations to determine which loops to encode using
the XLOOPS instruction set. Figure 1(a–e) illustrates using
#pragma directives and the keywords unordered, ordered,
and atomic to convey the data-dependence patterns. Fig-
ure 2 illustrates annotating nested loops in the Floyd-Warshall



1 for ( int k = 0; k < n; k++ )
2 #pragma xloops ordered
3 for ( int i = 0; i < n; i++ )
4 #pragma xloops unordered
5 for ( int j = 0; j < n; j++ )
6 path[i][j] = min( path[i][j], path[i][k] + path[k][j] );

Figure 2. C Code for war Application Kernel – Kernel from Polybench suite
implementing Floyd-Warshall shortest path algorithm. XLOOPS compiler
maps inner loop to xloop.uc and uses dependence analysis to map outer
loop to xloop.om.

1 #pragma xloops ordered
2 for ( int i = 0; i < num_edges; i++ ) {
3 int v = edges[i].v; int u = edges[i].u;
4 if ( vertices[v] < 0 && vertices[u] < 0 ) {
5 vertices[v] = u; vertices[u] = v; out[k++] = i;
6 } }

Figure 3. C Code for mm Application Kernel – Kernel from Problem-Based
Benchmark Suite implementing greedy algorithm for maximal matching on
undirected graph. XLOOPS compiler uses dependence analysis to map the
loop to xloop.orm.

shortest path algorithm from the Polybench Suite [27], and
Figure 3 illustrates annotating an ordered loop in the maximal
matching application kernel present from the Problem-Based
Benchmark Suite [29].

The XLOOPS compiler is implemented with lightweight
changes to an existing general-purpose compiler. The
XLOOPS approach does not interfere with existing compiler
algorithms for mid-level optimization passes, and back-end
algorithms for instruction scheduling, register allocation, and
code generation. The XLOOPS compiler modifies the loop-
strength reduction pass to directly generate appropriate xi
instructions to encode the MIVs. Loops annotated with the
unordered keyword are usually encoded using xloop.uc.
Loops annotated with the atomic keyword are encoded us-
ing xloop.ua. Programmers use the ordered keyword
to annotate loops that must preserve inter-iteration data-
dependences. The programmers need not specify whether
this data-dependence is through registers or memory or both.
The XLOOPS compiler includes analysis passes to deter-
mine how the data-dependence is communicated and encodes
the dependence patterns using xloop.{or/om/orm}. Reg-
ister dependence testing is implemented by analyzing the
use-definition chains through the PHI nodes and identify-
ing CIRs. Memory dependence testing is implemented us-
ing well known dependence analysis techniques such as the
zero-, single-, and multiple-index variable tests [9]. Addition-
ally, the XLOOPS compiler includes a pass to detect updates
to the loop bound to encode such loops using xloop.*.db.

Although these lightweight changes to a general-purpose
compiler should produce a reasonable XLOOPS compiler,
there are opportunities for additional optimizations. For ex-
ample, the performance of executing an xloop.or is limited
by the inter-iteration critical path for each CIR. The inter-
iteration critical path is the distance between the first dynamic
instruction in the loop body that reads the CIR and the last
dynamic instruction in that same loop body that updates the
CIR. Compiler optimizations to reduce the inter-iteration crit-
ical path by modifying the instruction scheduling within the

loop body could improve the ability of XLOOPS microar-
chitectures to overlap independent work from different iter-
ations. We explore the potential of such an optimization by
manually scheduling instructions in Section IV-G.

C. XLOOPS Traditional Execution

XLOOPS binaries can be executed efficiently on a general-
purpose processor (GPP) with minimal changes to the de-
coder logic. An xloop instruction is executed as a condi-
tional branch instruction, and an xi instruction is executed as
a simple addition. Efficient traditional execution is important
for two reasons: (1) to enable gradual adoption of XLOOPS
without any penalty when using XLOOPS binaries on GPPs;
and (2) to enable adaptive execution to migrate an xloop to
a GPP if it is determined that specialized execution is not re-
sulting in any performance benefit.

D. XLOOPS Specialized Execution

Figure 4 shows a novel XLOOPS microarchitecture that
augments a GPP with a loop-pattern specialization unit
(LPSU). The GPP can either be a simple in-order or a com-
plex out-of-order processor. The LPSU contains four decou-
pled lanes and a lane management unit (LMU). In our current
design, each lane in the LPSU is similar to a simple in-order
processor, but it is certainly possible to use more aggressive
superscalar or out-of-order lane microarchitectures to better
exploit intra-iteration instruction-level parallelism. Each lane
includes a loop instruction buffer to store instructions, an in-
dex queue (IDQ) to store loop indices waiting for execution, a
2r2w-port physical register file, and functional units for sim-
ple arithmetic, address generation, and control flow. The GPP
and LPSU dynamically arbitrate for the data memory port
and the long-latency functional unit (LLFU). The LLFU pro-
vides support for integer multiplication, integer division, and
floating-point arithmetic. Specialized execution occurs in two
phases: a scan phase initiated by the GPP and a specialized
execution phase that occurs on the LPSU.

Scan Phase – The GPP starts the scan phase when it
reaches an xloop instruction. In this phase, the instructions
and live-in register values within the loop body are incremen-
tally written to the instruction buffers and register files in the
LPSU. To reduce the required amount of physical register
storage in the LPSU, the LMU renames architectural register
specifiers and updates the instruction encoding as it writes in-
structions into the instruction buffers. Since the registers are
renamed once during the scan phase, the energy consumed for
register renaming is amortized over all iterations. A complex
out-of-order GPP can overlap the scan phase with the execu-
tion of instructions that are before the xloop body. The spe-
cialized execution phase does not start until all previous in-
structions are retired, all instructions in the xloop body have
been scanned, and the xloop instruction reaches the head of
the reorder buffer. Once the scan phase is complete, the GPP
stalls until the LPSU has finished the specialized execution
phase.

Specialized Execution Phase – In this phase, the LMU
enqueues iteration indices into the IDQs as free IDQ entries
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Figure 4. XLOOPS Microarchitecture – GPP and L1 memory system aug-
mented with four-lane loop-pattern specialization unit (LPSU). Mechanisms
required to support xloop.{or,om,orm,ua} beyond basic xloop.uc sup-
port are shown highlighted in red. GPP = general-purpose processor (ei-
ther in-order or out-of-order); GPR = GPP regs; RF = regfile; IDQ = index
queue; Inst Buf = instruction buffer; DBN = dynamic-bound notification;
CIB = cross-iteration buffer; SLFU = short-latency functional unit; LLFU =
long-latency functional unit; LSQ = load/store queue.

become available. For xloop.uc, IDQ entries can become
available in any order enabling simple dynamic load balanc-
ing, while for other inter-iteration dependence patterns, IDQ
entries naturally become available in iteration order. Each
lane dequeues an iteration index and executes the correspond-
ing iteration. Since the XLOOPS ISA guarantees live-in reg-
isters are not written in the xloop body, there is no need to
restore state before the execution of each iteration. When the
execution of the entire xloop is finished and all memory up-
dates are complete, the LMU notifies the GPP that the spe-
cialized execution phase has ended.
xi Execution – The LPSU uses specialized logic to ex-

ecute xi instructions. In the scan phase, the LMU uses a
mutual induction variable table (MIVT) to track the register
specifier for the MIV and the loop-invariant increment value
(i.e., either imm for addiu.xi or R[rT] for addu.xi). In the
specialized execution phase, the lanes check the read regis-
ter specifiers of a decoded instruction and compare it to the
specifiers stored in the MIVT using a bit vector. If the regis-
ter specifier matches an entry present in the MIVT, then the
lane computes the value of the mutual induction variable us-
ing: the value present in the register file, the difference in the

loop indices, and the loop-invariant increment value from the
MIVT as shown:

R[rX]← R[rX] + (increment × (1 + icurrent − iprevious))
Since the difference in inter-iteration loop indices is small
(usually close to the number of lanes), the lanes can use an
inexpensive, narrow multiplier. When the lane executes the
actual xi instruction, the result of the above computation is
stored in the register file and used by the next iteration exe-
cuted on the lane.
xloop.uc Execution – Supporting xloop.uc requires

just the mechanisms described above. Figure 4 illustrates
these mechanisms and highlights the additional mechanisms
required to support the more sophisticated inter-iteration de-
pendence patterns described in the rest of this section.
xloop.or Execution – The cross-iteration buffers (CIBs)

between neighboring lanes are small associative buffers that
are used to communicate inter-iteration register dependences
when executing an xloop.or. The LMU needs to identify
each CIR and the last instruction that updates each CIR. Dur-
ing the scan phase, the LMU uses two bit-vectors to track
register reads and writes. Registers that are first read and
then written are identified as CIRs. In scan phase, the LMU
also tracks the largest PC of an instruction that updates a CIR
and sets a special last CIR write bit in the instruction buffer
for this instruction. When a lane executes an instruction, it
checks if a source register is a CIR and stalls if the CIR value
is not available in the CIB connected to the previous lane. If
the value is available, it writes this value to the lane register
file and uses this value for the execution of the instruction.
The lane also checks the last CIR write bit when executing an
instruction. If this bit is set, then the lane writes the instruc-
tion result to the CIB connected to the next lane. Updates
to a CIR can be conditional depending on the dynamic con-
trol flow. If an instruction with the last CIR write bit set was
skipped, then at the end of the iteration the lane will copy the
corresponding CIR value to the CIB.
xloop.om Execution – Efficient parallel execution of

xloop.om requires hardware memory disambiguation sup-
port to determine when speculative iterations violate the serial
memory ordering constraint. Each lane includes a small 2r1w
load-store queue (LSQ) to track memory accesses across it-
erations. Memory dependence ordering is enforced by the
LMU based on the loop iteration index. A lane with the low-
est iteration index is considered as non-speculative, whereas
lanes with higher iteration indices are considered speculative.
Loads and stores issued by a non-speculative lane are allowed
to bypass the LSQ and access memory immediately. A store
issued by a speculative lane is buffered in the speculative
lane’s LSQ and does not update memory. A load issued by
a speculative lane first checks for a matching store address in
the speculative lane’s LSQ for store-load forwarding. If there
is no match in the speculative lane’s LSQ, the load is issued
to the memory system. More aggressive implementations
can additionally allow a load to check the LSQs across lanes
for inter-iteration store-load forwarding. To detect memory
dependence violations, the address for each store issued by



the non-speculative lane is broadcast to the speculative lanes
when the store executes. Each speculative lane compares this
broadcasted store address to the entries present in the specula-
tive lane’s LSQ. A memory dependence violation occurs if a
speculative lane has already issued a load request to the same
address as a store issued by a non-speculative lane. When
a speculative lane detects a memory dependence violation,
the lane restarts the execution of the corresponding iteration.
Squashing iterations is fast since an xloop cannot write live-
in registers; the lane simply flushes the pipeline (including the
LSQ) and restarts execution from the first instruction in the
xloop body. Speculative lanes stall execution if they fill up
their corresponding LSQ. When the LMU promotes a spec-
ulative lane to be non-speculative, the lane drains its LSQ,
broadcasts store requests to other lanes, and updates the mem-
ory. Supporting xloop.orm involves combining the mecha-
nisms required for supporting both xloop.or and xloop.om.
xloop.ua Execution – Similar to xloop.om, efficient par-

allel execution of xloop.ua requires hardware memory dis-
ambiguation support. However, xloop.ua does not enforce
sequential ordering of the loop iterations. Currently, we ex-
ecute xloop.ua using the same mechanisms as xloop.om.
Future work could explore microarchitectures that are less re-
strictive in terms of iteration index ordering and take better
advantage of the xloop.ua data-dependence pattern.
xloop.*.db Execution – Execution of loops with a

dynamic-bound control-dependence pattern is similar to
loops with a fixed-bound dependence pattern with minor
changes to the LMU and lane control logic. Each lane checks
for instructions that update the register containing the loop
bound and communicate the value of the updated loop bound
to the LMU. The LMU updates the maximum bound for
the loop execution and generates additional iteration indices
which are enqueued in the IDQs as space becomes available.
Mechanisms to execute any data-dependence pattern can be
combined with the mechanism to execute the dynamic-bound
control-dependence pattern, although in this work we focus
on xloop.uc.db.

E. XLOOPS Adaptive Execution

For certain applications with significant intra-iteration
instruction-level parallelism and limited inter-iteration paral-
lelism, traditional execution on complex out-of-order GPPs
can achieve better performance than specialized execu-
tion on the LPSU’s simple in-order lanes. The XLOOPS
hardware/software abstraction enables microarchitectures to
adaptively migrate an xloop between traditional execution
on the GPP and specialized execution on the LPSU.

Adaptive execution adds two new phases for profiling.
When the GPP first executes an xloop it begins a GPP profil-
ing phase to determine the performance of traditional execu-
tion. After profiling for a set number of iterations or cycles,
the scan phase takes place as described in Section II-D. At
the end of the scan phase, the GPP sends the number of pro-
filed loop iterations and recorded cycles to the LPSU. The
LPSU then begins an LPSU profiling phase to determine the
performance of specialized execution. After the LPSU has

executed the same number of iterations used in the GPP pro-
filing phase, the LPSU compares the relative performance of
traditional and specialized execution. If specialized execu-
tion is slower than traditional execution, the LPSU simply
instructs the GPP to finish executing the remaining iterations.
For xloop.or, CIR values for the last iteration executed on
the LPSU are copied back to the GPP.

Migrating an xloop between the GPP and LPSU only oc-
curs at loop iteration boundaries and involves transferring
very little state. This makes xloop migration significantly
more efficient compared to thread migration across cores with
private caches. Since the profiling phase itself is a valid exe-
cution of the xloop, adaptive execution is an efficient mech-
anism that increases the performance of loops that struggle
with specialized execution.

The GPP includes an adaptive profiling table (APT) to
record the profiling progress for a small number of recently
seen xloop instructions. The APT is indexed by the PC of
the xloop instruction and contains an iteration count and, if
profiling is complete, the decision on whether to use tradi-
tional or specialized execution for future dynamic instances
of the xloop. When the GPP executes an xloop instruction,
it checks the APT to see if it should continue profiling or im-
mediately choose traditional or specialized execution. The
APT enables the profiling phases to stretch across multiple
dynamic instances of the xloop which is especially impor-
tant for xloops with small iteration counts. Our current im-
plementation of adaptive execution does not reconsider the
profiling results once a decision has been made, although this
is an interesting direction for future work.

III. XLOOPS APPLICATION KERNELS

We explored a diverse set of application kernels that cap-
ture multiple inter-iteration data- and control-dependence
patterns for both single and nested loops. We include both
numeric and non-numeric kernels with regular and irregular
data and control flow. Table II shows the list of application
kernels and corresponding inter-iteration dependence patterns
for each loop in the kernel. Our application kernels are drawn
from MiBench [14], PolyBench [27], PBBS [29], and our
own custom kernels. The suffix for an application name in-
dicates the inter-iteration dependence pattern that dominates
the execution time. All of the kernels were parallelized by
adding programmer annotations with minimal modifications
to the original serial kernel. For select kernels, we also ex-
plored manual loop-transformations and hand-coded assem-
bly implementations as described in Section IV-G.

We briefly describe the custom kernels. rgb2cmyk-uc per-
forms color space conversion on a test image. sgemm-uc im-
plements a single-precision matrix multiplication for square
matrices using standard triple-nested loops. ssearch-uc im-
plements the Knuth-Morris-Pratt algorithm to search a col-
lection of byte streams for the presence of substrings. viterbi-
uc decodes frames of convolutionally encoded data using the
Viterbi algorithm. dither-or generates a black-and-white im-
age from a gray-scale image using Floyd-Steinberg dither-
ing. kmeans-or implements the k-means clustering algorithm.



TABLE II. XLOOPS APPLICATION KERNELS AND CYCLE-LEVEL RESULTS

Loop Dynamic io ooo/2 ooo/4
Characteristics Insns Speedups Speedups Speedups

Name Suite Type Num Insns Num Iters GPI XLI X/G T S T S A T S A

rgb2cmyk-uc C uc 32 80 209K 209K 1.00 1.00 3.13 1.00 2.24 2.18 1.00 1.22 1.21
sgemm-uc C uc 27 32 340K 340K 1.00 1.00 4.03 1.06 2.29 2.03 1.00 1.17 1.10
ssearch-uc C uc 37–58 57 2.3M 2.3M 1.00 1.00 3.93 1.07 2.65 2.56 0.99 1.52 1.51
symm-uc Po uc 43 32 267K 266K 1.00 1.01 3.38 1.00 1.97 1.95 1.03 1.08 1.08
viterbi-uc C uc 31–34 1–2K 2.5M 2.3M 0.92 1.07 2.57 1.14 2.10 2.10 1.13 1.15 1.13
war-uc Po uc 21 32 438K 438K 1.00 1.00 3.33 1.00 1.91 1.90 1.00 1.85 1.84

adpcm-or M or 52 20K 932K 992K 1.06 0.97 1.16 0.94 0.82 0.94 0.94 0.55 0.94
covar-or Po or 8–17 32 177K 161K 0.91 1.05 2.58 1.00 1.38 1.35 1.03 0.85 1.05
dither-or C or 36 256 2.3M 2.3M 1.00 1.12 1.49 1.07 0.90 1.07 0.95 0.58 0.95
kmeans-or C or,ua,uc 7–41 1–100 430K 428K 1.00 1.00 3.20 0.99 1.58 1.60 1.01 0.95 1.02
sha-or M or,uc 6–24 20–64 53K 51K 0.96 1.03 1.17 1.03 0.82 0.97 0.98 0.55 0.88
symm-or Po or 16 1–30 267K 268K 1.00 1.00 2.40 1.01 1.60 1.59 1.02 0.93 0.93

dynprog-om Po om 26 1–79 794K 795K 1.00 1.00 1.26 1.00 0.71 0.99 1.01 0.36 1.00
knn-om P om,uc 26–54 1–14 791K 750K 0.95 1.00 1.44 1.05 1.36 1.35 1.05 1.12 1.12
ksack-sm-om C om 21 99 50K 62K 1.23 0.77 2.72 0.56 1.71 1.64 0.36 1.05 1.03
ksack-lg-om C om 21 99 35K 39K 1.12 0.87 3.46 0.69 1.92 1.78 0.53 1.31 1.28
war-om Po om 21 32 438K 438K 1.00 1.00 1.09 1.00 0.63 0.99 1.00 0.60 0.99

mm-orm P orm,uc 7–22 256–2K 31K 31K 0.99 1.01 3.13 1.01 2.76 2.47 0.99 2.33 2.21
stencil-orm Po orm 20 126 639K 639K 1.00 1.00 1.02 1.00 0.66 1.00 1.00 0.66 1.00

btree-ua C ua,uc 11–14 1K 101K 101K 1.00 1.00 1.52 0.99 1.07 1.04 1.00 1.06 1.02
hsort-ua C ua 42–46 512–1K 274K 278K 1.01 0.99 1.34 0.96 0.88 1.00 1.10 0.71 1.13
huffman-ua C ua,uc 6–48 256–14K 290K 292K 1.01 0.96 1.57 0.97 1.09 1.18 0.99 0.74 0.96
rsort-ua C ua 12 1K 202K 218K 1.08 0.89 2.46 0.92 1.58 1.56 0.89 0.84 0.88

bfs-uc-db C uc.db 36 DYN 62K 64K 1.04 0.97 2.96 0.53 2.11 1.83 0.41 1.54 1.35
qsort-uc-db C uc.db 70 DYN 146K 136K 0.93 1.07 2.94 1.10 2.69 2.61 1.02 2.17 2.18

Suite shows the benchmark suites: Po = PolyBench; M = MiBench; P = PBBS; C = Custom. Loop characteristics shows: Type = the dependence pattern
type (multiple entries means different xloops); Num Insns = range for static instruction counts for each xloop body; Num Iters = range for number of xloop
iterations; Dynamic Insns = dynamic instruction counts for the timing critical loop; GPI = general-purpose ISA; XLI = XLOOPS ISA; X/G = normalized
XLOOPS ISA dynamic instruction count compared to general-purpose ISA; io = in-order speedups; ooo/2 = 2-way out-of-order speedups; ooo/4 = 4-way out-
of-order speedups; T = traditional execution; S = specialized execution; A = adaptive execution. Speedups are normalized to a standard serial implementation
compiled for the general-purpose ISA and executed on the corresponding baseline GPP. For example, the io:T column shows the speedup of an XLOOPS
binary using traditional execution on an in-order GPP relative to a serial implementation of the application kernels compiled for the general-purpose ISA
executing on the same in-order GPP.

Assignment of objects to clusters is a dominant loop with
inter-iteration register dependences. ksack-*-om solves the
unbounded knapsack dynamic programming problem. For
this problem, we have two variants, ksack-sm-om and ksack-
lg-om, which have datasets of small (< 10) and large (> 10)
weights respectively. btree-ua constructs a binary tree from a
random set of integer inputs. hsort-ua implements the heap-
sort computation given a set of integer inputs. huffman-ua
implements the Huffman entropy coding compression algo-
rithm. rsort-ua performs an incremental radix sort on an ar-
ray of integers. Each iteration updates histograms of digit
lookups using a xloop.ua and computes prefix-sum updates
for the next stage of sorting. bfs-uc-db uses a dynamically
growing worklist to traverse an input graph in a breadth-first
order and computes the distance given a source node to ev-
ery other node. qsort-uc-db implements the quicksort algo-
rithm using a dynamically growing worklist of partitions to
be sorted.

We used LLVM-3.1 [24] for preprocessing, optimizing,
and compiling, and GNU binutils for assembling and link-
ing. We added a custom target machine backend for a 32-bit
RISC ISA that does not support a branch delay-slot and uses

a unified register file for integer and floating-point instruc-
tions. We implemented a preprocessing script to replace the
#pragma annotations with external function calls to tag the
parallel loops for analysis within LLVM, and modified the
LoopRotation and LoopStrengthReduction passes to in-
clude register and memory dependence analysis to compile
XLOOPS kernels.

IV. XLOOPS CYCLE-LEVEL EVALUATION

In this section, we describe our cycle-level modeling
methodology and results comparing XLOOPS to three base-
line GPPs: a simple single-issue in-order processor, a mod-
erate two-way out-of-order superscalar processor, and an ag-
gressive four-way out-of-order superscalar processor.

A. Cycle-Level Methodology

For our cycle-level studies, we modified the GPP mod-
els within the gem5 simulation framework [2], and we im-
plemented a model of the LPSU using PyMTL, a Python-
based hardware modeling framework [25]. Our changes to
gem5 included: modifying the in-order and out-of-order GPP
models to support AMOs and traditional execution; modify-
ing the in-order and out-of-order GPP models to support co-



TABLE III. CYCLE-LEVEL SYSTEM CONFIGURATION

io ooo/2 ooo/4 Per lane

Issue Width 1 2 4 1
Phys Regs 32 64 128 24
Int ALU 1 2 4 1
AGU/Br Pred 2/1 2/1
IQ Entries 16 32
ROB Entries 48 96
Ld/St Queue Entries 16/16 32/32 8/8
Inst Buffer Entries 128

Int Mul/Div Latency 4/10 cycles
FP Mul/Div Latency 6/6 cycles
FP Add/Sub Latency 4/4 cycles
L1I$/L1D$/L2$/L3$ 16KB/16KB/1MB/16MB

Out-of-Order Tournament Branch Pred
Features Store-Set-Based Memory Dep Pred

simulation with the PyMTL-based LPSU model; and imple-
menting mechanisms to migrate loop execution between the
GPP and LPSU models to support adaptive execution.

We used McPAT-1.0 to estimate the energy of the in-order
and out-of-order GPPs in a 45 nm process technology [22].
The energy for the lanes in the LPSU was modeled by adapt-
ing McPAT’s models for simple in-order GPPs. We config-
ured McPAT to model properly sized instruction buffers in
each lane. We included an additional energy overhead of 5%
to model the energy of the LMU, index queues, and arbiters
based on the results from our detailed VLSI implementation
(see Section V). We conservatively accounted for the en-
ergy of xi instructions as 32-bit multiply operations, and ac-
counted for the energy of inter-iteration register dependence
communication with additional register-file read and write
events. Lastly, we used the energy of an out-of-order load-
store queue to conservatively model the energy of the LSQs
in the LPSU.

Table III shows the configurations for the cycle-level mod-
els of the baseline GPPs and the LPSU lanes. We used three
baseline GPPs: a single-issue in-order GPP (io), a two-way
out-of-order superscalar GPP (ooo/2), and a four-way out-of-
order superscalar GPP (ooo/4). These baseline designs en-
able us to quantitatively explore the performance and energy
of XLOOPS compared to both simple, low-energy proces-
sors as well as complex, high-performance processors. We
augmented each baseline GPP with an LPSU to create three
XLOOPS configurations: io+x, ooo/2+x, and ooo/4+x. Each
of these configurations supports traditional, specialized, and
adaptive execution. Integrating the LPSU into all three base-
line GPPs enabled understanding the subtle interactions be-
tween out-of-order and specialized execution (e.g., out-of-
order scan phase, memory fences before and after specialized
execution), and also enabled exploring adaptive execution in
various contexts.

B. Traditional Execution

Table II shows the results for traditional execution of
XLOOPS binaries. Each T column shows the speedup for
each kernel compiled for the XLOOPS ISA using traditional
execution on one of the GPPs relative to the kernel compiled

for the general-purpose ISA executing on the same GPP. The
goal for traditional execution is for this speedup to be as close
to 1× as possible. In other words, for traditional execution,
we simply wish to reduce the performance overhead of us-
ing the XLOOPS ISA compared to the general-purpose ISA
when executing on traditional general-purpose microarchitec-
tures. We observe that the performance overhead of tradi-
tional execution is minimal and is within 5% of the general-
purpose ISA for all processors with the exception of ksack-
*-om and rsort-ua. The dynamic instruction counts suggest
that compiler optimizations could potentially close the gap
for these kernels by reducing the number of extra instructions
generated when using the XLOOPS ISA. In addition, we oc-
casionally required additional AMOs in the XLOOPS binary
compared to the general-purpose binary. Our current imple-
mentation of AMOs on the out-of-order GPPs is rather con-
servative, and this partly accounts for the discrepancy in tra-
ditional execution on these out-of-order GPPs (i.e., speedups
<1 in T columns). These results are encouraging and make
a case for gradual adoption of the XLOOPS abstraction in
GPPs without significant overhead. In addition, efficient tra-
ditional execution will be a key enabler for adaptive execu-
tion.

C. Specialized Execution

Table II shows the results for specialized execution of
XLOOPS binaries. Each S column shows the speedup for
each kernel compiled for the XLOOPS ISA using specialized
execution on a GPP+LPSU relative to the kernel compiled for
the general-purpose ISA executing on the corresponding GPP.
We observe that specialized execution always benefits the in-
order processor. For a total of 25 application kernels, spe-
cialized execution performs better for 18 kernels compared to
ooo/2, and performs better for 12 kernels compared to ooo/4.

Figure 5 summarizes the results comparing the baseline
GPPs and the XLOOPS configurations. All speedups are
normalized to each kernel compiled for the general-purpose
ISA executing on io. The figure shows the speedup for each
kernel compiled for the general-purpose ISA executing on
ooo/2 and ooo/4, and also shows the speedup for each ker-
nel compiled for the XLOOPS ISA using specialized execu-
tion on ooo/2+x. Results for io+x and ooo/4+x are similar to
ooo/2+x and are omitted for simplicity. Figure 6 shows the
breakdown of stall and squash cycles for specialized execu-
tion.

Specialized execution for kernels dominated by xloop.uc
shows speedups in the range of 2.7–4× compared to io. Per-
formance of sgemm-uc, war-uc, and symm-uc are limited by
intra-iteration RAW dependencies. rgb2cmyk-uc and viterbi-
uc are constrained by stalls due to contention for the shared
memory port. Figure 6 shows that sharing the LLFU does not
significantly hurt the performance of any of the xloop.uc
kernels. Sharing the LLFU drastically reduces the area over-
head of XLOOPS (see Section V). Our results show that
for xloop.uc, specialized execution is superior to io and
complexity-effective compared to the more complicated out-
of-order GPPs.
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Figure 5. XLOOPS Cycle-Level Speedups – Each bar shows the speedup normalized to in-order (io) processor baseline kernels. ooo/2 = 2-way out-of-order
processor; ooo/4 = 4-way out-of-order processor; ooo/2+x = ooo/2 augmented with LPSU.
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Figure 6. Stall and Squash Breakdown – Breakdown of average stall and
squash cycles normalized to the number of cycles when the LPSU is active.
RAW = read-after-write stalls; MEM = stalls due to data memory port access
contention; LLFU = stalls due to LLFU access contention; RD = stalls due
to inter-iteration register dependences; MD = squashes due to inter-iteration
memory dependence violations; LSQ = stalls due to LSQ structural hazards;
Misc = stalls due to write-after-write register-file port contention for LLFU
operations and other structural hazards.

Specialized execution for kernels dominated by xloop.or
is usually limited by the inter-iteration critical path. For
kmeans-or and symm-or, this critical path is a single instruc-
tion, resulting in improved performance compared to ooo/2.
Most of the other xloop.or kernels have much longer inter-
iteration register dependences. For these kernels, the out-of-
order GPPs perform better than specialized execution due to
their ability to exploit intra-iteration instruction-level paral-
lelism. Future work could explore superscalar and out-of-
order lane microarchitectures.

Specialized execution for kernels dominated by
xloop.{om,orm,ua} is usually limited by LSQ struc-
tural hazards and squashing speculative work due to memory
dependence violations. btree-ua, dynprog-om, war-om,
mm-orm, and knn-om are all limited by LSQ structural
hazards. hsort-ua, huffman-ua, and rsort-ua kernels are all
limited by squashing speculative work. Even with these
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Figure 7. Adaptive Execution Speedups – Results for specialized execution
and adaptive execution of kernels encoded with XLOOPS ISA on ooo/4+x
relative to kernels encoded with general-purpose ISA on ooo/4.

limitations, specialized execution is still competitive with
ooo/2 on many of these kernels and even out-perform ooo/4
on mm-orm and btree-ua. Note that the number of squashes
can depend on the dataset. For example, ksack-sm-om has an
input dataset of small weights that results in nearby iterations
accessing the same memory addresses. This increases the
number of memory dependence violations. ksack-lg-om has
an input dataset of large weights that results in fewer memory
dependence violations. Static compiler analysis would
have difficulty predicting these data-dependent performance
results.

Specialized execution for kernels dominated by
xloop.uc.db significantly out-perform both ooo/2 and
ooo/4. This is because the worklist-based implementa-
tion allows the LPSU to exploit significant inter-iteration
instruction- and memory-level parallelism compared to the
out-of-order processors. xloop.uc.db kernels illustrate
the potential for encoding more sophisticated inter-iteration
dependence patterns in the instruction set.

D. Adaptive Execution

Adaptive execution bridges the performance gap between
aggressive out-of-order GPPs and specialized execution. Fig-
ure 7 shows the results comparing the performance of spe-
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Figure 8. Energy Efficiency vs. Performance – Cycle-level performance and McPAT energy results of specialized and adaptive execution for (a) io+x normalized
to io, (b) ooo/2+x normalized to ooo/2, (c) ooo/4+x normalized to ooo/4. Diagonal lines are iso-power contours.

cialized and adaptive execution on ooo/4+x. Based on pre-
liminary experiments, we use 256 iterations and 2000 cy-
cles as thresholds for the profiling phases. For kernels where
traditional execution performs better than specialized execu-
tion, adaptive execution is able to automatically choose to
migrate the execution from the LPSU back to the GPP. For
kernels where specialized execution performs better than tra-
ditional execution, our results show that the overhead of pro-
filing and work migration cause only minimal performance
degradation. Table II also includes results for adaptive execu-
tion with ooo/2+x. Adaptive execution makes a compelling
case for the flexibility provided by the elegant XLOOPS hard-
ware/software abstraction.

E. Energy Efficiency vs. Performance

Figure 8 shows the dynamic energy efficiency and per-
formance for specialized and adaptive execution on io+x,
ooo/2+x, and ooo/4+x. The io+x results are normalized to
kernels compiled for the general-purpose ISA executing on
io, the ooo/2+x results are normalized to kernels compiled
for the general-purpose ISA executing on ooo/2, and so on.
The diagonal lines represent iso-power contours. Specialized
execution adds minimal energy overhead and results in in-
creased performance compared to io across all applications.
For ooo/2+x and ooo/4+x, specialized execution is more en-
ergy efficient across all applications. The performance trends
are as explained in Sections IV-C and IV-D. Specialized ex-
ecution on io+x consumes more dynamic power for all ap-
plications, while specialized execution on ooo/2+x is power-
efficient for 10 applications. Compared to ooo/4, specialized
execution is not only more energy efficient but also consumes
less power. Figure 8(b,c) shows that the performance benefit
of adaptive execution comes at the cost of reduced energy effi-
ciency. Overall, the results suggest that a combination of spe-
cialized and adaptive execution offers a complexity-effective
design point compared to more traditional GPPs.

F. Microarchitectural Design Space Exploration

The XLOOPS hardware/software abstraction enables a rich
microarchitectural design space with a variety of different po-
tential microarchitectural optimizations. In this section, we
explore some of this design space. We evaluate these features
using select kernels that are representative of various inter-
iteration dependence patterns.
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Figure 9. Microarchitectural Design Space Exploration Speedups – Normal-
ized to running baseline kernel on io. ooo/4 = 4-way out-of-order processor;
x4/x8 = LPSU design with 4 and 8 lanes, respectively; r = additional LLFUs
and data memory ports; t = 2-way multithreading; m = additional LSQs.

We first consider adding limited vertical multi-threading
to the lanes. Application kernels such as sgemm-uc that are
limited by read-after-write stalls benefit from two-way multi-
threading (see ooo/4+x4+t in Figure 9). However, multi-
threading does not benefit all kernels, and we see reduced
performance for viterbi-uc due to increased contention for
the shared memory ports. We disable multi-threading for
xloop.{or,om,orm} as it slows the execution of the inter-
iteration critical path and/or the non-speculative lane.

Doubling the number of lanes to eight (ooo/4+x8) im-
proves the performance for sgemm-uc by 68% and kmeans-
or by 28% as neither of these applications are limited by the
shared LLFU and memory port. viterbi-uc only sees moder-
ate improvement as it is limited by memory port contention.
Kernels limited by inter-iteration critical paths (e.g., covar-
or) or by LSQ structural hazards (e.g., btree-ua) do not bene-
fit from increased lanes.

We also consider doubling the shared LLFUs and mem-
ory ports (ooo/4+x8+r). This improves the performance
of viterbi-uc by reducing memory port contention and the
performance of sgemm-uc by reducing LLFU contention.
kmeans-or benefits from both increased memory and LLFU
resources. Finally, we explore increasing the size of the LSQs
to 16+16 entries (ooo/4+x8+r+m) and find that the perfor-
mance of btree-ua improves by 80%. None of the improve-
ments in the final aggressive LPSU design reduce stalls due
to inter-iteration register dependence, so we see no significant
improvement in the performance of covar-or.

Overall, our final highly optimized LPSU design is able to
significantly increase performance compared to the baseline



TABLE IV. CASE STUDY RESULTS

Name Loop Type io+x ooo/2+x ooo/4+x

adpcm-or-opt or 1.86 1.32 0.88
dither-or-opt or 2.48 1.51 0.97
sha-or-opt or 1.55 1.13 0.82

bfs-uc uc 2.73 1.96 1.50
dither-uc uc 2.49 1.54 1.00
kmeans-uc uc 3.60 1.79 1.08
qsort-uc uc 2.35 2.15 1.62
rsort-uc uc 1.85 1.23 0.68

Speedups normalized to kernel compiled for general-purpose ISA.

LPSU design, but of course these optimizations also increase
area and design complexity.

G. Application Case Studies

In this section we consider hand-optimized xloop.or ker-
nels and manual loop transformations. Results are summa-
rized in Table IV.

Hand-Optimized xloop.or – We observed that out-of-
order GPPs perform better than the LPSU designs for sev-
eral xloop.or kernels because of their ability to extract ILP
when the LPSU lanes stall due to inter-iteration register de-
pendences. We compare the benefits of reducing the cross-
iteration critical path for each CIR, by hand-scheduling com-
piler generated code, for a few select kernels. Table IV shows
that adpcm-or-opt, dither-or-opt, and sha-or-opt boost the
performance of specialized execution by 50–70%. With these
scheduling optimizations, specialized execution of xloop.or
kernels is competitive with ooo/2 and ooo/4. Future work can
improve the XLOOPS compiler to schedule instructions more
optimally.

Loop Transformations – We explored alternative loop
parallelization strategies including: general parallel program-
ming techniques such as privatize-and-reduce; using split
worklists as opposed to unified worklists; and atomic data-
structure updates to parallelize loops with register and mem-
ory dependences. Our results from Tables II and IV suggest
that transforming xloop.or and xloop.om into xloop.uc
does not always result in improved performance. Kernels
such as bfs-uc, kmeans-or, rsort-ua, and qsort-uc outperform
their loop transformed counterparts. Only dither-uc benefits
from these transformations. Because simply annotating se-
rial versions of the kernels often performs better than code
with significant transformations, XLOOPS allows ease-of-
programmability without sacrificing performance.

V. VLSI EVALUATION

In this section we present a register-transfer-level (RTL)
model for a basic LPSU which supports xloop.uc instruc-
tions. We synthesize and place-and-route this implementation
using a commercial ASIC CAD toolflow and present results
for area, energy, and timing.

A. VLSI Methodology

Our RTL baseline design is a five-stage in-order GPP that
executes 32-bit RISC instructions. The GPP uses a 16KB

TABLE V. VLSI AREA, CYCLE TIME RESULTS FOR LPSU

Percentage Area Breakdown

Name CT AA AO SP I$ D$ MD FP IB LN IQ MI

scalar 1.95 0.25 8 33 37 11 10

lpsu+i096+ln4 2.16 0.35 42 6 24 26 9 8 6 19 ~0 2
lpsu+i128+ln4 2.14 0.36 44 5 23 26 9 8 6 19 ~0 2
lpsu+i160+ln4 2.12 0.36 45 5 23 26 9 8 6 20 ~0 2
lpsu+i192+ln4 2.20 0.37 48 5 23 25 8 8 10 18 ~0 2

lpsu+i128+ln2 1.98 0.31 24 6 27 30 10 9 4 12 ~0 1
lpsu+i128+ln6 2.28 0.41 65 5 20 23 8 7 8 26 1 2
lpsu+i128+ln8 2.54 0.44 77 4 19 20 8 7 10 29 1 2

CT = cycle time in nanoseconds; AA = absolute area in mm2; AO = percent
area overhead compared to scalar baseline; SP = scalar processor; I$ = in-
struction cache; D$ = data cache; MD = integer multiply-divide unit; FP =
floating-point unit; IB = LPSU instruction buffers; LN = LPSU lanes; IQ =
index queues; MI = arbiters for data-memory and LLFUs, and other miscel-
lanous control logic; Percents rounded to nearest tens

instruction and a 16KB data cache. We implemented a vari-
ety of detailed cycle-accurate LPSU configurations capable
of supporting xloop.uc using parameterized Verilog RTL
models to evaluate the area, energy, and timing. Note that
our current RTL implementation does not support xi in-
structions. To compile the applications, we modified the
LoopStrengthReduction pass in LLVM to disable the gen-
eration of xi instructions.

We target a 40 nm TSMC process using a Synopsys ASIC
CAD toolflow: VCS for RTL simulation, DesignCompiler
for synthesis, IC Compiler for place-and-route, and Prime-
Time for power analysis. We did not have access to a
memory compiler for our target process, so we model cache
tag/data SRAMs and the LPSU instruction buffer SRAM us-
ing CACTI [26]. The datasets were tailored to fit in the L1
cache.

B. VLSI Area Results

Table V presents area results based on post-place-and-route
area estimates. We compare the area of the baseline GPP and
the LPSU designs with four lanes by varying the capacity of
instruction buffer (96–192 entries) and by varying the number
of lanes (2–8) with a fixed instruction buffer size of 128 en-
tries. Each configuration name begins with lpsu and a suffix
with i to denote the instruction buffer size and ln to denote
the number of lanes.

Total area of the primary LPSU design (lpsu+i128+ln4)
is 0.36 mm2 which is only 43% larger than the GPP
(0.25 mm2). Sharing the LLFU and memory port is a key de-
sign decision that results in minimal area overheads. Varying
the instruction buffer size (96–192) with four lanes shows that
area overheads range between 41–48% compared to GPP sug-
gesting that larger instruction buffers are reasonable. Varying
the number of lanes (2–8) for a fixed instruction buffer size of
128 shows that area overheads range between 24–77%. These
results confirm that the area overhead of a given LPSU design
increases roughly linearly with the number of lanes.
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Figure 10. VLSI Energy Efficiency vs. Performance – Compares the in-
order GPP augmented with the LPSU normalized to baseline the in-order
processor. Diagonal line is the iso-power contour.

C. VLSI Energy Efficiency vs. Performance Results

Figure 10 compares the energy efficiency and performance
of specialized execution relative to the kernels compiled for
the general-purpose ISA executing on the GPP. Specialized
execution improves performance by 2.4–4× (ssearch-uc gets
a speedup of 4×; not shown in Figure 10). Specialized execu-
tion on the LPSU consumes more power compared to the GPP
since the LPSU executes several instructions in parallel. Per-
formance results roughly correspond to the trends seen using
our cycle-level models (see Section IV). sgemm-uc has worse
performance compared to the cycle-level evaluation due to an
increase in dynamic instruction count caused by the lack of
xi instructions. Our ASIC CAD toolflow reports that the en-
ergy for an access to an LPSU instruction buffer is cheaper
by a factor of ten compared to an access to the instruction
cache. Since most of the application time is spent in execut-
ing xloops, LPSU designs result in significant energy savings
due to reduced instruction cache accesses. Improvements in
energy efficiency are in the range of 1.6–2.1×. These results
suggest that our McPAT results are relatively conservative.

VI. RELATED WORK

Most of the previous work on loop-level specialization in-
cluding data parallel accelerators (DPAs), speculative par-
allelization, hardware task scheduling, transactional mem-
ory, and accelerators, tightly couple the abstraction and mi-
croarchitecture. XLOOPS is an elegant approach that unifies
many of these proposals with a novel abstraction that can be
mapped on to traditional, specialized, and adaptive microar-
chitectures.

ASIPs integrate specialized circuits into a traditional pro-
cessor pipeline which benefits a specific domain of applica-
tions and are limited in generality [6]. Architectures such as
CCA [4], DySER [11], and BERET [13] provide reconfig-
urable datapaths to accelerate critical subgraphs of computa-
tion within a loop iteration. Our current work focuses more
on inter-iteration loop dependence patterns.
xloop.uc – Many commercial DSPs [5, 32] support zero-

overhead loops in the form of a special loop or repeat instruc-
tion. These architectures allow the execution of loops with no
ordering constraints and require no hardware support for con-
trol speculation. DPAs are examples of architectures that ex-
ploit inter-iteration data-level parallelism. Streaming SIMD

extensions, Advanced Vector Extensions (AVX), and vector
ISA extensions [8, 17, 34] amortize the overheads of instruc-
tion processing and increase performance by executing par-
allel operations. These architectures suffer when executing
code with intra-iteration control-flow, loop-carried register-
dependences, and divergent memory accesses [12]. Further-
more, they rely heavily on vectorizing compilers which is
an active area of research. Mainstream GPUs [23, 35] and
Maven [21] alleviate the problems of traditional vector pro-
cessors but require more radical changes across ISA, com-
piler and microarchitecture compared to XLOOPS.
xloop.ua – Transactional memory (TM) systems [15] co-

ordinate the execution of parallel computations by commit-
ting non-conflicting memory updates. In [36], authors mod-
ify traditional architectures to include a hardware TM system
and expose transactions to software through instruction-set
extensions to exploit loop-level parallelism. Our XLOOPS
abstraction allows for a variety of microarchitectures that can
take advantage of the xloop.ua data-dependence pattern.
xloop.or – Multiscalar [30], vector-like proposals [16,

18], and others [19,36] propose register bypass networks sim-
ilar to the CIBs to handle inter-iteration register dependences.
HELIX-RC [3] proposes a ring-cache architecture to com-
municate register dependences. XLOOPS is potentially more
elegant as it avoids requiring ISA extensions to specify the
dependence communication unlike previous proposals.
xloop.om – Multiscalar and TLS proposals [19, 31] are

speculative parallelization techniques that provide hardware
memory-dependence speculation to exploit loop-level paral-
lelism. XLOOPS proposes per-lane LSQs and a store broad-
cast network to support memory-dependence speculation in
hardware. Previous speculative parallelization techniques
show promise but demand dramatic changes in the microar-
chitecture, compiler, and/or ISA. HELIX-RC [3] takes an al-
ternative approach of decoupling memory dependence com-
munication without employing speculation but relies on an
aggressive parallelizing compiler. The XLOOPS ISA could
be extended to include instructions for lane synchronization
to benefit compiler optimizations as in HELIX-RC.
xloop.*.db – Carbon [20] and Asynchronous Data Mes-

sages (ADM) [28] are two proposals that exploit fine-grain
loop-level parallelism through hardware-only and hybrid
hardware-software work distribution queues. The XLOOPS
dynamic-bound construct is similar in spirit by allowing map-
ping loops with dynamic work generation.

VII. CONCLUSIONS

In this paper, we have introduced XLOOPS, a new hard-
ware specialization approach for exploiting inter-iteration
loop dependence patterns. The XLOOPS instruction set pro-
vides an elegant hardware/software abstraction that serves
as an effective compiler target and enables a variety of mi-
croarchitectures supporting traditional, specialized, and adap-
tive execution. We have used a vertically integrated evalu-
ation methodology spanning applications, compilers, cycle-
level modeling, RTL modeling, and VLSI implementation to
make a compelling case for augmenting both in-order and



out-of-order general-purpose processors with a loop-pattern
specialization unit. Future work might explore additional
inter-iteration loop dependence patterns (e.g., data-dependent
exit conditions) and microarchitectures (e.g., more directly
exploiting nested loop patterns).
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