XLOOPS: Explicit Loop Specialization

Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, and Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{ss2783,bi45,mt453,g1387,zhiruz,cbatten } @cornell.edu

Hardware specialization is becoming an increasingly com-
mon technique to enable improved performance and effi-
ciency in spite of the diminished benefits of technology scal-
ing. Meanwhile, computer architects have long realized the
importance of focusing on the key loops that often dominate
application performance. These two trends have led to a di-
verse array of loop-level specialized hardware, such as SIMD
engines, vector processors, GPUs, and custom accelerators. A
key research challenge for these heterogeneous engines in-
volves creating clean hardware/software abstractions that
are highly programmable, yet still enable efficient exe-
cution on both traditional and specialized microarchitec-
tures.

To address this challenge, this poster will present ongoing
work on a new approach called explicit loop specialization
(XLOOPS) based on the idea of elegantly encoding loop de-
pendence patterns in the instruction set [1]. The XLOOPS
instruction set is formed by extending a general-purpose in-
struction set with a few new instructions to encode the no-
tion of a parallel loop body and the inter-iteration control-
and data- dependence patterns. Inter-iteration control-
dependence patterns include loops that terminate based on
comparing an induction variable to a loop-invariant fixed
bound or a data-dependent exit condition. XLOOPS can
also handle more challenging control-dependence patterns
found in irregular worklist-based algorithms. In such al-
gorithms, a loop induction variable is compared to a dy-
namic bound that is monotonically increased during the loop
execution. [Inter-iteration data-dependence patterns include
loops with no inter-iteration dependences and loops with
inter-iteration dependences encoded through registers and/or
memory. XLOOPS can also handle more challenging data-
dependence patterns often found in graph algorithms where
each iteration manipulates a shared data structure with data-
dependent conflicts. In such algorithms, the iterations can be
executed in any order as long as their updates to memory ap-
pear atomic to the other iterations.

The XLOOPS hardware/software abstraction requires only
lightweight changes to a general-purpose compiler. The com-
piler front-end uses explicitly inserted pragma annotations
to determine which loops to encode using the XLOOPS in-
struction set. Compiler algorithms for mid-level optimization
passes, and back-end algorithms for instruction scheduling,
register allocation, and code generation can work out-of-the-
box. The XLOOPS compiler includes analysis passes to de-
termine the type of inter-iteration data-dependence pattern.
Register-dependence testing is implemented by analyzing the
use-definition chains through the PHI nodes and memory-
dependence testing is implemented using well-known depen-
dence techniques such as ZIV/SIV/MIV tests.

XLOOPS binaries can be executed efficiently on: (1) tradi-
tional microarchitectures with minimal performance impact,
(2) specialized microarchitectures to improve performance

and/or energy efficiency, and (3) adaptive microarchitectures
that can seamlessly migrate loops between traditional and spe-
cialized execution to dynamically trade-off performance vs.
energy efficiency. Traditional execution on general purpose
processors (GPPs) can be supported by simply treating an
XLOOPS instruction as conditional branch instruction. Spe-
cialized execution is supported by augmenting a GPP with a
loop-pattern specialization unit (LPSU). An LPSU contains
a lane management unit (LMU) and a number of decoupled
lanes for executing iterations in parallel. The LMU is respon-
sible for interacting with the GPP to receive work and dynam-
ically distribute this work across all lanes. Each lane is sim-
ilar to an inorder processor with a few important differences:
a lane index queue for storing pending loop indices from the
LMU, a small instruction buffer for storing the loop body, and
dynamic arbitration to share long-latency functional units and
the data memory port across all lanes. Specialized execution
occurs in two phases: a scan phase where the GPP configures
the LPSU instruction buffers and registers, and an execution
phase where the LPSU executes the parallel loop to comple-
tion. The XLOOPS abstraction allows for adaptive execution
that enables applications that perform worse with specialized
execution to automatically migrate to the GPP for increased
performance at reduced energy efficiency.

We are evaluating XLOOPS using a vertically integrated re-
search methodology. We have implemented an LLVM-based
compiler framework that can compile pragma annotated ap-
plication kernels drawn from MiBench, PolyBench, Problem
Based Benchmark Suite, and our own custom benchmarks.
We have modified the gem5 simulation framework integrated
with McPAT-1.0 energy models, to model both in-order and
out-of-order processors augmented with an LPSU. We have
also implemented a simple register-transfer-level XLOOPS
microarchitecture capable of specialized execution for un-
ordered concurrent loops. We have used this model and a
commercial ASIC CAD toolflow to estimate area, energy,
and timing. Using specialized execution, XLOOPS is able
to achieve 2.5x or higher speedup at similar or better energy
efficiency for most application kernels compared to a simple
single-issue in-order processor with only 40% area overhead.
Compared to aggressive two- and four-way out-of-order pro-
cessors, XLOOPS is able to achieve 1.5-3x improvement in
energy efficiency while having speedups in the range of 1.25—
2.5x on most application kernels.

XLOOPS is an elegant approach that unifies ideas from
transactional memory, hardware task-scheduling, and data
parallel accelerators with a novel abstraction that can be
mapped to traditional, specialized, and adaptive architectures.

References

[1] S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, and C. Batten.
Architectural Specialization for Inter-Iteration Loop Dependence
Patterns. Int’l Symp. on Microarchitecture (MICRO), Dec 2014 (to
appear).

