
LANE-BASED HARDWARE SPECIALIZATION FOR LOOP-
AND FORK-JOIN-CENTRIC PARALLELIZATION AND

SCHEDULING STRATEGIES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Shreesha Srinath

August 2018

© 2018 Shreesha Srinath

ALL RIGHTS RESERVED

LANE-BASED HARDWARE SPECIALIZATION FOR LOOP- AND FORK-JOIN-CENTRIC

PARALLELIZATION AND SCHEDULING STRATEGIES

Shreesha Srinath, Ph.D.

Cornell University 2018

Serious physical design issues are breaking down traditional abstractions in computer architec-

ture. For the past 40 years, Moore’s Law and Dennard’s Scaling have provided the smaller, cheaper,

faster, and more power-efficient transistors that fueled innovation in computer architecture. In the

mid 2000s, Dennard’s Scaling broke down, and this in turn stagnated the growth in processor

clock frequencies and reduced the power efficiency of transistors. More recently, there has been

empirical evidence suggesting Moore’s Law of transistor cost-scaling has slowed down. While

transistors continue to shrink at a slower pace, technology scaling is no longer ensuring cheaper,

faster, and more power-efficient transistors. In this disruptive regime, architects have a critical role

in improving performance while mitigating design costs. The challenges posed by the impending

end of Moore’s Law and the non-existent benefits of Dennard’s Scaling motivate reconsidering the

traditional boundaries between hardware and software. Architects have responded by embracing

parallelization and specialization across the layers of the computing stack. A key research chal-

lenge involves creating clean hardware/software abstractions that are highly programmable, yet

still enable efficient execution on both traditional and specialized microarchitectures.

In this thesis, I present a lane-based hardware specialization approach to building programmable

accelerators for loop- and fork-join-centric parallel programs. To mitigate the design costs and in-

crease the applicability of hardware specialization, I make the case for lane-based behavior-specific

accelerators. I propose two lane-based behavior-specific accelerators: XLOOPS and SSAs. Ex-

plicit loop specialization (XLOOPS) is an approach that is based on the idea of elegantly encoding

inter-iteration dependence patterns in the instruction set. The XLOOPS binaries can execute on

(1) traditional microarchitectures with minimal performance impact, (2) specialized microarchi-

tectures to improve performance and/or energy efficiency, and (3) adaptive microarchitectures that

can seamlessly migrate loops between traditional and specialized execution to trade-off perfor-

mance vs. energy efficiency. Smart sharing architectures (SSAs) are a new approach to building

lane-based accelerators that can efficiently execute recursive fork-join-centric parallel programs.

SSAs designs share expensive hardware resources to reduce the area costs and employ complexity-

effective smart sharing mechanisms that exploit instruction redundancy to mitigate the loss in per-

formance while maximizing efficiency.

BIOGRAPHICAL SKETCH

Shreesha Srinath was born to Rekha Srinath and A.K. Srinath in Bangalore, India on September

13th, 1986. Shreesha attended the Sri Aurobindo Memorial School in Bangalore from 1990–

2002. During high school, in addition to his academic studies, Shreesha was interested in Carnatic

music, and was trained in singing, playing the Mridangam, and playing the flute. Shreesha went

on to pursue mathematics and science in the 11th and 12th grade (senior secondary school) at Sri

Kumaran Children’s Home in Bangalore from 2002–2004.

Determined to obtain an undergraduate degree in Electronics and Communication Engineering,

Shreesha enrolled at the Visvesvaraya National Institute of Technology at Nagpur, India. Shree-

sha took fundamental courses in electronics, analog/digital communication systems, and signal

processing, and also served as the President of the IEEE student chapter at Nagpur. Shreesha com-

pleted his B.Tech degree in 2008, and was motivated to pursue a master of science degree with a

focus on wireless communication systems.

Shreesha was admitted to the MS program in the Department of Electrical and Computer

Engineering at University of Wisconsin-Madison and moved to the United States in 2008. At

UW-Madison, Shreesha was fortunate to have worked with Prof. Suman Banarjee on a research

project that focused on the design of approximate wireless communication systems. While there

he became interested in the field of reconfigurable computing and FPGAs. He was advised by

Prof. Katherine (Compton) Morrow and pursued his thesis topic on automatic generation of high-

performance multipliers for FPGAs. Upon graduating in 2010, Shreesha went on to work at Intel

Corporation in Folsom. At Intel, he was part of the visual computing group and built functional

simulators for the texture sampler units used in Intel chips. It was at Intel that Shreesha realized

his interest in building prototypes of computing systems beyond just simulators.

Shreesha decided to pursue a Ph.D. degree and was offered a graduate fellowship at Cornell

University in 2011. At Cornell University, Shreesha began his graduate studies under the tutelage

of Prof. Christopher Batten. By working in Prof. Batten’s group, he gained invaluable experience

in topics related to energy-efficient computer architecture, programmability and design of special-

ized hardware, parallel programming models, compilers, hardware design methodology, and ASIC

design.

iii

This document is dedicated to all my teachers, to all my gurus.

iv

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support, encouragement, and advice

from many people. I am grateful to my family, friends, and mentors who have helped me along the

way both personally and professionally.

First and foremost, I would like to thank my advisor Christopher Batten who has been a true

mentor, a passionate teacher, and a role model throughout my time at Cornell University. I thank

Chris for believing in me and for supporting me throughout various projects I pursued in my

graduate school career. Chris’s passion for a vertically integrated research methodology has got

me hooked and I hope to continue to build elegant computer systems in future. I would also like

to thank the rest of my thesis committee, Zhiru Zhang, and Rajit Manohar. I have truly enjoyed

working with Zhiru on the XLOOPS and the PolyHS projects. Thanks, Zhiru for teaching me

everything I know about high-level synthesis. Thanks, Rajit for your advice and your feedback.

Thanks to all the members of Batten Research Group for working with me and for contributing

to the various pieces of the research infrastructure that made this thesis possible. Derek Lock-

hart has been a great resource for thoughtful discussion and support. I would like to thank Derek

for building the PyMTL and Pydgin frameworks, which enabled both the XLOOPS and the SSAs

projects. Ji Kim is a dear friend right from my early days of graduate school. Thanks, Ji for leading

the FG-SIMT and the LTA projects, it was great to work with you. Special thanks to Berkin Ilebyi,

for working with me on the XLOOPS project, for being roommates at every conference I have

ever attended, and for being a true friend. I have truly enjoyed my conversations with Christopher

Torng. Chris, I appreciate our walks and our discussions on research methodologies, goals, and life

in general. Thanks, Moyang Wang for teaching me work-stealing runtimes. Khalid Al-Hawaj, I

appreciate your passion for hot sauce and will miss late-night/early-morning conversations. Shun-

ning Jiang is a talented researcher and has been a great addition to BRG. Tuan Ta and Lin Cheng

pushed me to be a better mentor. Tuan and Lin, I hope I have convinced you on RISC-V, and I look

forward to your success in graduate school.

I would like to thank the members of the Zhang Research Group. Gai Liu, Steve Dai, Ritchie

Zhao, and Mingxing Tan, thanks for making me feel like an extended member of ZRG. Thanks

Gai and Steve, for making me coffee whenever I needed it. Nitish Srivastava is a dear friend and I

am looking forward to his work on the new and improved XLOOPS.

v

I would like to thank all my friends at the Computer Systems Laboratory. CSL introduced me

to a wonderful group of people to bounce ideas of, share knowledge, get lunch with, and explore

Ithaca. Thanks to Saugata Ghose, Rob Karmazin, Jon Tse, Carlos Ortega, Ben Hill, Andrew

Ferraiuolo, Daniel Lo, Yao Wang, KK Yu, Abhinandan Majumdar, Xiaodong Wang, Skand Hurkat,

Mark Buckler, Helena Caminal, and Sachille Atapattu.

I owe many fellow graduate students for making the whole experience much more enjoyable. I

appreciate the counsel, support, and friendship I have enjoyed from Ajay Bhat, Shivam Ghosh,

Sachin Nadig, Divya Sharma, Namrata Singh, Priyanka Jagtap, and Adarsh Kowdle. Special

thanks to Bret Leraul, Sanjay Dharmavaram, Janet Hendrickson, and Keiji Kunigami for helping

me remain sane during the last couple years of graduate school.

To my friends from Madison, who made me feel at home when I first got to the United States:

Vaishali Karanth, Diwakar Kedlaya, Chaitanya Baone, and Nidhishri Tapadia. You guys have been

my family in the US.

Most importantly, I thank my mother, whose unrelenting support and encouragement provides

me constant motivation and inspiration. Maa, thanks for all your hard work and unbounded love.

I am especially grateful for all the values you have impressed on me and hope to be as good of

a human being that you are. Thanks to my father for standing by me, always. Dad, thanks for

all your sacrifices and continual support that has helped me achieve my goals. My parents have

always been exceptional role models and have taught me the importance of putting others before

one’s self. Thanks to my younger brother, Srijith Srinath, for his love and support, and for being

with my parents, when I could not. Srijith, you have cheered me up when I have needed it right

from when you have been a baby to a responsible adult. I wish you good luck for your graduate

school career.

This thesis was supported in part by an NSF CAREER Award #1149464, NSF XPS Award

#1337240, NSF CRI Award #1512937, NSF SHF Award #1527065, DARPA Young Faculty Award

#N66001-12-1-4239, AFOSR YIP Award #FA9550-15-1-0194, and equipment, tool, and/or IP

donations from Intel, NVIDIA, Xilinx, Synopsys, and ARM.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Figures . ix
List of Tables . x
List of Abbreviations . xi

1 Introduction 1
1.1 Trends in Technology Scaling . 1
1.2 Trends in Computer Architecture . 6
1.3 Trends in Hardware Specialization . 8
1.4 Thesis Overview . 12
1.5 Collaboration, Previous Publications, and Funding 13

2 A Case for Lane-Based Behavior-Specific Accelerators 16
2.1 Parallelization and Scheduling Strategies . 16

2.1.1 Parallelization Strategies . 17
2.1.2 Scheduling Strategies . 22

2.2 A Case for Lane-Based BSAs . 24
2.3 Vision for Behavior-Specific Accelerators . 27

3 XLOOPS: Lane-Based BSAs for Loop-Centric
Parallelization and Scheduling Strategies 29
3.1 Introduction . 30
3.2 XLOOPS: Explicit Loop Specialization . 32

3.2.1 XLOOPS Instruction Set . 33
3.2.2 XLOOPS Compiler . 36
3.2.3 XLOOPS Traditional Execution . 37
3.2.4 XLOOPS Specialized Execution . 37
3.2.5 XLOOPS Adaptive Execution . 41

3.3 XLOOPS Application Kernels . 42
3.4 XLOOPS Cycle-Level Evaluation . 45

3.4.1 Cycle-Level Methodology . 45
3.4.2 Traditional Execution . 46
3.4.3 Specialized Execution . 47
3.4.4 Adaptive Execution . 50
3.4.5 Energy Efficiency vs. Performance . 50
3.4.6 Microarchitectural Design Space Exploration 51
3.4.7 Application Case Studies . 52

3.5 XLOOPS VLSI Evaluation . 53
3.5.1 VLSI Methodology . 53
3.5.2 VLSI Area Results . 54

vii

3.5.3 VLSI Energy Efficiency vs. Performance Results 55
3.6 XLOOPS FPGA Prototype . 55

3.6.1 FPGA Methodology . 56
3.6.2 FPGA Area Results . 57
3.6.3 FPGA Performance Results . 57

3.7 Related Work . 58
3.8 Conclusions . 59

4 SSAs: Lane-Based BSAs for Fork-Join-Centric
Parallelization and Scheduling Strategies 62
4.1 Introduction . 62
4.2 SSA Runtimes . 65
4.3 SSA Microarchitectures . 69

4.3.1 Sharing the Instruction Port Only . 71
4.3.2 Sharing the Instruction Port and the Front-end Only 72
4.3.3 Sharing the Instruction Port and the LLFUs Only 73
4.3.4 Sharing the Instruction Port, Front-end, and LLFUs 74

4.4 SSA Evaluation Methodology and Results . 74
4.4.1 SSA Simulation Models . 75
4.4.2 SSA Application Kernels . 77
4.4.3 Evaluating the Potential for SSA Designs 78

4.5 Related Work . 102
4.6 Conclusions . 104

5 Conclusion 106
5.1 Thesis Summary and Contributions . 106
5.2 Future Work . 108

A Detailed SSA Results 111

Bibliography 124

viii

LIST OF FIGURES

1.1 Trends in Technology Scaling from 1971 to 2017 3
1.2 Costs per 100 Million Gates . 5
1.3 Trends in Single-Thread SPECint Performance and the Number of Cores per Die . 6
1.4 Classes of Hardware Specialization . 9

2.1 Mapping Applications to Hardware . 17
2.2 Thread-Centric Parallel Program using Pthreads API 18
2.3 Loop-Centric Parallel Program using OpenMP 19
2.4 Fork-Join-Centric Parallel Program using Intel Cilk Plus 20
2.5 SoC Cost Breakdown . 26
2.6 BSA Chip . 27

3.1 XLOOPS Instruction Set Examples . 32
3.2 C Code for war Application Kernel . 37
3.3 C Code for mm Application Kernel . 37
3.4 XLOOPS Microarchitecture . 39
3.5 XLOOPS Cycle-Level Speedups . 47
3.6 Stall and Squash Breakdown . 48
3.7 Adaptive Execution Speedups . 49
3.8 Cycle-level Energy Efficiency vs. Performance 50
3.9 Microarchitectural Design Space Exploration Speedups 51
3.10 VLSI Energy Efficiency vs. Performance . 55

4.1 SSA Microarchitecture Example . 66
4.2 Worker Loop Pseudo-code Implementation . 67
4.3 SSA Design Space . 70
4.4 Instruction Redundancy in SPMD and WSRT Applications 81
4.5 SPMD Results for Sharing One Instruction Port 83
4.6 WSRT Results for Sharing One Instruction Port 84
4.7 SPMD and WSRT Results Sharing One vs. Two Instruction Ports 85
4.8 Comparing Thread-selection for Sharing One Instruction and Front-end 86
4.9 SPMD Results for Sharing One Instruction Port and Front-end 87
4.10 WSRT Results for Sharing One Instruction Port and Front-end 88
4.11 SPMD and WSRT Results Sharing One vs. Two Instruction Ports and Front-ends . 89
4.12 Comparing Lockstep Mechanism for Sharing One Instruction and LLFU 90
4.13 SPMD Results for Sharing One Instruction Port and LLFU 92
4.14 WSRT Results for Sharing One Instruction Port and LLFU 93
4.15 SPMD and WSRT Results Sharing One vs. Two Instruction Ports and LLFUs . . . 94
4.16 Comparing Thread-selection for Sharing One Instruction, Front-end and LLFU . . 95
4.17 SPMD Results for Sharing One Instruction Port, Front-end, and LLFU 96
4.18 WSRT Results for Sharing One Instruction Port, Front-end, and LLFU 97
4.19 SPMD and WSRT Results for Increasing Instruction Ports, Front-ends, LLFUs . . 98
4.20 Comparing SSA Designs for SPMD Kernels . 99
4.21 Comparing SSA Designs for WSRT Kernels . 100

ix

LIST OF TABLES

2.1 Parallelization Strategies and Logical Units of Parallelism 18

3.1 XLOOPS Instruction Set Extensions . 33
3.2 XLOOPS Application Kernels and Cycle-Level Results 43
3.3 Cycle-Level System Configuration . 46
3.4 Case Study Results . 52
3.5 VLSI Area, Cycle Time Results for LPSU . 54
3.6 FPGA Area Results . 56

4.1 Area Breakdown for RV64G and XLOOPS scalar Core 64
4.2 Application Kernel Characteristics for WSRT . 76
4.3 Application Kernel Characteristics for SPMD . 76

A.1 Speedups for no sharing Design . 111
A.2 Instruction Redundancy Performance Overheads 112
A.3 SPMD Results for sharing imem only . 113
A.4 WSRT Results for sharing imem only . 114
A.5 SPMD Results for sharing imem+fe only . 115
A.6 WSRT Results for sharing imem+fe only . 116
A.7 SPMD Results for sharing imem+llfu only with Round-Robin Thread Selection . 117
A.8 WSRT Results for sharing imem+llfu only with Round-Robin Thread Selection . 118
A.9 SPMD Results for sharing imem+llfu only with Minimum-PC Thread Selection . 119
A.10 WSRT Results for sharing imem+llfu only with Minimum-PC Thread Selection . 120
A.11 SPMD Results for sharing imem+fe+llfu . 121
A.12 WSRT Results for sharing imem+fe+llfu . 122
A.13 SPMD and WSRT Results for sharing all . 123

x

LIST OF ABBREVIATIONS

XLOOPS explicit loop specialization
SSA smart sharing architecture
CISC complex instruction set computer
RISC reduced instruction set computer
SIMD single-instruction multiple-data
NRE non-recurring engineering
DSL domain-specific language
CMP chip multiprocessor
CGRA coarse-grained reconfigurable array
BSA behavior-specific accelerator
DSA domain-specific accelerator
ASA application-specific accelerator
SIMT single-instruction multiple-thread
GPGPU general-purpose graphics processing unit
LUP logical parallel unit
PE processing element
DAG directed-acyclic graph
TBB (Intel) threading building blocks
GPP general-purpose processor
LPSU loop pattern specialization unit
AMO atomic memory operation
MIV mutual induction variable
CIR cross-iteration register
LMU lane management unit
IDQ index queue
LLFU long-latency functional unit
MIVT mutual induction variable table
CIB cross-iteration buffer
LSQ load-store queue
APT adaptive profiling table
LUT look-up table
RTL register-transfer level
VLSI very-large-scale integration
WSRT work-stealing runtime
SMPD single-program multiple data
RR round-robin
MPC minimum-pc

xi

CHAPTER 1
INTRODUCTION

Serious physical design issues are breaking down traditional abstractions in computer architec-

ture. For the past 40 years, Moore’s Law and Dennard’s Scaling have provided the smaller, cheaper,

faster, and more power-efficient transistors that fueled innovation in computer architecture. In the

mid 2000s, Dennard’s Scaling broke down, and this in turn stagnated the growth in processor

clock frequencies and reduced the power efficiency of transistors. More recently, there has been

empirical evidence suggesting Moore’s Law of transistor cost-scaling has slowed down. While

transistors continue to shrink at a slower pace, technology scaling is no longer ensuring cheaper,

faster, and more power-efficient transistors. In this disruptive regime, architects have a critical role

in improving performance while mitigating design costs. The challenges posed by the impending

end of Moore’s Law and the non-existent benefits of Dennard’s Scaling motivate reconsidering the

traditional boundaries between hardware and software. Architects have responded by embracing

parallelization and specialization across the layers of the computing stack. A key research chal-

lenge involves creating clean hardware/software abstractions that are highly programmable, yet

still enable efficient execution on both traditional and specialized microarchitectures.

In this thesis, I present a lane-based hardware specialization approach to building programmable

accelerators for loop- and fork-join-centric parallel programs. A central theme in my thesis is to

make lightweight changes to compilers, runtimes, instruction sets, and microarchitectures to im-

prove performance, area, and energy efficiency for these loop- and fork-join-centric parallel pro-

grams. The accelerators presented in this thesis extend the capabilities of prior programmable

lane-based accelerators to efficiently execute challenging loops with complex inter-iteration de-

pendences and recursive task-parallel programs.

1.1 Trends in Technology Scaling

Smaller, cheaper, faster, and more power-efficient transistors have played a central role in im-

proving the performance of computer systems. Moore’s Law and Dennard’s Scaling have been the

driving forces for innovations in the semiconductor industry. In this section, I review these two

laws and the landscape of technology scaling between 1971 to present times.

1

Moore’s Law – In 1965, five years after the introduction of integrated circuits, Gordon Moore

made an observation that the number of transistors on a single chip had doubled every year [Moo65].

Moore predicted that by 1975 the economics may dictate squeezing as many as 65,000 components

on a single chip. In 1975, Moore revised his prediction to state that the number of transistors that

could be economically integrated on a single chip doubles every two years. This simple observation

set the pace for advancements in the semiconductor industry for years to come.

While the popular interpretation of the 1965 paper has focused on doubling the number of tran-

sistors, more fundamentally, Moore’s Law is also about transistor cost scaling. In his original paper

Moore states, "The complexity for minimum component costs has increased at a rate of roughly a

factor of two per year." Moore observed that there is a minimum cost for a given technology that

depends on the transistor feature size and the wafer size. Smaller feature sizes increase transis-

tor densities which amortizes the packaging costs. Larger wafer sizes provide more chips which

amortizes the fabrication costs. Further, larger wafer sizes are preferred as the defects are empiri-

cally known to likely occur at the edges of a wafer. The semiconductor industry has thus focused

on scaling the feature sizes and the wafer sizes to provide cheaper transistors. Moore’s Law of

technology scaling is the fundamental driving force that has resulted in “smaller” and “cheaper”

transistors.

Dennard’s Scaling – In 1974, Dennard et al. made an equally important observation that scal-

ing voltage in proportion to the transistor dimensions results in a constant power density [DGY+74].

Robert Dennard and his colleagues quantified the scaling rules of integrated circuits using a unit-

less scaling constant k. Dennard’s Scaling states that, if the transistor dimensions are reduced by 1
k

and the supply voltage is lowered by the same factor 1
k , then the following results are applicable:

• the total number of the transistors increase by k2;

• the transistor voltage V and transistor current I scale by a factor 1
k ;

• the transistor resistance remains constant due to V
I ;

• the gate capacitance reduces by a factor 1
k as the area is decreased by 1

k2 but is cancelled by

the decrease in electrode spacing by k;

• the delay time improves by a factor of k given by V I
C ;

• and the power density remains constant given by V I
A .

2

(a) Transistors per Chip (b) Processor Frequency

(c) Supply Voltage (Vdd_low) (d) Typical Power

Figure 1.1: Trends in Technology Scaling from 1971 to 2017– The plots show transistor counts per chip, the
operating voltage, processor frequency, and typical power for chips. The markers on the y-axis indicate the four eras
of technology scaling: (i) 1971–1985: Early Era (smaller, cheaper, faster); (ii) 1985–2004: Golden Era (smaller,
cheaper, faster, power-efficient); (iii) 2004–2012: Slowdown Era (smaller, cheaper); (iv) 2012–2017: Retirement Era
(smaller). Plots based on the data from CPUDB [DKM+12] and additional data collected by Karl Rupp [Rup18]

3

The decrease in delay time means that a chip can switch faster in a new technology node while

maintaining the same power density. These rules, popularly known as Dennard’s Scaling, provided

the guidelines for scaling that resulted in “faster” and more “power-efficient” transistors.

Figure 1.1 shows the trends for the number of transistors per chip, processor clock frequency,

supply voltage, and typical power limits from 1971 to 2017. The timeline for semiconductor

technology scaling can be divided into four eras based on the characteristics of transistors in each

era.

Early Era (1971–1985) – In the early era, technology scaling provided for smaller, cheaper,

and faster transistors. NMOS technology was dominant in this era as it could pack transistors more

densely and cheaply compared to CMOS technology. Smaller transistors reduced the gate delay

resulting in faster transistors. NMOS transistors used reverse-bias to hold the transistors in the

“off” state, and this in turn constrained the voltage scaling. With increasing transistors counts, the

increase in leakage current and static power consumption motivated the switch to CMOS technol-

ogy. In the early era, Moore’s Law resulted in increased transistor counts but the voltage remained

constant at 5V.

Golden Era (1985–2004) – Around the mid-1980s, despite the density arguments, the semi-

conductor industry transited to CMOS technology. In the early part of the golden era voltages

continued to remain at 5V, a standard that remained since the bipolar ICs. The issue of power dis-

sipation ultimately forced the abandonment of the 5V power supply. Around the mid-1990s, with

improvements in manufacturing technology, Dennard’s Scaling rules were applied to improve the

power efficiency of transistors. In this golden era, scaling provided smaller, cheaper, faster, and

more power-efficient transistors. Compared to the early era, the number of transistors increased

by 450⇥, the processor frequency increased by 195⇥, and the supply voltages scaled from 5V to

close to 1V.

Slowdown Era (2004–2012) – Around the mid-2000s, Dennard’s Scaling broke down. Low-

ering of supply voltages in CMOS technology was ultimately challenged by the increased leakage

currents at smaller transistor dimensions. Denser chips resulted in large leakage currents that fur-

ther increased the power consumption, and the threat of thermal runaway set new limits on power

consumption. Processor clock frequency leveled off as the costs for cooling large chips increased

due to increased dynamic power at faster frequencies. In the slowdown era, transistor scaling

resulted in smaller and cheaper transistors that were no longer faster and power efficient.

4

Figure 1.2: Costs per 100 Million Gates – Trend for cost reductions per 100M transistors with technology scaling
based on data collected and presented in Table 1 of [Jon14]. The costs are based on the number of transistors, gate
utilization, yield of transistors, and wafer costs.

Retirement Era (2012–present) – Until 2012, Moore’s Law of transistor cost-scaling contin-

ued to provide smaller and cheaper transistors. Figure 1.2 shows the cost per million transistors.

The figure shows that the trend of cheaper transistors stopped around 2012 when the 22/20nm tech-

nology node when into production. Fabless semiconductor companies such as NVIDIA, AMD,

Qualcomm, and Broadcomm have reported that the fabrication costs are no longer declining as

in previous decades [Fla17]. Additionally, the doubling of transistors every two years has mostly

ended. Intel has acknowledged the abandonment of the famous two year "tick-tock" model with

a transition to a three-year architecture and technology cadence. However, transistor scaling is

projected to continue with announcements of the 5nm technology node targeted for 2021. Recent

advances in technology such as FinFETs, gate all-around transistors, multi-patterning, and EUV

lithography are short-term boosters for Moore’s Law. In this era, scaling transistor dimensions

continues albeit at a slower pace with an uncertain future. The transistors are getting smaller but

are no longer cheaper. The end of Dennard’s Scaling and slowing down of Moore’s Law has ush-

ered us to the retirement era where technology scaling might ultimately stop due to the diminishing

returns.

5

(a) SPECInt Performance (b) Number of Cores

Figure 1.3: Trends in Single-Thread SPECint Performance and the Number of Cores per Die – SPECint per-
formance increased exponentially from 1988 until around 2004. The transition to multicore with increasing core
counts has been a direct consequence of the breakdown of Dennard’s Scaling. The performance continues to improve
slowly with aggressive auto-vectorization and auto-parallelization. Plots based on data from CPUDB [DKM+12] and
additional data collected by Karl Rupp [Rup18].

1.2 Trends in Computer Architecture

The field of computer architecture has played an instrumental role in transforming the advance-

ments in technology scaling into innovations in embedded microcontrollers, personal computers,

smart phones, warehouse-scale computers, and supercomputers. In this section, I briefly review

the trends in computer architecture during each era given the technology constraints discussed in

the previous section.

The introduction of integrated circuits in the early era led to the advent of early microproces-

sors. In 1971, Intel invented the first 4-bit microprocessor (Intel 4004) with just 2,300 transistors.

With increasing transistor budgets, the 4004 was quickly followed by the 8-bit microprocessor (In-

tel 8008) in 1972. Architects in this era designed embedded microcontrollers that were widely used

in a range of applications. Key contributions in this era were the design of early CISC instruction

sets, assembly programming, and microprocessors. The density of storage devices in this era was

low and accessing memory was slow. These two reasons motivated the use of CISC encoding as

complex instruction sets reduced the program sizes and the required memory footprint.

6

During the early 1980s, CISC instruction sets were slowly being replaced by RISC instruction

sets. Improvements in SRAM technologies resulted in faster caches. Advancements in compiler

techniques enabled the transition to higher-level languages which replaced assembly program-

ming. With the advancement in smaller and faster transistors architects focused on faster processor

pipelines that made use of fast caches and relied on compilers to generate binaries that targeted ef-

ficient 32-bit RISC instruction sets. The abundance of transistors continued, and in the mid-1990s

architects focused on exploiting instruction-level parallelism to continue to improve performance.

Techniques such as out-of-order execution that employed advanced branch predictors, hardware

memory disambiguation, large instruction windows, and large reorder buffers became popular.

Instruction widths increased from 32-bits to 64-bits and several 64-bit processors were used in

both consumer and embedded applications. This era also witnessed advancement in techniques

for using wider ALUs to exploit data-level parallelism in the form of packed-SIMD units and

vector units. Figure 1.3(a) shows the improvements in single-threaded performance based on the

SPECint benchmark suite. The figure shows how advances in computer architecture and technol-

ogy resulted in a 250⇥ improvement in single-threaded performance during the Golden Era of

technology scaling.

With the breakdown of Dennard’s Scaling, computer architecture witnessed a radical shift to

an era of multicore/manycore computing [ABC+06]. Figure 1.3(b) shows the rise in the number

of cores around 2004. Limits on power consumption and the slowdown of transistor frequency

motivated new techniques that focused on exploiting thread-level parallelism. Parallelization of

applications was the key to achieving improvements in performance. Figure 1.3(a) shows that the

performance of single-threaded processors continued albeit at a slower pace post 2004. Auto-

vectorization and auto-parallelizing compilers explain some of the performance improvements

shown in the figure.

Scaling of multicore/manycore processors is ultimately limited by power constraints [EBA+11].

The fast rates of transistor switching generates heat that cannot be dissipated at a rate equal to the

switching. The technology constraints impose a utilization wall that results in a limited fraction

of the chip that can be active leading to increasing amounts of dark silicon. Michael Taylor has

crystallized four different approaches to address the challenges of dark silicon: shrink, dim, spe-

cialize, and technology advancements [Tay13]. Of these approaches, the specialization approach,

has received much interest as specialization reduces the overheads of general-purpose instruction

7

set processing thereby improving energy efficiency. In the retirement era of technology scaling,

architects can no longer rely on technology scaling to improve the performance and have to care-

fully budget the available transistors given the rising costs. Future computing systems will likely

employ both parallelization and specialization to continue to improve performance.

1.3 Trends in Hardware Specialization

Specialized hardware performs a set of tasks with higher performance and/or better energy effi-

ciency compared to a general-purpose processor. Specialization improves performance by exploit-

ing the control/data-flow characteristics and the available parallelism in applications. Hardware

specialization can vary from lightweight modifications to a general-purpose processor to radical

new circuits tailored to an application. Fundamentally, the more specialized a unit is for a given

application, the more energy efficient that unit will be when executing the application. Metrics

such as performance, energy, and area efficiency, as well as generality and programmability, can

be applied to evaluate a specialization technique.

One way to classify specialized hardware is along a flexibility versus specialization axis. A

hardware solution is said to be specialized if it is more efficient for an application or a class or ap-

plications while sacrificing the broad applicability of the solution. A hardware solution is said to be

flexible if it is broadly applicable for a variety of applications. The design of specialized hardware

must navigate the tension between less efficient flexible architectures and more efficient special-

ized architectures. The non-recurring engineering (NRE) costs associated with the design and

verification of specialized hardware must be justified by the generality of such hardware. An over-

specialized solution renders the solution to be inapplicable to closely related computations (e.g.,

varying the arithmetic precision across solutions). Additionally, hardware specialization changes

the traditional software and hardware abstractions. Hardware specialization often necessitates in-

novations in the software stack that span domain-specific languages (DSLs), compilers, runtimes,

and instruction sets. The ease of programmability lowers the barrier and the costs for deploying a

given specialized solution.

Figure 1.4 shows how several classes of hardware can be mapped along a flexibility vs. special-

ization axis. The various classes of specialized hardware moving from left to right are as follows:

(i) chip multiprocessors (CMPs) are the most flexible solutions and can be composed of homo-

8

SpecializedFlexible

Packed-SIMD,
Vector,

Vector-thread

Lane-Based
BSAs

Multicore
Manycore

CMPs CGRA-Based
BSAs

ASAs

Crypto, Compression,
Video encoders

and decoders

DSAs

Convolution Engine,
CNN/DNN Accelerators,

GPGPU

DySER, BERET,
Triggered Instructions,

Stream-Dataflow

Figure 1.4: Classes of Hardware Specialization – Classes of hardware specialization arranged based on flexibility
vs. specialization axis. CMPs = chip multiprocessors; BSAs = behavior-specific accelerators; DSAs = domain-specific
accelerators; ASAs = application-specific accelerators.

geneous or heterogeneous processors; (ii) lane-based behavior-specific accelerators (lane-based

BSAs) use instruction set programmable lanes to exploit parallel program behaviors; (iii) CGRA-

based behavior-specific accelerators (CGRA-based BSAs) use a sea of programmable units to ex-

ploit parallel program behaviors; (iv) domain-specific accelerators (DSAs) are specialized hard-

ware customized for a specific domain; (v) application-specific accelerators (ASAs) are circuits

specialized to a given application. The classes of specialization can be further combined for a

given computing platform.

CMPs – With the lack of Dennard’s Scaling, CMPs have emerged as a common solution across

the mobile, desktop, and server markets. The exact size and type of the processors that com-

pose a CMP solution can vary from simple in-order processors to complex superscalar proces-

sors. Examples for homogeneous CMPs include Cavium network processors [YBC+06], TILE64-

[BEA+08], and the Knights Corner platform [Bol12]. Examples of heterogeneous CMPs include

ARM’s big.LITTLE processing platforms [Kre11], Qualcomm’s Snapdragon 810 [Gwe14a], and

the Samsung Exynos platform [Gwe14b]. CMP solutions are the most flexible platforms and can

execute a wide variety of applications. However, CMPs do little to directly address the problem of

dark silicon as they do not reduce the overheads of general-purpose instruction set processing.

BSAs – Behavior-specific accelerators are a class of hardware specialized solutions that focus

on exploiting specific parallel program behaviors. A parallel program behavior is defined by a

given parallelization and scheduling strategy. Chapter 2 describes parallelization and scheduling

9

strategies in more detail. The goal of BSAs is to specialize hardware while balancing the sacrifices

in flexibility over a broad class of applications. Typically BSAs integrate with a host general-

purpose processor at either the L1 or the L2 cache boundary. I identify two classes of BSAs:

lane-based BSAs and CGRA-based BSAs.

Lane-Based BSAs are composed of instruction-set-programmable lanes. Loosely speaking

lanes are execution units that amortize area overheads by sharing control logic and resources

for instruction and data supply. Examples of popular lane-based BSAs include packed-SIMD

units [Hug15,SS00], traditional vector units [EVS98,EV96,Oya99], and vector-thread units [KBH+04,

LAB+11, Lee16]. Compared to CMP solutions, lane-based BSAs provide high compute density

and are efficient for certain behaviors. For example, applications with regular control-flow and data

parallel loops are known to perform well on packed-SIMD and vector units. However, packed-

SIMD and vector units struggle on applications containing challenging loops with inter-iteration

dependences and recursive fork-join programs. Traditional lane-based BSAs, such as packed-

SIMD and vector units rely on high-quality auto-vectorizing compilers.

CGRA-Based BSAs are composed of a sea of configurable processing elements that are in-

terconnected using specialized networks and storage units. Examples of CGRA-based BSAs

include Triggered Instructions [PPA+13], DySER [GHN+12], BERET [GFA+11], and Stream-

dataflow [NGAS17]. CGRA-based BSAs offer high computational density for a given amount of

silicon area by eliminating the circuitry for general purpose instruction set processing. Flexible

interconnection networks enable mapping applications that have dependences that are otherwise

ill-suited for traditional lane-based BSAs. However, CGRA-based BSAs require radical modifi-

cations to traditional software/hardware abstractions and often require high-quality compilation

flows. Further, irregular applications pose a challenge to the utilization of the processing elements

in a CGRA.

DSAs – Domain-specific accelerators improve energy efficiency while remaining flexible for a

specific domain of applications. Examples of DSAs include general-purpose graphic processing

units (GPGPUs), the convolution engine [QHS+13], the Q100 database accelerator [WLP+14],

and machine-learning accelerators [CDS+14, JYP+17]. GPGPUs are examples of laned-based

DSAs that are specialized for the graphics domain but are instruction set programmable compared

to many other DSAs. DSAs often use functional units, memory storage elements, and interconnec-

10

tion networks that are specialized for the characteristics of typical applications or algorithms within

a domain. However, DSAs are prone to obsoletion as the algorithms for a domain can evolve and

often require the programmer to carefully map an application to the underlying DSA. DSLs and

specialized compilation flows have evolved to improve the programmer productivity and increase

the accessibility of DSAs.

ASAs Application-specific accelerators are orders of magnitude more efficient than general-

purpose processors. ASAs use highly specialized circuits to execute a given algorithm. Examples

of ASAs include video encoding/decoding accelerators [HQW+10], cryptographic accelerators,

and the Sonic3D accelerator for ultrasound beam formation [SYW+13]. Compared to other classes

of hardware specialization, ASAs have the best performance, area efficiency, and energy efficiency

for a given application. ASAs achieve these metrics by completely giving up programmability.

Given the high costs of developing ASAs the applicability of ASAs is often limited to very few

cases.

Unfortunately, there is no silver bullet, and one can expect modern computing platforms to be

increasingly heterogeneous with the inclusion of both parallel processors as well as accelerators

along the specialization axis. Heterogeneous platforms that include both parallel processors as

well as specialized hardware burden the programmer and challenge the traditional boundaries of

software and hardware abstractions. With the slowdown of Moore’s law, transistors are no longer

cheaper and the die area is not entirely free. Programmable lane-based BSAs provide an attractive

starting point as they are applicable to a broad range of applications. Embedding the principles of

DSAs and CGRA-based BSAs within the template of lane-based BSAs is a promising direction.

I make a case for lane-based BSAs in Chapter 2. The inclusion of the Tensor Cores in NVIDIA’s

Volta architecture is an example of this evolution [nvi17]. However, extending the capabilities

of lane-based BSAs to handle loop-centric parallel programs with challenging inter-iteration de-

pendences and fork-join-centric parallel programs with dynamic task parallelism remains to be

addressed. As a step towards this vision, my thesis focuses on improving the broad applicability

of lane-based BSAs for challenging loop- and fork-join-centric parallel programs.

11

1.4 Thesis Overview

This thesis presents a lane-based hardware specialization approach for loop- and fork-join cen-

tric parallelization and scheduling strategies. Chapter 2 analyzes the process of mapping appli-

cations to the underlying hardware by identifying the space of parallelization and scheduling

strategies. The chapter discusses the vision for behavior-specific accelerators and qualitatively

compares lane-based and CGRA-based BSAs. Given the need to carefully budget transistors used

for specialization and the benefits of maintaining a programmable abstraction, I present a case for

lane-based BSAs that execute loop- and fork-join-centric parallel programs. Chapter 3 presents

a novel approach called explicit loop specialization (XLOOPS) that is based on the idea of ele-

gantly encoding inter-iteration loop dependences. The XLOOPS hardware/software abstraction

requires only lightweight changes to a standard compiler to generate XLOOPS binaries and en-

ables executing these binaries on: (1) traditional microarchitectures with minimal performance

impact, (2) specialized microarchitectures to improve performance and/or energy efficiency, and

(3) adaptive microarchitectures that can seamlessly migrate loops between traditional and special-

ized execution to trade-off performance vs. energy efficiency. Chapter 4 proposes smart sharing

architectures (SSAs), a new approach to building lane-based BSAs which can efficiently support

fork-join-centric parallel programs. SSAs employ complexity-effective smart sharing mechanisms

to exploit instruction redundancy in fork-join-centric parallel programs. SSAs include a rich design

space for conjoined lanes (lanes that share hardware resources) that are arranged as a continuum

of design points between sharing no resources and sharing all resources. Chapter 5 summarizes

the contributions of this thesis and discusses promising directions for future work.

The primary contributions of this thesis are:

• I make the case for single-ISA heterogeneous platforms that transparently integrate tradi-

tional general-purpose processors and lane-based BSAs to improve the performance and en-

ergy efficiency of loop- and fork-join-centric parallel programs.

• I propose an elegant new XLOOPS hardware/software abstraction that explicitly encodes

inter-iteration loop dependence patterns that execute on traditional, specialized, and adap-

tive microarchitectures; I also propose a novel XLOOPS microarchitecture that augments a

12

general-purpose processor with a lane pattern specialization unit to execute the XLOOPS

binaries.

• I propose smart sharing architectures, a new approach that employs complexity-effective

smart sharing mechanisms to exploit instruction redundancy in fork-join-centric parallel pro-

grams to save area while maximizing efficiency and minimizing performance losses.

1.5 Collaboration, Previous Publications, and Funding

The work done in this thesis was possible thanks to contributions both small and large by many

colleagues at Cornell University. My advisor Christopher Batten was integral in all aspects of both

the XLOOPS and the SSA projects.

I was the lead architect for the XLOOPS project. I defined the XLOOPS instruction set exten-

sions and was resposible for bringing up the XLOOPS LLVM compiler framework. I also ported

application kernels, developed the XLOOPS gem5-PyMTL cosimulation framework, implemented

the RTL models for a simple LPSU, and implemented the XLOOPS FPGA prototype as presented

in Chapter 3. Berkin Ilbeyi played a key role in defining the XLOOPS instruction set and ported

many application kernels. Berkin took the lead in developing the XLOOPS PyMTL cycle-level

models. Mingxing Tan contributed application kernels and helped with the XLOOPS LLVM com-

piler. In particular, Mingxing improved the XLOOPS loop-strength-reduction pass and authored

the memory alias analysis pass and the dynamic loop-bound checking pass. Gai Liu contributed by

helping with the XLOOPS gem5-McPAT energy models. Pol Rosello and Paul Jackson contributed

by porting a kernel each from the PBBS benchmark suite. Christopher Torng helped in bringing

up the gem5 framework. Aadeetya Shreedhar helped in bringing up the initial version of tradi-

tional execution on gem5. Derek Lockhart developed the PyMTL modeling framework used in the

cycle-level modeling of the LPSU. Andrew Chien and Kevin Lin implemented a preliminary ver-

sion of the XLOOPS FPGA prototype that could run vector-vector add. Asha Ganesan contributed

in bringing up the Zedboard framework and particularly helped in writing several key adapters and

in implementing the clock-domain crossing logic on the Zedboard. Professors Christopher Batten

and Zhiru Zhang advised on all the aspects of the XLOOPS project. I presented our work on the

XLOOPS project at MICRO-47 held at Cambrige, UK [SIT+14].

13

I was responsible for defining the SSA design space and in proposing all of the smart sharing

mechanisms. I proposed the idea of exploiting instruction redundancy in fork-join-centric parallel

programs, developed offline and online tools to analyze the instruction redundancy, implemented a

work-stealing runtime with soft-barrier hints, and ported applications to the work-stealing runtime.

I extended the Pydgin instruction set simulator framework that was used to model the SSA design

space. Moyang Wang authored the original work-stealing runtime that was modified and used in

the SSA project. Christopher Torng and Moyang Wang ported the Cilk application kernels and sev-

eral PBBS kernels used in the evaluation of the SSAs. Derek Lockhart and Berkin Ilbeyi developed

the Pydgin instruction set modeling framework. Berkin Ilbeyi extended the pydgin framework to

handle multicore programs which served as a starting point for the SSA evaluation framework. My

advisor Christopher Batten provided valuable feedback and was involved in developing the ideas

for smart sharing mechanisms.

I collaborated with Ji Kim who was the lead for the FGSIMT project that was presented at

ISCA-40 [KLST13] and the LTA project that was presented at MICRO-50 [KJT+17]. I ported

application kernels from the Parboil/Rodinia benchmark suites and implemented custom kernels

that were used in the evaluation of the FGSIMT project. I also implemented the RTL models for

the crossbars in the FGSIMT memory system and helped with the RTL models for the baseline

multicore system. Working on the FGSIMT project inspired me to think of mapping challenging

loops that could not be efficiently mapped onto the FGSIMT hardware, and motivated me to design

decoupled lanes as in XLOOPS. I developed the gem5-PyMTL co-simulation framework that was

used in the LTA project and ported many application kernels used to evaluate the LTA platform.

The LTA project separated the recursive task splitting to occur on the GPPs while the LTA lanes

executed the base cases for loop tasks. Working on the LTA project inspired me to propose SSAs

that elegantly execute fork-join-centric parallel programs.

I collaborated with Ritchie Zhao, Prof. Zhiru Zhang, and Prof. Christopher Batten to develop

the PyMTL-PolyHS high-level synthesis framework. The PyMTL-PolyHS framework was used in

the DAC’16 paper on decoupled HLS data structures lead and presented by Ritchie Zhao [ZLS+16].

I also collaborated with Steve Dai on the FPGA’17 paper [DZL+17] which focused on improving

hazard resolution in HLS pipelines. Working on these projects exposed me to the HLS methodol-

ogy and helped me to better understand the principles and challenges in designing CGRA-based

BSAs.

14

This thesis was supported in part by an NSF CAREER Award #1149464, NSF XPS Award

#1337240, NSF CRI Award #1512937, NSF SHF Award #1527065, DARPA Young Faculty Award

#N66001-12-1-4239, AFOSR YIP Award #FA9550-15-1-0194, and equipment, tool, and/or IP

donations from Intel, NVIDIA, Xilinx, Synopsys, and ARM.

15

CHAPTER 2
A CASE FOR LANE-BASED BEHAVIOR-SPECIFIC

ACCELERATORS

Exploiting parallelism is a key principle of hardware specialization. There exists a large gap

between applications and mapping them to the underlying hardware. This chapter begins with the

process of mapping applications to the underlying hardware by applying parallelization strate-

gies and scheduling strategies. Parallelization and scheduling strategies provide guidelines for

hardware specialization techniques. Section 2.2 makes a case for lane-based behavior-specific ac-

celerators (BSAs). Section 2.3 presents the vision for a BSA chip and lays the roadmap for the

remaining chapters of the thesis.

2.1 Parallelization and Scheduling Strategies

Modern hardware platforms are increasingly becoming more parallel. Parallelism is present

in the form of threads, packed-SIMD extensions, GPGPUs, and parallel accelerators. Program-

mers can no longer rely on single-threaded programs to continue to improve performance given

the recent hardware trends. However, there is a vast gap between mapping a given application to

the underlying parallel hardware. An attractive but challenging approach is auto-parallelization

of single-threaded programs. Auto-parallelization techniques commonly target loop control struc-

tures in programs and work well with regular control-flow and predictable dependences. Auto-

parallelization approaches struggle with loops with complex dependences, pointers, recursion, and

irregular algorithms. Fundamentally, auto-parallelization is limited by the assumptions and con-

straints imposed by serial programming.

Explicit parallel programming is an alternative approach where programmers expose paral-

lelism in the form of compiler directives, function calls, or other language primitives. Explicit

parallel programs can provide additional information on dependences that are otherwise not easy

to capture by an auto-parallelizing compiler. In this work, I focus on explicit parallelization ap-

proaches for two reasons: (i) unlike auto-parallelization that starts with a serial program, explicit

parallelism allows programmers to express algorithms that are better suited for parallel execution;

(ii) explicit parallelism is the key to map challenging irregular algorithms which are difficult to

analyze using auto-parallelizing compilers. To close the gap between applications and the un-

16

Logical Units of Parallelism

Application

Physical Processing Elements

Parallelization

Scheduling

Figure 2.1: Mapping Applications to Hardware – A parallelization strategy decomposes an application into logical
units of parallelism and a scheduling strategy maps the logical units of parallelism to physical processing elements.

derlying hardware, I use two abstractions: logical units of parallelism and physical processing

elements. Figure 2.1 shows the process of mapping an application to the hardware using these two

abstractions. A parallelization strategy aids in decomposing an application into logical units of

parallelism (LUPs). The logical unit of parallelism is a useful abstraction as it makes it easier to

reason about the description of an application and it’s mapping to hardware. A scheduling strat-

egy captures the mapping of LUPs onto the underlying hardware that is abstracted by the physical

processing elements. A parallel behavior captures the available parallelism and the dependences

between LUPs given a parallelization and scheduling strategy. Mismatches between the parallel

behaviors and the physical processing elements increases the complexity and makes it awkward

to map an application to a given hardware solution. For example, mapping loops with reductions,

control-flow divergence, strided accesses, and carried dependences is challenging and ill-suited for

packed-SIMD units [GNS13].

2.1.1 Parallelization Strategies

A parallelization strategy captures the parallelism present in an application by decomposing

the application into logical units of parallelism. LUPs can be either fine-grained or coarse-grained.

The granularity determines the overheads of creating and managing LUPs. The overheads of par-

allelization limit the scalability of an application and guide the selection of a suitable scheduling

strategy. A parallelization strategy can capture static parallelism, where the LUPs are fixed and re-

17

Parallelization Strategy Logical Units of Parallelism
Thread-Centric Threads
Loop-Centric Loop Iterations
Fork-Join-Centric Tasks
Worklist-Centric Tasks or WorkItems
Stream-Centric Kernels
Operation-Centric Operators

Table 2.1: Parallelization Strategies and Logical Units of Parallelism

1 void *func(void *thread_id) {
2 int tid = (int)(thread_id);
3 compute(tid);
4 pthread_exit(NULL);
5 }
6

7 int main() {
8 pthread_t threads[NUM_THREADS];
9 for (int i = 0; i < NUM_THREADS; ++i) {

10 int rc = pthread_create(&threads[i], NULL, func, (void*) i);
11 if (rc) {
12 printf("ERROR!\n");
13 exit(-1);
14 }
15 }
16 pthread_exit(NULL);
17 }
18

Figure 2.2: Thread-Centric Parallel Program using Pthreads API – The pthread_create function creates par-
allel threads for processing a function. Threads implement a part of the computation identified by the thread-id.

main constant at runtime, or can capture dynamic parallelism, where processing a LUP can create

more LUPs. Further, LUPs can either be regular, i.e., each LUP captures an identical computation,

or irregular, i.e., the time for processing a LUP can vary. An analysis of the nature of LUPs and the

dependences between them can provide feedback for a programmer to reconsider the paralleliza-

tion strategy and possibly, express an algorithm that is better suited for parallel execution. Table 2.1

shows the high-level organization of various parallelization strategies and the corresponding LUPs

as considered in this work. A specialization technique is generally centered around a primary par-

allelization strategy but can be combined with more than one such strategy. Parallel programming

frameworks embody a parallelization strategy in the form of special compiler directives, APIs,

function calls, or special language constructs. Debugging and profiling tools that are associated

with these frameworks help assist in analyzing the parallelization strategy.

18

1 #define SIZE 1000
2 #define CHUNKSIZE 100
3 int main() {
4 int chunk = CHUNKSIZE;
5 float src0[SIZE], src1[SIZE], dest[SIZE];
6 initialize_sources(src0, src1, SIZE);
7 #pragma omp for schedule(dynamic,chunk)
8 for (int i=0; i < N; ++i) {
9 c[i] = a[i] + b[i];

10 }
11 }
12

Figure 2.3: Loop-Centric Parallel Program using OpenMP – Program parallelizes the addition of two floating-
point arrays using the OpenMP parallel for directive. The dynamic clause groups the loop iterations into specified
chunks and dynamically schedules the chunks onto the threads.

Thread-Centric Strategy – The thread-centric parallelization strategy is one of the prevailing

approaches for parallelization. The LUP in thread-centric parallelization is a thread. A thread

can be defined as a stream of instructions that is managed by the operating system. The behav-

ior of thread-centric parallelization is defined by the interactions between threads in a program.

Programming frameworks such as Pthreads, MPI, and OpenMP offer support for thread-centric

parallelization. Figure 2.2 shows a parallel program expressed using the Pthreads API. Typically,

the threads process a subset of the computation based on the thread-id. Theoretically, thread-

centric parallelization gives programmers the utmost freedom to express and exploit parallelism.

In practice, developing thread-centric parallel programs is challenging as the programmer is bur-

dened with the tasks of carefully coordinating the thread interactions when accessing shared data

structures, resolving deadlocks, and managing memory allocations. Further, thread-centric parallel

programs are not portable and the parallelism cannot be turned-off on demand which makes it hard

to debug and maintain these programs.

Loop-Centric Strategy – A loop-centric parallelization strategy exploits parallelism by ex-

ecuting independent loop iterations in parallel. Loop parallelism is very common in scientific

computations. The LUP in a loop-centric strategy can either be fine-grained, i.e., a single itera-

tion of a loop, or coarse-grained, i.e., a subset of parallel iterations. The behavior of loop-centric

parallel programs is defined by the data-dependences amongst the loop iterations. Programming

frameworks such as OpenMP, TBB, and Cilk offer high-level abstractions to express loop-level

parallelism. Figure 2.3 shows the addition of two floating-point arrays that is parallelized by using

19

1 int fib(int n)
2 {
3 if (n < 2)
4 return n;
5 int x = cilk_spawn fib(n-1);
6 int y = fib(n-2);
7 cilk_sync;
8 return x + y;
9 }

10

Figure 2.4: Fork-Join-Centric Parallel Program using Intel Cilk Plus – The program computes a Fibonacci number
using the cilk_spawn keyword to fork a child task and the cilk_sync keyword for the join synchronization.

OpenMP directives. OpenMP abstractions hide the details of the underlying hardware threads.

Loops that have regular control-flow execute well when mapped onto packed-SIMD and vector

units. Auto-vectorizing compilers in combination with the programming frameworks exploit par-

allelism across hardware threads and further within each hardware thread via packed-SIMD ex-

tensions. However, not all loops are regular with uniform control-flow. Loops with complex

data-dependences have sufficient parallelism but do not map well to existing hardware platforms.

Chapter 3 presents a novel architecture that exploits parallelism in the presence of challenging

inter-iteration loop dependences.

Fork-Join-Centric Strategy – The fork-join-centric parallelization strategy expresses paral-

lelism by identifying tasks that can potentially be executed in parallel. Tasks are a logical block

of instructions that express a part of the computation and can be syntactically captured using

function calls. The fork primitive allows a parent task to specify a child task that be executed

in parallel, and the join primitive expresses a synchronization point for the child tasks to re-

turn to the parent tasks. Nested fork-join primitives are an elegant and productive way to write

parallel programs. The behavior of a fork-join-centric parallel program can be modeled using a

directed-acyclic-graph (DAG) representation where the nodes represent tasks and the edges cap-

ture the fork-join relationships. The DAG model [BL99] has been a well studied subject to reason

about the available parallelism in fork-join-centric parallel programs. Examples of programming

frameworks that support fork-join-centric parallelization include Intel’s C++ Threading Building

Blocks (TBB) [Rei07, int15], Intel’s Cilk Plus [Lei09, int13], Microsoft’s .NET Task Parallel Li-

brary [LSB09, CJMT10], Java’s Fork/Join Framework [Lea00, jav15], and OpenMP. Figure 2.4

shows an example for a program that computes a Fibonnaci number using the Intel Cilk Plus

20

framework. Chapter 4 explores a design space for accelerators that reduce the area and improve

the work efficiency when executing fork-join-centric parallel programs.

Worklist-Centric Strategy – In the worklist-centric parallelization strategy, an algorithm is

viewed in terms of actions on shared global data structures. The actions are captured by workitems

that are stored in an abstract worklist data structure. Processing the workitems out of the worklist

can be ordered based on programmer annotations or unordered where any valid order is acceptable.

The LUP in a worklist-centric parallel program is the workitem object. The behavior of a worklist-

centric parallel program is expressed by the interactions between workitems and their actions on

the global shared data structure. The worklist-centric parallelization strategy is useful to parallelize

challenging irregular applications where the data-dependences between workitems are complex

functions of runtime data values and in scenarios where processing a workitem may result in the

addition of more workitems into the worklist. The worklist-centric parallelization strategy has

been popularized by the Galois Framework [PNK+11, gal18].

Stream-Centric Strategy – In the stream-centric parallelization strategy, computation is orga-

nized as streams of data that flow from input sources to outputs, and the transformations on the

streams are expressed as kernels. The LUPs are the various computational kernels that transform

the incoming streams. The parallel behavior of a stream-centric parallel program is captured by

high-level stream-dataflow graphs. The stream-centric parallelization strategy is attractive for ap-

plications that care about the overall throughput. Stream-centric parallel programs capture and

express parallelism both within a kernel and across kernels while minimally complicating the pro-

gramming abstractions. Stream-centric parallelization has been successful when restricted to a

particular domains such as audio, video, and signal processing applications. StreamIt [Thi09] is

an example of a recent stream-centric programming language and compiler effort that targets large

streaming applications.

Operation-Centric Strategy – The operation-centric parallelization strategy decomposes an

algorithm into fine-grained units of parallelism represented by operations. Operations can repre-

sent a single instruction or a small group of related instructions. The parallel behavior of operation-

centric parallel programs can be represented by explicit dataflow graphs. A dataflow graph consists

of operations represented by the nodes, and the edges represent the dependences between opera-

tions. The control-flow between operations are represented as additional edges between nodes in

the dataflow graph. A specialized solution that employs an operation-centric strategy requires a

21

custom compilation flow to systematically transform a high-level algorithm into operations. The

compiler is responsible for identifying profitable operation representations and mapping them to

the underlying hardware. It is not clear if a programmer can provide additional information to aid

the compiler. Needle [KSS+17], is an example of a recent LLVM-based compiler framework that

leverages dynamic profile information to identify “what paths to specialize” in a program, merge

and transform such paths into operations, and prepare them for acceleration.

2.1.2 Scheduling Strategies

A scheduling strategy maps the LUPs onto physical processing elements. Physical processing

elements include functional units in a CGRA/spatial accelerator, packed-SIMD units, lanes in a

vector processor or a GPGPU, and hardware threads in a CMP platform. It is often the case that

a parallelization strategy over decomposes a given application, i.e., the number of LUPs exceeds

the number of physical processing elements. A scheduling strategy can affect the overall perfor-

mance, data locality, and may affect the total amount of computation performed by a program. The

assignment of LUPs to processing elements can be done either statically by a compiler or dynam-

ically at runtime. Dynamic scheduling for specialized hardware can be implemented in software,

in hardware, or in a combination of both software and hardware.

Static Scheduling – Static scheduling can be used when the number of LUPs and the depen-

dences between LUPs can be determined statically. Static scheduling is applicable in scenarios

where the execution time for a given LUP can be estimated accurately at compile time as schedul-

ing decisions affect the load balance of the system. Examples for static scheduling include the

compile time mapping of operations onto CGRA functional units and compile time mapping of

loop iterations onto packed-SIMD and vector units. Static scheduling reduces the cost of schedul-

ing in terms of performance as the assignments of LUPs onto processing elements is made offline.

Dynamic Scheduling – Dynamic scheduling is required for scenarios when the dependences

between LUPs are not known statically or when processing a unit of parallelism results in the

creation of new work dynamically. Dynamic scheduling is also useful in scenarios where the

amount of work is fixed and the dependences are known statically but the execution time of LUPs

varies. Dynamic scheduling can be broadly classified based on whether the dependences are known

statically at compilation time or the dependences are known dynamically at the runtime. If the

LUPs are known to be independent at compile time then a work sharing strategy can be used.

22

If the dependences between LUPs cannot be resolved at compile time then a work stealing or a

speculation-based strategy can be used.

Work Sharing is a dynamic load-balancing strategy where units of work, such as loop iter-

ations, are stored in a central scheduling data structure. Processing elements, such as threads,

interactively retrieve loop iterations out of the central data structure using locks or other forms of

synchronization. For example, the OpenMP programming framework provides the dynamic and

guided clauses that support work sharing of iterations in a parallel for loop. The OpenMP dynamic

scheduling strategy uses an internal work queue to give out a chunk-sized block of iterations to a

hardware thread. When a thread finishes the execution of a block, it retrieves the next block from

the work queue. The OpenMP guided scheduling strategy is similar to the dynamic scheduling but

the chunk size starts off to be large and decreases steadily as the loop nears completion. Chunking

reduces the overheads of scheduling and may improve locality.

Work Stealing is a dynamic load-balancing strategy where each processing element maintains

a local deque data structure to store work. Each processing element executes work retrieved from

its local deque and if empty, selects a deque that belongs to a different processing element to

steal work. Work stealing has been popularized by the Cilk programming language and is imple-

mented in frameworks such as Intel Cilk Plus and Intel TBB. The work stealing strategy is paired

with fork-join-centric parallelization. Carbon is a hardware-only approach that implements work

stealing to support fine-grain parallelism [KHN07]. Each processor maintains a local task unit to

store tasks and a global task unit balances the work across local task units. ADM presents a soft-

ware/hardware co-designed approach to implement work stealing [SYK10]. In ADM, processors

communicate work by sending direct messages using a specialized network to reduce the work

stealing overheads. Chapter 4 focuses on exploiting instruction redundancy in fork-join-centric

parallel programs that implement load balancing using the work stealing strategy.

Speculation-based scheduling strategies are used when the data dependences between LUPs

cannot be resolved statically at compile time. Well known examples of speculation-based schedul-

ing strategies include thread-level speculation (TLS) [SCZM00,AMW+07,SBV95] and the operator-

formulation of algorithms popularized by the Galois programming framework [PNK+11]. TLS is

an approach where threads operate on loop iterations speculatively by performing potentially un-

safe work and temporarily storing speculative state in a buffer or cache. The speculated work is

resolved at a later point in time by throwing away an incorrect computations and restoring state

23

back accordingly. Chapter 3 uses a similar approach to parallelize and schedule loop iterations

with memory dependences.

2.2 A Case for Lane-Based BSAs

The technology trends discussed in Chapter 1 motivate the trend towards parallelization and

specialization. A systematic approach for hardware specialization begins with analyzing the par-

allelization and scheduling strategies. Parallelization and scheduling strategies define parallel be-

haviors that a behavior-specific accelerator can specialize for. Given a parallel behavior there are

several interesting questions that arise: What is the right software/hardware abstraction? What

kind of microarchitectures are best suited for a given parallel behavior? What about the design and

integration costs? To answer these questions, consider various specialization approaches based on

the flexibility vs. specialization axis (discussed in Section 1.3). There are two feasible approaches

that are flexible yet specialized for a range of applications: CGRA-based and lane-based behavior-

specific accelerators (BSAs).

CGRA-Based BSAs primarily use operation-centric parallelization and static-scheduling strate-

gies. CGRA accelerators are flexible as they employ reconfigurable datapaths that can be config-

ured to best suit a given application behavior. Compared to general-purpose processors, CGRAs

execute an explicit dataflow graph efficiently without incurring the overheads of instruction fetch,

decode, issue, and the switching of pipeline registers. CGRAs use distributed register state, spe-

cialized memories, and specialized networks to communicate values amongst the processing ele-

ments (PEs). To increase the utilization of the PEs, CGRAs combine operation-centric paralleliza-

tion with other strategies such as loop-centric [GHS11] and stream-centric [NGAS17] strategies.

Design principles such as decoupled-access execute enable the CGRAs to efficiently overlap the

memory access with pipelined computations. Compared to prior lane-based approaches like the

packed-SIMD and vector units, CGRAs can handle the acceleration of loops with predictable inter-

iteration dependences.

Lane-Based BSAs are composed of instruction set programmable lanes that allow them to flex-

ibly use a variety of parallelization and scheduling strategies. Popular lane-based accelerators,

such as the packed-SIMD and vector units, use loop-centric parallelization with static scheduling

strategies. Lane-Based BSAs are efficient as they amortize the instruction and data supply over-

24

heads compared to GPPs. Lane-Based BSAs can easily scale with increasing parallelism in an

application and offer a high computational density. Compared to CGRA-based accelerators, lane-

based BSAs provide a simpler programming approach due to standard compiler and debugging

tools. Additionally, there has been a considerable amount of research spent in developing elegant

programming models to program lane-based BSAs. Mapping loops with dependences or explor-

ing speculation-based scheduling strategies is ongoing research that can extend the applicability of

lane-based solutions.

To qualitatively compare CGRA-based vs. lane-based BSAs, I consider three important aspects

of a given specialization approach: programmability, flexibility, and design costs. Programmability

defines the accessibility of a specialization approach. CGRA-based BSAs often require complex

compilation flows compared to existing lane-based BSAs such as packed-SIMD and vector units.

The programming challenge for the CGRA-based BSAs necessitate automatic compilers that han-

dle the detection of profitable subgraphs, detecting address patterns, loop-interchange/flattening,

explicit dependence insertion, and memory tiling, which adds additional complexity compared

to the requirements of autovectorizing compilers. Virtualizing a given CGRA substrate for a

larger dataflow graph further increases the compiler complexity. CGRA configuration bits are

not portable across solutions compared to instruction set programmable abstractions used by lane-

based BSAs. Further, there is a lack of tools for debugging CGRA-based programs, and it is not

obvious for a programmer to restructure an algorithm to efficiently map onto CGRAs.

Flexibility of a specialization approach reduces the risk of obsoletion and increases the use of a

solution across a range of applications. CGRA-based and lane-based BSAs perform well on appli-

cations with regular control-flow and large amounts of parallelism. However, CGRA-based BSAs

exhibit poor performance for applications with irregular control-flow and are typically underuti-

lized for such applications. Irregular applications have low regions of ILP which causes most of

the processing elements in a CGRA to be inactive. While lane-based BSAs are also challenged

by irregular applications, advancements in compiler technology and hardware predication have

made packed-SIMD and vector units applicable to a subset of these applications. The lane-based

BSAs proposed in this thesis extend the capabilities of prior approaches to efficiently execute ir-

regular applications that have complex loops with inter-iteration dependences and recursive task

parallelism.

25

500

400

300

200

100

0
65 nm
(2006)

45/40 nm
(2008)

28 nm
(2010)

22 nm
(2012)

16/14 nm
(2014)

10 nm
(2017)

7 nm 5 nm

Software

Physical

Verification

Architecture
IP

Prototye

Validation

C
os

t
(m

ill
io

n
U

S
D

)

Figure 2.5: Soc Cost Breakdown – Estimated cost breakdown to build a large SoC based on data collected by Inter-
national Business Strategies (IBS) [Str17] and as presented in [BPHH18]. The overall cost is increasing exponentially,
and software comprises nearly half of the total cost.

Ultimately, any specialization approach has to be justified by the incurred design costs. Fig-

ure 2.5 shows the non-recurring engineering (NRE) costs involved in building a high-end SoC

over recent technology nodes. Several components contribute to the non-recurring engineering

costs for developing a specialized platform. The NRE costs include the price of developing lithog-

raphy masks and the tools for design, costs of verification, and the cost of developing software

to run on the platform. From an architects perspective, little can be done to mitigate the costs of

developing lithography masks and manufacturing costs. From an implementation point of view,

instruction set programmable lane-based BSAs are easier to build, verify, and reuse compared to

CGRA-based BSAs. The figure shows that software contributes to roughly about 40% of the total

costs in advanced technologies. Lane-Based BSAs are more programmable and flexible compared

to CGRA-based BSAs which help reduce the software costs.

To minimize the NRE costs in building lane-based accelerators, the central theme of this thesis

is to propose lightweight changes to applications, runtimes, compilers, instruction sets, and mi-

26

GPP BSA
Tile

BSA
Tile

On-Chip Networks

Loop
Centric
BSA

 C
on

fig
 X

ba
r

Memory Crossbar

GPP

Network Interface

BSA
Tile

GPP BSA
Tile

BSA
Tile

BSA
Tile

BS
A

 C
hi

p

BS
A

-T
ile

Fork-Join
Centric
BSA

L1 Instruction Cache

L1 Data Cache

L2 Cache

Figure 2.6: BSA Chip– A behavior-specific accelerator chip is a heterogenous CMP platform that includes general-
purpose processor (GPP) tiles along with tiles that are augmented with loop- and fork-join-centric BSAs. The loop-
and fork-join-centric accelerators share the L1 instruction and the data cache with the host GPP.

croarchitectures. Lightweight changes reduce the costs of design, verification, and programming.

The accelerators proposed in this thesis focus on single-ISA heterogeneous architectures that trans-

parently integrate traditional GPPs and specialized architectures. With a single-ISA and minimal

changes to microarchitectures, we maintain the benefits of executing a single binary on either

traditional GPPs or specialized BSAs, thereby reducing the barrier of adoption for the proposed

lane-based BSAs. The lane-based-BSA approach primarily employs a parallelization strategy and

provides an extensible template that can embed the principles of CGRA-based BSAs to accelerate

logical units of parallelism.

2.3 Vision for Behavior-Specific Accelerators

A behavior-specific accelerator exploits the parallel behavior defined by a given parallelization

and scheduling strategy. Figure 2.6 shows the high-level organization of a BSA chip. A BSA

chip is a heterogeneous CMP platform that composes tiles with GPPs and tiles with GPPs that are

augmented with lane-based BSAs. Lane-Based BSAs are composed of programmable lanes that

are configured by a GPP to execute a parallel region. Lanes share expensive hardware resources,

which include L1 instruction and data cache, the integer multiply-divide unit, and the floating-

point unit. The reduced costs in area can be used to instead add more tiles, BSAs, or caches to

27

improve the overall system performance. BSAs are efficient as they are specialized for a given

parallel behavior and can exploit similarities present in the instruction stream.

The execution model for a tile that is augmented by the BSA proceeds as follows: upon encoun-

tering a parallel region identified by a software/hardware interface, the GPP transfers the execution

of the program by selecting the appropriate BSA. A BSA which is not applicable for the execu-

tion of a parallel region remains idle and is clock-gated. The GPP remains idle during the parallel

execution which results in no contention for the cache ports. The BSA yields the control back to

the GPP when it has finished executing a parallel region. We envision the execution to migrate

efficiently between the GPP and the BSA thereby enabling an adaptive execution paradigm where

online profiling maps the computation to the best suited processing element, i.e., the GPP or the

BSA. Integrating the BSAs and the GPPs using the L1 cache hierarchy offers a nice trade-off in

terms of the accelerator configuration and communication overheads. Integrating at the L1 cache

lowers the configuration and communication overheads that enables fine-grained parallel regions.

Chapter 3 presents an elegant new XLOOPS hardware/software abstraction that explicitly

encodes inter-iteration loop dependence patterns and enables performance-portable execution of

loops. The chapter discusses a novel loop pattern specialization unit (LPSU) that augments the

GPP and handles the execution of loops with complex inter-iteration dependences. XLOOPS bina-

ries can execute on the GPPs using traditional execution, on the LPSU using specialized execution,

or can use adaptive execution to choose between traditional or specialized execution to balance per-

formance and energy efficiency. Chapter 4 presents smart sharing architectures (SSAs) which are

a CMP-based solution where a GPP is augmented with conjoined lanes. Conjoined lanes are BSAs

that can efficiently execute fork-join-centric parallel programs by employing smart-sharing mech-

anisms. Conjoined lanes execute the same runtime and the instruction set as the host GPPs and

thereby can transparently integrate into existing CMP solutions. The goal of SSAs is to save area,

maximize efficiency, and minimize loss in performance while sharing hardware resources.

28

CHAPTER 3
XLOOPS: LANE-BASED BSAS FOR LOOP-CENTRIC

PARALLELIZATION AND SCHEDULING STRATEGIES

Computer architects have long realized the importance of focusing on the key loops that often

dominate application performance. Hardware specialization for loop-centric parallel programs can

exploit intra- and/or inter-iteration loop dependence patterns. In this chapter, we propose a new ap-

proach called explicit loop specialization (XLOOPS) based on the idea of encoding inter-iteration

loop dependence patterns in the instruction set. The XLOOPS hardware/software abstraction re-

quires only lightweight changes to a general-purpose compiler to generate XLOOPS binaries and

enables executing these binaries on: (1) traditional microarchitectures with minimal performance

impact, (2) specialized microarchitectures to improve performance and/or energy efficiency, and

(3) adaptive microarchitectures that can seamlessly migrate loops between traditional and special-

ized execution to dynamically trade-off performance vs. energy efficiency.

Section 3.1 briefly discusses hardware specialization for loop-centric parallel programs and

motivates the approach taken in this chapter. Section 3.2 describes the design of XLOOPS in-

struction sets, compilers, and microarchitectures. Our XLOOPS instruction set can encode: data-

dependence patterns where the loops can appear to execute in any order both concurrently or

atomically; data-dependence patterns where the loops must preserve ordering constraints expressed

through either register or memory dependences; and control-dependence patterns based on fixed

and dynamic bounds. Our XLOOPS compiler uses programmer annotations to automatically gen-

erate an efficient XLOOPS binary. The XLOOPS microarchitectures support a new execution

paradigm based on traditional, specialized, and adaptive execution. To make the case for XLOOPS,

we use a vertically integrated evaluation methodology. Section 3.3 describes the application ker-

nels we use for evaluation and modifications to an LLVM-based compiler to support XLOOPS.

Section 3.4 describes the cycle-level modeling of XLOOPS microarchitectures that support tradi-

tional, specialized, and adaptive execution. Section 3.5 describes the register-transfer-level (RTL)

implementation of a simple XLOOPS microarchitecture capable of specialized execution and area,

energy, and timing analysis using a commercial ASIC CAD toolflow. Section 3.6 presents results

for a simple XLOOPS FPGA prototype that can execute loops that have no inter-iteration loop

dependences, and Section 3.7 discusses related work.

29

Using specialized execution, XLOOPS is able to achieve 2.5⇥ or higher speedup at similar or

better energy efficiency for most application kernels compared to a simple single-issue in-order

processor with only 40% area overhead. Compared to aggressive two- and four-way out-of-order

processors, XLOOPS is able to achieve 1.5–3⇥ improvement in energy efficiency while having

speedups in the range of 1.25–2.5⇥ on most application kernels. Adaptive execution enables

applications that perform worse with specialized execution to automatically migrate to the general-

purpose processor for increased performance at reduced energy efficiency.

3.1 Introduction

Hardware specialization techniques that primarily employ operation-centric parallelization and

scheduling strategies exploit intra-iteration loop dependence patterns. These techniques usually

involve custom instructions and/or small reprogrammable functional units well-suited to accelerat-

ing common sequences of operations within an iteration. Examples include application-specific

instruction-set processors [API03, CFHZ04] and techniques for subgraph execution [CKP+04,

GHS11]. Hardware specialization techniques that primarily focus on loop-centric parallelization

and scheduling strategies exploit inter-iteration loop dependence patterns. These techniques focus

at a higher level on how different loop iterations interact. Examples include data-parallel accel-

erators which exploit loops with no inter-iteration dependences [WAK+96, KP03, EVS98] and

thread-level speculation which exploit loops with infrequent inter-iteration dependences [SBV95,

SCZM00,KT99]. Some hardware specialization techniques such as coarse-grained reconfigurable

arrays [GFA+11,GHN+12] and weakly programmable application-specific accelerators [VSG+11]

target both intra- and inter-iteration loop dependence patterns.

All of these proposals must carefully navigate the tension between less efficient general ar-

chitectures and more efficient specialized architectures. Some argue for exposing as much of the

specialized microarchitecture as possible to enable flexible software configuration while maintain-

ing efficiency [GNS13, DBBS+08]. Unfortunately, this comes at the expense of a clean hard-

ware/software abstraction; highly configurable specialized architectures are often tightly coupled

to a specific microarchitectural implementation. A key research challenge involves creating clean

hardware/software abstractions that are highly flexible, yet still enable efficient execution on both

traditional and specialized microarchitectures.

30

To address this challenge, we focus on architectural specialization for inter-iteration loop de-

pendence patterns. Inter-iteration data-dependence patterns include loops with no inter-iteration

dependences and loops with inter-iteration dependences encoded through registers and/or mem-

ory. An interesting data-dependence pattern often found in graph algorithms involves iterations

that manipulate a shared data structure such that the iterations can be executed in any order as

long as their updates to memory appear atomic to the other iterations. Inter-iteration control-

dependence patterns include loops that terminate based on comparing an induction variable to a

loop-invariant fixed bound, or loops that terminate based on a data-dependent-exit condition. An

interesting control-dependence pattern found in more irregular worklist-based algorithms involves

a loop induction variable compared to a dynamic bound that is monotonically increased during

the loop execution. The inter-iteration dependence pattern for a given loop will be a combination

of a specific data- and control-dependence pattern, and nested loops can be captured using the

composition of multiple loop patterns.

Inter-iteration data and control dependence patterns influence the selection of a scheduling

strategy. Most commonly found loops have no inter-iteration dependences and have a control-

dependence with a fixed bound on the number of iterations. A scheduling strategy that achieves

dynamic load-balancing by work-sharing constructs either in hardware or software is best suited

for such loops. For loops with inter-iteration data-dependences encoded through registers and fixed

bounds, a static scheduling strategy is employed as the data-dependences dictate the sequence of

execution. For more complex loops that include inter iteration data-dependences that are encoded

through memory or loops that need to appear atomic which may additionally have data-dependent

control, a scheduling strategy that is speculation-based is required as the manifestation of these de-

pendences are based on data dependent values. In a speculation-based strategy, the loop iterations

are executed assuming no dependence violations and the state needs to be buffered such that the

correct values can be restored upon any incorrect speculation.

The focus of this chapter is to specialize fine-grain loops that contain loop bodies on the order

of one to two hundred instructions. Fine-grain loops necessitate ultra-low-overhead mechanisms

to achieve significant speedups at low energy. Our approach, explicit loop specilzation (XLOOPS),

is based on the idea of explicitly encoding inter-iteration loop dependence patterns in the instruc-

tion set to enable exploiting fine-grain loop-level parallelism. The XLOOPS hardware/software

interface is lightweight and requires minimal changes to the compilers and microarchitectures that

31

#pragma xloop unordered

for (i=0; i<N; i++)

C[i] = A[i] * B[i]

(a) xloop.uc Code

#pragma xloop ordered

for (X=0, i=0; i<N; i++)

X += A[i]; B[i] = X

(b) xloop.or Code

#pragma xloop ordered

for (i=K; i<N; i++)

A[i] = A[i] * A[i-K]

(c) xloop.om Code

#pragma xloop atomic

for (i=0; i<N; i++)

B[A[i]]++; D[C[i]]++

(d) xloop.ua Code

W[0] = root of tree

w_ptr = &W[1]

M = 1

#pragma xloop unordered

for (i=0; i<M; i++)

work(W[i])

l_ptr = W[i]->left_ptr

if (l_ptr != 0)

*amo_inc(w_ptr) = l_ptr

M++

r_ptr = W[i]->right_ptr

if (r_ptr != 0)

*amo_inc(w_ptr) = r_ptr

M++

(e) xloop.uc.db
Code

1 L:

2 lw r2, 0(rA)

3 lw r3, 0(rB)

4 mul r4, r2, r3

5 sw r4, 0(rC)

6 addiu.xi rA, 4

7 addiu.xi rB, 4

8 addiu.xi rC, 4

9 addiu r1, r1, 1

10 xloop.uc r1, rN, L

(f) xloop.uc Asm

1 L:

2 lw r2, 0(rA)

3 addu rX, r2, rX

4 sw rX, 0(rB)

5 addiu.xi rA, 4

6 addiu.xi rB, 4

7 addiu r1, r1, 1

8 xloop.or r1, rN, L

(g) xloop.or Asm

1 move r1, rK

2 sll r2, rK, 0x2

3 addu r3, rA, r2

4 L:

5 lw r4, 0(r3)

6 lw r5, 0(rA)

7 mul r6, r4, r5

8 sw r6, 0(r3)

9 addiu.xi r3, 4

10 addiu.xi rA, 4

11 addiu r1, r1, 1

12 xloop.om r1, rN, L

(h) xloop.om Asm

1 L:

2 lw r6, 0(rA)

3 lw r7, 0(r6)

4 addiu r7, r7, 1

5 sw r7, 0(r6)

6 addiu.xi rA, rA, 4

7 lw r6, 0(rC)

8 lw r7, 0(r6)

9 addiu r7, r7, 1

10 sw r7, 0(r6)

11 addiu.xi rC, rC, 4

12 addiu r1, r1, 1

13 xloop.ua r1, rN, L

(i) xloop.ua Asm

Figure 3.1: XLOOPS Instruction Set Examples – Unless otherwise specified, a fixed-bound control-dependence
pattern is assumed. (a,f) xloop.uc encodes an unordered-concurrent data-dependence pattern, addiu.xi encodes a
simple associative loop-carried dependence; (b,g) xloop.or encodes an ordered-through-registers data-dependence
pattern, line 3 captures the loop-carried dependence through rX; (c,h) xloop.om encodes an ordered-through-memory
data-dependence pattern, line 6 depends on an earlier instance of line 8; (d,i) xloop.ua encodes an unordered-atomic
data-dependence pattern; (e) xloop.uc.db encodes an unordered-concurrent data-dependence with a dynamic-bound
control-dependence pattern, amo_inc() uses an atomic memory operation to increment the tail pointer of the worklist
by four.

execute XLOOPS binaries. The XLOOPS instructions encode the inter-iteration dependence pat-

terns as hints which can be ignored for traditional execution. The XLOOPS interface transparently

integrates general-purpose processors and lane-based BSAs that employ hardware specialization

to schedule loop iterations onto the lanes given the hints as provided in XLOOPS binaries. Lastly,

the XLOOPS abstraction enables adaptive execution where a loop can migrate seamlessly between

traditional and specialized execution.

3.2 XLOOPS: Explicit Loop Specialization

In this section, we describe the instruction set and compiler modifications required for XLOOPS,

and we propose various XLOOPS microarchitectures to enable traditional, specialized, and adap-

tive execution.

32

xloop.{d}.{c} rI, rN, L goto L if R[rI] 6= R[rN]
addiu.xi rX, imm R[rX] R[rX] + imm

addu.xi rX, rT R[rX] R[rX] + R[rT]

Table 3.1: XLOOPS Instruction Set Extensions – Loop body is static sequence of instructions between L and the
xloop instruction. {d} indicates data-dependence pattern: uc = unordered concurrent, or = ordered through registers,
om = ordered through memory, orm = ordered through registers and memory, ua = unordered atomic. {c} indicates
control-dependence pattern: no suffix implies fixed bound, db = dynamic bound.

3.2.1 XLOOPS Instruction Set

The XLOOPS instruction set is carefully designed to enable efficient execution on both tra-

ditional general-purpose processors (serial execution) and specialized microarchitectures (parallel

execution). The XLOOPS instruction set is formed by extending a general-purpose instruction

set with the instructions shown in Table 3.1. The key idea is to express inherent loop-level par-

allelism by encoding inter-iteration data- and control-dependence patterns using variants of the

xloop instruction. All xloop instructions encode the notion of a parallel loop body which is

defined as the static instruction sequence between a given label L and the address of the xloop

instruction. It is undefined for the label L to point to an address greater than or equal to the address

of the xloop instruction. Figure 3.1 uses short pseudocode and assembly examples to illustrate

how these instructions are used in practice. The suffixes for the xloop instruction indicate the

data- and control-dependence patterns. An xloop can contain arbitrary instructions including:

arithmetic operations, memory operations, atomic memory operations (AMOs), memory fences,

control flow, nested xloops, and system calls (although this is not recommended). Currently, the

xloop instruction only supports fixed- and dynamic-bound control-dependence patterns; we leave

exploring data-dependent-exit control-dependence patterns to future work. An xloop cannot write

live-in registers and all live-out register values are undefined once the loop is finished executing,

meaning an xloop must store results in memory.

xi Instruction – Mutual induction variables (MIVs) are variables that can be computed as a

linear function of a loop induction variable. Modern compilers include a loop-strength reduction

pass that transforms expensive MIV computations into cheap iterative operations. Naively us-

ing such optimizations can impose extra, potentially unnecessary inter-iteration dependences, but

avoiding such optimizations can introduce non-trivial address computation overhead, especially

when working with multi-dimensional arrays. The cross-iteration instructions (denoted with an xi

33

suffix) explicitly encode MIVs to allow hardware to handle MIVs either iteratively or in parallel

using specialized logic. Note that the register operand R[rT] in an addu.xi instruction must be

a loop-invariant value. The instructions on lines 6–8 in Figure 3.1(f) illustrate the use of the xi

instruction.

xloop.uc Instruction – An xloop.uc encodes an unordered-concurrent data-dependence pat-

tern. The iterations can appear to execute concurrently and in any order. Data races are possible,

but atomic memory operations can provide efficient synchronization if required. Figure 3.1(a,f)

illustrates using an xloop.uc for element-wise vector multiplication. The XLOOPS ISA speci-

fies that an addiu writing the loop induction variable (e.g., line 9) does not impose an ordering

constraint.

xloop.or Instruction – An xloop.or encodes an ordered-through-registers data-dependence

pattern. We term registers that impose ordering constraints as cross-iteration registers (CIRs).

The value in a CIR for a given iteration must be the same as if the xloop was executed serially.

Any general-purpose register can act as a CIR. The CIRs must be read at least once and can be

written zero or more times. As an exception to the restriction on xloop register live-outs, each CIR

is guaranteed to have the same value as a serial execution when the loop is finished. As with an

xloop.uc, there are no ordering constraints with respect to memory, so memory races are possible.

Figure 3.1(b,g) illustrates using an xloop.or to implement parallel-prefix summation with rX as

a CIR.

xloop.om Instruction – An xloop.om encodes an ordered-through-memory data-dependence

pattern. Values read and written to memory must be the same as if the loop was executed seri-

ally. Since an xloop.om guarantees a specific order with respect to memory, there can be no race

conditions. For example, if each iteration updates different portions of a shared data structure,

then iterations may occasionally conflict in which case the updates are guaranteed to occur in the

same order as if the loop was executed serially. Figure 3.1(c,h) illustrates using an xloop.om to

implement a simple loop where the load instruction on line 6 in iteration i depends on the store

instruction on line 8 in iteration i-K. An xloop.orm encodes a pattern that combines ordering

through registers and memory.

xloop.ua Instruction – An xloop.ua encodes an unordered-atomic data-dependence pattern.

The iterations can appear to execute in any order, but their memory updates must appear to execute

atomically. While race conditions are not possible, the results can be non-deterministic since

34

the hardware is free to reorder iterations. This data-dependence pattern is often found in graph

algorithms that manipulate a shared data structure where the iterations can execute in any order

given that iterations update memory atomically. Figure 3.1(d,i) illustrates using an xloop.ua to

modify two histograms with a single atomic update.

xloop.*.db Instruction – The above data-dependence patterns assume a fixed-bound control-

dependence pattern. An xloop.*.db encodes a different inter-iteration control-dependence pat-

tern where iterations are allowed to monotonically increase the loop bound. Figure 3.1(e) illustrates

using an xloop.uc.db to perform work on a binary tree using a worklist-based implementation.

Each iteration uses an AMO to reserve space at the tail of the worklist before adding new nodes

and incrementing the loop bound. This example could also be encoded as an outer for loop with

an inner xloop.uc to iterate over the nodes in a given level of the tree, but using an xloop.uc.db

results in a more natural mapping and can enable more efficient specialized execution.

The XLOOPS instruction set provides precise exceptions at the instruction level within an

xloop iteration. This means exceptions within a loop iteration are guaranteed to occur in or-

der with respect to the other instructions in that loop iteration. Exceptions in different itera-

tions of an xloop.{uc,ua,or} can occur in any order; exceptions in different iterations of an

xloop.{om,orm} are guaranteed to occur in the same order as a serial execution.

The XLOOPS ISA is a clean hardware/software abstraction that provides significant freedom

when designing XLOOPS compilers and XLOOPS microarchitectures. Any given loop can usu-

ally be encoded in multiple ways. For example, any valid xloop.uc is also a valid xloop.or, any

valid xloop.ua is also a valid xloop.om, and any fixed-bound xloop is a valid xloop.orm. Soft-

ware should choose the “least restrictive” inter-iteration dependence pattern to enable execution

on simpler specialized microarchitectures and to give hardware the most freedom in choosing how

to execute the xloop. Specialized execution of xloop.om is more complex than xloop.or which

in turn is more complex than an xloop.uc, so an architect can choose to only support specialized

execution for an xloop.uc and use traditional execution for the remaining patterns. Similarly, the

maximum number of instructions in an xloop is not part of the instruction set; while software

should target fine-grain loops, it is perfectly fine to generate a relatively large loop body (e.g., 200

instructions). A specific microarchitecture can always fall back to a traditional execution if the

xloop is too large. Finally, the XLOOPS instruction set enables cleanly nesting xloops. Software

35

can provide hints to the hardware to indicate which xloop might be best for specialized execution,

or the hardware might adaptively explore specialized executions for different xloops.

3.2.2 XLOOPS Compiler

The XLOOPS compiler currently uses programmer inserted annotations to determine which

loops to encode using the XLOOPS instruction set. Figure 3.1(a–e) illustrates using #pragma di-

rectives and the keywords unordered, ordered, and atomic to convey the data-dependence pat-

terns. Figure 3.2 illustrates annotating nested loops in the Floyd-Warshall shortest path algorithm

from the Polybench Suite [pbe14], and Figure 3.3 illustrates annotating an ordered loop in the max-

imal matching application kernel present from the Problem-Based Benchmark Suite [SBF+12].

The XLOOPS compiler is implemented with lightweight changes to an existing general-purpose

compiler. The XLOOPS approach does not interfere with existing compiler algorithms for mid-

level optimization passes, and back-end algorithms for instruction scheduling, register allocation,

and code generation. The XLOOPS compiler modifies the loop-strength reduction pass to directly

generate appropriate xi instructions to encode the MIVs. Loops annotated with the unordered

keyword are usually encoded using xloop.uc. Loops annotated with the atomic keyword are

encoded using xloop.ua. Programmers use the ordered keyword to annotate loops that must

preserve inter-iteration data-dependences. The programmers need not specify whether this data-

dependence is through registers or memory or both. The XLOOPS compiler includes analysis

passes to determine how the data-dependence is communicated and encodes the dependence pat-

terns using xloop.{or/om/orm}. Register dependence testing is implemented by analyzing the

use-definition chains through the PHI nodes and identifying CIRs. Memory dependence testing

is implemented using well known dependence analysis techniques such as the zero-, single-, and

multiple-index variable tests [GKT91]. Additionally, the XLOOPS compiler includes a pass to

detect updates to the loop bound to encode such loops using xloop.*.db.

Although these lightweight changes to a general-purpose compiler should produce a reason-

able XLOOPS compiler, there are opportunities for additional optimizations. For example, the

performance of executing an xloop.or is limited by the inter-iteration critical path for each CIR.

The inter-iteration critical path is the distance between the first dynamic instruction in the loop

body that reads the CIR and the last dynamic instruction in that same loop body that updates the

CIR. Compiler optimizations to reduce the inter-iteration critical path by modifying the instruction

36

for (int k = 0; k < n; k++)
#pragma xloops ordered
for (int i = 0; i < n; i++)

#pragma xloops unordered
for (int j = 0; j < n; j++)

path[i][j] = min(path[i][j], path[i][k] + path[k][j]);

Figure 3.2: C Code for war Application Kernel – Kernel from Polybench suite implementing Floyd-Warshall short-
est path algorithm. XLOOPS compiler maps inner loop to xloop.uc and uses dependence analysis to map outer loop
to xloop.om.

#pragma xloops ordered
for (int i = 0; i < num_edges; i++) {

int v = edges[i].v; int u = edges[i].u;
if (vertices[v] < 0 && vertices[u] < 0) {

vertices[v] = u; vertices[u] = v; out[k++] = i;
} }

Figure 3.3: C Code for mm Application Kernel – Kernel from Problem-Based Benchmark Suite implementing
greedy algorithm for maximal matching on undirected graph. XLOOPS compiler uses dependence analysis to map
the loop to xloop.orm.

scheduling within the loop body could improve the ability of XLOOPS microarchitectures to over-

lap independent work from different iterations. We explore the potential of such an optimization

by manually scheduling instructions in Section 3.4.7.

3.2.3 XLOOPS Traditional Execution

XLOOPS binaries can be executed efficiently on a general-purpose processor (GPP) with min-

imal changes to the decoder logic. An xloop instruction is executed as a conditional branch in-

struction, and an xi instruction is executed as a simple addition. Efficient traditional execution is

important for two reasons: (1) to enable gradual adoption of XLOOPS without any penalty when

using XLOOPS binaries on GPPs; and (2) to enable adaptive execution to migrate an xloop to a

GPP if it is determined that specialized execution is not resulting in any performance benefit.

3.2.4 XLOOPS Specialized Execution

Figure 3.4 shows a novel XLOOPS microarchitecture that augments a GPP with a loop-pattern

specialization unit (LPSU). The GPP can either be a simple in-order or a complex out-of-order

processor. The LPSU contains four decoupled lanes and a lane management unit (LMU). In our

37

current design, each lane in the LPSU is similar to a simple in-order processor, but it is certainly

possible to use more aggressive superscalar or out-of-order lane microarchitectures to better exploit

intra-iteration instruction-level parallelism. Each lane includes a loop instruction buffer to store

instructions, an index queue (IDQ) to store loop indices waiting for execution, a 2r2w-port physical

register file, and functional units for simple arithmetic, address generation, and control flow. The

GPP and LPSU dynamically arbitrate for the data memory port and the long-latency functional unit

(LLFU). The LLFU provides support for integer multiplication, integer division, and floating-point

arithmetic. Specialized execution occurs in two phases: a scan phase initiated by the GPP and a

specialized execution phase that occurs on the LPSU.

Scan Phase – The GPP starts the scan phase when it reaches an xloop instruction. In this

phase, the instructions and live-in register values within the loop body are incrementally written to

the instruction buffers and register files in the LPSU. To reduce the required amount of physical

register storage in the LPSU, the LMU renames architectural register specifiers and updates the

instruction encoding as it writes instructions into the instruction buffers. Since the registers are

renamed once during the scan phase, the energy consumed for register renaming is amortized

over all iterations. A complex out-of-order GPP can overlap the scan phase with the execution of

instructions that are before the xloop body. The specialized execution phase does not start until

all previous instructions are retired, all instructions in the xloop body have been scanned, and the

xloop instruction reaches the head of the reorder buffer. Once the scan phase is complete, the GPP

stalls until the LPSU has finished the specialized execution phase.

Specialized Execution Phase – In this phase, the LMU enqueues iteration indices into the

IDQs as free IDQ entries become available. For xloop.uc, IDQ entries can become available

in any order enabling simple dynamic load balancing, while for other inter-iteration dependence

patterns, IDQ entries naturally become available in iteration order. Each lane dequeues an iteration

index and executes the corresponding iteration. Since the XLOOPS ISA guarantees live-in registers

are not written in the xloop body, there is no need to restore state before the execution of each

iteration. When the execution of the entire xloop is finished and all memory updates are complete,

the LMU notifies the GPP that the specialized execution phase has ended.

xi Execution – The LPSU uses specialized logic to execute xi instructions. In the scan phase,

the LMU uses a mutual induction variable table (MIVT) to track the register specifier for the MIV

and the loop-invariant increment value (i.e., either imm for addiu.xi or R[rT] for addu.xi). In the

38

Lane
3

Lane
1

Lane RF
24 × 32b

2r2w

Inst Buf

128×

LSQ
16×

CIB 8×

Lane RF
24 × 32b

2r2w

Inst Buf

128×

LSQ
16×

CIB 8×

Lane RF
24 × 32b

2r2w

Inst Buf

128×

LSQ
16×

CIB 8×

Lane
0

GPR RF
32 × 32b

2r2w

GPP

SLFU

SLFU

SLFU

LLFU

D$ Request/Response Crossbar

L1 I$ 16 KB

L2 Request and Response Crossbars

L1 D$ 16 KB

32b32b

SLFU

IDQ

DBN
Lane Management Unit

IDQ

IDQ

Figure 3.4: XLOOPS Microarchitecture – GPP and L1 memory system augmented with four-lane loop-pattern
specialization unit (LPSU). Mechanisms required to support xloop.{or,om,orm,ua} beyond basic xloop.uc sup-
port are shown highlighted in red. GPP = general-purpose processor (either in-order or out-of-order); GPR = GPP
regs; RF = regfile; IDQ = index queue; Inst Buf = instruction buffer; DBN = dynamic-bound notification; CIB =
cross-iteration buffer; SLFU = short-latency functional unit; LLFU = long-latency functional unit; LSQ = load/store
queue.

specialized execution phase, the lanes check the read register specifiers of a decoded instruction

and compare it to the specifiers stored in the MIVT using a bit vector. If the register specifier

matches an entry present in the MIVT, then the lane computes the value of the mutual induction

variable using: the value present in the register file, the difference in the loop indices, and the

loop-invariant increment value from the MIVT as shown:

R[rX] R[rX] + (increment ⇥ (1 + icurrent � iprevious))

39

Since the difference in inter-iteration loop indices is small (usually close to the number of lanes),

the lanes can use an inexpensive, narrow multiplier. When the lane executes the actual xi instruc-

tion, the result of the above computation is stored in the register file and used by the next iteration

executed on the lane.

xloop.uc Execution – Supporting xloop.uc requires just the mechanisms described above.

Figure 3.4 illustrates these mechanisms and highlights the additional mechanisms required to sup-

port the more sophisticated inter-iteration dependence patterns described in the rest of this section.

xloop.or Execution – The cross-iteration buffers (CIBs) between neighboring lanes are small

associative buffers that are used to communicate inter-iteration register dependences when exe-

cuting an xloop.or. The LMU needs to identify each CIR and the last instruction that updates

each CIR. During the scan phase, the LMU uses two bit-vectors to track register reads and writes.

Registers that are first read and then written are identified as CIRs. In scan phase, the LMU also

tracks the largest PC of an instruction that updates a CIR and sets a special last CIR write bit in

the instruction buffer for this instruction. When a lane executes an instruction, it checks if a source

register is a CIR and stalls if the CIR value is not available in the CIB connected to the previous

lane. If the value is available, it writes this value to the lane register file and uses this value for

the execution of the instruction. The lane also checks the last CIR write bit when executing an

instruction. If this bit is set, then the lane writes the instruction result to the CIB connected to

the next lane. Updates to a CIR can be conditional depending on the dynamic control flow. If an

instruction with the last CIR write bit set was skipped, then at the end of the iteration the lane will

copy the corresponding CIR value to the CIB.

xloop.om Execution – Efficient parallel execution of xloop.om requires hardware memory

disambiguation support to determine when speculative iterations violate the serial memory order-

ing constraint. Each lane includes a small 2r1w load-store queue (LSQ) to track memory accesses

across iterations. Memory dependence ordering is enforced by the LMU based on the loop iteration

index. A lane with the lowest iteration index is considered as non-speculative, whereas lanes with

higher iteration indices are considered speculative. Loads and stores issued by a non-speculative

lane are allowed to bypass the LSQ and access memory immediately. A store issued by a specu-

lative lane is buffered in the speculative lane’s LSQ and does not update memory. A load issued

by a speculative lane first checks for a matching store address in the speculative lane’s LSQ for

store-load forwarding. If there is no match in the speculative lane’s LSQ, the load is issued to the

40

memory system. More aggressive implementations can additionally allow a load to check the LSQs

across lanes for inter-iteration store-load forwarding. To detect memory dependence violations, the

address for each store issued by the non-speculative lane is broadcast to the speculative lanes when

the store executes. Each speculative lane compares this broadcasted store address to the entries

present in the speculative lane’s LSQ. A memory dependence violation occurs if a speculative lane

has already issued a load request to the same address as a store issued by a non-speculative lane.

When a speculative lane detects a memory dependence violation, the lane restarts the execution of

the corresponding iteration. Squashing iterations is fast since an xloop cannot write live-in regis-

ters; the lane simply flushes the pipeline (including the LSQ) and restarts execution from the first

instruction in the xloop body. Speculative lanes stall execution if they fill up their corresponding

LSQ. When the LMU promotes a speculative lane to be non-speculative, the lane drains its LSQ,

broadcasts store requests to other lanes, and updates the memory. Supporting xloop.orm involves

combining the mechanisms required for supporting both xloop.or and xloop.om.

xloop.ua Execution – Similar to xloop.om, efficient parallel execution of xloop.ua requires

hardware memory disambiguation support. However, xloop.ua does not enforce sequential or-

dering of the loop iterations. Currently, we execute xloop.ua using the same mechanisms as

xloop.om. Future work could explore microarchitectures that are less restrictive in terms of itera-

tion index ordering and take better advantage of the xloop.ua data-dependence pattern.

xloop.*.db Execution – Execution of loops with a dynamic-bound control-dependence pat-

tern is similar to loops with a fixed-bound dependence pattern with minor changes to the LMU

and lane control logic. Each lane checks for instructions that update the register containing the

loop bound and communicate the value of the updated loop bound to the LMU. The LMU updates

the maximum bound for the loop execution and generates additional iteration indices which are

enqueued in the IDQs as space becomes available. Mechanisms to execute any data-dependence

pattern can be combined with the mechanism to execute the dynamic-bound control-dependence

pattern, although in this work we focus on xloop.uc.db.

3.2.5 XLOOPS Adaptive Execution

For certain applications with significant intra-iteration instruction-level parallelism and limited

inter-iteration parallelism, traditional execution on complex out-of-order GPPs can achieve bet-

ter performance than specialized execution on the LPSU’s simple in-order lanes. The XLOOPS

41

hardware/software abstraction enables microarchitectures to adaptively migrate an xloop between

traditional execution on the GPP and specialized execution on the LPSU.

Adaptive execution adds two new phases for profiling. When the GPP first executes an xloop it

begins a GPP profiling phase to determine the performance of traditional execution. After profiling

for a set number of iterations or cycles, the scan phase takes place as described in Section 3.2.4. At

the end of the scan phase, the GPP sends the number of profiled loop iterations and recorded cy-

cles to the LPSU. The LPSU then begins an LPSU profiling phase to determine the performance of

specialized execution. After the LPSU has executed the same number of iterations used in the GPP

profiling phase, the LPSU compares the relative performance of traditional and specialized execu-

tion. If specialized execution is slower than traditional execution, the LPSU simply instructs the

GPP to finish executing the remaining iterations. For xloop.or, CIR values for the last iteration

executed on the LPSU are copied back to the GPP.

Migrating an xloop between the GPP and LPSU only occurs at loop iteration boundaries and

involves transferring very little state. This makes xloop migration significantly more efficient

compared to thread migration across cores with private caches. Since the profiling phase itself

is a valid execution of the xloop, adaptive execution is an efficient mechanism that increases the

performance of loops that struggle with specialized execution.

The GPP includes an adaptive profiling table (APT) to record the profiling progress for a small

number of recently seen xloop instructions. The APT is indexed by the PC of the xloop instruc-

tion and contains an iteration count and, if profiling is complete, the decision on whether to use

traditional or specialized execution for future dynamic instances of the xloop. When the GPP exe-

cutes an xloop instruction, it checks the APT to see if it should continue profiling or immediately

choose traditional or specialized execution. The APT enables the profiling phases to stretch across

multiple dynamic instances of the xloop which is especially important for xloops with small iter-

ation counts. Our current implementation of adaptive execution does not reconsider the profiling

results once a decision has been made, although this is an interesting direction for future work.

3.3 XLOOPS Application Kernels

We explored a diverse set of application kernels that capture multiple inter-iteration data- and

control-dependence patterns for both single and nested loops. We include both numeric and non-

42

Loop Dynamic io ooo/2 ooo/4
Characteristics Insns Speedups Speedups Speedups

Name Suite Type Num Insns Num Iters GPI XLI X/G T S T S A T S A

rgb2cmyk-uc C uc 32 80 209K 209K 1.00 1.00 3.13 1.00 2.24 2.18 1.00 1.22 1.21
sgemm-uc C uc 27 32 340K 340K 1.00 1.00 4.03 1.06 2.29 2.03 1.00 1.17 1.10
ssearch-uc C uc 37–58 57 2.3M 2.3M 1.00 1.00 3.93 1.07 2.65 2.56 0.99 1.52 1.51
symm-uc Po uc 43 32 267K 266K 1.00 1.01 3.38 1.00 1.97 1.95 1.03 1.08 1.08
viterbi-uc C uc 31–34 1–2K 2.5M 2.3M 0.92 1.07 2.57 1.14 2.10 2.10 1.13 1.15 1.13
war-uc Po uc 21 32 438K 438K 1.00 1.00 3.33 1.00 1.91 1.90 1.00 1.85 1.84

adpcm-or M or 52 20K 932K 992K 1.06 0.97 1.16 0.94 0.82 0.94 0.94 0.55 0.94
covar-or Po or 8–17 32 177K 161K 0.91 1.05 2.58 1.00 1.38 1.35 1.03 0.85 1.05
dither-or C or 36 256 2.3M 2.3M 1.00 1.12 1.49 1.07 0.90 1.07 0.95 0.58 0.95
kmeans-or C or,ua,uc 7–41 1–100 430K 428K 1.00 1.00 3.20 0.99 1.58 1.60 1.01 0.95 1.02
sha-or M or,uc 6–24 20–64 53K 51K 0.96 1.03 1.17 1.03 0.82 0.97 0.98 0.55 0.88
symm-or Po or 16 1–30 267K 268K 1.00 1.00 2.40 1.01 1.60 1.59 1.02 0.93 0.93

dynprog-om Po om 26 1–79 794K 795K 1.00 1.00 1.26 1.00 0.71 0.99 1.01 0.36 1.00
knn-om P om,uc 26–54 1–14 791K 750K 0.95 1.00 1.44 1.05 1.36 1.35 1.05 1.12 1.12
ksack-sm-om C om 21 99 50K 62K 1.23 0.77 2.72 0.56 1.71 1.64 0.36 1.05 1.03
ksack-lg-om C om 21 99 35K 39K 1.12 0.87 3.46 0.69 1.92 1.78 0.53 1.31 1.28
war-om Po om 21 32 438K 438K 1.00 1.00 1.09 1.00 0.63 0.99 1.00 0.60 0.99

mm-orm P orm,uc 7–22 256–2K 31K 31K 0.99 1.01 3.13 1.01 2.76 2.47 0.99 2.33 2.21
stencil-orm Po orm 20 126 639K 639K 1.00 1.00 1.02 1.00 0.66 1.00 1.00 0.66 1.00

btree-ua C ua,uc 11–14 1K 101K 101K 1.00 1.00 1.52 0.99 1.07 1.04 1.00 1.06 1.02
hsort-ua C ua 42–46 512–1K 274K 278K 1.01 0.99 1.34 0.96 0.88 1.00 1.10 0.71 1.13
huffman-ua C ua,uc 6–48 256–14K 290K 292K 1.01 0.96 1.57 0.97 1.09 1.18 0.99 0.74 0.96
rsort-ua C ua 12 1K 202K 218K 1.08 0.89 2.46 0.92 1.58 1.56 0.89 0.84 0.88

bfs-uc-db C uc.db 36 DYN 62K 64K 1.04 0.97 2.96 0.53 2.11 1.83 0.41 1.54 1.35
qsort-uc-db C uc.db 70 DYN 146K 136K 0.93 1.07 2.94 1.10 2.69 2.61 1.02 2.17 2.18

Table 3.2: XLOOPS Application Kernels and Cycle-Level Results – Suite shows the benchmark suites: Po =
PolyBench; M = MiBench; P = PBBS; C = Custom. Loop characteristics shows: Type = the dependence pattern
type (multiple entries means different xloops); Num Insns = range for static instruction counts for each xloop body;
Num Iters = range for number of xloop iterations; Dynamic Insns = dynamic instruction counts for the timing critical
loop; GPI = general-purpose ISA; XLI = XLOOPS ISA; X/G = normalized XLOOPS ISA dynamic instruction count
compared to general-purpose ISA; io = in-order speedups; ooo/2 = 2-way out-of-order speedups; ooo/4 = 4-way out-of-
order speedups; T = traditional execution; S = specialized execution; A = adaptive execution. Speedups are normalized
to a standard serial implementation compiled for the general-purpose ISA and executed on the corresponding baseline
GPP. For example, the io:T column shows the speedup of an XLOOPS binary using traditional execution on an in-order
GPP relative to a serial implementation of the application kernels compiled for the general-purpose ISA executing on
the same in-order GPP.

43

numeric kernels with regular and irregular data and control flow. Table 3.2 shows the list of applica-

tion kernels and corresponding inter-iteration dependence patterns for each loop in the kernel. Our

application kernels are drawn from MiBench [GRE+01], PolyBench [pbe14], PBBS [SBF+12],

and our own custom kernels. The suffix for an application name indicates the inter-iteration de-

pendence pattern that dominates the execution time. All of the kernels were parallelized by adding

programmer annotations with minimal modifications to the original serial kernel. For select ker-

nels, we also explored manual loop-transformations and hand-coded assembly implementations as

described in Section 3.4.7.

We briefly describe the custom kernels. rgb2cmyk-uc performs color space conversion on a test

image. sgemm-uc implements a single-precision matrix multiplication for square matrices using

standard triple-nested loops. ssearch-uc implements the Knuth-Morris-Pratt algorithm to search a

collection of byte streams for the presence of substrings. viterbi-uc decodes frames of convolution-

ally encoded data using the Viterbi algorithm. dither-or generates a black-and-white image from

a gray-scale image using Floyd-Steinberg dithering. kmeans-or implements the k-means cluster-

ing algorithm. Assignment of objects to clusters is a dominant loop with inter-iteration register

dependences. ksack-*-om solves the unbounded knapsack dynamic programming problem. For

this problem, we have two variants, ksack-sm-om and ksack-lg-om, which have datasets of small

(< 10) and large (> 10) weights respectively. btree-ua constructs a binary tree from a random

set of integer inputs. hsort-ua implements the heapsort computation given a set of integer inputs.

huffman-ua implements the Huffman entropy coding compression algorithm. rsort-ua performs an

incremental radix sort on an array of integers. Each iteration updates histograms of digit lookups

using a xloop.ua and computes prefix-sum updates for the next stage of sorting. bfs-uc-db uses a

dynamically growing worklist to traverse an input graph in a breadth-first order and computes the

distance given a source node to every other node. qsort-uc-db implements the quicksort algorithm

using a dynamically growing worklist of partitions to be sorted.

We used LLVM-3.1 [llv11] for preprocessing, optimizing, and compiling, and GNU binutils

for assembling and linking. We added a custom target machine backend for a 32-bit RISC ISA

that does not support a branch delay-slot and uses a unified register file for integer and floating-

point instructions. We implemented a preprocessing script to replace the #pragma annotations

with external function calls to tag the parallel loops for analysis within LLVM, and modified the

44

LoopRotation and LoopStrengthReduction passes to include register and memory dependence

analysis to compile XLOOPS kernels.

3.4 XLOOPS Cycle-Level Evaluation

In this section, we describe our cycle-level modeling methodology and results comparing

XLOOPS to three baseline GPPs: a simple single-issue in-order processor, a moderate two-way

out-of-order superscalar processor, and an aggressive four-way out-of-order superscalar processor.

3.4.1 Cycle-Level Methodology

For our cycle-level studies, we modified the GPP models within the gem5 simulation frame-

work [BBB+11], and we implemented a model of the LPSU using PyMTL, a Python-based hard-

ware modeling framework [LZB14]. Our changes to gem5 included: modifying the in-order and

out-of-order GPP models to support AMOs and traditional execution; modifying the in-order and

out-of-order GPP models to support co-simulation with the PyMTL-based LPSU model; and im-

plementing mechanisms to migrate loop execution between the GPP and LPSU models to support

adaptive execution.

We used McPAT-1.0 to estimate the energy of the in-order and out-of-order GPPs in a 45 nm

process technology [LAS+09]. The energy for the lanes in the LPSU was modeled by adapting

McPAT’s models for simple in-order GPPs. We configured McPAT to model properly sized instruc-

tion buffers in each lane. We included an additional energy overhead of 5% to model the energy of

the LMU, index queues, and arbiters based on the results from our detailed VLSI implementation

(see Section 3.5). We conservatively accounted for the energy of xi instructions as 32-bit multi-

ply operations, and accounted for the energy of inter-iteration register dependence communication

with additional register-file read and write events. Lastly, we used the energy of an out-of-order

load-store queue to conservatively model the energy of the LSQs in the LPSU.

Table 3.3 shows the configurations for the cycle-level models of the baseline GPPs and the

LPSU lanes. We used three baseline GPPs: a single-issue in-order GPP (io), a two-way out-

of-order superscalar GPP (ooo/2), and a four-way out-of-order superscalar GPP (ooo/4). These

baseline designs enable us to quantitatively explore the performance and energy of XLOOPS com-

pared to both simple, low-energy processors as well as complex, high-performance processors.

45

io ooo/2 ooo/4 Per lane

Issue Width 1 2 4 1
Phys Regs 32 64 128 24
Int ALU 1 2 4 1
AGU/Br Pred 2/1 2/1
IQ Entries 16 32
ROB Entries 48 96
Ld/St Queue Entries 16/16 32/32 8/8
Inst Buffer Entries 128

Int Mul/Div Latency 4/10 cycles
FP Mul/Div Latency 6/6 cycles
FP Add/Sub Latency 4/4 cycles
L1I$/L1D$/L2$/L3$ 16KB/16KB/1MB/16MB

Out-of-Order Tournament Branch Pred
Features Store-Set-Based Memory Dep Pred

Table 3.3: Cycle-Level System Configuration
Cycle-Level System Configuration

We augmented each baseline GPP with an LPSU to create three XLOOPS configurations: io+x,

ooo/2+x, and ooo/4+x. Each of these configurations supports traditional, specialized, and adaptive

execution. Integrating the LPSU into all three baseline GPPs enabled understanding the subtle in-

teractions between out-of-order and specialized execution (e.g., out-of-order scan phase, memory

fences before and after specialized execution), and also enabled exploring adaptive execution in

various contexts.

3.4.2 Traditional Execution

Table 3.2 shows the results for traditional execution of XLOOPS binaries. Each T column

shows the speedup for each kernel compiled for the XLOOPS ISA using traditional execution on

one of the GPPs relative to the kernel compiled for the general-purpose ISA executing on the same

GPP. The goal for traditional execution is for this speedup to be as close to 1⇥ as possible. In other

words, for traditional execution, we simply wish to reduce the performance overhead of using

the XLOOPS ISA compared to the general-purpose ISA when executing on traditional general-

purpose microarchitectures. We observe that the performance overhead of traditional execution

is minimal and is within 5% of the general-purpose ISA for all processors with the exception

of ksack-*-om and rsort-ua. The dynamic instruction counts suggest that compiler optimizations

46

rg
b2

cm
yk

-u
c

sg
em

m
-u

c

ss
ea

rc
h-

uc

sy
m

m
-u

c

vi
te

rb
i-u

c

w
ar

-u
c

ad
pc

m
-o

r

co
va

r-o
r

di
th

er
-o

r

km
ea

ns
-o

r

sh
a-

or

sy
m

m
-o

r

dy
np

ro
g-

om

kn
n-

om

ks
ac

k-
sm

-o
m

ks
ac

k-
lg

-o
m

w
ar

-o
m

m
m

-o
rm

ste
nc

il-
or

m

bt
re

e-
ua

hs
or

t-u
a

hu
ffm

an
-u

a

rs
or

t-u
a

bf
s-

uc
-d

b

qs
or

t-u
c-

db

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S

p
ee

d
u

p
 N

o
rm

al
iz

ed
 t

o
 i

o
ooo/2 ooo/4 ooo/2+x

Figure 3.5: XLOOPS Cycle-Level Speedups – Each bar shows the speedup normalized to in-order (io) processor
baseline kernels. ooo/2 = 2-way out-of-order processor; ooo/4 = 4-way out-of-order processor; ooo/2+x = ooo/2
augmented with LPSU.

could potentially close the gap for these kernels by reducing the number of extra instructions

generated when using the XLOOPS ISA. In addition, we occasionally required additional AMOs

in the XLOOPS binary compared to the general-purpose binary. Our current implementation of

AMOs on the out-of-order GPPs is rather conservative, and this partly accounts for the discrepancy

in traditional execution on these out-of-order GPPs (i.e., speedups <1 in T columns). These results

are encouraging and make a case for gradual adoption of the XLOOPS abstraction in GPPs without

significant overhead. In addition, efficient traditional execution will be a key enabler for adaptive

execution.

3.4.3 Specialized Execution

Table 3.2 shows the results for specialized execution of XLOOPS binaries. Each S column

shows the speedup for each kernel compiled for the XLOOPS ISA using specialized execution

on a GPP+LPSU relative to the kernel compiled for the general-purpose ISA executing on the

corresponding GPP. We observe that specialized execution always benefits the in-order processor.

For a total of 25 application kernels, specialized execution performs better for 18 kernels compared

to ooo/2, and performs better for 12 kernels compared to ooo/4.

Figure 3.5 summarizes the results comparing the baseline GPPs and the XLOOPS configura-

tions. All speedups are normalized to each kernel compiled for the general-purpose ISA executing

on io. The figure shows the speedup for each kernel compiled for the general-purpose ISA exe-

cuting on ooo/2 and ooo/4, and also shows the speedup for each kernel compiled for the XLOOPS

ISA using specialized execution on ooo/2+x. Results for io+x and ooo/4+x are similar to ooo/2+x

47

rg
b2

cm
yk

-u
c

sg
em

m
-u

c

ss
ea

rc
h-

uc

sy
m

m
-u

c

vi
te

rb
i-u

c

w
ar

-u
c

ad
pc

m
-o

r

co
va

r-o
r

di
th

er
-o

r

km
ea

ns
-o

r

sh
a-

or

sy
m

m
-o

r

dy
np

ro
g-

om

kn
n-

om

ks
ac

k-
sm

-o
m

ks
ac

k-
lg

-o
m

w
ar

-o
m

m
m

-o
rm

ste
nc

il-
or

m

bt
re

e-
ua

hs
or

t-u
a

hu
ffm

an
-u

a

rs
or

t-u
a

bf
s-

uc
-d

b

qs
or

t-u
c-

db
0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f
S

ta
ll

s
an

d
 S

q
u
as

h
es

RAW

MEM

LLFU

RD

MD

LSQ

Misc

Figure 3.6: Stall and Squash Breakdown – Breakdown of average stall and squash cycles normalized to the number
of cycles when the LPSU is active. RAW = read-after-write stalls; MEM = stalls due to data memory port access
contention; LLFU = stalls due to LLFU access contention; RD = stalls due to inter-iteration register dependences;
MD = squashes due to inter-iteration memory dependence violations; LSQ = stalls due to LSQ structural hazards;
Misc = stalls due to write-after-write register-file port contention for LLFU operations and other structural hazards.

and are omitted for simplicity. Figure 3.6 shows the breakdown of stall and squash cycles for

specialized execution.

Specialized execution for kernels dominated by xloop.uc shows speedups in the range of 2.7–

4⇥ compared to io. Performance of sgemm-uc, war-uc, and symm-uc are limited by intra-iteration

RAW dependencies. rgb2cmyk-uc and viterbi-uc are constrained by stalls due to contention for

the shared memory port. Figure 3.6 shows that sharing the LLFU does not significantly hurt

the performance of any of the xloop.uc kernels. Sharing the LLFU drastically reduces the area

overhead of XLOOPS (see Section 3.5). Our results show that for xloop.uc, specialized execution

is superior to io and complexity-effective compared to the more complicated out-of-order GPPs.

Specialized execution for kernels dominated by xloop.or is usually limited by the inter-

iteration critical path. For kmeans-or and symm-or, this critical path is a single instruction, re-

sulting in improved performance compared to ooo/2. Most of the other xloop.or kernels have

much longer inter-iteration register dependences. For these kernels, the out-of-order GPPs per-

form better than specialized execution due to their ability to exploit intra-iteration instruction-level

parallelism. Future work could explore superscalar and out-of-order lane microarchitectures.

48

rg
b2

cm
yk

-u
c

sg
em

m
-u

c

ss
ea

rc
h-

uc

sy
m

m
-u

c

vi
te

rb
i-u

c

w
ar

-u
c

ad
pc

m
-o

r

co
va

r-o
r

di
th

er
-o

r

km
ea

ns
-o

r

sh
a-

or

sy
m

m
-o

r

dy
np

ro
g-

om

kn
n-

om

ks
ac

k-
sm

-o
m

ks
ac

k-
lg

-o
m

w
ar

-o
m

m
m

-o
rm

ste
nc

il-
or

m

bt
re

e-
ua

hs
or

t-u
a

hu
ffm

an
-u

a

rs
or

t-u
a

bf
s-

uc
-d

b

qs
or

t-u
c-

db
0.0

0.5

1.0

1.5

2.0

2.5

S
p
ee

d
u
p
 N

o
rm

al
iz

ed
 t

o
 o

o
o
/4

specialized adaptive

Figure 3.7: Adaptive Execution Speedups – Results for specialized execution and adaptive execution of kernels
encoded with XLOOPS ISA on ooo/4+x relative to kernels encoded with general-purpose ISA on ooo/4.

Specialized execution for kernels dominated by xloop.{om,orm,ua} is usually limited by

LSQ structural hazards and squashing speculative work due to memory dependence violations.

btree-ua, dynprog-om, war-om, mm-orm, and knn-om are all limited by LSQ structural hazards.

hsort-ua, huffman-ua, and rsort-ua kernels are all limited by squashing speculative work. Even

with these limitations, specialized execution is still competitive with ooo/2 on many of these ker-

nels and even out-perform ooo/4 on mm-orm and btree-ua. Note that the number of squashes can

depend on the dataset. For example, ksack-sm-om has an input dataset of small weights that results

in nearby iterations accessing the same memory addresses. This increases the number of mem-

ory dependence violations. ksack-lg-om has an input dataset of large weights that results in fewer

memory dependence violations. Static compiler analysis would have difficulty predicting these

data-dependent performance results.

Specialized execution for kernels dominated by xloop.uc.db significantly out-perform both

ooo/2 and ooo/4. This is because the worklist-based implementation allows the LPSU to exploit

significant inter-iteration instruction- and memory-level parallelism compared to the out-of-order

processors. xloop.uc.db kernels illustrate the potential for encoding more sophisticated inter-

iteration dependence patterns in the instruction set.

49

1 2 3 4

�
(a) io+x

0.5

1.0

1.5

2.0

2.5

3.0

3.5
N

o
rm

al
iz

ed
 E

n
er

g
y
 E

ff
ic

ie
n
cy

0.5 1.0 1.5 2.0 2.5 3.0

Normalized Performance
(b) ooo/2+x

specialized adaptive

0.5 1.0 1.5 2.0 2.5

�
(c) ooo/4+x

Figure 3.8: Energy Efficiency vs. Performance – Cycle-level performance and McPAT energy results of specialized
and adaptive execution for (a) io+x normalized to io, (b) ooo/2+x normalized to ooo/2, (c) ooo/4+x normalized to
ooo/4. Diagonal lines are iso-power contours.

3.4.4 Adaptive Execution

Adaptive execution bridges the performance gap between aggressive out-of-order GPPs and

specialized execution. Figure 3.7 shows the results comparing the performance of specialized

and adaptive execution on ooo/4+x. Based on preliminary experiments, we use 256 iterations and

2000 cycles as thresholds for the profiling phases. For kernels where traditional execution performs

better than specialized execution, adaptive execution is able to automatically choose to migrate the

execution from the LPSU back to the GPP. For kernels where specialized execution performs better

than traditional execution, our results show that the overhead of profiling and work migration cause

only minimal performance degradation. Table 3.2 also includes results for adaptive execution with

ooo/2+x. Adaptive execution makes a compelling case for the flexibility provided by the elegant

XLOOPS hardware/software abstraction.

3.4.5 Energy Efficiency vs. Performance

Figure 3.8 shows the dynamic energy efficiency and performance for specialized and adaptive

execution on io+x, ooo/2+x, and ooo/4+x. The io+x results are normalized to kernels compiled

for the general-purpose ISA executing on io, the ooo/2+x results are normalized to kernels com-

piled for the general-purpose ISA executing on ooo/2, and so on. The diagonal lines represent

iso-power contours. Specialized execution adds minimal energy overhead and results in increased

50

sgemm-uc viterbi-uc covar-or kmeans-or btree-ua

2

4

6

8

S
p
ee

d
u
p
 N

o
rm

al
iz

ed
 t

o
 i

o

ooo/4

ooo/4+x4

ooo/4+x4+t

ooo/4+x8

ooo/4+x8+r

ooo/4+x8+r+m

Figure 3.9: Microarchitectural Design Space Exploration Speedups – Normalized to running baseline kernel on
io. ooo/4 = 4-way out-of-order processor; x4/x8 = LPSU design with 4 and 8 lanes, respectively; r = additional LLFUs
and data memory ports; t = 2-way multithreading; m = additional LSQs.

performance compared to io across all applications. For ooo/2+x and ooo/4+x, specialized exe-

cution is more energy efficient across all applications. The performance trends are as explained

in Sections 3.4.3 and 3.4.4. Specialized execution on io+x consumes more dynamic power for

all applications, while specialized execution on ooo/2+x is power-efficient for 10 applications.

Compared to ooo/4, specialized execution is not only more energy efficient but also consumes less

power. Figure 3.8(b,c) shows that the performance benefit of adaptive execution comes at the cost

of reduced energy efficiency. Overall, the results suggest that a combination of specialized and

adaptive execution offers a complexity-effective design point compared to more traditional GPPs.

3.4.6 Microarchitectural Design Space Exploration

The XLOOPS hardware/software abstraction enables a rich microarchitectural design space

with a variety of different potential microarchitectural optimizations. In this section, we explore

some of this design space. We evaluate these features using select kernels that are representative

of various inter-iteration dependence patterns.

We first consider adding limited vertical multi-threading to the lanes. Application kernels such

as sgemm-uc that are limited by read-after-write stalls benefit from two-way multi-threading (see

ooo/4+x4+t in Figure 3.9). However, multi-threading does not benefit all kernels, and we see

reduced performance for viterbi-uc due to increased contention for the shared memory ports. We

disable multi-threading for xloop.{or,om,orm} as it slows the execution of the inter-iteration

critical path and/or the non-speculative lane.

51

Name Loop Type io+x ooo/2+x ooo/4+x

adpcm-or-opt or 1.86 1.32 0.88
dither-or-opt or 2.48 1.51 0.97
sha-or-opt or 1.55 1.13 0.82

bfs-uc uc 2.73 1.96 1.50
dither-uc uc 2.49 1.54 1.00
kmeans-uc uc 3.60 1.79 1.08
qsort-uc uc 2.35 2.15 1.62
rsort-uc uc 1.85 1.23 0.68

Table 3.4: Case Study Results – Speedups normalized to kernel compiled for general-purpose ISA.

Doubling the number of lanes to eight (ooo/4+x8) improves the performance for sgemm-uc

by 68% and kmeans-or by 28% as neither of these applications are limited by the shared LLFU

and memory port. viterbi-uc only sees moderate improvement as it is limited by memory port

contention. Kernels limited by inter-iteration critical paths (e.g., covar-or) or by LSQ structural

hazards (e.g., btree-ua) do not benefit from increased lanes.

We also consider doubling the shared LLFUs and memory ports (ooo/4+x8+r). This improves

the performance of viterbi-uc by reducing memory port contention and the performance of sgemm-

uc by reducing LLFU contention. kmeans-or benefits from both increased memory and LLFU

resources. Finally, we explore increasing the size of the LSQs to 16+16 entries (ooo/4+x8+r+m)

and find that the performance of btree-ua improves by 80%. None of the improvements in the

final aggressive LPSU design reduce stalls due to inter-iteration register dependence, so we see no

significant improvement in the performance of covar-or.

Overall, our final highly optimized LPSU design is able to significantly increase performance

compared to the baseline LPSU design, but of course these optimizations also increase area and

design complexity.

3.4.7 Application Case Studies

In this section we consider hand-optimized xloop.or kernels and manual loop transformations.

Results are summarized in Table 3.4.

Hand-Optimized xloop.or – We observed that out-of-order GPPs perform better than the

LPSU designs for several xloop.or kernels because of their ability to extract ILP when the LPSU

52

lanes stall due to inter-iteration register dependences. We compare the benefits of reducing the

cross-iteration critical path for each CIR, by hand-scheduling compiler generated code, for a few

select kernels. Table 3.4 shows that adpcm-or-opt, dither-or-opt, and sha-or-opt boost the per-

formance of specialized execution by 50–70%. With these scheduling optimizations, specialized

execution of xloop.or kernels is competitive with ooo/2 and ooo/4. Future work can improve the

XLOOPS compiler to schedule instructions more optimally.

Loop Transformations – We explored alternative loop parallelization strategies including:

general parallel programming techniques such as privatize-and-reduce; using split worklists as

opposed to unified worklists; and atomic data-structure updates to parallelize loops with register

and memory dependences. Our results from Tables 3.2 and 3.4 suggest that transforming xloop.or

and xloop.om into xloop.uc does not always result in improved performance. Kernels such as

bfs-uc, kmeans-or, rsort-ua, and qsort-uc outperform their loop transformed counterparts. Only

dither-uc benefits from these transformations. Because simply annotating serial versions of the

kernels often performs better than code with significant transformations, XLOOPS allows ease-of-

programmability without sacrificing performance.

3.5 XLOOPS VLSI Evaluation

In this section we present a register-transfer-level (RTL) model for a basic LPSU which sup-

ports xloop.uc instructions. We synthesize and place-and-route this implementation using a com-

mercial ASIC CAD toolflow and present results for area, energy, and timing.

3.5.1 VLSI Methodology

Our RTL baseline design is a five-stage in-order GPP that executes 32-bit RISC instructions.

The GPP uses a 16KB instruction and a 16KB data cache. We implemented a variety of de-

tailed cycle-accurate LPSU configurations capable of supporting xloop.uc using parameterized

Verilog RTL models to evaluate the area, energy, and timing. Note that our current RTL im-

plementation does not support xi instructions. To compile the applications, we modified the

LoopStrengthReduction pass in LLVM to disable the generation of xi instructions.

We target a 40 nm TSMC process using a Synopsys ASIC CAD toolflow: VCS for RTL simu-

lation, DesignCompiler for synthesis, IC Compiler for place-and-route, and PrimeTime for power

53

Percentage Area Breakdown

Name CT AA AO SP I$ D$ MD FP IB LN IQ MI

scalar 1.95 0.25 8 33 37 11 10

lpsu+i096+ln4 2.16 0.35 42 6 24 26 9 8 6 19 ~0 2
lpsu+i128+ln4 2.14 0.36 44 5 23 26 9 8 6 19 ~0 2
lpsu+i160+ln4 2.12 0.36 45 5 23 26 9 8 6 20 ~0 2
lpsu+i192+ln4 2.20 0.37 48 5 23 25 8 8 10 18 ~0 2

lpsu+i128+ln2 1.98 0.31 24 6 27 30 10 9 4 12 ~0 1
lpsu+i128+ln6 2.28 0.41 65 5 20 23 8 7 8 26 1 2
lpsu+i128+ln8 2.54 0.44 77 4 19 20 8 7 10 29 1 2

Table 3.5: VLSI Area, Cycle Time Results for LPSU – CT = cycle time in nanoseconds; AA = absolute area in
mm2; AO = percent area overhead compared to scalar baseline; SP = scalar processor; I$ = instruction cache; D$ =
data cache; MD = integer multiply-divide unit; FP = floating-point unit; IB = LPSU instruction buffers; LN = LPSU
lanes; IQ = index queues; MI = arbiters for data-memory and LLFUs, and other miscellanous control logic; Percents
rounded to nearest tens

analysis. We did not have access to a memory compiler for our target process, so we model cache

tag/data SRAMs and the LPSU instruction buffer SRAM using CACTI [MBJ09]. The datasets

were tailored to fit in the L1 cache.

3.5.2 VLSI Area Results

Table 3.5 presents area results based on post-place-and-route area estimates. We compare the

area of the baseline GPP and the LPSU designs with four lanes by varying the capacity of in-

struction buffer (96–192 entries) and by varying the number of lanes (2–8) with a fixed instruction

buffer size of 128 entries. Each configuration name begins with lpsu and a suffix with i to denote

the instruction buffer size and ln to denote the number of lanes.

Total area of the primary LPSU design (lpsu+i128+ln4) is 0.36 mm2 which is only 43% larger

than the GPP (0.25 mm2). Sharing the LLFU and memory port is a key design decision that results

in minimal area overheads. Varying the instruction buffer size (96–192) with four lanes shows that

area overheads range between 41–48% compared to GPP suggesting that larger instruction buffers

are reasonable. Varying the number of lanes (2–8) for a fixed instruction buffer size of 128 shows

that area overheads range between 24–77%. These results confirm that the area overhead of a given

LPSU design increases roughly linearly with the number of lanes.

54

1.0 1.5 2.0 2.5 3.0

Performance

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

E
n

er
g

y
 e

ff
ic

ie
n

cy

bfs-uc

dither-uc

rgb2cmyk-uc

sgemm-uc

viterbi-uc

war-uc

Figure 3.10: VLSI Energy Efficiency vs. Performance – Compares the in-order GPP augmented with the LPSU
normalized to baseline the in-order processor. Diagonal line is the iso-power contour.

3.5.3 VLSI Energy Efficiency vs. Performance Results

Figure 3.10 compares the energy efficiency and performance of specialized execution relative

to the kernels compiled for the general-purpose ISA executing on the GPP. Specialized execution

improves performance by 2.4–4⇥ (ssearch-uc gets a speedup of 4⇥; not shown in Figure 3.10).

Specialized execution on the LPSU consumes more power compared to the GPP since the LPSU

executes several instructions in parallel. Performance results roughly correspond to the trends seen

using our cycle-level models (see Section 3.4). sgemm-uc has worse performance compared to the

cycle-level evaluation due to an increase in dynamic instruction count caused by the lack of xi

instructions. Our ASIC CAD toolflow reports that the energy for an access to an LPSU instruction

buffer is cheaper by a factor of ten compared to an access to the instruction cache. Since most

of the application time is spent in executing xloops, LPSU designs result in significant energy

savings due to reduced instruction cache accesses. Improvements in energy efficiency are in the

range of 1.6–2.1⇥. These results suggest that our McPAT results are relatively conservative.

3.6 XLOOPS FPGA Prototype

In this section we discuss an XLOOPS FPGA prototype for a basic LPSU which supports

xloop.uc instructions. We present results for running simple microbenchmarks on the XLOOPS

FPGA prototype.

55

LUTs Registers BRAMs

baseline 16169 11204 95
lpsu+i256+2ln 19978 12400 95
lspu+i256+4ln 23789 13596 95

Available total 53200 106400 280

Table 3.6:
FPGA Area Results – Results for the LPSU designs implemented on the Zedboard. Based on
the results above a lane requires about 1905 LUTs and 598 registers approximately. The BRAM
resources remain the same as the memory system remains the same across the designs.

3.6.1 FPGA Methodology

We used the Zedboard, which includes a Zynq-7000 All Programmable SoC [Zyn18], as the

platform for our XLOOPS FPGA prototype. The Zynq-7000 includes two ARM Cortex-A9 cores

tightly integrated with a high-performance reconfigurable fabric. One of the ARM cores served as

the host processor for the prototype meaning it ran a full Linux operating system and handled all

I/O for the prototype. In particular, we used the Xillinux distribution [Xil18] which is an Ubuntu-

based Linux distribution that includes a custom Xillybus FPGA development kit. The Xillybus

FPGA development kit provides host drivers that expose the FPGA device as device files for the

software development. The Xillybus hardware IP communicates with the host processor using the

AXI protocol and provides a FIFO interface to the FPGA design. The Xillybus FPGA development

kit greatly simplified the prototyping effort.

Our design includes a five-stage in-order GPP that executes 32-bit RISC instructions. The GPP

uses a 16-KB two-way set-associative instruction and data cache. The instruction and data caches

are backed by a 32-KB main memory. The 32-KB main memory was selected based on the size

of the microbenchmarks and the datasets that were used to evaluate the prototype. The LPSU

design is parameterized by the number of lanes. Each lane in the LPSU includes a 256B L0 buffer

and a two-element index queue. Note that our current FPGA implementation does not support xi

instructions. The XLOOPS FPGA design is currently programmed via assembly programming.

The host processor is responsible for loading the programming into the main memory, signaling

the XLOOPS GPP to begin execution, and monitoring a done signal asserted by the design to

indicate the end of a program. The host program reads and writes named control registers in the

design that toggle the collection of statistics.

56

3.6.2 FPGA Area Results

Table 3.6 presents area results for the implemented design based on the report generated by

the Xilinx-ISE 14.2 design tools. We report the FPGA device utilization broken down by the total

lookup-tables (LUTs), registers, and block-RAM memory usage. The table presents the device

utilization for a baseline design which only has the GPP and the results for implemented the LSPU

with two lanes and four lanes. Each configuration name begins with lpsu and a suffix with i to

denote the instruction buffer size and ln to denote the number of lanes.

The design with two lanes (lpsu+i256+ln2) consumes approximately 24% overhead and the de-

sign with four lanes consumes approximately 50% overhead compared to just the general-purpose

processor and L1 caches alone. This is higher than our VLSI results since the FPGA prototype

does not include a floating-point unit (the FPU is part of the baseline and is shared with the LPSU

in the VLSI results). The design with four lanes uses 96% of the available slices, so mapping

XLOOPS accelerators with more lanes would require moving to a larger FPGA. Static timing

analysis suggests the designs can run at 33 MHz, although we did our actual experiments running

at 25 MHz.

3.6.3 FPGA Performance Results

We discuss the results for the primary LPSU design with four lanes (lpsu+i256+ln4) compared

to the baseline design executing on the GPP only. We implemented and evaluated three microbenc-

marks. vvadd computes element-wise vector addition of two input arrays and stores the result in a

destination array. The length of the vector is 100. binsearch performs a binary search in a dictio-

nary of key-value pairs. The dictionary size and the search sizes were 50 each. mfilter performs a

masked convolution with a five-element kernel across a 50 ⇥ 50 image input.

For vvadd we observed a speedup of 3.2⇥, for the binsearch kernel we observed a speedup of

5.7⇥, and for the mfilter kernel we observed a speedup of 2.5⇥. Note for the binsearch kernel,

the parallel execution is super-linear as the computation can be overlapped with cache misses. The

kernel has a lot of cold misses for the scalar execution whereas the parallel execution results in

hiding cold misses in the cache.

57

3.7 Related Work

Most of the previous work on loop-level specialization including data parallel accelerators

(DPAs), speculative parallelization, hardware task scheduling, transactional memory, and accel-

erators, tightly couple the abstraction and microarchitecture. XLOOPS is an elegant approach that

unifies many of these proposals with a novel abstraction that can be mapped on to traditional,

specialized, and adaptive microarchitectures.

ASIPs integrate specialized circuits into a traditional processor pipeline which benefits a spe-

cific domain of applications and are limited in generality [CFHZ04]. Architectures such as CCA

[CKP+04], DySER [GHS11], and BERET [GFA+11] provide reconfigurable datapaths to accel-

erate critical subgraphs of computation within a loop iteration. Our current work focuses more on

inter-iteration loop dependence patterns.

xloop.uc – Many commercial DSPs [CWS+14, ti08] support zero-overhead loops in the form

of a special loop or repeat instruction. These architectures allow the execution of loops with no

ordering constraints and require no hardware support for control speculation. DPAs are exam-

ples of architectures that exploit inter-iteration data-level parallelism. Streaming SIMD exten-

sions, Advanced Vector Extensions (AVX), and vector ISA extensions [WAK+96, KP03, EVS98]

amortize the overheads of instruction processing and increase performance by executing parallel

operations. These architectures suffer when executing code with intra-iteration control-flow, loop-

carried register-dependences, and divergent memory accesses [GNS13]. Furthermore, they rely

heavily on vectorizing compilers which is an active area of research. Mainstream GPUs [LNOM08,

WKP11] and Maven [LAB+11] alleviate the problems of traditional vector processors but require

more radical changes across ISA, compiler and microarchitecture compared to XLOOPS.

xloop.ua – Transactional memory (TM) systems [HLR10] coordinate the execution of paral-

lel computations by committing non-conflicting memory updates. In [ZMLM08], authors modify

traditional architectures to include a hardware TM system and expose transactions to software

through instruction-set extensions to exploit loop-level parallelism. Our XLOOPS abstraction al-

lows for a variety of microarchitectures that can take advantage of the xloop.ua data-dependence

pattern.

xloop.or – Multiscalar [SBV95], vector-like proposals [Jes01, KBH+04], and others [KT99,

ZMLM08] propose register bypass networks similar to the CIBs to handle inter-iteration register

58

dependences. HELIX-RC [CBK+14] proposes a ring-cache architecture to communicate register

dependences. XLOOPS is potentially more elegant as it avoids requiring ISA extensions to specify

the dependence communication unlike previous proposals.

xloop.om – Multiscalar and TLS proposals [SCZM00, KT99] are speculative parallelization

techniques that provide hardware memory-dependence speculation to exploit loop-level paral-

lelism. XLOOPS proposes per-lane LSQs and a store broadcast network to support memory-

dependence speculation in hardware. Previous speculative parallelization techniques show promise

but demand dramatic changes in the microarchitecture, compiler, and/or ISA. HELIX-RC [CBK+14]

takes an alternative approach of decoupling memory dependence communication without employ-

ing speculation but relies on an aggressive parallelizing compiler. The XLOOPS ISA could be

extended to include instructions for lane synchronization to benefit compiler optimizations as in

HELIX-RC.

xloop.*.db – Carbon [KHN07] and Asynchronous Data Messages (ADM) [SYK10] are two

proposals that exploit fine-grain loop-level parallelism through hardware-only and hybrid hardware-

software work distribution queues. The XLOOPS dynamic-bound construct is similar in spirit by

allowing mapping loops with dynamic work generation.

3.8 Conclusions

In this chapter, we have introduced XLOOPS, a new hardware specialization approach for ex-

ploiting inter-iteration loop dependence patterns. The XLOOPS proposal enables lane-based BSAs

to execute challenging loops with complex inter-iteration dependences which cannot be mapped

to traditional accelerators such as packed-SIMD and vector units. The XLOOPS instruction set

provides an elegant hardware/software abstraction that serves as an effective compiler target and

enables a variety of microarchitectures supporting traditional, specialized, and adaptive execution.

We have used a vertically integrated evaluation methodology spanning applications, compilers,

cycle-level modeling, RTL modeling, and VLSI implementation to make a compelling case for

augmenting both in-order and out-of-order general-purpose processors with a loop-pattern spe-

cialization unit. We also prototyped a simple LPSU design using the Xillinx Zedboard FPGA

platform.

59

XLOOPS makes a case for single-ISA heterogeneous architectures that transparently integrate

traditional GPPs and specialized loop accelerators. Single-ISA heterogeneous architectures are not

new, but past work in academia and industry has focused on composing different kinds of tradi-

tional processor microarchitectures that all implement the same instruction set, e.g., composing

many simple in-order processors with a few complex out-of-order processors. XLOOPS demon-

strates that it is also possible to integrate more exotic specialized loop accelerators, while still

supporting a common performance-portable instruction set. Using the hardware instruction set as

the portable abstraction layer (as opposed to related work on virtual instruction sets or common

programming APIs) enables dynamic, fine-grain migration between different microarchitectures

with minimal overhead.

The XLOOPS instruction set allows software to communicate significant compile-time infor-

mation about inter-loop dependence patterns to the hardware while liberating microarchitects to

explore a diverse range of accelerators. The XLOOPS instruction set provides significant freedom

to microarchitects. GPPs can potentially better exploit the additional semantic information en-

coded in an XLOOPS binary during traditional execution. Examples include adding loop buffers

managed by the xloop instructions, using the xloop instructions as hints to turn off power hun-

gry components in out-of-order processors, or using the xloop instructions to guide hardware

prefetching. The proposed XLOOPS microarchitecture for specialized execution is rather sim-

ple with in-order lanes, but the XLOOPS instruction set facilitates a much more diverse range of

potential specialized engines including aggressive out-of-order lanes, heterogeneous LPSUs com-

prised of both simple and complex lanes, and clustered groups of lanes to directly exploit nested

loop-level parallelism.

The XLOOPS microarchitecture supports the execution of a single binary in multiple ways:

(1) traditional execution with minimal performance impact, (2) specialized execution to improve

performance and/or energy efficiency, and (3) adaptive execution that can seamlessly migrate loops

between traditional and specialized execution to dynamically trade-off performance vs. energy effi-

ciency. We see this as a new execution paradigm for future single-ISA heterogeneous architectures

and we hope that other researchers will adopt this execution paradigm in their work. Furthermore,

the specific adaptive execution mechanism described in this chapter is relatively simplistic. There

are interesting opportunities to explore a spectrum of adaptive execution mechanisms that maxi-

mize energy efficiency, distribute loops across multiple different specialized loop accelerators, use

60

more sophisticated performance prediction for loop migration, and dynamically determine which

loop to parallelize in a loop nest.

61

CHAPTER 4
SSAS: LANE-BASED BSAS FOR FORK-JOIN-CENTRIC
PARALLELIZATION AND SCHEDULING STRATEGIES

Loop-centric parallel programs are popular since many computations can be expressed over

simple partitions of input data using loops. However, there are many algorithms that are more

naturally expressed as recursive, divide-and-conquer task-parallel computations. In this chap-

ter, I propose smart sharing architectures (SSAs), a new approach to building lane-based BSAs

that can efficiently support fork-join-centric parallelization and scheduling strategies. Prior lane-

based BSAs such as packed-SIMD and vector units as well as XLOOPs cannot elegantly handle

fork-join-centric parallel programs. Currently, CMP architectures are the best-suited platforms

to execute fork-join-centric parallel programs. Section 4.1 briefly discusses some of the benefits

of fork-join-centric parallel programs and motivates the case for lane-based BSAs as target ar-

chitectures for these programs. Section 4.2 reviews the work-stealing scheduling strategy used

to execute fork-join-centric parallel programs. Section 4.3 discusses the design space for SSAs.

The design of SSAs is based on two key ideas: (a) there is a considerable amount instruction re-

dundancy in fork-join-centric parallel programs; and (b) exploiting instruction redundancy using

complexity-effective smart sharing mechanisms allows SSAs to reduce costs, maximize efficiency,

and improve performance of fork-join-centric parallel programs. Section 4.4 presents the evalua-

tion methodology, application kernels used, and the results for evaluating SSA designs. Section 4.5

discusses related work, and the chapter concludes in Section 4.6.

4.1 Introduction

The MIT Cilk project [BJK+95, BL99, FLR98] popularized the use of fork-join-centric par-

allelization and scheduling strategies to efficiently implement recursive, divide-and-conquer task

parallel computations. Cilk has inspired many task parallel programming frameworks that in-

clude Intel’s C++ Threading Building Blocks (TBB) [Rei07,int15], Intel’s Cilk Plus [Lei09,int13],

Microsoft’s .NET Task Parallel Library [LSB09, CJMT10], Java’s Fork/Join Framework [Lea00,

jav15], and OpenMP [ope13]. The fork-join-centric model extends the control-flow in serial pro-

grams by including fork and join primitives. The fork primitive allows a parent task to spawn a

child task, which can potentially execute in parallel, and the join primitive expresses a synchroniza-

62

tion point for spawned child tasks upon return. Software runtime frameworks provide abstractions

for fork/join primitives, and typically implement a work-stealing scheduling strategy. Section 4.2

discusses one such runtime inspired by the Intel TBB framework.

There are several benefits provided by fork-join-centric parallelization and scheduling strate-

gies. The fork-join-centric model provides an important property of serial elision, i.e., serial ex-

ecution of a fork-join-centric parallel program can be achieved by simply removing the fork and

join primitives. Serial elision aids in improving the productivity of a programmer. A program-

mer can first focus on developing a serial program that can be easily parallelized later by adding

fork and join primitives. Additionally, fork-join-centric parallel programming frameworks such as

Intel TBB and Intel Cilk Plus provide data structures that can handle accesses to shared mutable

objects. These frameworks also include data-race detector tools that further simplify the task of

parallel programming. The task-based abstraction used in fork-join-centric parallel programming

frameworks is portable across operating systems, compilers, and hardware platforms. The map-

ping of tasks to hardware threads is managed by the underlying work-stealing scheduling runtime

thus, making it easy to maintain fork-join-centric parallel programs. Lastly, fork-join-centric par-

allel programs naturally express divide-and-conquer algorithms with good cache behavior. The

recursive division of a large problem into smaller sub-problems using fork primitives reduces the

size of the working-set of a leaf task to fit in the cache. Work-stealing runtimes use locality-aware

heuristics to efficiently combine the results of each sub-problem using join primitives. The field

of cache-oblivious algorithms [FLPR12] focuses on formulating divide-and-conquer algorithms

expressed as fork-join-centric parallel programs to exploit good cache behavior.

Currently, CMP architectures are the most flexible and best-suited hardware platforms to ex-

ecute fork-join-centric parallel programs. Tasks in fork-join-centric parallel programs fundamen-

tally are based on more that loop iterations which makes it difficult to use packed-SIMD and vector

units. Auto-vectorization of a work-stealing runtime implementation is not possible as each thread

maintains its own stack and local queues, and each thread also requires complex synchroniza-

tion mechanisms to manage task distribution for efficient load-balancing. The XLOOPS proposal

can encode dynamic work using the xloop.*.db instruction but requires a programmer to ex-

press an algorithm using loop constructs only. Hence, fork-join-centric parallel programs have

an affinity towards multi-core platforms. With the growing popularity of task-based parallel pro-

gramming frameworks, architects have proposed a variety of specialized CMP-based platforms.

63

Percentage Area Breakdown

Name Tech node. AA SP I$ D$ MD FP

RV64G 16nm 0.10 10 30 36 22

XLOOPS 40nm 0.25 8 33 37 11 10

Table 4.1: Area Breakdown for RV64G and XLOOPS scalar Core – The area numbers show that the scalar in-
order core for both the 64-bit RV64G processor and the 32-bit RISC-based XLOOPS processor are dominated by
instruction and data caches as well as as the long-latency funcitonal units. Note, the RV64G core uses an iterative
integer multiply-divide unit which is part of the scalar pipeline. AA = absolute area in mm2; SP = scalar processor;
I$ = instruction cache; D$ = data cache; MD = integer multiply-divide unit; FP = floating-point unit;

In Carbon [KHN07], the authors propose to implement a work-stealing scheduler using a set of

hardware task queues and use specialized communication networks to efficiently distribute tasks

amongst the cores. ADM [SYK10] uses a software/hardware co-design approach, where cores

communicate tasks by sending direct messages over a specialized network while representing task

queues in software. Minnow [ZMTC18] is a recent technique that augments each CMP core with

a Minnow engine, a programmable accelerator that offloads worklist scheduling and performs

worklist-directed prefetching. Carbon, ADM, and Minnow seek to scale CMP platforms for fine-

grained task parallelism by focusing on improving the overheads of work-stealing runtimes.

Scaling cores in a CMP platform is fundamentally challenged by the power constraints [EBA+11]

and area costs. CMP architectures that target large amounts of fine-grained task parallelism typi-

cally use simple in-order cores to scale core counts to match the available parallelism. For example,

in ADM the authors envision a hardware platform with 64–128 cores and a more recent proposal,

SWARM [JSY+15], envisions 128–256 cores. We make an important observation that the area

costs of a simple in-order core are dominated by expensive resources such as instruction and data

caches, integer multiply-divide units, and floating-point units. Table 4.1 shows the component-wise

area breakdown of an in-order 64-bit RISC-V core (RV64G) based on the open-source Berkeley

Rocket-Chip SoC generator and a simpler 32-bit RISC-based in-order processor as implemented

in the XLOOPS project. The RV64G core is implemented using a 16nm TSMC process, and is ca-

pable of booting Linux. Note, the RV64G processor uses a simple iterative integer multiply-divide

unit that is included as part of the scalar in-order core. The XLOOPS core is implemented using

a 40nm TSMC process and is a simpler core that executes in bare-metal mode. The VLSI results

show that the area of the scalar in-order core is dominated by other hardware resources. Given

64

a simple scalar in-order processor, we observe that resources such as instruction and data caches,

as well as the long latency functional units, are often under-utilized. Sharing these resources is an

attractive solution to improve efficiency, drive down hardware costs, and reduce leakage. However,

sharing resources fundamentally trades off performance for a reduction in area costs.

Fork-join-centric parallel programs execute parallel tasks that are part of the same program.

Executing recursive task-parallel programs often involves threads which execute instructions that

match exactly or map to the same cache line at any given time. These instructions are fetched re-

dundantly from the instruction cache and contribute to energy overheads. We term the property of

threads executing the same instruction or instructions that map to the same cache-line as instruc-

tion redundancy. Exploiting instruction redundancy in fork-join-centric parallel programs thus far

remains an unexplored opportunity. I propose smart sharing architectures (SSAs), a new approach

to building lane-based BSAs that exploit instruction redundancy to improve efficiency and perfor-

mance of fork-join-centric parallel programs. SSAs is a CMP-based approach where the GPPs

are augmented with a lane-based BSA that is composed of simple conjoined-lanes. Conjoined-

lanes are lightweight in-order pipelines that execute user-threads and are managed by the GPP.

The execution model for SSAs is discussed in Section 4.2. The key research question for SSAs is

to explore complexity-effective sharing mechanisms that maximize efficiency and mitigate perfor-

mance loss. Figure 4.1 shows an example SSA microarchitecture. As in XLOOPS, the GPP can

be either be a simple in-order or complex out-of-order core. GPP and the lanes share expensive

resources, which include the instruction and data caches as well as the long latency functional units

(LLFUs). Accessed to the shared resources is governed by smart sharing mechanisms.

4.2 SSA Runtimes

Work-stealing is a dynamic load-balancing scheduling strategy for fork-join-centric parallel

programs. A work-stealing runtime consists of multiple worker threads. Each worker maintains a

task queue data structure that stores forked tasks. A worker-loop is a program executed by each

worker thread. When a worker finishes the execution of a task, it selects the next available task

from its task queue and executes the task. If the task queue is empty, the worker steals a task

from the task queue of another worker. The stealing worker is called the thief, and the worker

whose task is stolen is a victim. Typically, a worker selects a task from its local task queue in

65

Lane
3

Lane
1

Lane RF
32 × 32b

2r2w

Lane RF
32 × 32b

2r2w

L0

Buffer

Lane RF
32 × 32b

2r2w

L0

Buffer

Lane
0

GPR RF
32 × 32b

2r2w

GPP

SLFU

SLFU

SLFU

Data Cache Arbiter

SLFU

Instruction Cache Arbiter

L0

Buffer

LLFU

LLFU
Arbiter

L2 C
ache Slice

L1 Instruction Cache

L1 Data Cache

N
etw

ork Interface

Figure 4.1: SSA Microarchitecture Example – An example SSA tile organization augments the GPP with four
conjoined-lanes. GPP and the conjoined-lanes use arbiters to share the L1 instruction- and data-cache as well as the
LLFUs. Each lane includes an L0 instruction line buffer that eases the pressure on instruction cache bandwidth. The
L1 instruction arbiter communicates with the data and LLFU arbiters to coordinate the use of resources based on
smart-sharing policies, highlighted in red. GPP = general-purpose processor (either in-order or out-of-order); GPR =
GPP regs; RF = regfile; SLFU = short-latency functional unit; LLFU = long-latency functional unit implements the
integer multiply-divide and floating point arithmetic.

LIFO order and steals a task from a victim in FIFO order to preserve locality [FLR98]. The

policies for task-selection and victim-selection can vary across different implementations of work-

stealing. Figure 4.2 shows the pseudo-code for a worker-loop implementation. The workers enter

the worker-loop when the runtime program is initialized. The workers exit the worker-loop when

the thread that executed the root task sets a global done flag indicating that all of the forked tasks

have finished execution.

66

1 void worker_loop() {
2 tid = get_thread_id();
3 while(!done) {
4 task = task_queues[tid].pop();
5 if (task != NULL) {
6 execute_task(task);
7 } else {
8 victim_id = select_victim();
9 task = task_queues[victim_id].steal();

10 if (task != NULL) {
11 execute_task(task);
12 }
13 }
14 }
15 }
16

Figure 4.2: Worker Loop Pseudo-code Implementation – Each worker executes the worker loop until a global
done flag is set by the worker which executed the root task. The policy for task-selection is encapsulated by the
TaskQueue.pop() and the TaskQueue.steal() functions. The select_victim() function can be random or
occupancy based.

There are two key design choices for implementing fork-join parallelism based on what hap-

pens at a fork point and what happens at a join point [Rob14]. In child stealing, on encountering a

fork point a parent task pushes the child task into its local task queue and continues execution. In

continuation stealing, the parent task pushes the continuation into its local task queue and executes

the newly forked child task first. TBB and PPL are examples of runtimes that use child stealing

and Cilk is an example of a runtime that uses continuation stealing. The choice of child- or con-

tinuation stealing impacts the asymptotic space bounds of task queue storage. The advantage of

continuation stealing is that the space requirement is guaranteed to grow within a constant factor

of the number of processors [BJK+95]. Whereas in child stealing, if not careful, the space re-

quirements could be unbounded. However, continuation stealing, as implemented in Cilk, requires

language extensions and extensive compiler support. Upon encountering a join point there are two

choices available: stalling strategy and greedy strategy. In the stalling strategy, a thread executing

the parent task stalls for the completion of child tasks whereas, in the greedy strategy, no thread

is idle waiting for other tasks. In the greedy strategy, a thread that executes the last child task to

reach the join point must execute the computation after the join point. TBB and PPL are examples

of runtimes that implement the stalling strategy, and Cilk implements the greedy strategy. The

greedy strategy provides an asymptotic bound on performance known as “Brent’s Lemma” which

67

is useful in the analysis of parallel programs. Stalling schedulers prevent the application of this

theory. However, stalling schedulers simplify assumptions of thread identity. In greedy schedulers

that use continuation stealing, a function can return on a different thread which could complicate

programs that use thread local storage and mutexes.

The work-stealing runtime system implemented in this thesis is inspired by the TBB frame-

work. The work-stealing runtime (WSRT) employs child stealing with Chase-Lev task queues [CL05]

and uses an occupancy-based victim selection [CM08]. We also implement a baseline loop-centric

runtime that is based on the single-program-multiple-data (SPMD) programming model. The base-

line SPMD runtime uses a static-scheduling strategy that partitions an input data set such that each

thread is roughly distributed an equal number of loop iterations. The SPMD runtime makes a

good baseline, since most related work exploits instruction redundancy within such runtimes (see

Section 4.5).

In the SSA execution model, the GPP is in charge of coordinating the execution of a fork-join-

centric parallel program. The GPP executes the main program and the conjoined-lanes execute

the worker loop. The GPP spawns a root task onto a lane by writing to a lane’s local task queue.

The parallel execution of the fork-join-centric parallel program terminates when the lane which

executed the root task sets the global done flag. The GPP can remain idle during the parallel

execution or participate by executing the worker loop. We consider the GPP to remain idle in this

work to investigate the performance of executing fork-join-centric parallel programs on conjoined-

lanes. Conjoined-lanes are assumed to be clock-gated in serial sections of the code when the GPP

is executing.

The worker loop in Figure 4.2 explains why popular loop-centric accelerators are awkward

targets for fork-join-centric parallel programs. Most loop-centric accelerators focus on execut-

ing simple, dense data-parallel loops. It is not apparent that the worker-loop is such a loop. The

presence of task queues and complex control-flows challenge an auto-vectorizing compiler and

hence, limit the applicability of packed-SIMD and vector units. GPGPUs are more flexible com-

pared to packed-SIMD and vector units. Modern GPGPUs support complex unstructured control

flows and do not rely on an auto-vectorizing compiler. However, the memory system of GPG-

PUs is not optimized for synchronization of threads within a warp. Mapping a fork-join-centric

parallel program either requires cbit hanges to the algorithm or motivates changes to the GPGPU

hardware [GSO12, KB14].

68

Carefully inspecting the worker-loop provides clues to sources of instruction redundancy in

the WSRT. Conjoined-lanes either execute the scheduling logic, which involves inspecting task

queues, or execute parallel tasks. Tasks in recursive divide-and-conquer parallel programs are

similar as the premise of this style of programming is to divide a large problem into smaller in-

dependent subproblems that are identical but work on different input data set partitions. The key

to exploiting the latent instruction redundancy in fork-join-centric parallel programs is to “line-

up” the executions across independent lanes. SSAs employ smart sharing mechanisms to exploit

instruction redundancy dynamically during the course of execution, thereby, circumventing the

limitations of loop-centric accelerators.

4.3 SSA Microarchitectures

SSA microarchitectures include a rich design space of conjoined-lanes based on the degree of

shared hardware resources. Sharing no resources and sharing all resources are extreme points in the

design space. It is important to fundamentally understand the design space between these extreme

points as it is unlikely for either one of the designs to be optimal across all workloads. The im-

plications of cost reductions and complexity of designs cannot be identified without understanding

the impact of smart sharing mechanisms.

Figure 4.3 shows the design space we consider for conjoined-lane architectures using four

lanes. Lanes in SSAs are simple in-order pipelines that share resources. We abstract resources

that compose a lane pipeline into the following: (i) instruction cache port (I), shown in blue; (ii)

architectural state that represents the user-thread context (P), shown in red; (iii) the front-end logic

(F) that includes the fetch, decode, and issue logic, shown in green; (iv) the data cache port and the

LLFUs (L), shown in grey; and (v) the back-end logic (B) which includes the ALU and writeback

logic, shown in yellow. The hardware resources that can be shared include the instruction cache

port (I), the front-end logic (F), and the data cache port/LLFUs (L). The topmost design point

allocates exclusive resources to each lane, and we refer to this design point as the no sharing

design. The no sharing design is used as the baseline, since we expect this design to perform the

best due to the lack of any resource contention. The bottom design point shares all resources by

multiplexing in time, and we refer to this design point as the sharing all design. The sharing all

design point greatly reduces area costs while sacrificing performance. Moving from top to bottom

69

CL-4I-4F-4L

CL-NI-4F-4L

CL-NI-4F-NLCL-NI-NF-4L

CL-NI-NF-NL

CL-1I-1F-1L

Figure 4.3: SSA Design Space – Abstract microarchitecture models showing various organizations for four conjoined-
lanes. The topmost represents no sharing in space and the bottom most shows sharing all resources in time. Area costs
reduce moving from top to bottom. The resources that can be shared include instruction cache ports (I) shown in blue,
front-end logic (F) shown in green, and the data cache port/LLFU (L) shown in grey. The thread contexts are shown
in red and the back-end logic is shown in yellow. Notation CL-NI-NF-NL represents a static organization of resources.
The value N for a statically shared resource can be 1 or 2.

70

in Figure 4.3 reduces area costs and increases degree of hardware sharing. We use the notation

CL-NI-NF-NL to specify a static organization of resources. For example, CL-4I-4F-4L represents

the no sharing design point whereas the CL-1I-1F-1L represents the sharing all design point. The

value for a shared static resource denoted by N can be 1 or 2.

The key to sharing resources in SSAs is to employ complexity-effective smart sharing mecha-

nisms that mitigate the loss in performance while maximizing efficiency. The smart sharing mech-

anisms we explore include: (i) instruction coalescing; (ii) soft-barrier hints; (iii) prioritized thread-

selection; and (iv) lockstep sharing. The following sections describe the static microarchitectures

considered for SSAs and introduce the sharing mechanisms as appropriate.

4.3.1 Sharing the Instruction Port Only

The lanes in the CL-NI-4F-4L design share the instruction memory port using round-robin ar-

bitration. We call this design point as a sharing imem only design. Instruction caches in simple

in-order cores can occupy around 30% of the tile area (see Table 4.1). Sharing the instruction cache

is an attractive solution to reduce area costs. Since, the lanes execute the worker loop and user tasks

that are derived from the same program, sharing the instruction cache would not result in thrash-

ing. This design choice is scalable as the lanes have exclusive resources otherwise. The potential

drawback to sharing the instruction port includes reduced capacity, increased instruction access

latency due to wide multiplexors and wires in the instruction port arbiters, and loss in performance

due to reduced bandwidth. An obvious solution is to simply duplicate the instruction port (N=2).

SSAs implement additional smart sharing mechanisms to address the bandwidth contention while

minimally trading off area compared to duplicating an instruction port.

Adding an L0 line buffer to each lane is the first strategy. The L0 line buffers are cheap and store

a single cache line worth of instructions to feed the simple single-issue in-order lane pipeline. The

design rationale for L0 buffers is based on the observation that the instruction stream for executing

the worker loop involves operations on the task queue data structure which is mostly straight line

code and that most parallel programs have some spatial locality in the instruction stream. The L0

line buffers aid in additional efficiency improvements as accessing an instruction out of an L0 line

buffer is cheaper in energy compared to accessing from an instruction cache.

Instruction coalescing is a smart sharing mechanism which is based on the observation that

tasks in a recursive fork-join-centric parallel program are similar and that lanes mostly execute

71

instructions that can be coalesced into a single cache-line access. The idea is to combine requests

from two or more lanes if they are fetching a word in the same cache line. Coalescing is a common

mechanism employed in GPGPUs to improve memory bandwidth. The probability of instruction

coalescing is high when the control-flow is regular. Instruction coalescing not only improves the

performance but can also help in reducing the energy by avoiding expensive tag checks that are

redundant.

Soft-barrier hint instructions are one way to indicate opportunities for control-flow conver-

gence in work-stealing runtimes. Lanes can execute tasks out of local task queues or can execute

tasks by stealing from victims. Synchronizing just before executing a task improves the potential

for instruction coalescing. Lines 6 and 11 in Figure 4.2 are potential points in the worker loop

where soft-barrier hints can be added. We propose soft-barrier hint instructions that have the se-

mantics of a NOP instruction. A microarchitectural implementation for soft-barrier hints would be

to pause a lane execution by holding back the instruction response in the arbiters for some number

of cycles. An arbiter will eventually return a response to a paused lane if a lane reaches a maximum

time-out limit or if the arbiter observes that all lanes have executed a soft-barrier hint instruction.

When a lane reaches a maximum time-out, the arbiter can pair up any other lane waiting to find a

“matching” peer. The soft-barrier hints minimally instrument the runtime with no changes to the

application and are not required for correctness.

4.3.2 Sharing the Instruction Port and the Front-end Only

The lanes in the CL-NI-NF-4L design share the instruction memory port and front-end re-

sources. We call this design point as a sharing imem+fe only design. In these microarchitectures,

a single instruction that is fetched and decoded can be issued to the back-ends of multiple lanes

as long as thread contexts for each lane are executing the same instruction. Sharing the front-

end in addition to the instruction port further improves efficiency as long as execution of lanes is

converged.

Statically sharing the front-end is inefficient in scenarios where lanes execute different control-

flows. In the extreme case where each lane is independently executing a unique instruction stream,

the front-end logic is essentially time multiplexed which results in lower utilization of lanes. As in

the case of sharing imem only, a simple policy for fairness under divergence would be to employ

a round-robin arbitration mechanism. Soft-barrier hints aid in synchronizing threads just as before

72

but we observe that if the control-flow within the task execution diverges then the lanes remain

diverged. The hints inserted in the runtime are essentially agnostic of the control-flow within the

user-defined tasks.

We propose a prioritized thread-selection mechanism based on the minimum-pc heuristic to

improve probabilities of converged execution. The intuition behind prioritizing the selection of a

thread with minimum-PC is based on the observation that compilers layout basic blocks in memory

in an order that preserves dominance relationships. A basic block B post-dominates a basic block

A if all paths to the exit node of a control-flow graph starting at basic block A must go through

basic block B. Reconvergence points are usually located at the immediate post dominator frontiers

which are laid out at high-address locations by the compiler. Hence, prioritizing a thread with

the minimum-PC allows the control-flow to reach a potential reconvergence point. The use of the

minimum-PC heuristic is inspired by SIMT architectures [Col11]. However, a key difference in

the mechanism we employ in SSAs is to use a hybrid minimum-PC and round-robin arbitration

heuristic. The minimum-PC heuristic aids reconvergence and the round-robin heuristic guarantees

forward-progress. Using only the minimum-PC heuristic can lead to deadlocks in SSAs as control-

flows can be completely unstructured given the recursive calls into the worker loop.

4.3.3 Sharing the Instruction Port and the LLFUs Only

The lanes in the CL-4I-NF-4L design share the instruction memory port and the LLFU re-

sources. We call this design point as a sharing imem+llfu only design. The LLFU resources in

SSAs include the data memory port, integer multiply-divide units, and floating-point units. The

integer multiply-divide and floating-point units can account for approximately 20% of area and

the data cache accounts for approximately 36% area of an in-order tile. Sharing these resources

can significantly reduce area costs. We employ the same strategies of L0 line buffers, instruction

coalescing, and soft-barrier hints to attack issues of reduced instruction fetch bandwidth as dis-

cussed in Section 4.3.1. To reduce contention in accessing the data memory ports, we employ data

coalescing mechanisms where we combine load requests that are accessing words from the same

cache line. We do not support coalescing for store requests and atomic memory operations as the

hardware logic in detecting such synergistic sharing is more complex.

The design rationale behind sharing the LLFUs is based on the observation that many fork-join-

centric parallel programs under utilize these resources (see Section 4.4.2). We make an important

73

observation that instructions executed by the lanes are affected by the sharing policies both in

the front-end and back-end of the pipeline. Sharing the LLFU resources can lead to divergence

amongst the lanes that are executing the same instruction. We propose a novel lockstep sharing

mechanism based on this observation. Lockstep sharing is a simple idea wherein two or more

lanes executing the same instruction need to wait for each other while sharing the LLFUs. One

way to implement this mechanism is to provide additional information of PCs to the arbiters that

manage access to the LLFU resources. The arbiters can utilize this information to advance lanes

executing the same instruction in a lockstep fashion. Sharing the LLFUs in such lockstep fashion

aids in exploiting instruction redundancy. However, lockstep sharing trades a loss in performance

for better efficiency. If programs sparingly use LLFU resources, lockstep execution can greatly

help in efficiency gains with minimal loss in performance.

4.3.4 Sharing the Instruction Port, Front-end, and LLFUs

The lanes in the CL-NI-NF-NL design share the instruction memory port, front-end, data mem-

ory port, and LLFUs. We call this design point as a sharing imem+fe+llfu design. Unlike the shar-

ing all design point, the ALU resources remain exclusive to each lane. The sharing imem+fe+llfu

design employs L0 buffers, instruction coalescing, and soft-barrier hint instructions for reducing

instruction fetch bandwidth contention and improving instruction fetch efficiency. Additionally,

we include the prioritized thread-selection mechanism and the lockstep sharing mechanism to in-

creases the chances of lanes executing similar instructions. One can expect this design point to

combine benefits of reduced instruction and data accesses and additionally, benefit from the amor-

tization of front-end logic.

4.4 SSA Evaluation Methodology and Results

This section presents the evaluation methodology and application kernels. We focus on evalu-

ating the performance of single-tile SSA architectures which use conjoined-lanes to execute fork-

join-centric parallel programs. We evaluate the smart sharing mechanisms for each design point in

the SSA design space. For comparison, we include baseline SPMD runtime results for algorithms

that can also be expressed as loop-centric parallel programs.

74

4.4.1 SSA Simulation Models

To evaluate the design space for the conjoined-lane organizations in SSAs, we extended the

Pydgin instruction-set simulator framework [LIB15] to execute multi-threaded programs. The Py-

dgin framework was additionally modified to model each design point in the SSA design-space

by modeling the impact of resource conflicts. The model accepts the number of instruction and

data ports, the cache line sizes, the number of L0 line buffers, and the number of LLFU resources

as inputs. A set of static resources configure the arbiters to simulate a design point of interest.

In addition to the resource constraints, the inputs to the model set the options for instruction co-

alescing, soft-barrier hints, prioritized thread-selection, and lockstep sharing. The model reports

performance in steps taken for program completion. In each step, the model evaluates the resource

demands of instructions currently executing on each lane and advances the instructions based on

the availability of the resources. A lane stalls execution if a resource was not allocated based on

the outcome of various arbiters. We assume a perfect memory model and do not account for any

memory-access-related timing overheads. We measure efficiency for instruction accesses as a ratio

of total number of accesses that are coalesced or hit in the L0 buffers divided by the total number

of instruction accesses. The efficiency for data accesses is measured as a ratio of the number of

accesses that get coalesced divided by the total number of data accesses.

The evaluation methodology for SSAs differs compared to the detailed cycle-level and register-

transfer-level modeling used in XLOOPS. In XLOOPS, we narrowed the design space to a primary

configuration of four lanes with fixed sharing mechanisms. In SSAs, we are interested in funda-

mentally understanding the interactions of application characteristics, resource constraints, and

smart sharing mechanisms over a rich and vast desig space. We collected the results for 10 static

SSA configurations while exhaustively sweeping the sharing mechanisms which resulted in a total

of approximately 6000 simulations. Our approach lets us understand these trade-offs and enables

us to draw conclusions that are not tied to a specific micoarchitectural instantiation of the design.

The extended Pydgin models are open-sourced and available in the tpa-analysis branch of the

Pydgin repository (https://github.com/cornell-brg/pydgin/tree/tpa-analysis).

75

Name Suite Input PM DInsts Integer Load Store AMO MDU FPU Task WLoop

bilateral custom 256⇥256 image p 26.57 34.48% 13.25% 1.02% 0.00% 0.73% 50.51% 99.21% 0.79%
dct8x8m custom 782 8x8 blocks p 54.73 5.87% 17.10% 12.72% 0.00% 0.00% 64.31% 99.95% 0.05%
mriq custom 100-space, 256 points p 8.48 54.56% 17.35% 6.20% 0.01% 0.00% 21.89% 98.25% 1.75%
rgb2cmyk custom 1380⇥1080 image p 42.93 61.72% 13.95% 24.33% 0.00% 0.00% 0.00% 99.52% 0.48%
strsearch custom 210 strings, 210 docs p 20.88 80.98% 18.67% 0.35% 0.00% 0.00% 0.00% 98.15% 1.85%
uts custom -t 1 -a 2 -d 3 -b 6 -r 502 np 14.83 76.85% 12.25% 9.97% 0.13% 0.75% 0.06% 92.12% 7.88%
bfs-d pbbs randLocalGraph_J_5_150K p 36.92 73.32% 20.37% 5.63% 0.67% 0.00% 0.00% 96.12% 3.88%
bfs-nd pbbs randLocalGraph_J_5_150K p 59.02 74.01% 18.58% 7.14% 0.28% 0.00% 0.00% 97.49% 2.51%
dict pbbs exptSeq_1M_int p 45.15 80.13% 16.39% 3.15% 0.34% 0.00% 0.00% 99.75% 0.25%
mis pbbs randLocalGraph_J_5_50000 p 29.62 73.19% 21.33% 4.12% 1.35% 0.00% 0.00% 99.66% 0.34%
rdups pbbs trigramSeq_300K_pair_int p 50.58 78.28% 17.24% 4.35% 0.14% 0.00% 0.00% 99.78% 0.22%
sarray pbbs trigramString_120K p 79.94 69.81% 17.95% 12.22% 0.02% 0.00% 0.00% 87.75% 12.25%
qsort pbbs exptSeq_10K_double rss 27.92 73.95% 14.91% 11.13% 0.01% 0.00% 0.00% 67.28% 32.72%
qsort-1 pbbs almostSortedSeq_10K_double rss 25.45 73.20% 15.08% 11.71% 0.01% 0.00% 0.00% 71.24% 28.76%
qsort-2 pbbs trigramSeq_50K rss 24.19 73.57% 22.19% 4.20% 0.04% 0.00% 0.00% 82.20% 17.80%
sampsort pbbs exptSeq_10K_double np 40.52 64.03% 18.73% 17.03% 0.19% 0.02% 0.00% 87.30% 12.70%
sampsort-1 pbbs almostSortedSeq_10K_double np 29.51 62.10% 19.71% 17.89% 0.28% 0.02% 0.00% 81.66% 18.34%
sampsort-2 pbbs trigramSeq_50K np 64.83 59.74% 25.06% 14.64% 0.52% 0.04% 0.00% 70.11% 29.89%
hull pbbs 2Dkuzmin_100000 rss 14.70 61.83% 14.74% 5.02% 0.04% 0.00% 18.37% 95.56% 4.44%
cilksort cilk -n 300000 rss 47.39 75.67% 14.02% 10.29% 0.02% 0.00% 0.00% 98.62% 1.38%
heat cilk -g 1 -nx 256 -ny 64 -nt 1 rss 5.10 70.68% 13.11% 10.83% 0.03% 2.54% 2.81% 97.62% 2.38%
ksack cilk knapsack-small-1.input rss 35.15 54.48% 22.04% 22.74% 0.60% 0.15% 0.00% 63.86% 36.14%
matmul cilk 200 rss 68.51 51.41% 24.04% 0.77% 0.01% 0.00% 23.76% 99.25% 0.75%

Table 4.2: Application Kernel Characteristics for WSRT – Suite = benchmark suite; Input = input dataset & op-
tions; PM = parallelization methods: p = parallel_for, np = nested parallel_for, rss = recursive spawn-and-sync;
DInsts = total dynamic instruction counts in millions collected on the ideal MIMD model; Integer = percent of integer
instructions; Load = percent of load instructions; Store = percent of store instructions; AMO = percent of atomic
memory instructions; MDU = percent of multiply-divide instructions; FPU = percent of floating-point instructions;
Task = percent of instructions in tasks; WLoop = percent of instructions in worker loop.

Name Suite Input PM DInsts Integer Load Store AMO MDU FPU

bilateral custom 256⇥256 image p 26.41 34.01% 13.47% 0.98% 0.00% 0.74% 50.80%
dct8x8m custom 782 8x8 blocks p 54.70 5.85% 17.09% 12.71% 0.00% 0.00% 64.35%
mriq custom 100-space, 256 points p 8.32 54.36% 17.29% 6.03% 0.00% 0.00% 22.32%
rgb2cmyk custom 1380⇥1080 image p 42.72 61.62% 13.96% 24.42% 0.00% 0.00% 0.00%
strsearch custom 210 strings, 210 docs p 20.41 81.26% 18.52% 0.22% 0.00% 0.00% 0.00%
uts custom -t 1 -a 2 -d 3 -b 6 -r 502 p 15.35 78.25% 11.61% 9.24% 0.11% 0.73% 0.06%
bfs-d pbbs randLocalGraph_J_5_150K p 35.26 74.12% 20.26% 4.96% 0.66% 0.00% 0.00%
bfs-nd pbbs randLocalGraph_J_5_150K p 57.33 74.60% 18.42% 6.71% 0.26% 0.00% 0.00%
dict pbbs exptSeq_1M_int p 45.08 80.28% 16.33% 3.07% 0.33% 0.00% 0.00%
mis pbbs randLocalGraph_J_5_50000 p 29.53 73.24% 21.34% 4.06% 1.36% 0.00% 0.00%
rdups pbbs trigramSeq_300K_pair_int p 50.44 78.36% 17.21% 4.29% 0.14% 0.00% 0.00%
sarray pbbs trigramString_120K p 63.48 69.72% 18.13% 12.15% 0.00% 0.00% 0.00%
hull pbbs 2Dkuzmin_100000 p 13.96 61.97% 14.37% 4.31% 0.00% 0.00% 19.35%

Table 4.3: Application Kernel Characteristics for SPMD – Suite = benchmark suite; Input = input dataset & op-
tions; PM = parallelization methods: p = parallel_for; DInsts = total dynamic instruction counts in millions col-
lected on the ideal MIMD model; Integer = percent of integer instructions; Load = percent of load instructions; Store =
percent of store instructions; AMO = percent of atomic memory instructions; MDU = percent of multiply-divide
instructions; FPU = percent of floating-point instructions.

76

4.4.2 SSA Application Kernels

We have ported a total of 19 application kernels to a 32-bit RISC-based instruction-set (same

as XLOOPS) using the work-stealing runtime (WSRT) framework (developed in-house). Prior

work (see [TWB16] and [KJT+17]) presents results our WSRT runtime implementation as com-

pared with the state-of-the-art Intel Cilk++ and Intel TBB runtimes. The application kernels are

ported from the problem-based benchmark suite (PBBS v.0.1) [SBF+12], Cilk benchmarks (Cilk v.

5.4.6) [FLR98], and an in-house benchmark suite. The kernels include simple for loops expressed

using a parallel_for, nested parallel loops, and recursive spawn-and-sync parallelism. In addi-

tion to the WSRT implementations, we ported a subset of 13 algorithms to a baseline loop-centric

(SPMD) runtime implementation. We include both the WSRT and SPMD implementations for the

following reasons: (i) to compare related work that has extensively investigated exploiting redun-

dancies for algorithms expressed as loop-centric parallel programs; (ii) to highlight the differences

in implementations for a given algorithm expressed using different parallelization and schedul-

ing strategies; and (iii) to show that the instruction overheads in employing a dynamic scheduling

strategy are minimal compared to a static scheduling strategy. All kernels were compiled using a

cross-compiler toolchain that uses GCC-4.4.1, Newlib-1.17.0, and the GNU standard C++ library.

Application kernels are selected from a diverse range of application domains including those

with regular task parallelism like image processing (e.g., bilateral filter, color space conversion, dis-

crete cosine transform) and scientific computations (e.g., heat diffusion simulation, MRI griding,

and dense matrix multiplication) as well as challenging irregular graph algorithms (e.g., breadth-

first search, maximal matching, maximal independent set), text processing (suffix array), and non-

numeric search/sort/optimization problems (e.g., radix sort, substring matching, dictionary, knap-

sack, convex hull). Table 4.2 shows the application characteristics for the WSRT implementations

and Table 4.3 shows the application characteristics for the baseline SPMD implementations. De-

tailed descriptions for PBBS kernels and Cilk kernels can be found in [SBF+12, FLR98].

We briefly describe the custom in-house kernels. The bilateral kernel performs a bilateral im-

age filter with a lookup table for the distance function and an optimized Taylor-series expansion

for calculating the intensity weight. Computation is parallelized across output pixels. dct8⇥8m

calculates the 8⇥8 discrete cosine transform on an image. Computation is parallelized across 8⇥8

blocks. mriq is an image reconstruction algorithm for MRI scanning inspired by the Parboil bench-

mark suite [SRS+12]. Computation is parallelized across the output magnetic field gradient vector.

77

rgb2cmyk performs color space conversion on an image and computation is parallelized across the

rows. strsearch implements the Knuth-Morris-Pratt algorithm with a deterministic finite automata

to search a collection of byte streams for a set of substrings. Computation is parallelized across

different streams. uts is inspired by the implementation in [OHL+06]. The unbalanced tree search

(UTS) benchmark is a synthetic kernel specifically designed to evaluate the performance and ease

of programming for parallel applications requiring dynamic load-balancing. The SPMD imple-

mentation parallelizes the kernel across the frontiers using double buffering whereas the WSRT

implementation uses nested parallelism which is more straightforward to express.

Table 4.2 and Table 4.3 show that the overheads of the WSRT runtime in terms of total dynamic

instruction counts are not significantly higher than the SPMD implementations. Additionally, most

of the applications spend all of the time executing tasks in the parallel regions with a few exceptions

for kernels with limited amounts of parallelism which include qsort, sampsort, and ksack. For these

kernels one can expect low redundancies in the instruction streams. The application characteristics

also include a detailed breakdown of the instruction mix. The instruction mix reveals that for

most challenging non-numeric workloads the LLFUs are indeed used sparingly. Table A.1 shows

the speedup of the no sharing design that uses four lanes compared to executing the kernels on a

single-thread. The results we present use the no sharing design as a baseline.

4.4.3 Evaluating the Potential for SSA Designs

This section presents the results for the SSA design-space exploration. To understand the po-

tential benefits and trade-offs involved for conjoined-lane organizations in the SSAs, we answer

the following key questions:

• Q1. Is there sufficient redundancy in SPMD and WSRT applications?

• Q2. What mechanisms are key to sharing the instruction port only?

• Q3. What mechanisms are key to sharing the instruction port and the front-end only?

• Q4. What mechanisms are key to sharing the instruction port and the LLFUs only?

• Q5. What mechanisms are key to sharing the instruction port, front-end, and the LLFUs?

• Q6. How do the SSA design points compare?

78

Q1. Is there sufficient redundancy in SPMD and WSRT applications?

As noted earlier, exploiting instruction redundancy is a key principle in SSAs to improve perfor-

mance and efficiency. The benefits of area reductions by sharing expensive resources only makes

sense if there is a sufficient amount of instruction redundancy present in SPMD and WSRT appli-

cations. To answer the question of what is the amount of redundancy present in a given application,

we consider the no sharing design. Instruction redundancy is defined as the number of instructions

that are identical and could potentially be fetched only once and broadcast to the lane back-ends.

To measure the instruction redundancy we use the equation as shown in 4.1. For a conjoined-lane

architecture with four lanes, the maximum value for instruction redundancy would be 75% which

means that in the best case one unique instruction fetched can be shared by the four lanes.

Instruction Redundancy(%) =
ÂTotal Instructions�ÂUnique Instructions

ÂTotal Instructions
⇥100 (4.1)

Figure 4.4(a) shows the instruction redundancy in SPMD applications and Figure 4.4(b) shows

the instruction redundancy in WSRT applications. The grey bars in the plots show the measure-

ments for instruction redundancy executing on the no sharing design. The results suggest that there

is no instruction redundancy in both the SPMD and WSRT applications. However, if we modify the

SPMD and WSRT runtime implementations to include soft-barrier hint instructions the probability

of lanes executing similar instructions improves. The soft-barrier hints indicate a synchroniza-

tion point and delaying the lane executions at these synchronization points increases instruction

redundancy. The green bars in both plots show the instruction redundancy measurements when

executing the applications with soft-barrier hints.

We can group applications based on the instruction redundancy into three categories. Applica-

tions with high redundancy (50%–75%) which include dct8x8m, matmul, bilateral, rgb2cymk, and

hull. Applications with medium redundancy (25%–50%) which include bfs-nd, rdups, and sarray.

Applications with low redundancy (up to 25%) which include bfs-d, dict, mis, strsearch, cilksort,

mriq, and uts. The uts kernel shows how instruction redundancy can vary based on the paralleliza-

tion and scheduling strategy. The SPMD implementation of uts shows that there is barely any

redundancy whereas the WSRT implementation shows that there is 17% instruction redundancy.

The qsort and samport kernels in WSRT workloads show that instruction redundancy can vary

79

based on the input dataset for a given kernel. Our results show that there is inherent redundancy in

SPMD and WSRT applications that can be exploited by using soft-barrier hints.

Recall soft-barrier hints in SSAs are implemented by pausing the lane execution for a maximum

number of steps. The idea is to delay the lane execution at potential synchronization points in the

runtimes in order to increase the probability for converged program execution. For the results

shown we use a maximum delay count of 1000 steps. We choose 1000 steps as the limit based on

the number of instructions it takes to push a task to a task queue (100 instructions), pop a task from

a task queue (40 instructions), and the stealing overheads involved in victim selection and checking

for valid work (50 instructions). A task can spawn two or more child tasks and the maximum wait

timeout limit gives sufficient opportunities for threads to sync up.

For SPMD applications, the impact of delaying lane execution is minimal as the hint instruc-

tions are used to pause lanes at the start of a loop execution. The time spent in setting up the

parallel region is minimal. For WSRT applications, the hint instructions are included in the worker

loop. For applications with sufficient parallelism, the impact of hint instructions are minimal as

lanes are mostly converged in execution of the tasks or scheduling logic (worker loop). However,

for applications with low parallel regions hint instructions can hurt the performance. The appli-

cation kernels for which we observe a loss in performance (increase in delay shown in percent)

include: uts (27%), qsort-2 (11%), sampsort (37%), sampsort-1 (46%), sampsort-2 (72%), and

ksack (57%). For uts and ksack kernels, the loss in performance can be traded for an increase in

efficiency. Future work can explore an adaptive mechanism that adjusts the delays in soft-barrier

hints to mitigate these performance losses. Detailed performance numbers are in the Table A.2.

Result 1 – There is sufficient instruction redundancy in WSRT and SPMD runtimes that can be

exploited by using soft-barrier hints.

Our results for SPMD applications are in accord with previous research in the context of SPMD

runtimes [MCM+14]. To the best of our knowledge, we are the first to explore instruction redun-

dancy in the context of WSRT runtimes. The potential to save instruction accesses can vary from

7% to 75%.

80

(a) Instruction redundancy in SPMD applications

(b) Instruction redundancy in WSRT applications

Figure 4.4: Instruction Redundancy in SPMD and WSRT Applications – Instruction redundancy exists as different
threads work on different sets of data but execute the same instructions in the form of parallel loops in SPMD runtimes
and parallel tasks in WSRT runtimes. Results using the no sharing design show that soft-barrier hints are required to
expose the inherent instruction redundancy.

81

Q2. What mechanisms are key to sharing the instruction port only?

As discussed in Section 4.3.1, we explore the following strategies to address reduced instruction

bandwidth for the sharing imem only designs: L0 buffers, instruction coalescing, and soft-barrier

hints. We present the results for delay and efficiency by normalizing to the no sharing design point.

Figures 4.5 and 4.6 show results of sharing a single instruction port amongst conjoined-lanes

for SPMD and WSRT kernels respectively. The bars represent the following design configurations.

base represents a naive configuration of the CL-1I-4F-4L design point which uses round-robin ar-

bitration to share the instruction port. coalesce represents inclusion of the instruction coalescing

smart sharing mechanism in the base configuration. coalesce+hints combines the instruction coa-

lescing and soft-barrier hint mechanisms. The l0 configuration adds a single L0 line buffer to the

base configuration. The l0+coalesce adds instruction coalescing to a design with L0 line buffers

and lastly, the l0+coalesce+hint configuration combines all mechanisms.

Result 2 – Adding L0 buffers is a complexity-effective mechanism to improve the normalized

delay and reduce the number of instruction accesses.

Compared to adding instruction coalescing only (coalesce) and combining instruction coalesc-

ing with soft-barrier hints (coalesce+hints) adding a single L0 line buffer improves the perfor-

mance and efficiency across all the application kernels for both the SPMD and WSRT runtimes.

L0 buffers are cheap and easy to implement. The L0 buffers improve the performance by reducing

the delay from 4⇥ to a range between 1⇥–1.7⇥for SPMD applications and 1⇥–1.6⇥for WSRT

applications. The instruction access efficiency improves in the range of 26%–38% for SPMD

applications and in the range of 27%–40% for WSRT applications. The L0 buffers do not exploit

redundancy across the lanes compared to the smart sharing mechanisms but mostly exploit the spa-

tial locality within an instruction stream executing on each lane. The L0 buffers improve efficiency

as well as the performance by reducing the pressure on the instruction port.

Result 3 – Instruction coalescing and soft-barrier hints along with L0 buffers are the key mech-

anisms for improving the performance and efficiency when only sharing the instruction port.

Instruction coalescing works by combining requests that miss in the L0 buffer across lanes.

On an average, instruction coalescing further improves the performance by about 18% in SPMD

and 15% in WSRT applications whereas the efficiency (reduction in instruction accesses) improves

on an average by 11% in SPMD and 6% in WSRT runtimes. The soft-barrier hints seem to not

make much of a difference to SPMD kernels whereas the WSRT kernels see an improvement in

82

Figure 4.5: SPMD Results for Sharing One Instruction Port – The results show that the combination of L0 buffers,
instruction coalescing, and soft-barrier hints significantly reduces the instuction access and improves the delay for
SPMD applications. The figure on the top shows the normalized delay and the bottom shows the normalized instruc-
tion access compared to the no sharing design point. Each bar represents the configurations as explained: (i) base
baseline with round-robin arbitration; (ii) coalesce baseline with instruction coalescing enabled; (iii) coalescing+hint
combining coalescing with soft-barrier hints; (iv) l0 adding a L0 buffer to each lane; (v) l0+coalesce combining L0
buffers with instruction coalescing; (vi) l0+coalesce+hint combining L0 buffer, instruction coalescing, and soft-barrier
hints.

efficiency with the aid of hints. In particular, regular kernels such as dct8x8m and matmul greatly

benefit from hints and are able to reach the same efficiency as the SPMD kernels (25% to 6.7%).

Soft-barrier hints hurt the performance of irregular WSRT kernels with low regions of parallelism

as expected based on the instruction redundancy results. However, in the case of ksack the effi-

ciency improves by 15% when combining coalescing with hints but the benefit comes at a loss of

performance by about 37%. WSRT runtimes benefit slightly from hints because of the unstruc-

tured control-flow in the worker loop. The combination of L0 buffers, instruction coalescing, and

soft-barrier hints improve the efficiency of SPMD and WSRT kernels by reducing the instruction

83

Figure 4.6: WSRT Results for Sharing One Instruction Port – The results show that the combination of L0 buffers,
instruction coalescing, and soft-barrier hints significantly reduces the instuction access and improves the delay for
WSRT applications. Adding soft-barrier hints reduces instruction access at the cost of increase in delay for applica-
tions with low parallel regions: uts,sampsort,ksack. The figure on the top shows the normalized delay and the bottom
shows the normalized instruction access compared to the no sharing desing point. Each bar represents the configu-
rations as explained: (i) base baseline with round-robin arbitration; (ii) coalesce baseline with instruction coalescing
enabled; (iii) coalescing+hint combining coalescing with soft-barrier hints; (iv) l0 adding a L0 buffer to each lane; (v)
l0+coalesce combining L0 buffers with instruction coalescing; (vi) l0+coalesce+hint combining L0 buffer, instruction
coalescing, and soft-barrier hints.

accesses from 100% to a range of 6.5%–36% which is even better than the expected results from

the instruction redundancy results. With a single instruction port and the smart sharing mechanisms

the performance loss can be minimized to just 15% for SPMD and 26% for WSRT kernels.

Comparing results for increasing instruction ports

Figure 4.7 compares the performance of SPMD and WSRT kernels when sharing one port to

two ports on designs that use L0 buffers combined with instruction coalescing and soft-barrier

84

(a) SPMD applications (b) WSRT applications

Figure 4.7: SPMD and WSRT Results Sharing One vs. Two Instruction Ports – Sharing two instruction ports im-
proves delay for most of the SPMD and WSRT applications as indicated by the flat slopes of the lines that connect the
points for sharing one instruction port (grey circles) and the points for sharing two instruction ports (green diamonds).

hints. The results show that 9 out of 13 SPMD kernels do not benefit more than 10% improvement

in performance for almost similar trends in efficiency by using two ports. SPMD kernels that

benefit the most include mriq, uts, mis, and rdups. With the exception of mriq, mis, rdups, qsort,

and sampsort most of the WSRT kernels also show no significant benefits in performance by using

an additional instruction port. Increasing the instruction ports improves performance for both

SPMD and WSRT kernels while increasing the area costs. Detailed results for the design point

sharing two instruction ports are present in Tables A.3 and A.4.

Q3. What mechanisms are key to sharing the instruction port and the front-end only?

We now consider the sharing imem+fe only design point. Based on the results from sharing

imem only, we enable a naive SSA design to include L0 buffers and use soft-barrier hints. Instruc-

tion coalescing does not apply to this design as there is a single front-end. The naive SSA design

uses the round-robin thread-selection mechanism under divergence. It is important to recall that

the thread-selection mechanism when sharing the front-end needs to guarantee forward progress

85

(a) Min-pc/RR thread-selection helps all SPMD
applications

(b) Min-pc/RR thread-selection helps all WSRT
applications except qsort

Figure 4.8: Comparison of Thread-selection Mechanism for Sharing One Instruction and Front-end – The
baseline configuration statically has the L0 buffer and soft-barrier hints enabled and statically shares one instruction
port and front-end. The results show that the hybrid minimum-pc/round-robin thread-selection mechanism improves
the delay and reduces the instruction access for most of the SPMD and WSRT application kernels.

for unstructured control-flows and the baseline round-robin thread-selection is a reasonable design

choice.

Result 4 – The hybrid minimum-pc/round-robin thread-selection mechanism is the key to im-

prove performance and efficiency to sharing the instruction and the front-end only.

Figure 4.8 shows the results that compare the round-robin (RR) vs. hybrid minimum-pc/round-

robin (MPC) thread-selection mechanisms for both the SPMD and WSRT kernels. The scatter plot

shows that the MPC mechanism improves both the performance and efficiency for both SPMD

and WSRT kernels. rgb2cmyk sees a 40% improvement in performance and efficiency for both

SPMD and WSRT implementations. The kernel is mostly regular but has some data-dependent

control-flow which causes divergence. dict is an example of an irregular kernel that sees a 30%

improvement in performance and efficiency for both SPMD and WSRT implementations. It is

interesting to note that qsort observes a loss in performance when using MPC mechanism. The

base-case of qsort is highly irregular as it performs a comparison-sort using the quick-sort algo-

86

Figure 4.9: SPMD Results for Sharing One Instruction and Front-end – The results show that for a baseline static
configuration with L0 buffers and a single instruction-port and frontend, the hybrid minimum-pc/round-robin thread-
selection mechanism is the key for pareto-optimality. The figure on the top shows the normalized delay and the bottom
shows the normalized instruction access compared to the ideal MIMD model (lower the better). Each bar represents
the configurations as explained: (i) rr baseline with round-robin arbitration; (ii) rr+hint baseline with soft-barrier hints
enabled; (iii) mpc baseline with the hybrid minimum-pc/round-robin thread selection mechanism; (iv) mpc+hint mpc
configuration with soft-barrier hints.

rithm. The RR mechanism works well for qsort as under high divergence each thread gets a fair

use of the front-end to make forward progress.

Are soft-barrier hints important when sharing the front-end?

Figure 4.9 and Figure 4.10 show the detailed results for comparing the performance and effi-

ciency of SPMD and WSRT using RR and MPC mechanisms combined with the soft-barrier hints.

For the SPMD kernels the soft-barrier hints does not make a difference when using either the RR

87

Figure 4.10: WSRT Results for Sharing One Instruction and Front-end – The results show that for a baseline
static configuration with L0 buffers and a single instruction-port and frontend, the hybrid minimum-pc/round-robin
thread-selection mechanism is the key for pareto-optimality. The mpc thread-selection hurts the qsort kernel due to it’s
highly irregular control-flow. The figure on the top shows the normalized delay and the bottom shows the normalized
instruction access compared to the ideal MIMD model (lower the better). Each bar represents the configurations as
explained: (i) rr baseline with round-robin arbitration; (ii) rr+hint baseline with soft-barrier hints enabled; (iii) mpc
baseline with the hybrid minimum-pc/round-robin thread selection mechanism; (iv) mpc+hint mpc configuration with
soft-barrier hints.

or MPC thread-selection. For WSRT kernels, some kernels such as dct8x8m, uts, heat, ksack see

improvements in performance and efficiency with the addition of hints to the RR thread-selection.

Combining MPC and the hints does not impact the performance and efficiency results with the

exception of the ksack kernel where the performance with hints is worsened as the kernel has low

amounts of parallelism. Overall performance and efficiency improvements by using just the MPC

thread-selection seem to be the key mechanism. Sharing the front-end and using the MPC thread-

88

(a) SPMD applications (b) WSRT applications

Figure 4.11: SPMD and WSRT Results Sharing One vs. Two Instruction Ports and Front-ends – Two front-ends
improve the execution delay for irregular application kernels and trade-off the instruction access. The improvements
in execution delay suggest that two front-ends are a compelling design point as the increase in instruction access is
minimal as indicated by flat slopes for the lines that connect the points for sharing one instruction port (grey circles)
and the points for sharing two instruction ports (green diamonds).

selection policy achieves the goal of convergent execution which increases instruction redundancy.

Soft-barrier hints are not critical to designs which use a single front-end.

Comparing results for increasing the front-end resources

Figure 4.11 shows the results of comparing designs that share one vs. two front-ends. Both the

designs include the L0 buffers and MPC thread-selection. Using two front-ends improves the per-

formance by 30% for a 5% increase in instruction accesses for SPMD kernels. For WSRT kernels,

using two front-ends improves the performance on average by 40% for an increase in instruction

accesses by 5%. Using two front-ends trades of an increase in area and efficiency for attractive

improvements in performance. Compared to just using the MPC thread-selection, adding an extra

front-end improves the performance of both the SPMD and WSRT kernels under divergence as

the utilization of the back-end resources increase with an additional front-end. Detailed results for

sharing two instruction ports and front-ends are present in Tables A.5 and A.6.

89

(a) Lockstep sharing for SPMD applications

(b) Lockstep sharing hurts performance of
bilateral,dct8x8m,matmul the most for WSRT

applications

Figure 4.12: Comparing Lockstep Mechanism for Sharing One Instruction and LLFU – The baseline config-
uration statically has the L0 buffer and soft-barrier hints enabled and statically shares one instruction port and the
LLFU using round-robin thread-selection. The results show that lockstep sharing mechanism trades-off reduction in
instruction accesses for increased execution delay for most SPMD and WSRT application kernels.

Q4. What mechanisms are key to sharing the instruction port and the LLFUs only?

Tables 4.2 and 4.3 show that there quite a few kernels that use the LLFUs sparingly. The PBBS

kernels have a low usage of the LLFUs as these kernels are designed to compare algorithmic

approaches, parallel programming language styles, and machine architectures across a broad set

of problems. The sharing imem+llfu design point is an attractive solution for such kernels as

it reduces the area costs of LLFUs in addition to sharing the instruction port. The mechanisms

that are applicable to this design include L0 buffers, instruction coalescing, soft-barrier hints, and

lockstep sharing.

Result 5 – Lockstep sharing is the key mechanism for improving efficiency at a minimal loss in

performance when sharing instruction port and LLFU only.

Figure 4.12 shows the results that compare a baseline design that includes L0 buffers, instruc-

tion coalescing, and round-robin arbitration without lockstep sharing to the same design with lock-

90

step sharing for SPMD and WSRT kernels. The results show that the lockstep sharing mechanism

trades reduction in instruction accesses for a loss in performance for most kernels. Figures 4.13

and 4.14 shows detailed results for sharing a single instruction port and LLFU for SPMD and

WSRT kernels. For SPMD, most of the PBBS kernels observe an improvement in efficiency in the

range of 6%–50% while observing a maximum loss of 10% in performance. Kernels with high

instruction redundancy like dct8x8m, bilateral, and hull see an improvement in efficiency in the

range of 60%–75% for a higher loss in performance (36%–48%). The trends for the WSRT kernels

are similar. In particular, kernels with low redundancy such as mriq, uts, mis, qsort, sampsort, and

ksack see an improvement in efficiency in the range of 2.5% to 8% for almost no difference in

performance (<5%). Lockstep sharing is trades off performance for an improvement in efficiency

and is effective for kernels that sparingly use these resources.

Are soft-barrier hints important when sharing the instruction port and LLFUs only?

Soft-barrier hints seem to make no difference to SPMD kernels. Adding hints minimally im-

proves the efficiency of WSRT kernels and can sometimes hurt the performance for application

kernels with low parallel regions (uts, qsort, sampsort, ksack). Sharing the instruction port in addi-

tion to the LLFUs constrains the execution on the lanes. With more sharing, the impact of explicit

hints for convergence seems to be less important.

91

Figure 4.13: SPMD Results for Sharing One Instruction Port and LLFU – The baseline static configuration is
provisioned with one L0 buffer and a single instruction-port, data-port, and LLFU with round-robin thread-selection.
The lockstep execution mechanism trades-off an increase in execution delay for a considerable reduction in instruction
accesses. Adding hints is not as important and hurts dct8x8m which is the most sensitive to a single LLFU resource.
The figure on the top shows the normalized delay and the bottom shows the normalized instruction access compared to
the ideal MIMD model (lower the better). Each bar represents the configurations as explained: (i) no-lockstep baseline
with round-robin arbitration; (ii) no-lockstep+hint baseline with soft-barrier hints enabled; (iii) lockstep enables the
lockstep sharing; (iv) lockstep+hint combines lockstep execution and soft-barrier hints.

92

Figure 4.14: WSRT Results for Sharing One Instruction Port and LLFU – The baseline static configuration is
provisioned with L0 buffers and a single instruction-port, data-port, and LLFU with round-robin thread-selection. The
lockstep execution mechanism trades-off an increase in execution delay for a considerable reduction in instruction
accesses. Kernels such as bilateral, dct8x8m, matmul are extreme examples for pareto-optimality. Adding hints is not
as important and hurts uts, sampsort, ksack which have regions with low parallelism. The figure on the top shows
the normalized delay and the bottom shows the normalized instruction access compared to the ideal MIMD model
(lower the better). Each bar represents the configurations as explained: (i) no-lockstep baseline with round-robin
arbitration; (ii) no-lockstep+hint baseline with soft-barrier hints enabled; (iii) lockstep enables the lockstep sharing;
(iv) lockstep+hint combines lockstep execution and soft-barrier hints.

93

(a) SPMD applications (b) WSRT applications

Figure 4.15: SPMD and WSRT Results Sharing One vs. Two Instruction Ports and LLFUs – Two instruction
ports and LLFUs improve the execution delay for irregular applications and LLFUs for both the SPMD and WSRT
applications. The improvements in execution delay for minimal increase in instruction access is as indicated by flat
slopes for the lines that connect the points for sharing one instruction port and LLFUs (grey circles) and the points for
sharing two instruction ports and LLFUs (green diamonds).

Comparing results for increasing the LLFUs

Figure 4.15 shows the results for increasing the number of instruction and LLFUs. Additional

LLFU units in the form of integer multiply-and-divide and floating-point units imply a 22% area

overhead. For most SPMD kernels, an additional increase in LLFUs provides an improvement in

performance in the range of ⇡17% to 34%. biateral, dct8x8m, and hull benefit the most in terms

of performance which is evident given the application characteristics. Adding an extra LLFU

can increase the divergence which results in a slight increase in instruction access as in the case

of bfs-nd, and dict by about 20%. Regular WSRT kernels such as bilateral, dct8x8m, hull, and

matmul benefit from an additional instruction and LLFU resource. Most of the PBBS kernels for

the WSRT runtime show performance improvements of 20%–35% for an additional increase in

area by 22%. These results suggest that for irregular applications a marginal increase in area by

increasing LLFU resources makes sense for improvements in performance. Detailed results for

increasing the instruction ports and LLFUs are presented in Tables A.7, A.10, A.7, and A.10.

94

(a) SPMD applications (b) WSRT applications

Figure 4.16: Comparing Thread-selection for Sharing One Instruction, Front-end and LLFU – The results show
that the hybrid minimum-pc/round-robin thread-selection mechanism improves the delay and reduces the instruction
access for most of the SPMD and WSRT applications.

Q5. What mechanisms are key to sharing the instruction port, front-end, and the LLFUs?

The design rationale to share the instruction port, front-end, and the LLFUs is based on the

observation that sharing the front-end improves the efficiency beyond just reducing the instruction

accesses and the fact that the SSA kernels sparingly use the LLFUs. For this design point, the

mechanisms applicable are thread-selection and soft-barrier hints.

Result 6 – The minimum-pc/round-robin thread-selection mechanism is the key to improve per-

formance and efficiency for a design that shares the instruction, front-end, and LLFU.

Figure 4.16 shows the results for comparing RR vs. MPC thread-selection mechanisms. The

diagonal slopes for most of the SPMD and WSRT kernels show that the MPC mechanism is the key

to improve efficiency and performance. The SPMD kernels see an improvement in efficiency by

16% for a minimal loss of just 3% on an average. Most of the WSRT kernels see an improvement

in efficiency and performance that ranges from 3% to 20% respectively.

95

Figure 4.17: SPMD Results for Sharing One Instruction Port, Front-end, and LLFU – The baseline static con-
figuration is provisioned with L0 buffers and a single instruction port, frontend, and the LLFU, the hybrid minimum-
pc/round-robin thread-selection mechanism is the key for pareto-optimality. The figure on the top shows the normal-
ized delay and the bottom shows the normalized instruction access compared to the ideal MIMD model (lower the
better). Each bar represents the configurations as explained: (i) rr baseline with round-robin arbitration; (ii) rr+hint
baseline with soft-barrier hints enabled; (iii) mpc baseline with the hybrid minimum-pc/round-robin thread selection
mechanism; (iv) mpc+hint mpc configuration with soft-barrier hints.

Are soft-barrier hints important when sharing the instruction port, front-end, and the LL-

FUs?

Figures 4.17 and 4.18 show that with an increased amount of sharing the hints do not impact

the performance and efficiency. Reduced resources affect the dynamic schedule of the instructions

executing on the lanes. A unified front-end and the MPC thread-selection mechanism are the only

required mechanisms for this design point.

96

Figure 4.18: WSRT Results for Sharing One Instruction Port, Front-end, and LLFU – The results show that
for a baseline static configuration with L0 buffers and a single instruction port, frontend, and the LLFU, the hybrid
minimum-pc/round-robin thread-selection mechanism is the key for pareto-optimality. The figure on the top shows
the normalized delay and the bottom shows the normalized instruction access compared to the ideal MIMD model
(lower the better). Each bar represents the configurations as explained: (i) rr baseline with round-robin arbitration; (ii)
rr+hint baseline with soft-barrier hints enabled; (iii) mpc baseline with the hybrid minimum-pc/round-robin thread
selection mechanism; (iv) mpc+hint mpc configuration with soft-barrier hints.

Comparing results for increasing the front-end and LLFUs

Figure 4.19 shows the results of increasing the resources for the sharing imem+fe+llfu design

point. Both the SPMD and the WSRT kernels observe an improvement in performance by 30%

on an average for a minimal decrease in efficiency of 6%. Increasing the front-end and the LLFU

resources is complexity-effective when compared to the sharing a single front-end and a single

LLFU.

97

(a) SPMD applications (b) WSRT applications

Figure 4.19: SPMD and WSRT Results Sharing One vs. Two Instruction Ports, Front-ends and LLFUs – Two
resources improve the execution delay for minimal changes in instruction accesses as indicated by the flat slopes for
the lines that connect the points for sharing one instruction resource (grey circles) and the points for sharing two
instruction resources (green diamonds).

Q6. How do the SSA design points compare?

We motivated the SSA design space with the premise that there is a continuum of design points

between sharing no resources and sharing all resources. Moving from the left to right in Figure 4.3

saves area by sharing more resources but trades off performance and efficiency. In this section, we

present results for comparing the SSA designs.

Figures 4.20 and 4.21 compare the SSA design points for SPMD and WSRT kernels. In these

plots, we compare the baseline designs which naively share hardware resources to designs that

employ smart sharing mechanisms that yield the best results. All the designs use an L0 buffer for

instruction bandwidth amplification. We include the mimd design point that represents no sharing

as well as the mt design point that represents sharing all the resources. The baseline naive sharing,

indicated by b, as well as the alternative designs that employ smart sharing mechanisms, indicated

by s, as below.

98

(a) SPMD Kernels using 1 Resource (b) SPMD Kernels using 2 Resources

Figure 4.20: Comparing SSA Designs for SPMD Kernels – Smart sharing mechanisms are the key to improve
efficiency and performance in SSA designs. The lighter colors represent the baseline designs (b) for each design point
and the darker colors respresent the smart-sharing designs (s). The plot on the left shows the results with one resource
and results for two resources are shown to the right.

• imem (b) baseline design represents the sharing imem only design which employs the round-

robin arbitration to share a static number of instruction ports. The imem (s) shows the same

design using instruction coalescing and soft-barrier hints smart sharing mechanisms.

• imem+fe (b) baseline design represents the sharing imem+fe only design which employs

the round-robin thread-selection mechanism to share the instruction port and the front-end.

The imem+fe (s) shows the same design that uses minimum-pc/round-robin thread-selection

mechanism.

• imem+llfu (b) baseline design represents the sharing imem+llfu only design which employs

the round-robin arbitration to share a static number of instruction and LLFU resources. The

imem+llfu (s) shows the design that uses instruction coalescing and the lockstep sharing

mechanisms.

• imem+fe+llfu (b) baseline design represents the sharing imem+fe+llfu only designs which

employs the round-robin thread-selection mechanism to share the instruction port, front-

99

(a) WSRT Kernels using 1 Resource (b) WSRT Kernels using 2 Resources

Figure 4.21: Comparing SSA Designs for WSRT Kernels – Smart sharing mechanisms are the key to improve
efficiency and performance in SSA designs. The lighter colors represent the baseline designs (b) for each design point
and the darker colors respresent the smart-sharing designs (s). The plot on the left shows the results with one resource
and results for two resources are shown to the right.

end, and the LLFUs. The imem+fe+llfu (s) shows the same design that uses the minimum-

pc/round-robin thread-selection mechanism.

• mt (b) represents the design where all resources are shared using round-robin based thread-

selection mechanism. The mt (s) design represents the design that uses the minimum-pc/round-

robin thread-selection mechanism.

To compare the designs, we compute the geometric mean for the normalized delay and nor-

malized instruction accesses across all the applications on each design point. The results are nor-

malized to the mimd design where no resources are shared. We include results that compare the

designs sharing a single resource as well as two resources.

Figures 4.20(a) and 4.21(a) show results for SPMD and WSRT kernels with a single resource

being shared. The results show the following:

• Sharing only the instruction port (imem) is 20% worse in performance and saves nearly 79%

of the instruction accesses compared to the ideal mimd design. Sharing an instruction cache

100

results in significant area savings compared to CMP designs with modest loss in performance

for significant gains in efficiency.

• The imem+llfu design performs better than imem+fe with very similar efficiencies. For fork-

join-centric parallel programs that are irregular, exclusive front-end designs utilize the back-

end resources better than having a fixed front-end. The LLFUs are not used heavily in kernels

that are in the domain of graph processing, text processing, and search/optimization. Sharing

the LLFUs is a viable design point. Lockstep sharing results in a minimal 5% loss in perfor-

mance with close to 40% improvements in efficiency when compared to the baseline design

(imem+llfu (b)).

• The imem+fe+llfu design performs better than mt designs with nearly same efficiencies.

This implies that the area costs of adding additional front-ends and short-latency units are

justified when compared to simple time-multiplexing of all the resources. The additional

cost of decoder/issue logic and ALUs result in a complexity-effective solution.

• The minimum-pc/round-robin thread-selection mechanism helps the mt design to further save

30% of the instruction accesses when compared to simple round-robin based multiplexing.

• SSA designs indeed line-up on a continuum of pareto-optimality offering a great degree of

freedom to the designer in saving area costs while balancing the impact on performance and

improving efficiency.

Figures 4.20(b) and 4.21(b) show results for SPMD and WSRT kernels with two resources

being shared. The results show the following:

• Designs that share only the instruction port (imem) observe only an additional 10% improve-

ment in performance for a considerable increase in area. A single port is sufficient when

using L0 buffers, instruction coalescing, and soft-barrier hints.

• Designs that share a single front-end imem+fe gain an additional 50% improvement in per-

formance for nearly same efficiency. Fork-join-centric parallel programs that are irregular

adding an additional front-end helps improve the utilization of the resources but the perfor-

mance is still slightly worse than designs that do not share the front-end.

• Designs that share the instruction ports and the LLFUs gain an additional 30% improvement

in performance for nearly same efficiency. The performance of imem+llfu design is very

101

similar to imem which means that reducing the number of LLFUs is an area and performance-

efficient solution.

• Adding additional resources to imem+fe+llfu designs further improves the performance by

about 45% for nearly same efficiency. It is interesting to note that the gap in performance

and efficiency between naive sharing and smart sharing reduces considerably when sharing

two resources.

The results presented above discusses pareto-optimality of the SSA designs considering the

normalized instruction accesses and the normalized delay dimensions. Future work should explore

the pareto-optimality of the SSA designs by considering an addition dimension of the area costs

of the designs. Factoring in the area would better compare the SSA designs and help in evaluating

the complexity-effectiveness of smart sharing mechanisms.

4.5 Related Work

In this section, we discuss related work for SSAs. Most of the previous work on exploiting

instruction redundancy has focused on SPMD application kernels executing on modified SMT

architectures. To the best of our knowledge, we are the first to consider exploiting instruction

redundancy in WSRT runtimes.

Kumar et al. proposed the idea of sharing resources in conjoined-core chip multiprocess-

ing [KJT04]. Conjoined-cores proposes the idea of sharing the L1 caches, FPU, and cross-bar

ports for two adjacent cores. The lanes in SSAs are lightweight in-order cores compared to "full-

fledged" cores as in conjoined-cores. The SSA design space systematically varies each resource

as compared to conjoined-cores. The idea of fetch combining in conjoined-cores is similar to

instruction coalescing.

Thread Fusion [GCC+08] proposes to fuse two instances of the same instruction in a 2-way

SMT processor into a single instruction which results in reducing the resource usage of the front-

end pipeline stage by half. The fused instruction is treated as two separate instructions in the

back-end. Thread fusion assumes SPMD applications with parallel loops and relies on compiler

inserted synchronization hints. The idea of soft-barrier hints is similar to the compiler generated

hints although in SSAs the applications are unmodified with minimal changes only to the runtime.

102

Minimal Multithreading (MMT) [LFB+10] improves the techniques proposed in Thread Fu-

sion by removing the compiler generated hints. In MMT, the authors measure redundancy and

motivate two opportunities by identifying fetch-identical SMT threads which fetch instructions

from the same address and execute-identical threads which further have the same operands for

the fetched instructions. Fetch-identical threads eliminate inefficiencies in the front-end and the

execute-identical threads eliminate back-end inefficiencies. The synchronization between threads

is achieved by using a fetch history buffer which records branches for of the executing threads. If

a thread finds an instruction in a different thread’s history buffer for a branch, then the executing

thread is given higher priority in CATCHUP mode. The fetch history buffer and the associated logic

is very expensive compared to the simple minimum-pc/round-robin based thread-selection mech-

anism as implemented in SSAs. Execute-identical redundancy can be exploited in SSA designs

which have a shared front-end but we believe that the possibilities to exploit such opportunities in

other designs with exclusive front-ends is quite difficult to implement across the lanes.

Multithreaded-Instruction Sharing (MIS) [DFR10] is another proposal that exploits execute-

identical threads or value similarity. In MIS, the instructions that are execute-identical are retired

without execution on a 2-way SMT processor. MIS uses a match table to identify execute-identical

threads by recording the source operands and the results of previous instruction executions.

In Execution drafting [MBW14], the authors propose modifications to an SMT processor to

execute identical instructions from different programs or threads, such that they flow down the

pipe consecutively or draft. The goal is to reduce energy by reducing switching in the pipeline.

A redundant instruction can be either partial or fully redundant. The partial duplicate or redun-

dant instruction is one which has the same opcode but has different machine code. The authors

use a hybrid thread synchronization method which uses minimum-pc and random thread-selection

schemes. Execution drafting mainly targets data center workloads unlike the multithreaded work-

loads we consider in SSAs.

In [MCM+14], the authors compare a variety of thread-scheduling heuristics with the goals of

reconvergence in SPMD programs. The authors compare the minimum-pc thread-selection, the

heuristic proposed in [LFB+10], and the mechanism used in [LAB+12] and propose a minimum-

sp/pc heuristic that prioritizes threads with a lower stack pointer. The minimum-sp/pc heuristic

works well for loops with iterations that have nested function calls. The methods surveyed in this

103

paper are categorized as implicit reconvergence techniques. Similar heuristics can be applied to

SSAs with a key requirement of guaranteed forward progress.

DITVA [KCSS16] is a recent proposal that presents the idea of "dynamic vectorization" of

SPMD programs on a SIMD-enabled SMT processor. DITVA utilizes SIMD units to execute

instructions that are identical in a SPMD program. DITVA uses a hybrid minimum-sp/pc round-

robin heuristic inspired by [MCM+14]. We implemented the same heuristic in SSAs, and we find

that while some SPMD kernels show improvements in efficiency, the WSRT kernels do not observe

any improvements in efficiency over the minimum-pc/round-robin thread-selection scheme. For

WSRT kernels, the worker loop can be deeply nested and prioritizing thread using the minimum

stack pointer heuristic hurts the goals of dynamic load-balancing. SSAs do not assume a SIMD-

enabled processor and are much simpler. We believe SSAs are complexity-effective compared to

the modifications to a complex SIMD-enabled SMT processor as required in DITVA.

LTA [KJT+17] is a recent proposal that proposes to execute the parallel for loops expressed

using a fork-join runtime. The key idea is to use the host GPP processor for the recursive division

of a loop range object, and the base case for the loop which executes the user tasks are offloaded

to an efficient loop task accelerator using a lightweight hint instruction. LTA can be configured

at design time for different amounts of spatial/temporal decoupling to efficiently execute both

regular and irregular loop tasks. SSA uses spatially decoupled lanes to execute generalized fork-

join programs. Unlike LTA, the base case loop is executed serially on a single lane that grabs

the base case. Exploring the temporal dimension for coupling on SSAs inspired by LTAs is a

promising future direction.

4.6 Conclusions

This chapter presented a novel design space for smart sharing architectures. Sharing hard-

ware resources is an attractive solution to build lane-based BSAs that execute challenging fork-

join programs that otherwise have to execute on CMPs. SSAs employ complexity-effective smart

sharing mechanisms to improve the efficiency and mitigate performance loss when sharing re-

sources. We presented four smart sharing mechanisms that exploit instruction redundancies which

include instruction coalescing, soft-barrier hints, prioritized thread-selection, and lockstep shar-

ing. Contrary to conventional wisdom, we show that there is sufficient instruction redundancy in

104

work-stealing runtimes. We compared the results for SSAs executing application kernels that are

drawn from the PBBS, Cilk, and an in-house benchmark suite. While we focused primarily on the

instruction fetch redundancy, there are further opportunities to exploit redundancy in the operand

values and data accesses. SSAs present a continuum of design points for a designer to choose from

while balancing the area costs, efficiency, and performance.

105

CHAPTER 5
CONCLUSION

Technology constraints have driven computer architects to embrace parallelization and hard-

ware specialization across the layers of computing stack. Providing clean hardware/software ab-

stractions that are highly programmable yet still enable efficient execution on both traditional and

specialized platforms is a key research challenge. The choice of hardware specialization not only

affects the software stack but also fundamentally affects the cost of design and verification. This

thesis presents a lane-based hardware specialization approach to build programmable accelerators

for loop- and fork-join-centric parallel programs. The techniques presented in this thesis require

lightweight changes to applications, compilers, instruction sets, and microarchitectures which re-

duces the barrier of adoption.

5.1 Thesis Summary and Contributions

This thesis began by discussing the trends in technology scaling, computer architecture, and

hardware specialization. Hardware specialization can range from fixed-function hardware to pro-

grammable chip multiprocessors. I presented a taxonomy for hardware specialization and pre-

sented a systematic approach to building lane-based behavior specialized accelerators. A paral-

lelization strategy decomposes an application into logical units of parallelism, and a scheduling

strategy maps the logical units of parallelism onto the underlying hardware resources. Mismatches

between parallel behaviors and the underlying hardware increase the complexity of hardware spe-

cialization. CGRA-based and lane-based BSAs are two attractive options for hardware specializa-

tion solutions. Given the benefits of programmability, flexibility, and design costs, I presented a

case for lane-based BSAs. The vision for the accelerator platform in this thesis includes a hetero-

geneous CMP platform that composes tiles with GPPs and tiles with GPPs that are augmented with

lane-based BSAs. The remainder of this thesis discussed two novel lane-based BSAs that focus on

executing loop- and fork-join-centric parallel programs.

The XLOOPS proposal is a new hardware specialization approach for exploiting inter-iteration

loop dependence patterns. The XLOOPS instruction set provides an elegant hardware/software

abstraction that serves as an effective compiler target and enables a variety of microarchitectures

supporting traditional, specialized, and adaptive execution. We have used a vertically integrated

106

evaluation methodology spanning applications, compilers, cycle-level modeling, RTL modeling,

and VLSI implementation to make a compelling case for augmenting both in-order and out-of-

order general-purpose processors with a loop-pattern specialization unit. We also implemented an

initial FPGA prototype that adds credibility to the XLOOPS proposal.

The SSAs proposal is a new approach to building lane-based BSAs which can efficiently sup-

port fork-join-centric parallel programs. Executing fork-join-centric parallel programs on lane-

based accelerators is challenging and is relatively less explored. In the SSAs proposal, I presented

a rich design space for lane-based BSAs that can share hardware resources to varying degrees and

thereby reduce the area and static power consumption. I presented four complexity-effective smart

sharing mechanisms that include: instruction coalescing, soft-barrier hints, prioritized thread-

selection, and lockstep resource sharing. Smart sharing mechanisms exploit instruction redun-

dancy to maximize efficiency, and improve performance of fork-join-centric parallel programs. I

presented a novel evaluation methodology that fundamentally explores the interactions between

application characteristics and shared resource constraints.

The primary contributions of this thesis are reiterated as below:

• I make the case for single-ISA heterogeneous platforms that transparently integrate tradi-

tional general-purpose processors and lane-based BSAs to improve the performance and en-

ergy efficiency of loop- and fork-join-centric parallel programs.

• I propose an elegant new XLOOPS hardware/software abstraction that explicitly encodes

inter-iteration loop dependence patterns that execute on traditional, specialized, and adap-

tive microarchitectures; I also propose a novel XLOOPS microarchitecture that augments a

general-purpose processor with a lane pattern specialization unit to execute the XLOOPS

binaries.

• I propose smart sharing architectures, a new approach that employs complexity-effective

smart sharing mechanisms to exploit instruction redundancy in fork-join-centric parallel pro-

grams to save area while maximizing efficiency and minimizing performance losses.

107

5.2 Future Work

The vision of lane-based BSA platforms, which include XLOOPS and SSAs, are a first step

towards generalized hardware specialization. This section discusses opportunities to extend the

ideas presented in the thesis.

Exploring stream-centric parallelization and scheduling strategies – Stream-centric paral-

lelization decomposes an application into data streams and computational kernels. The data stream

abstraction provides guidelines to systematically approach hardware specialization for memory ac-

cess patterns and the kernels can be mapped to lane-based BSAs. The operations on data streams

for a domain or commonly accessed patterns can use specialized hardware that can prefetch and

manage memory regions which can greatly reduce the energy overheads and improve the perfor-

mance. The stream-centric parallelization and scheduling strategies have been explored in the past

but utilize simple in-order cores in a CMP platform to execute the computation kernels. Employing

lanes as opposed to cores can reduce the area costs of these solutions.

Unified lane-based accelerators – The XLOOPS and SSAs proposals use simple in-order

lanes that are augmented with additional hardware to manage inter-iteration dependences, as in the

case of XLOOPS, or manage shared resources, as in the case of SSAs. Future work can explore

implementing a programmable lane-based BSA that can handle either loop- or fork-join-centric

parallel programs. Such an accelerator can trade the area costs of implementing multiple lane-

based BSAs and also reduce the costs of design.

Handling nested loops and data-dependent exits – The LPSU in XLOOPS can currently be

configured to execute a single loop in a loop nest with multiple loops. Future work can explore an

LPSU design that can elegantly parallelize execution of loop nest with multiple loops. Executing

multiple loops requires the loop bodies to be loaded into the loop buffers and tagged with the

nested level. The mechanisms that include the cross-iteration buffers and speculative stores/loads

need to be virtualized across the loop nests. Extending the LPSU to handle loops that include a

data-dependent exit condition, as found in while loops, further increases the applicability of the

XLOOPS accelerator. Handling data-dependent exit condition needs control speculation as in the

case of dynamic-bound for loops.

Parallelizing base-cases for fork-join-centric parallel programs – Loop-based programs

that are parallelized by using a work-stealing runtime transform the parallel for under the hood

108

into recursive task-based programs. The loop is transformed to a recursive task-based program

where the tasks that execute an inductive-case simply divide the loop-range, and tasks that execute

the base-case execute a serial for-loop for a reduced subset of the loop-range. Currently, each lane

serially executes the entire loop of the base-case. Future work can explore parallelizing the base-

case by using a unified lane-based BSA. The fork-join based division of the loop-range is scalable

across tiles, and further improvements in performance and efficiency can be achieved by using the

lanes for the execution of the base-case.

Exploiting data and value redundancy – The SSAs proposal mainly focuses on improving

the efficiency of a fork-join-centric parallel program by exploiting the instruction redundancy to

reduce the number of instruction accesses. While we enable coalescing for data accesses across

the lanes, we observed minimal benefits from data coalescing. Initial exploration suggests that a

co-designed software runtime that is aware of a lane-based BSA can transform the loop-ranges

and schedule tasks onto the hardware such that the potential benefits from data coalescing in-

crease. Such a runtime would likely use different policies to manage the tasks in the task queue

for stealing and local dequeues based on locality of working sets. Value redundancy occurs when

identical operations across the lanes have the same value for the operands. In such cases, fetch-

ing and executing an instruction once and broadcasting results to all the lanes can further improve

performance and efficiency. Value redundancy is fundamentally present in applications due to

book-keeping overheads and in domains such as image and audio processing which quantize the

range of input values.

Exploring value memoization – Memoization is an optimization technique that improves per-

formance and efficiency by storing the results of expensive functions calls. When a memoized

function is executed with the same inputs, a simple lookup for the stored result can replace ex-

pensive computation. In kernels such as mriq, the computational loop is very regular and has no

data-dependent control-flow but for the use of transcendental function calls. The implementation

of most of these functions includes irregular loops with data-dependent exit conditions. Memoiza-

tion in hardware for such function calls can greatly improve the performance and energy efficiency

for not just the function calls but for the code around these calls which is otherwise regular.

Exploring multi-tile SSA designs – The evaluation of SSAs focused on the single-tile SSAs

primarily to understand the interaction of application characteristics and smart sharing mecha-

nisms. Future work can explore the scalability of the software work-stealing runtime on multi-tile

109

SSA designs. The conjoined-lanes increase the parallelism within a tile while incurring minimal

area costs when compared to scaling GPP tiles. Comparing the performance of baseline CMP

designs and multi-tile SSA designs for a given amount of area would be interesting. Conjoined-

lanes incur low communication and synchronization overheads as lanes within a tile share the data

cache. Co-designed software runtimes that are aware of conjoined-lanes can better exploit the

memory access patterns both within a tile and across a tile, potentially reducing coherency traffic.

Integrating DSAs and BSAs – A BSA platform provides a programmable template to integrate

both lane-based accelerators and other domain-specific accelerators. Inclusion of the tensor cores

in NVIDIA Volta architecture is an example of such a platform. The emergence of important

workloads such as machine-learning and graph processing justifies specialized hardware for these

domains. Integrating such DSAs into a programmable BSA-based platform simplifies the software

challenges and can potentially generalize the solution. Efficient execution on the lanes combined

with domain-specialized functions while maintaining clean hardware/software abstractions is a

promising future direction.

110

APPENDIX A
DETAILED SSA RESULTS

Name SPMD WSRT
bilateral 3.90 3.91
dct8x8m 4.00 4.00
mriq 3.82 3.81
rgb2cmyk 3.98 3.98
strsearch 3.88 3.88
uts 2.62 4.02
bfs-d 2.52 2.44
bfs-nd 1.56 1.53
dict 3.50 3.49
mis 1.86 1.86
rdups 2.75 2.74
sarray 2.67 3.14
hull 3.27 3.19
qsort 2.62
qsort-1 2.14
qsort-2 3.05
sampsort 1.77
sampsort-1 1.80
sampsort-2 1.10
cilksort 3.94
heat 3.88
ksack 2.34
matmul 3.96

Table A.1: Speedups for no sharing Design – Speedup for the no sharing design that executes application kernels
using four lanes compared to the execution with a single thread.

111

Name SPMD WSRT
bilateral 1.00 1.00
dct8x8m 1.00 1.00
mriq 1.00 1.00
rgb2cmyk 1.00 1.00
strsearch 1.00 1.00
uts 1.00 1.27
bfs-d 1.00 1.04
bfs-nd 1.00 1.02
dict 1.00 1.00
mis 1.00 1.00
rdups 1.00 1.00
sarray 1.00 1.02
hull 1.00 1.05
qsort 1.01
qsort-1 1.03
qsort-2 1.11
sampsort 1.37
sampsort-1 1.46
sampsort-2 1.72
cilksort 1.03
heat 1.08
ksack 1.57
matmul 1.00

Table A.2: Instruction Redundancy Performance Overheads – Normalized performance for the no sharing design
point that executes application kernels instrumented with soft-barrier hints compared to the same design when execut-
ing without any soft-barrier hints. no sharing design with soft-barrier hints enables the measurements for instruction
redundancy.

112

base coalesce coalesce l0 l0 l0
hints coalesce coalesce+hint

N=1 P IA P IA P IA P IA P IA P IA
bilateral 4.00 100.00 1.12 28.08 1.01 25.29 1.06 26.41 1.00 8.32 1.00 8.32
dct8x8m 4.00 100.00 1.00 25.00 1.00 25.00 1.04 26.05 1.00 6.51 1.00 6.51
mriq 4.00 100.00 3.75 90.40 3.71 90.49 1.28 33.38 1.26 32.07 1.24 32.06
rgb2cmyk 4.00 100.00 1.34 33.45 1.34 33.55 1.11 27.93 1.04 13.95 1.04 13.94
strsearch 4.00 100.00 1.48 35.31 1.48 35.34 1.71 42.60 1.13 22.34 1.13 22.37
uts 4.00 100.00 4.12 99.01 3.90 98.96 1.16 29.34 1.18 29.11 1.19 29.08
bfs-d 4.00 100.00 2.01 49.53 2.01 49.48 1.23 30.68 1.09 22.92 1.09 22.18
bfs-nd 4.00 100.00 1.48 36.28 1.47 36.18 1.26 31.53 1.11 23.31 1.11 20.64
dict 4.00 100.00 1.63 40.57 1.62 40.50 1.29 32.34 1.11 23.61 1.11 21.35
mis 4.00 100.00 2.53 63.32 2.53 63.27 1.54 38.57 1.29 29.32 1.29 28.64
rdups 4.00 100.00 1.89 47.22 1.89 47.21 1.49 37.18 1.19 25.51 1.19 23.79
sarray 4.00 100.00 2.49 40.93 2.50 39.45 1.26 31.74 1.10 20.11 1.08 14.90
hull 4.00 100.00 1.14 26.27 1.14 26.20 1.36 33.81 1.04 16.85 1.03 13.39

N=2 P IA P IA P IA P IA P IA P IA
bilateral 2.00 100.00 1.00 50.10 1.00 48.20 1.01 26.41 1.00 12.64 1.00 13.22
dct8x8m 2.00 100.00 1.00 36.63 1.00 25.00 1.00 26.05 1.00 13.03 1.00 6.51
mriq 2.00 100.00 1.88 91.73 1.87 91.29 1.02 33.38 1.02 32.70 1.02 32.70
rgb2cmyk 2.00 100.00 1.06 47.52 1.00 46.73 1.01 27.93 1.00 14.69 1.00 13.74
strsearch 2.00 100.00 1.08 47.76 1.08 47.73 1.08 42.60 1.01 29.97 1.01 29.96
uts 2.00 100.00 1.84 99.20 1.80 98.96 1.03 29.45 1.00 29.31 1.05 29.16
bfs-d 2.00 100.00 1.23 58.50 1.23 56.88 1.02 30.68 1.01 25.89 1.01 23.81
bfs-nd 2.00 100.00 1.10 49.78 1.10 45.22 1.01 31.53 1.00 24.82 1.01 21.04
dict 2.00 100.00 1.15 55.69 1.14 52.06 1.02 32.34 1.01 27.76 1.01 25.44
mis 2.00 100.00 1.39 67.35 1.39 66.07 1.06 38.57 1.03 33.42 1.03 31.41
rdups 2.00 100.00 1.23 57.85 1.23 51.83 1.05 37.18 1.02 27.41 1.02 24.02
sarray 2.00 100.00 1.26 50.89 1.10 43.24 1.05 31.74 1.00 24.84 1.00 17.09
hull 2.00 100.00 1.02 40.18 1.02 34.34 1.02 33.81 1.00 25.91 1.01 15.75

Table A.3: SPMD Results for Sharing the Instruction Port Only – SPMD results for sharing imem only (CL-NI-4F-
4L) design point. base = baseline with round-robin arbitration; coalesce = baseline with instruction coalescing enabled;
coalescing+hint = combining coalescing with soft-barrier hints; l0 = adding a L0 buffer to each lane; l0+coalesce =
combining L0 buffers with instruction coalescing; l0+coalesce+hint = combining L0 buffer, instruction coalescing,
and soft-barrier hints; P = Normalized delay; IA = Normalized instruction access

113

base coalesce coalesce l0 l0 l0
hints coalesce coalesce+hint

N=1 P IA P IA P IA P IA P IA P IA
bilateral 4.00 100.00 1.04 25.91 1.04 25.94 1.11 27.70 1.03 17.85 1.01 13.31
dct8x8m 4.00 100.00 1.01 25.19 1.00 25.01 1.04 26.05 1.04 26.05 1.00 6.52
mriq 4.00 100.00 3.83 95.72 3.80 94.95 1.38 34.52 1.36 33.48 1.32 32.44
rgb2cmyk 4.00 100.00 1.49 37.20 1.07 26.85 1.11 27.80 1.03 17.60 1.01 13.88
strsearch 4.00 100.00 1.45 36.27 1.46 36.39 1.24 31.08 1.11 22.82 1.11 22.84
uts 4.00 100.00 3.90 97.44 3.25 81.30 1.12 28.00 1.11 27.67 1.32 22.89
bfs-d 4.00 100.00 2.09 52.16 2.06 51.19 1.25 31.12 1.10 23.04 1.13 22.43
bfs-nd 4.00 100.00 1.55 38.69 1.52 37.86 1.36 34.01 1.08 22.44 1.08 19.30
dict 4.00 100.00 1.60 40.04 1.59 39.75 1.26 31.49 1.12 24.15 1.12 22.17
mis 4.00 100.00 2.61 65.29 2.61 65.16 1.51 37.81 1.27 28.43 1.27 27.71
rdups 4.00 100.00 1.93 48.17 1.92 48.08 1.41 35.30 1.24 28.19 1.21 23.96
sarray 4.00 100.00 1.98 45.94 1.96 45.32 1.30 32.51 1.10 21.86 1.11 19.04
qsort 4.00 100.00 3.55 88.63 3.55 88.74 1.37 34.16 1.34 32.88 1.34 32.66
qsort-1 4.00 100.00 2.94 73.52 2.97 74.20 1.36 33.96 1.29 30.79 1.31 30.35
qsort-2 4.00 100.00 3.72 92.94 3.73 93.29 1.54 38.43 1.46 36.25 1.53 36.83
sampsort 4.00 100.00 3.46 86.60 3.51 87.72 1.34 33.57 1.30 31.65 1.57 31.74
sampsort-1 4.00 100.00 3.44 86.00 3.41 85.36 1.32 33.05 1.28 31.09 1.63 29.81
sampsort-2 4.00 100.00 3.83 95.87 3.69 92.15 1.40 34.92 1.36 33.55 1.91 32.69
hull 4.00 100.00 1.23 30.74 1.18 29.38 1.35 33.75 1.04 19.29 1.07 14.64
cilksort 4.00 100.00 2.89 72.16 2.90 72.41 1.46 36.47 1.21 25.68 1.24 25.25
heat 4.00 100.00 3.84 96.08 3.36 83.93 1.25 31.27 1.24 30.63 1.23 26.08
ksack 4.00 100.00 3.54 88.59 2.51 62.87 1.19 29.78 1.18 29.21 1.62 16.21
matmul 4.00 100.00 1.22 30.53 1.00 25.01 1.08 26.88 1.01 15.25 1.00 6.73

N=2 P IA P IA P IA P IA P IA P IA
bilateral 2.00 100.00 1.00 49.75 1.00 44.56 1.00 27.83 1.00 24.79 1.00 13.38
dct8x8m 2.00 100.00 1.00 50.01 1.00 25.01 1.00 26.05 1.00 23.98 1.00 6.52
mriq 2.00 100.00 1.89 94.61 1.90 94.73 1.03 33.43 1.04 33.54 1.04 32.88
rgb2cmyk 2.00 100.00 1.02 46.80 1.00 46.74 1.03 27.81 1.00 21.06 1.00 13.82
strsearch 2.00 100.00 1.09 49.36 1.09 49.51 1.01 31.32 1.00 28.11 1.01 28.05
uts 2.00 100.00 1.97 98.34 1.74 83.21 1.01 28.14 1.01 27.87 1.27 22.86
bfs-d 2.00 100.00 1.26 60.27 1.27 58.70 1.02 31.18 1.01 26.34 1.05 24.75
bfs-nd 2.00 100.00 1.12 48.84 1.13 47.51 1.02 34.05 1.00 26.39 1.03 21.49
dict 2.00 100.00 1.13 54.01 1.13 51.44 1.02 31.50 1.01 28.54 1.01 25.61
mis 2.00 100.00 1.42 69.30 1.42 67.35 1.05 37.82 1.03 32.93 1.03 30.66
rdups 2.00 100.00 1.25 58.07 1.25 52.65 1.02 35.30 1.01 29.94 1.01 23.91
sarray 2.00 100.00 1.23 56.74 1.22 54.07 1.02 33.82 1.01 27.79 1.03 21.99
qsort 2.00 100.00 1.80 90.09 1.69 84.49 1.05 37.15 1.03 33.38 1.05 32.97
qsort-1 2.00 100.00 1.41 70.12 1.44 71.11 1.05 36.74 1.03 32.48 1.07 32.20
qsort-2 2.00 100.00 1.78 88.89 1.79 89.34 1.05 39.59 1.04 36.96 1.14 37.09
sampsort 2.00 100.00 1.77 88.40 1.88 90.85 1.03 33.64 1.03 32.69 1.39 32.68
sampsort-1 2.00 100.00 1.75 87.49 1.89 87.22 1.03 33.07 1.03 32.18 1.48 30.71
sampsort-2 2.00 100.00 1.93 96.19 2.15 92.00 1.03 34.86 1.03 34.14 1.74 33.09
hull 2.00 100.00 1.04 44.84 1.08 38.17 1.02 33.93 1.00 27.07 1.06 17.57
cilksort 2.00 100.00 1.45 69.68 1.46 70.48 1.04 36.49 1.02 29.43 1.06 29.00
heat 2.00 100.00 1.93 96.27 1.70 84.62 1.02 31.22 1.02 30.90 1.10 25.57
ksack 2.00 100.00 1.87 93.44 1.64 54.31 1.02 29.78 1.02 28.95 1.57 16.04
matmul 2.00 100.00 1.02 42.31 1.00 25.01 1.00 26.88 1.00 22.73 1.00 6.73

Table A.4: WSRT Results for Sharing the Instruction Port Only – WSRT results for sharing imem only (CL-NI-4F-
4L) design point. base = baseline with round-robin arbitration; coalesce = baseline with instruction coalescing enabled;
coalescing+hint = combining coalescing with soft-barrier hints; l0 = adding a L0 buffer to each lane; l0+coalesce =
combining L0 buffers with instruction coalescing; l0+coalesce+hint = combining L0 buffer, instruction coalescing,
and soft-barrier hints; P = Normalized delay; IA = Normalized instruction access

114

rr rr mpc mpc
hint hint

N=1 P IA P IA P IA P IA
bilateral 4.00 26.41 1.01 6.68 1.02 6.73 1.03 6.78
dct8x8m 4.00 26.05 1.00 6.51 1.00 6.51 1.00 6.51
mriq 3.92 32.52 3.91 32.43 4.08 24.07 4.08 24.07
rgb2cmyk 1.93 13.50 1.93 13.51 1.18 8.48 1.18 8.48
strsearch 1.63 16.31 1.63 16.23 1.45 15.05 1.45 15.05
uts 4.10 29.36 3.90 29.24 3.60 27.84 3.83 27.82
bfs-d 2.29 17.64 2.27 17.56 2.04 15.40 2.04 15.39
bfs-nd 1.93 14.88 1.61 12.20 1.43 10.54 1.43 10.53
dict 2.16 17.61 2.16 17.60 1.48 12.11 1.48 12.12
mis 3.04 29.28 3.03 29.26 2.70 26.30 2.71 26.38
rdups 2.12 19.66 2.12 19.66 1.83 16.87 1.83 16.87
sarray 2.66 14.63 2.56 13.34 2.81 11.92 2.81 11.93
hull 1.29 10.04 1.16 9.05 1.21 8.88 1.20 8.88

N=2 P IA P IA P IA P IA
bilateral 1.98 26.31 1.00 13.21 1.00 13.21 1.00 13.21
dct8x8m 2.00 26.05 1.00 6.51 1.00 13.03 1.00 6.51
mriq 1.97 32.64 1.96 32.46 3.16 25.74 3.16 25.74
rgb2cmyk 1.39 16.93 1.00 13.74 1.04 14.37 1.00 13.74
strsearch 1.17 23.96 1.17 23.97 1.06 22.21 1.06 22.20
uts 2.00 29.39 2.01 29.26 1.84 30.52 1.86 30.48
bfs-d 1.38 21.35 1.36 19.83 1.20 17.83 1.20 17.11
bfs-nd 1.16 17.95 1.15 15.92 1.09 15.26 1.09 14.67
dict 1.48 24.02 1.48 22.85 1.10 17.74 1.10 16.56
mis 1.65 31.81 1.64 30.37 1.36 26.37 1.36 25.04
rdups 1.34 24.86 1.34 21.47 1.19 21.24 1.19 18.10
sarray 1.20 19.72 1.15 15.37 1.07 17.40 1.07 13.84
hull 1.05 17.44 1.02 13.57 1.00 15.83 1.01 11.18

Table A.5: SPMD Results for Sharing the Instruction Port and Frontend Only – SPMD results for sharing
imem+fe only (CL-NI-NF-4L) design point. rr = baseline with round-robin arbitration; rr+hint = baseline with
soft-barrier hints enabled; mpc = baseline with the hybrid minimum-pc/round-robin thread selection mechanism;
mpc+hint = mpc configuration with soft-barrier hints. P = Normalized delay; IA = Normalized instruction access

115

rr rr mpc mpc
hint hint

N=1 P IA P IA P IA P IA
bilateral 1.04 7.24 1.04 7.24 1.26 8.69 1.14 7.87
dct8x8m 4.00 26.05 1.00 6.52 1.05 6.82 1.00 6.52
mriq 4.00 33.72 3.91 32.74 3.35 28.57 3.32 28.42
rgb2cmyk 1.64 11.97 1.90 13.28 1.23 8.82 1.18 8.45
strsearch 1.63 12.96 1.64 13.02 1.48 11.61 1.49 11.65
uts 3.95 27.77 3.44 23.98 2.69 19.10 2.68 18.76
bfs-d 2.37 18.72 2.33 18.40 2.07 16.37 2.05 16.30
bfs-nd 2.11 17.26 1.67 13.62 1.46 11.96 1.45 11.91
dict 2.14 17.08 2.15 17.20 1.49 12.11 1.48 12.10
mis 3.04 28.83 3.03 28.72 2.71 25.92 2.71 25.89
rdups 2.14 19.53 2.12 19.40 1.84 16.68 1.83 16.63
sarray 2.22 18.09 2.15 17.82 1.99 18.26 1.99 18.24
qsort 3.85 35.47 3.83 35.38 4.27 41.86 4.28 41.87
qsort-1 3.21 30.10 3.22 29.90 3.82 36.95 3.83 36.98
qsort-2 3.88 38.21 3.88 38.23 4.26 42.58 4.27 42.71
sampsort 3.81 32.12 3.78 31.93 2.80 23.60 2.90 24.62
sampsort-1 3.82 31.73 3.67 30.64 3.01 25.04 3.08 25.77
sampsort-2 3.91 33.99 3.75 32.92 3.78 32.95 3.62 31.88
hull 1.68 14.18 1.22 10.56 1.27 10.85 1.26 10.95
cilksort 3.18 29.35 3.15 29.11 2.73 25.41 2.90 26.91
heat 3.93 30.84 3.38 26.53 2.56 20.19 2.66 21.17
ksack 3.82 28.46 2.38 17.71 1.40 10.54 2.23 16.65
matmul 1.00 6.73 1.00 6.72 1.22 8.25 1.00 6.72

N=2 P IA P IA P IA P IA
bilateral 1.00 13.93 1.00 12.47 1.02 14.14 1.00 12.41
dct8x8m 2.00 26.05 1.00 6.52 1.00 13.00 1.00 6.52
mriq 1.96 32.81 1.96 32.86 1.92 34.90 1.71 29.78
rgb2cmyk 1.21 17.97 1.00 13.77 1.00 13.76 1.00 13.77
strsearch 1.17 18.37 1.18 18.54 1.06 16.35 1.07 16.41
uts 1.98 27.93 1.71 22.51 1.38 19.37 1.51 18.90
bfs-d 1.41 22.12 1.39 20.93 1.25 19.27 1.27 18.69
bfs-nd 1.18 18.13 1.18 17.39 1.13 18.27 1.15 16.43
dict 1.48 23.33 1.48 22.17 1.10 17.45 1.10 16.29
mis 1.65 31.20 1.65 29.85 1.36 25.21 1.36 24.62
rdups 1.53 27.20 1.34 21.23 1.19 20.71 1.19 17.84
sarray 1.36 23.83 1.29 21.02 1.45 26.93 1.46 25.92
qsort 1.79 32.79 1.91 35.49 2.72 54.17 2.70 53.57
qsort-1 1.73 32.11 1.68 31.23 1.53 28.72 1.88 36.12
qsort-2 1.82 35.94 1.94 38.61 1.89 37.49 2.07 41.38
sampsort 1.92 32.37 1.98 32.26 1.61 27.28 1.79 29.26
sampsort-1 1.91 31.60 1.92 29.73 1.62 26.94 1.85 28.45
sampsort-2 1.96 34.05 2.17 32.92 1.91 33.30 2.14 32.24
hull 1.28 21.12 1.08 15.30 1.14 19.40 1.15 16.69
cilksort 1.67 30.57 1.66 30.25 1.40 25.23 1.47 26.23
heat 1.97 30.91 1.69 26.49 1.47 23.65 1.44 23.15
ksack 1.96 29.22 1.64 16.25 1.10 16.44 1.82 17.38
matmul 1.04 14.09 1.00 6.73 1.00 13.45 1.00 6.73

Table A.6: WSRT Results for Sharing the Instruction Port and Frontend Only – WSRT results for sharing
imem+fe only (CL-NI-NF-4L) design point. rr = baseline with round-robin arbitration; rr+hint = baseline with
soft-barrier hints enabled; mpc = baseline with the hybrid minimum-pc/round-robin thread selection mechanism;
mpc+hint = mpc configuration with soft-barrier hints. P = Normalized delay; IA = Normalized instruction access

116

0Lo-0Co-0Hi 0Lo-0Co-1Hi 0Lo-1Co-0Hi 0Lo-1Co-1Hi 1Lo-0Co-0Hi 1Lo-0Co-1Hi 1Lo-1Co-0Hi 1Lo-1Co-1Hi
N=1 P IA P IA P IA P IA P IA P IA P IA P IA
bilateral 2.05 26.41 2.05 26.41 2.05 26.24 2.06 26.29 2.09 26.41 2.09 26.41 2.70 8.06 2.81 6.68
dct8x8m 2.61 26.05 2.61 26.05 2.60 26.05 2.60 26.05 2.63 26.05 2.64 26.05 2.68 13.03 3.71 6.51
mriq 1.45 33.38 1.45 33.38 1.42 33.07 1.42 33.07 1.46 33.38 1.46 33.38 1.44 30.74 1.43 30.89
rgb2cmyk 1.69 27.93 1.77 27.93 1.64 26.80 1.64 26.80 1.84 27.93 1.84 27.93 1.76 13.66 1.77 13.28
strsearch 1.72 42.60 1.72 42.60 1.36 30.72 1.36 30.67 1.74 42.60 1.74 42.60 1.33 25.78 1.33 25.75
uts 1.27 29.44 1.30 29.43 1.24 29.38 1.26 29.35 1.23 29.45 1.29 29.43 1.25 29.16 1.24 29.09
bfs-d 1.35 30.68 1.35 30.68 1.33 28.06 1.34 28.12 1.39 30.68 1.39 30.68 1.48 19.04 1.48 18.95
bfs-nd 1.44 31.53 1.43 31.53 1.37 27.77 1.37 28.22 1.47 31.53 1.48 31.53 1.55 15.52 1.51 17.22
dict 1.33 32.34 1.33 32.34 1.23 26.93 1.23 26.88 1.33 32.34 1.33 32.34 1.25 20.77 1.25 20.80
mis 1.59 38.58 1.59 38.58 1.50 34.05 1.53 33.71 1.61 38.58 1.61 38.58 1.49 29.16 1.52 28.49
rdups 1.52 37.18 1.52 37.18 1.36 30.56 1.40 29.52 1.52 37.18 1.52 37.18 1.40 23.33 1.41 23.06
sarray 1.41 31.74 1.42 31.74 1.32 28.74 1.32 28.65 1.45 31.74 1.45 31.74 1.48 14.96 1.50 14.03
hull 1.47 33.81 1.51 33.81 1.35 29.09 1.39 29.47 1.51 33.81 1.70 33.81 2.08 9.87 2.07 11.29

N=2 P IA P IA P IA P IA P IA P IA P IA P IA
bilateral 1.17 26.41 1.17 26.41 1.17 26.09 1.17 26.12 1.23 26.41 1.23 26.41 1.60 6.69 1.60 6.69
dct8x8m 1.34 26.05 1.34 26.05 1.33 25.80 1.34 25.82 1.73 26.05 1.36 26.05 1.90 6.51 1.90 6.51
mriq 1.06 33.38 1.06 33.38 1.05 33.14 1.05 33.14 1.05 33.38 1.05 33.38 1.05 32.34 1.05 32.41
rgb2cmyk 1.13 27.93 1.13 27.93 1.12 27.22 1.12 27.22 1.17 27.93 1.18 27.93 1.15 13.74 1.15 13.74
strsearch 1.08 42.60 1.08 42.60 1.02 32.30 1.02 32.29 1.09 42.60 1.09 42.60 1.05 27.76 1.05 27.73
uts 1.03 29.50 1.06 29.44 1.06 29.42 1.04 29.39 1.07 29.49 1.04 29.44 1.05 29.23 1.03 29.19
bfs-d 1.03 30.68 1.03 30.68 1.02 27.20 1.02 27.00 1.03 30.68 1.04 30.68 1.04 24.85 1.07 23.22
bfs-nd 1.04 31.53 1.04 31.53 1.03 27.69 1.03 24.25 1.05 31.53 1.05 31.53 1.09 21.57 1.15 16.56
dict 1.03 32.34 1.03 32.34 1.02 28.63 1.02 27.51 1.03 32.34 1.03 32.34 1.02 28.67 1.04 25.18
mis 1.07 38.57 1.09 38.58 1.05 33.82 1.05 33.82 1.08 38.58 1.09 38.58 1.08 32.44 1.09 31.08
rdups 1.05 37.19 1.09 37.19 1.03 31.71 1.03 30.16 1.07 37.19 1.09 37.19 1.08 25.66 1.10 24.09
sarray 1.05 31.74 1.05 31.74 1.03 28.60 1.02 26.37 1.08 31.74 1.08 31.74 1.12 20.51 1.13 15.18
hull 1.04 33.81 1.10 33.81 1.04 29.67 1.09 25.48 1.05 33.81 1.14 33.81 1.32 14.23 1.35 10.49

Table A.7: SPMD Results for Sharing the Instruction Port and LLFUs Only with Round-Robin Thread Se-
lection – SPMD results for sharing imem+llfu only (CL-NI-4F-NL) design point with round-robin thread selection
mechanism; The columns represent the values smart sharing mechanisms using the notation of (BLo-BCo-BHi) where
Co = instruction coalescing; Lo = lockstep execution; Hi = soft-barrier hints; B = boolean choice of true or false which
is used a prefix to indicate the applicability of a mechanism; P = Normalized delay; IA = Normalized instruction
access.

117

0Lo-0Co-0Hi 0Lo-0Co-1Hi 0Lo-1Co-0Hi 0Lo-1Co-1Hi 1Lo-0Co-0Hi 1Lo-0Co-1Hi 1Lo-1Co-0Hi 1Lo-1Co-1Hi
N=1 P IA P IA P IA P IA P IA P IA P IA P IA
bilateral 2.06 27.81 2.07 27.83 2.08 27.65 2.07 27.67 2.10 27.82 2.10 27.83 2.72 8.57 2.78 7.95
dct8x8m 2.61 26.05 2.62 26.06 2.61 26.05 2.61 26.05 2.63 26.05 2.65 26.08 3.71 6.58 3.71 6.52
mriq 1.53 33.57 1.56 34.08 1.53 33.39 1.53 33.32 1.54 33.61 1.54 33.69 1.56 32.48 1.55 31.89
rgb2cmyk 1.66 27.98 1.68 28.05 1.65 28.14 1.65 28.15 1.89 27.84 1.89 27.81 1.91 13.34 1.93 11.16
strsearch 1.27 31.03 1.27 31.15 1.24 28.44 1.26 28.97 1.28 31.03 1.29 31.14 1.34 18.19 1.34 18.29
uts 1.29 27.99 1.52 28.01 1.29 28.00 1.53 27.73 1.29 27.98 1.54 27.92 1.29 25.85 1.57 21.86
bfs-d 1.39 31.52 1.43 31.82 1.36 28.98 1.40 29.27 1.43 31.60 1.47 31.91 1.49 20.25 1.55 19.99
bfs-nd 1.55 34.46 1.59 34.60 1.43 29.50 1.43 29.40 1.59 34.72 1.61 34.83 1.51 17.51 1.61 16.03
dict 1.31 31.73 1.31 31.74 1.23 27.48 1.23 27.50 1.31 31.75 1.31 31.75 1.23 23.19 1.26 21.93
mis 1.58 38.17 1.58 38.06 1.49 33.95 1.51 34.00 1.59 38.13 1.60 38.13 1.51 28.12 1.52 28.03
rdups 1.48 35.79 1.49 35.80 1.41 31.64 1.36 31.54 1.54 35.81 1.54 35.84 1.37 24.35 1.47 22.05
sarray 1.55 33.12 1.56 33.01 1.46 29.80 1.48 29.48 1.58 33.11 1.61 33.01 1.62 20.02 1.69 18.05
qsort 1.51 34.84 1.51 34.59 1.50 34.11 1.49 33.48 1.52 35.05 1.51 34.59 1.48 31.04 1.48 30.70
qsort-1 1.52 34.55 1.53 34.50 1.48 33.17 1.50 33.21 1.53 34.54 1.55 34.49 1.52 25.68 1.54 25.82
qsort-2 1.60 38.73 1.65 38.67 1.55 36.89 1.61 37.19 1.61 38.87 1.66 38.98 1.55 36.08 1.60 36.28
sampsort 1.66 33.68 1.90 33.80 1.65 33.21 1.88 33.34 1.67 33.57 1.90 33.79 1.66 31.00 1.90 31.35
sampsort-1 1.71 33.20 2.03 33.28 1.70 32.71 2.03 33.12 1.71 33.02 2.05 33.52 1.71 30.11 2.04 29.72
sampsort-2 1.79 35.00 2.28 34.95 1.78 34.52 2.27 34.49 1.79 35.02 2.29 34.94 1.78 33.55 2.28 32.52
hull 1.52 33.73 1.55 33.76 1.39 28.90 1.45 29.44 1.58 33.75 1.60 33.80 1.90 12.87 2.14 10.28
cilksort 1.52 36.81 1.53 36.42 1.43 33.24 1.45 33.18 1.52 36.51 1.54 36.45 1.43 31.23 1.45 30.99
heat 1.40 31.22 1.46 31.19 1.40 30.95 1.45 30.91 1.40 31.24 1.45 31.16 1.40 30.24 1.47 26.53
ksack 1.90 29.78 2.40 29.79 1.90 29.72 2.34 29.41 1.91 29.78 2.44 29.79 1.91 27.63 2.47 16.67
matmul 1.32 26.92 1.33 26.89 1.32 25.68 1.35 25.03 1.52 26.96 1.48 26.88 2.07 7.35 1.99 6.73

N=2 P IA P IA P IA P IA P IA P IA P IA P IA
bilateral 1.18 27.87 1.17 27.83 1.18 27.51 1.17 27.46 1.23 27.86 1.25 27.87 1.57 8.01 1.60 7.54
dct8x8m 1.37 26.81 1.37 26.78 1.37 26.45 1.37 26.59 1.79 26.05 1.78 26.06 1.90 6.56 1.90 6.52
mriq 1.07 34.14 1.07 33.60 1.06 33.17 1.06 33.28 1.06 33.64 1.08 34.23 1.08 33.06 1.07 32.37
rgb2cmyk 1.11 29.79 1.12 28.89 1.11 28.87 1.13 21.63 1.17 28.77 1.19 28.92 1.26 10.94 1.26 10.95
strsearch 1.01 31.23 1.01 31.26 1.01 29.51 1.01 29.55 1.01 31.22 1.02 31.26 1.05 22.81 1.07 23.05
uts 1.02 28.20 1.29 27.96 1.02 27.91 1.29 27.74 1.02 27.96 1.30 28.06 1.03 27.04 1.32 22.13
bfs-d 1.04 31.45 1.08 31.63 1.03 28.12 1.08 28.24 1.05 31.52 1.09 31.81 1.07 24.40 1.12 24.00
bfs-nd 1.05 34.61 1.10 34.78 1.04 29.40 1.07 27.56 1.06 34.58 1.11 34.76 1.15 18.18 1.18 18.23
dict 1.02 31.62 1.03 31.63 1.02 29.35 1.02 27.61 1.02 31.61 1.03 31.62 1.04 25.71 1.05 25.41
mis 1.07 38.08 1.07 38.10 1.06 34.81 1.06 33.28 1.08 38.07 1.07 38.04 1.08 31.39 nan nan
rdups 1.03 35.62 1.06 35.63 1.03 31.19 1.03 28.13 1.03 35.64 1.06 35.62 1.06 26.99 1.10 24.30
sarray 1.05 33.81 1.08 33.95 1.04 29.97 1.06 28.77 1.09 34.00 1.12 33.96 1.15 21.58 1.23 18.72
qsort 1.07 37.36 1.07 36.44 1.06 34.87 1.07 34.44 1.07 37.09 1.08 36.75 1.06 32.89 1.07 32.65
qsort-1 1.07 36.75 1.10 36.76 1.06 34.04 1.09 34.03 1.08 36.82 1.11 36.72 1.10 27.87 1.13 28.13
qsort-2 1.07 39.51 1.17 39.51 1.06 37.56 1.16 37.69 1.07 39.54 1.17 39.55 1.06 36.79 1.16 37.06
sampsort 1.09 33.83 1.44 33.79 1.09 33.40 1.43 33.38 1.09 33.69 1.44 33.78 1.09 31.86 1.46 32.69
sampsort-1 1.09 33.12 1.55 33.43 1.09 32.81 1.56 32.76 1.10 33.25 1.57 33.49 1.11 30.77 1.57 30.03
sampsort-2 1.11 34.99 1.80 34.92 1.11 34.63 1.81 34.44 1.12 35.03 1.82 34.94 1.12 33.77 1.82 32.70
hull 1.04 33.90 1.13 34.25 1.03 29.97 1.11 27.09 1.08 33.91 1.14 34.20 1.28 13.54 1.42 10.53
cilksort 1.05 36.51 1.09 36.44 1.04 32.98 1.07 32.36 1.06 36.57 1.09 36.44 1.04 31.78 1.08 31.89
heat 1.04 31.24 1.12 31.23 1.04 31.06 1.12 31.19 1.04 31.25 1.12 31.35 1.04 30.76 1.14 26.23
ksack 1.14 29.78 1.86 29.79 1.14 29.74 1.85 28.47 1.15 29.79 1.88 29.80 1.16 27.23 1.90 17.76
matmul 1.00 26.92 1.06 26.88 1.00 26.84 1.01 13.47 1.02 26.93 1.13 26.88 1.26 10.55 1.25 6.73

Table A.8: WSRT Results for Sharing the Instruction Port and LLFUs Only with Round-Robin Thread Se-
lection – WSRT results for sharing imem+llfu only (CL-NI-4F-NL) design point with round-robin thread selection
mechanism; The columns represent the values smart sharing mechanisms using the notation of (BLo-BCo-BHi) where
Co = instruction coalescing; Lo = lockstep execution; Hi = soft-barrier hints; B = boolean choice of true or false which
is used a prefix to indicate the applicability of a mechanism; P = Normalized delay; IA = Normalized instruction
access.

118

0Lo-0Co-0Hi 0Lo-0Co-1Hi 0Lo-1Co-0Hi 0Lo-1Co-1Hi 1Lo-0Co-0Hi 1Lo-0Co-1Hi 1Lo-1Co-0Hi 1Lo-1Co-1Hi
N=1 P IA P IA P IA P IA P IA P IA P IA P IA
bilateral 2.05 26.41 2.06 26.41 2.05 26.28 2.06 26.22 2.09 26.41 2.09 26.41 2.81 6.68 2.81 6.68
dct8x8m 2.63 26.05 2.63 26.05 2.62 26.02 2.61 26.04 2.63 26.05 2.59 26.05 2.66 13.03 3.71 6.51
mriq 1.60 33.38 1.60 33.38 1.48 31.12 1.48 31.12 1.60 33.38 1.60 33.38 1.48 27.69 1.47 27.97
rgb2cmyk 1.72 27.93 1.72 27.93 1.70 26.93 1.70 26.92 1.74 27.93 1.74 27.93 1.85 12.76 1.85 12.76
strsearch 1.68 42.60 1.68 42.60 1.35 20.87 1.35 20.88 1.68 42.60 1.68 42.60 1.41 18.12 1.41 18.12
uts 1.49 29.79 1.49 29.78 1.43 29.58 1.40 29.63 1.47 29.78 1.39 29.76 1.40 29.25 1.36 29.24
bfs-d 1.40 30.67 1.40 30.67 1.33 27.86 1.34 27.92 1.44 30.67 1.44 30.67 1.52 17.55 1.53 17.21
bfs-nd 1.49 31.53 1.49 31.53 1.38 27.26 1.37 27.32 1.53 31.53 1.52 31.53 1.52 15.46 1.55 14.59
dict 1.37 32.34 1.37 32.34 1.21 24.95 1.21 24.94 1.37 32.34 1.37 32.34 1.25 16.73 1.25 16.71
mis 1.62 38.59 1.62 38.59 1.51 33.72 1.51 33.72 1.63 38.59 1.63 38.59 1.53 27.70 1.53 27.69
rdups 1.60 37.18 1.60 37.18 1.35 31.14 1.35 30.63 1.61 37.19 1.61 37.19 1.42 21.58 1.47 20.01
sarray 1.54 31.74 1.53 31.74 1.30 28.87 1.31 28.87 1.54 31.74 1.53 31.74 1.49 14.37 1.49 14.30
hull 1.56 33.81 1.60 33.81 1.42 29.03 1.39 29.36 1.57 33.81 1.59 33.81 2.11 8.99 2.11 8.96

N=2 P IA P IA P IA P IA P IA P IA P IA P IA
bilateral 1.17 26.41 1.18 26.41 1.17 26.08 1.19 25.85 1.20 26.41 1.20 26.41 1.60 6.69 1.60 6.69
dct8x8m 1.38 26.05 1.38 26.05 1.38 25.98 1.38 25.93 1.60 26.05 1.50 26.05 1.90 6.55 1.90 6.51
mriq 1.05 33.38 1.05 33.38 1.05 32.96 1.05 32.97 1.05 33.38 1.05 33.38 1.06 31.80 1.06 31.80
rgb2cmyk 1.13 27.93 1.13 27.93 1.13 27.28 1.13 27.28 1.15 27.93 1.15 27.93 1.23 17.37 1.15 13.74
strsearch 1.08 42.60 1.08 42.60 1.02 32.33 1.02 32.35 1.08 42.60 1.08 42.60 1.05 27.20 1.05 27.23
uts 1.07 29.66 1.06 29.61 1.01 29.51 1.05 29.46 1.07 29.64 1.07 29.61 1.01 29.37 1.09 29.27
bfs-d 1.03 30.68 1.04 30.68 1.02 27.86 1.02 26.95 1.04 30.68 1.04 30.68 1.04 25.34 1.07 22.98
bfs-nd 1.04 31.53 1.04 31.53 1.03 27.21 1.03 24.04 1.05 31.53 1.05 31.53 1.09 21.51 1.15 16.57
dict 1.03 32.34 1.03 32.34 1.02 29.95 1.02 27.63 1.03 32.34 1.03 32.34 1.02 27.74 1.04 25.39
mis 1.06 38.57 1.08 38.57 1.06 35.20 1.06 33.84 1.07 38.57 1.08 38.57 1.07 33.66 1.09 30.95
rdups 1.04 37.19 1.06 37.19 1.03 31.97 1.03 30.25 1.04 37.19 1.06 37.19 1.04 28.83 1.10 24.16
sarray 1.04 31.74 1.04 31.74 1.02 27.71 1.02 25.14 1.05 31.74 1.06 31.74 1.11 18.86 1.13 15.30
hull 1.07 33.81 1.10 33.81 1.03 30.78 1.09 25.75 1.07 33.81 1.11 33.81 1.29 14.04 1.35 10.32

Table A.9: SPMD Results for Sharing the Instruction Port and LLFUs Only with Hybrid Minimum-PC Thread
Selection – SPMD results for sharing imem+llfu only (CL-NI-4F-NL) design point with hybrid minimum-pc/round-
robin thread selection mechanism; The columns represent the values smart sharing mechanisms using the notation of
(BLo-BCo-BHi) where Co = instruction coalescing; Lo = lockstep execution; Hi = soft-barrier hints; B = boolean
choice of true or false which is used a prefix to indicate the applicability of a mechanism; P = Normalized delay; IA =
Normalized instruction access.

119

0Lo-0Co-0Hi 0Lo-0Co-1Hi 0Lo-1Co-0Hi 0Lo-1Co-1Hi 1Lo-0Co-0Hi 1Lo-0Co-1Hi 1Lo-1Co-0Hi 1Lo-1Co-1Hi
N=1 P IA P IA P IA P IA P IA P IA P IA P IA
bilateral 2.07 27.81 2.09 27.80 2.07 27.58 2.09 27.60 2.10 28.48 2.10 28.49 2.44 12.13 2.80 7.70
dct8x8m 2.61 26.07 2.64 26.06 2.61 26.04 2.61 26.04 2.62 26.12 2.62 26.12 3.71 6.58 3.71 6.52
mriq 1.75 37.30 1.75 37.06 1.70 35.07 1.70 34.86 1.74 37.10 1.75 37.03 1.60 28.91 1.60 28.88
rgb2cmyk 1.64 28.96 1.64 28.94 1.64 27.84 1.64 27.85 1.65 29.08 1.65 29.10 1.87 13.92 1.82 12.73
strsearch 1.27 30.83 1.28 30.85 1.25 27.97 1.25 27.88 1.29 30.86 1.31 31.20 1.41 15.17 1.41 15.09
uts 1.29 28.00 1.54 27.95 1.28 27.71 1.54 27.20 1.29 27.99 1.54 28.00 1.31 23.80 1.60 19.58
bfs-d 1.42 31.93 1.45 32.17 1.37 28.89 1.39 29.21 1.44 31.77 1.47 32.08 1.55 18.42 1.59 18.70
bfs-nd 1.55 35.02 1.56 35.14 1.41 28.61 1.43 28.85 1.56 34.88 1.58 35.11 1.56 16.56 1.62 15.29
dict 1.32 31.98 1.32 31.91 1.21 25.19 1.22 25.22 1.32 31.96 1.32 31.94 1.23 18.64 1.26 17.62
mis 1.59 38.28 1.59 38.25 1.51 33.59 1.51 33.55 1.60 38.28 1.60 38.29 1.53 27.00 1.53 26.97
rdups 1.47 36.45 1.47 36.43 1.34 29.46 1.34 29.45 1.49 36.48 1.49 36.47 1.44 20.91 1.47 19.94
sarray 1.63 35.92 1.65 35.98 1.54 32.48 1.54 32.02 1.62 35.47 1.63 35.43 1.72 19.76 1.77 18.41
qsort 2.00 47.01 2.01 46.99 1.83 41.15 1.82 40.75 2.01 47.21 2.03 47.33 1.70 34.40 1.66 33.06
qsort-1 1.97 45.95 1.99 45.84 1.77 39.02 1.78 39.00 1.97 45.79 1.99 45.76 1.67 27.14 1.70 27.52
qsort-2 1.86 45.21 1.91 45.29 1.70 40.19 1.76 40.58 1.86 45.02 1.90 44.91 1.65 37.86 1.71 38.17
sampsort 1.70 34.31 1.92 34.41 1.69 33.22 1.91 33.68 1.70 34.37 1.93 34.59 1.68 29.17 1.93 29.99
sampsort-1 1.74 33.93 2.06 34.05 1.72 32.70 2.04 33.15 1.74 33.79 2.07 34.13 1.73 28.10 2.07 29.05
sampsort-2 1.79 35.12 2.28 35.04 1.78 34.58 2.29 34.61 1.79 35.13 2.29 34.98 1.79 33.58 2.29 32.47
hull 1.52 34.25 1.56 34.11 1.43 29.24 1.48 29.55 1.52 34.31 1.56 34.42 2.09 11.21 2.15 10.34
cilksort 1.52 36.50 1.54 36.43 1.46 34.03 1.48 34.04 1.53 36.56 1.55 36.44 1.47 31.83 1.49 31.79
heat 1.42 31.32 1.48 31.25 1.41 30.38 1.48 30.05 1.42 31.38 1.48 31.36 1.41 28.67 1.52 24.16
ksack 1.89 29.79 2.41 29.79 1.89 29.59 2.44 29.15 1.89 29.78 2.39 29.79 1.91 26.33 2.47 16.21
matmul 1.30 27.00 1.32 26.96 1.31 25.80 1.28 23.96 1.54 27.01 1.54 27.02 2.03 8.94 1.99 6.73

N=2 P IA P IA P IA P IA P IA P IA P IA P IA
bilateral 1.18 27.86 1.18 27.81 1.18 27.45 1.18 27.45 1.20 27.87 1.21 27.84 1.57 8.02 1.60 7.53
dct8x8m 1.38 26.97 1.38 26.98 1.38 26.71 1.38 26.68 1.45 26.86 1.50 26.06 1.90 6.58 1.90 6.52
mriq 1.09 34.57 1.09 34.50 1.08 34.16 1.08 33.59 1.09 34.56 1.09 34.48 1.09 32.99 1.09 32.53
rgb2cmyk 1.12 29.90 1.13 29.52 1.12 28.92 1.13 21.64 1.14 30.01 1.14 28.45 1.26 11.33 1.26 10.95
strsearch 1.01 31.19 1.01 31.22 1.01 29.35 1.01 29.34 1.01 31.18 1.02 31.36 1.06 22.61 1.07 22.70
uts 1.02 28.02 1.29 28.06 1.02 27.99 1.29 27.79 1.02 28.15 1.29 27.96 1.02 26.57 1.32 22.30
bfs-d 1.04 31.49 1.09 31.90 1.03 28.42 1.07 27.86 1.05 31.64 1.10 31.94 1.08 24.31 1.12 23.97
bfs-nd 1.08 34.71 1.13 34.82 1.04 28.93 1.07 26.80 1.09 34.77 1.13 34.88 1.14 18.66 1.18 17.97
dict 1.03 31.62 1.03 31.63 1.02 28.09 1.03 27.23 1.03 31.62 1.03 31.62 1.04 25.17 1.05 24.88
mis 1.08 38.16 1.08 38.03 1.06 34.26 1.06 33.18 1.09 38.17 1.08 38.04 1.10 30.28 1.10 30.33
rdups 1.04 35.72 1.06 35.71 1.03 31.70 1.03 28.02 1.05 35.73 1.08 35.69 1.09 24.75 1.10 24.09
sarray 1.06 34.45 1.10 34.69 1.06 31.14 1.08 28.62 1.06 34.24 1.10 34.45 1.15 22.23 1.23 19.07
qsort 1.12 39.28 1.11 38.12 1.10 37.07 1.12 37.05 1.12 39.46 1.14 39.07 1.10 36.49 1.08 30.99
qsort-1 1.11 38.42 1.14 38.52 1.08 35.38 1.13 37.54 1.12 38.85 1.15 39.07 1.10 25.30 1.13 25.21
qsort-2 1.09 40.64 1.19 40.65 1.08 39.38 1.19 39.83 1.09 40.34 1.21 41.24 1.08 38.85 1.16 35.93
sampsort 1.09 33.76 1.44 33.93 1.08 33.35 1.44 33.53 1.10 33.99 1.44 33.95 1.10 31.66 1.45 31.84
sampsort-1 1.10 33.27 1.56 33.36 1.10 33.01 1.56 32.91 1.10 33.25 1.57 33.22 1.12 30.68 1.59 30.60
sampsort-2 1.12 35.18 1.79 34.93 1.11 34.79 1.82 34.80 1.12 35.13 1.82 34.89 1.12 33.82 1.83 32.77
hull 1.05 34.00 1.14 34.30 1.02 29.91 1.11 27.87 1.08 33.97 1.16 34.27 1.22 14.94 1.41 10.60
cilksort 1.05 36.50 1.09 36.45 1.04 33.77 1.08 33.57 1.05 36.47 1.09 36.43 1.04 33.26 1.08 33.08
heat 1.04 31.24 1.13 31.44 1.04 31.04 1.12 31.02 1.04 31.23 1.13 31.43 1.04 30.53 1.14 27.17
ksack 1.14 29.78 1.86 29.80 1.14 29.73 1.87 28.63 1.14 29.79 1.87 29.80 1.17 26.75 1.89 17.04
matmul 1.00 26.91 1.01 26.88 1.00 25.74 1.01 13.47 1.01 26.96 1.01 26.88 1.25 6.73 1.25 6.73

Table A.10: WSRT Results for Sharing the Instruction Port and LLFUs Only with Hybrid Minimum-PC
Thread Selection – WSRT results for sharing imem+llfu only (CL-NI-4F-NL) design point with hybrid minimum-
pc/round-robin thread selection mechanism; The columns represent the values smart sharing mechanisms using the
notation of (BLo-BCo-BHi) where Co = instruction coalescing; Lo = lockstep execution; Hi = soft-barrier hints; B =
boolean choice of true or false which is used a prefix to indicate the applicability of a mechanism; P = Normalized
delay; IA = Normalized instruction access.

120

rr rr mpc mpc
hint hint

N=1 P IA P IA P IA P IA
bilateral 2.66 13.11 2.66 13.11 2.81 6.68 2.81 6.68
dct8x8m 4.00 26.05 3.71 6.51 3.71 6.51 3.71 6.51
mriq 3.91 32.37 3.93 32.54 4.13 24.30 4.11 24.10
rgb2cmyk 2.63 14.03 2.10 13.96 2.20 8.78 2.19 8.79
strsearch 1.85 15.94 1.86 15.96 1.81 16.94 1.81 16.95
uts 4.16 29.35 3.98 29.25 3.77 27.69 3.76 27.68
bfs-d 2.56 18.11 2.55 18.07 2.29 15.11 2.29 15.07
bfs-nd 2.05 12.61 2.02 12.24 1.97 10.89 1.97 10.88
dict 2.28 17.50 2.28 17.47 1.57 11.16 1.57 11.16
mis 3.16 29.56 3.16 29.56 2.87 26.61 2.87 26.63
rdups 2.39 19.80 2.39 19.80 2.14 17.15 2.14 17.15
sarray 3.01 15.72 2.96 13.51 3.23 12.07 3.23 12.07
hull 2.45 12.81 2.22 9.27 2.30 8.94 2.30 8.93

N=2 P IA P IA P IA P IA
bilateral 1.61 7.32 1.60 6.69 1.58 7.12 1.60 6.69
dct8x8m 2.00 26.05 1.90 6.51 1.90 6.51 1.90 6.51
mriq 1.97 32.65 1.97 32.56 3.19 25.86 3.19 25.86
rgb2cmyk 1.29 13.29 1.15 13.74 1.15 13.63 1.15 13.74
strsearch 1.25 20.45 1.25 20.57 1.13 19.22 1.13 19.22
uts 1.96 29.28 2.01 29.22 2.00 30.39 1.93 30.40
bfs-d 1.48 20.28 1.45 19.30 1.30 17.49 1.31 16.93
bfs-nd 1.33 14.05 1.32 13.78 1.21 14.13 1.25 12.55
dict 1.52 23.80 1.52 22.59 1.15 15.32 1.15 15.31
mis 1.70 30.51 1.70 30.56 1.45 25.19 1.44 25.18
rdups 1.43 22.67 1.43 21.09 1.29 18.16 1.30 17.90
sarray 1.25 15.87 1.28 14.17 1.19 13.53 1.21 12.66
hull 1.40 9.09 1.38 8.92 1.35 10.56 1.37 9.08

Table A.11: SPMD Results for Sharing the Instruction Port, Frontend and LLFUs – SPMD results for sharing
imem+fe+llfu (CL-NI-NF-NL) design point. rr = baseline with round-robin arbitration; rr+hint = baseline with
soft-barrier hints enabled; mpc = baseline with the hybrid minimum-pc/round-robin thread selection mechanism;
mpc+hint = mpc configuration with soft-barrier hints. P = Normalized delay; IA = Normalized instruction access

121

rr rr mpc mpc
hint hint

N=1 P IA P IA P IA P IA
bilateral 2.67 13.39 2.68 12.73 2.79 7.62 2.81 7.24
dct8x8m 4.00 26.05 3.71 6.52 3.71 6.52 3.71 6.52
mriq 4.01 33.70 3.92 32.70 3.40 28.94 3.45 29.57
rgb2cmyk 2.22 10.14 2.19 9.66 2.19 8.47 2.20 8.53
strsearch 1.89 12.36 1.89 12.33 1.90 12.64 1.90 12.69
uts 3.97 27.95 3.43 23.58 2.68 18.47 2.72 18.16
bfs-d 2.61 19.14 2.61 19.00 2.30 15.91 2.31 15.89
bfs-nd 2.33 16.50 2.07 13.67 1.97 12.26 1.99 12.32
dict 2.30 17.31 2.28 17.18 1.56 11.04 1.56 11.03
mis 3.17 29.10 3.16 29.00 2.87 26.20 2.87 26.15
rdups 2.40 19.62 2.40 19.51 2.15 16.93 2.15 16.91
sarray 2.81 20.22 2.65 18.16 2.55 18.48 2.55 18.38
qsort 3.81 34.99 3.79 34.71 4.18 39.27 4.14 38.81
qsort-1 3.40 31.08 3.33 29.86 3.73 34.05 3.71 33.59
qsort-2 3.85 37.99 3.84 37.90 4.12 40.93 4.14 41.15
sampsort 3.84 32.19 3.83 32.11 3.04 24.11 3.10 24.58
sampsort-1 3.79 31.22 3.67 30.01 3.18 25.04 3.28 25.82
sampsort-2 3.91 33.95 3.79 32.90 3.78 32.78 3.70 32.04
hull 2.55 17.65 2.23 11.35 2.22 10.39 2.24 10.17
cilksort 3.30 30.27 3.27 30.01 2.98 27.36 2.95 27.00
heat 3.89 30.38 3.30 25.76 3.30 25.38 2.85 21.62
ksack 3.94 29.32 2.84 17.60 2.85 19.03 2.75 15.58
matmul 2.00 9.78 1.99 6.72 2.12 7.10 1.99 6.72

N=2 P IA P IA P IA P IA
bilateral 1.60 7.31 1.60 7.34 1.56 8.07 1.60 7.37
dct8x8m 2.00 26.05 1.90 6.52 1.41 13.03 1.90 6.52
mriq 2.00 33.62 1.96 32.69 2.11 37.94 2.00 35.37
rgb2cmyk 1.26 11.01 1.26 10.97 1.31 11.50 1.26 11.01
strsearch 1.26 14.75 1.27 14.98 1.18 12.88 1.18 12.93
uts 1.98 27.78 1.73 22.29 1.43 19.52 1.55 18.43
bfs-d 1.48 20.35 1.49 20.26 1.36 18.21 1.39 18.41
bfs-nd 1.35 16.02 1.34 15.52 1.26 15.17 1.31 14.73
dict 1.62 25.06 1.52 22.10 1.15 15.88 1.15 15.10
mis 1.74 30.69 1.70 29.91 1.44 25.24 1.45 24.78
rdups 1.43 21.48 1.43 20.86 1.29 18.28 1.30 17.75
sarray 1.54 21.06 1.46 18.08 1.58 23.71 1.61 22.30
qsort 1.81 32.96 1.80 32.60 2.25 43.08 2.52 49.14
qsort-1 1.78 31.80 1.54 26.38 1.47 25.12 1.87 33.90
qsort-2 1.83 35.90 1.83 35.98 2.04 40.70 2.05 40.92
sampsort 1.93 32.32 1.99 32.27 1.65 26.99 1.85 29.44
sampsort-1 1.92 31.54 1.98 30.20 1.66 26.54 1.90 28.61
sampsort-2 1.97 34.06 2.19 32.87 1.90 32.91 2.17 32.38
hull 1.58 18.37 1.44 10.34 1.46 13.65 1.49 11.48
cilksort 1.71 30.81 1.68 30.29 1.53 27.69 1.53 27.56
heat 1.97 30.80 1.66 25.51 1.51 23.21 1.41 21.03
ksack 1.96 28.98 1.87 16.39 1.40 17.68 1.98 17.28
matmul 1.26 6.78 1.25 6.73 1.39 9.16 1.25 6.73

Table A.12: WSRT Results for Sharing the Instruction Port, Frontend and LLFUs – WSRT results for sharing
imem+fe+llfu (CL-NI-NF-NL) design point. rr = baseline with round-robin arbitration; rr+hint = baseline with
soft-barrier hints enabled; mpc = baseline with the hybrid minimum-pc/round-robin thread selection mechanism;
mpc+hint = mpc configuration with soft-barrier hints. P = Normalized delay; IA = Normalized instruction access

122

rr rr mpc mpc
hint hint

SPMD P IA P IA P IA P IA
bilateral 4.00 26.41 4.00 13.22 3.99 9.19 3.99 9.19
dct8x8m 4.00 26.05 4.00 6.51 4.00 12.07 4.00 7.77
mriq 4.00 33.26 4.00 33.24 4.82 28.82 4.82 28.82
rgb2cmyk 4.00 26.98 4.00 27.01 3.98 12.63 3.98 11.97
strsearch 4.00 40.13 4.00 40.30 3.93 27.32 3.93 27.32
uts 4.00 29.49 4.09 29.25 4.09 29.86 4.15 29.92
bfs-d 4.00 28.70 4.00 25.27 4.02 22.24 4.02 22.24
bfs-nd 4.00 28.07 4.00 20.45 4.03 17.46 4.03 17.48
dict 4.00 31.67 4.00 28.17 4.00 16.90 4.00 16.90
mis 4.00 36.29 4.00 33.58 4.00 32.93 4.00 32.91
rdups 4.00 36.15 4.00 25.03 4.00 24.77 4.00 24.77
sarray 4.00 30.03 4.00 18.09 4.43 18.20 4.43 18.19
hull 4.00 30.59 4.00 13.97 4.06 14.11 4.06 14.12

WSRT P IA P IA P IA P IA
bilateral 4.00 26.41 4.00 13.22 3.99 9.19 3.99 9.19
bilateral 4.00 27.85 4.00 14.74 3.99 9.91 3.99 9.73
dct8x8m 4.00 26.05 4.00 6.52 4.00 7.78 4.00 7.77
mriq 4.00 33.33 4.05 33.78 4.36 34.28 4.35 34.01
rgb2cmyk 4.00 27.05 4.00 13.53 3.98 10.69 3.98 10.37
strsearch 4.00 29.70 4.00 29.70 3.97 23.39 3.97 23.40
uts 4.00 28.18 3.98 24.94 3.97 22.70 3.97 22.01
bfs-d 4.00 29.16 4.01 26.18 4.02 23.25 4.02 23.05
bfs-nd 4.00 28.87 4.01 23.44 4.02 19.43 4.04 19.47
dict 4.00 30.89 4.00 27.33 4.00 16.64 4.00 16.61
mis 4.00 34.22 4.00 32.83 4.00 32.63 4.00 32.52
rdups 4.00 32.88 4.00 24.75 4.01 24.61 4.01 24.57
sarray 4.00 32.58 3.99 23.57 3.99 23.58 4.07 23.93
qsort 4.00 36.93 4.00 35.28 5.07 41.14 5.07 40.89
qsort-1 4.00 35.38 4.00 36.35 4.85 35.61 4.85 36.96
qsort-2 4.00 38.83 3.99 38.01 4.49 42.22 4.52 42.61
sampsort 4.00 33.41 4.01 32.91 4.07 28.82 4.09 29.01
sampsort-1 4.00 32.93 4.00 31.21 4.11 29.24 4.08 29.31
sampsort-2 4.00 34.70 4.01 33.56 4.02 34.22 4.03 33.77
hull 4.00 32.31 3.98 17.72 4.05 15.73 3.98 14.91
cilksort 4.00 34.97 3.99 34.63 3.99 33.83 3.99 33.92
heat 4.00 31.28 4.00 30.74 4.00 29.11 4.02 26.63
ksack 4.00 29.75 4.00 16.01 4.00 23.96 4.00 20.51
matmul 4.00 25.66 4.00 6.72 4.00 13.61 4.00 13.52

Table A.13: SPMD and WSRT Results for Sharing All Resources – SPMD and WSRT results for sharing all (CL-
1I-1F-1L) design point. rr = baseline with round-robin arbitration; rr+hint = baseline with soft-barrier hints enabled;
mpc = baseline with the hybrid minimum-pc/round-robin thread selection mechanism; mpc+hint = mpc configuration
with soft-barrier hints. P = Normalized delay; IA = Normalized instruction access

123

BIBLIOGRAPHY

[ABC+06] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patter-
son, W. Plishker, J. Shalf, S. Williams, and K. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical report, EECS Department,
University of California, Berkeley, Dec 2006.

[AMW+07] M. Agarwal, K. Malik, K. M. Woley, S. S. Stone, and M. I. Frank. Exploiting Post-
dominance for Speculative Parallelization. Int’l Symp. on High-Performance Com-
puter Architecture (HPCA), 2007.

[API03] K. Atasu, L. Pozzi, and P. Ienne. Automatic Application-Specific Instruction-Set
Extensions Under Microarchitectural Constraints. Design Automation Conf. (DAC),
Jun 2003.

[BBB+11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The Gem5 Simulator. SIGARCH Comput. Archit. News,
39(2):1–7, May 2011.

[BEA+08] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64
Processor: A 64-Core SoC with Mesh Interconnect. Int’l Solid-State Circuits Conf.
(ISSCC), Feb 2008.

[BJK+95] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. Symp. on Principles
and practice of Parallel Programming (PPoPP), Jul 1995.

[BL99] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by
Work Stealing. Journal of the ACM, 46(5):720–748, Sep 1999.

[Bol12] J. Bolaria. Xeon Phi Targets Supercomputers. Microprocessor Report, Sep 2012.

[BPHH18] S. Bell, J. Pu, J. Hegarty, and M. Horowitz. Compiling Algorithms for Heterogeneous
Systems. Synthesis Lectures on Computer Architecture, 13(1):1–107, 2018.

[CBK+14] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and D. Brooks.
HELIX-RC: An Architecture-Compiler Co-Design for Automatic Parallelization of
Irregular Programs. Int’l Symp. on Computer Architecture (ISCA), Jun 2014.

[CDS+14] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. DianNao: a
small-footprint high-throughput accelerator for ubiquitous machine-learning. Int’l
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Feb 2014.

124

[CFHZ04] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-Specific Instruction Generation
for Configurable Processor Architectures. Int’l Symp. on Field Programmable Gate
Arrays (FPGA), Feb 2004.

[CJMT10] C. Campbell, R. Johnson, A. Miller, and S. Toub. Parallel Programming with Mi-
crosoft .NET: Design Patterns for Decomposition and Coordination on Multicore
Architectures (Patterns & Practices). Microsoft Press, 2010.

[CKP+04] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application-Specific Pro-
cessing on a General-Purpose Core via Transparent Instruction Set Customization.
Int’l Symp. on Microarchitecture (MICRO), Dec 2004.

[CL05] D. Chase and Y. Lev. Dynamic Circular Work-stealing Deque. Symp. on Parallel
Algorithms and Architectures (SPAA), Jun 2005.

[CM08] G. Contreras and M. Martonosi. Characterizing and Improving the Performance of
Intel Threading Building Blocks. Int’l Symp. on Workload Characterization (IISWC),
Sep 2008.

[Col11] S. Collange. Stack-less SIMT Reconvergence at Low Cost. Technical Report HAL-
00622654, ARENAIRE, Sep 2011.

[CWS+14] L. Codrescu, A. Willie, S.Venkumanhanti, M. Zeng, E. Plondke, C. Koob, A. Ingle,
C. Tabony, and R. Maule. Hexagon DSP: An Architecture Optimized for Mobile
Multimedia and Communications. IEEE Micro, 34(2):34–43, Mar/Apr 2014.

[DBBS+08] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting, V. Parikh, J. Park,
and D. Sheffield. Efficient Embedded Computing. IEEE Computer, 47(7):27–32, Jul
2008.

[DFR10] M. Dechene, E. Forbes, and E. Rotenberg. Multithreaded Instruction Sharing. Tech-
nical report, ECE Department, North Carolina State University, Dec 2010.

[DGY+74] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small Physical Dimen-
sions. IEEE Journal of Solid-State Circuits (JSSC), 9(5):256–268, Oct 1974.

[DKM+12] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz. CPU DB: Record-
ing Microprocessor History. Communications of the ACM, 55(4):55–63, Apr 2012.

[DZL+17] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang. Dynamic Haz-
ard Resolution for Pipelining Irregular Loops in High-Level Synthesis. Int’l Symp.
on Field Programmable Gate Arrays (FPGA), Feb 2017.

[EBA+11] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark
Silicon and the End of Multicore Scaling. Int’l Symp. on Computer Architecture
(ISCA), Jun 2011.

125

[EV96] R. Espasa and M. Valero. Decoupled Vector Architectures. Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb 1996.

[EVS98] R. Espasa, M. Valero, and J. E. Smith. Vector Architectures: Past, Present, and
Future. Int’l Symp. on Supercomputing (ICS), Jul 1998.

[Fla17] K. Flamm. Measuring MooreâĂŹs Law:Evidence from Price, Cost, and Quality
Indexes. Technical report, University of Texas, Austin, Nov 2017.

[FLPR12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious Algo-
rithms. ACM Transactions on Algorithms, 8(1):4:1–4:22, 2012.

[FLR98] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5
Multithreaded Language. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), Jun 1998.

[gal18] Galois System. Online Webpage, 2018 (accessed March, 2018). http://iss.ices.
utexas.edu/?p=projects/galois.

[GCC+08] J. Gonzalez, Q. Cai, P. Chaparro, G. Magklis, R. N. Rakvic, and A. Gonzalez. Thread
fusion. Int’l Symp. on Low-Power Electronics and Design (ISLPED), Aug 2008.

[GFA+11] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled Execution of
Recurring Traces for Energy-efficient General Purpose Processing. Int’l Symp. on
Microarchitecture (MICRO), Dec 2011.

[GHN+12] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam,
and C. Kim. DySER: Unifying Functionality and Parallelism Specialization for
Energy-Efficient Computing. IEEE Micro, 32(5):38–51, Sep/Oct 2012.

[GHS11] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically Specialized Data-
paths for Energy-Efficient Computing. Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb 2011.

[GKT91] G. Goff, K. Kennedey, and C.-W. Tseng. Practical Dependence Testing. ACM SIG-
PLAN Conf. on Programming Language Design and Implementation (PLDI), Jun
1991.

[GNS13] V. Govindaraju, T. Nowatzki, and K. Sankaralingam. Breaking SIMD Shackles with
an Exposed Flexible Microarchitecture and the Access Execute PDG. Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Sep 2013.

[GRE+01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A Free, Commercially Representative Embedded Benchmark Suite. IEEE
Annual Workshop on Workload Characterization, Dec 2001.

126

[GSO12] K. Gupta, J. A. Stuart, and J. D. Owens. A Study of Persistent Threads Style GPU
Programming for GPGPU Workloads. Innovative Parallel Computing (InPar), May
2012.

[Gwe14a] L. Gwennap. Qualcomm Tips Cortex-A57 Plans: Snapdragon 810 Combines Eight
64-Bit CPUs, LTE Baseband. Microprocessor Report, Apr 2014.

[Gwe14b] L. Gwennap. Samsung First with 20 nm Processor. Microprocessor Report, Sep
2014.

[HLR10] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd edition. Synthesis
Lectures on Computer Architecture, 5(1):1–263, 2010.

[HQW+10] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richard-
son, C. Kozyrakis, and M. Horowitz. Understanding Sources of Inefficiency in
General-Purpose Chips. Int’l Symp. on Computer Architecture (ISCA), Jun 2010.

[Hug15] C. J. Hughes. Single-Instruction Multiple-Data Execution. Synthesis Lectures on
Computer Architecture, 2015.

[int13] Intel Cilk Plus Language Extension Specification, Version 1.2. Intel Reference
Manual, Sep 2013. https://www.cilkplus.org/sites/default/files/open_
specifications/Intel_Cilk_plus_lang_spec_1.2.htm.

[int15] Intel Threading Building Blocks. Online Webpage, 2015 (accessed Aug 2015).
https://software.intel.com/en-us/intel-tbb.

[jav15] Java API: ForkJoinPool. Online API Documentation, 2015 (accessed
Aug 2015). http://docs.oracle.com/javase/7/docs/api/java/util/
concurrent/ForkJoinPool.html.

[Jes01] C. Jesshope. Implementing an Efficient Vector Instruction Set in a Chip Multiproces-
sor Using Micro-Threaded Pipelines. Australia Computer Science Communications,
23(4):80–88, 2001.

[Jon14] H. Jones. Why Migration to 20nm Bulk CMOS and 16nm/14nm FinFETs is Not Best
Approach for Semiconductor Industry. IBS Whitepaper, 2014.

[JSY+15] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emery, and D. Sanchez. A Scalable Ar-
chitecture for Ordered Parallelism. Int’l Symp. on Microarchitecture (MICRO), Dec
2015.

[JYP+17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gotti-
pati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,

127

J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-
ter, W. Wang, E. Wilcox, and D. H. Yoon. In-Datacenter Performance Analysis of a
Tensor Processing Unit. Int’l Symp. on Computer Architecture (ISCA), Jun 2017.

[KB14] J. Kim and C. Batten. Accelerating Irregular Algorithms on GPGPUs Using Fine-
Grain Hardware Worklists. Int’l Symp. on Microarchitecture (MICRO), Dec 2014.

[KBH+04] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and
K. Asanović. The Vector-Thread Architecture. Int’l Symp. on Computer Architecture
(ISCA), Jun 2004.

[KCSS16] S. Kalathingal, S. Collange, B. N. Swamy, and A. Seznec. Execution Drafting: En-
ergy Efficiency Through Computation Deduplication. Intl’l Symp. on Computer Ar-
chitecture and High-Performance Computing (SBAC-PAD), Oct 2016.

[KHN07] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: Architectural Support for Fine-
Grained Parallelism on Chip Multiprocessors. Int’l Symp. on Computer Architecture
(ISCA), Jun 2007.

[KJT04] R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-Core Chip Multiprocessing.
Int’l Symp. on Microarchitecture (MICRO), Dec 2004.

[KJT+17] J. Kim, S. Jiang, C. Torng, M. Wang, S. Srinath, B. Ilbeyi, K. Al-Hawaj, and C. Bat-
ten. Using Intra-core Loop-task Accelerators to Improve the Productivity and Perfor-
mance of Task-based Parallel Programs. Int’l Symp. on Microarchitecture (MICRO),
Oct 2017.

[KLST13] J. Kim, D. Lockhart, S. Srinath, and C. Torng. Microarchitectural Mechanisms to
Exploit Value Structure in Fine-Grain SIMT Architectures. Int’l Symp. on Computer
Architecture (ISCA), Jun 2013.

[KP03] C. Kozyrakis and D. Patterson. Scalable Vector Processors for Embedded Systems.
IEEE Micro, 23(6):36–45, Nov 2003.

[Kre11] K. Krewell. ARM Pairs Cortex-A7 With A15: Big.Little Combines A5-Like Effi-
ciency With A15 Capability. Microprocessor Report, Nov 2011.

[KSS+17] S. Kumar, N. Sumner, V. Srinivasan, S. Margerm, and A. Shriraman. Needle: Lever-
aging Program Analysis to Analyze and Extract Accelerators from Whole Programs.
Int’l Symp. on High-Performance Computer Architecture (HPCA), Feb 2017.

128

[KT99] V. Krishnan and J. Torrellas. A Chip-Multiprocessor Architecture with Speculative
Multithreading. IEEE Computer, 48(9):866–880, Sep 1999.

[LAB+11] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanović.
Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel
Accelerator Cores. Int’l Symp. on Computer Architecture (ISCA), Jun 2011.

[LAB+12] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanović.
Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel
Accelerator Cores. ACM Trans. on Computer Systems (TOCS), 31(3):6, Aug 2012.

[LAS+09] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore
and Manycore Architectures. Int’l Symp. on Microarchitecture (MICRO), Dec 2009.

[Lea00] D. Lea. A Java Fork/Join Framework. Java Grade Conference, Jun 2000.

[Lee16] Y. Lee. Decoupled Vector-Fetch Architecture with a Scalarizing Compiler. Ph.D.
Thesis, UC Berkeley, 2016.

[Lei09] C. E. Leiserson. The Cilk++ Concurrency Platform. Design Automation Conf. (DAC),
Jul 2009.

[LFB+10] G. Long, D. Franklin, S. Biswas, P. Oritz, J. Oberg, D. Fan, and F. T. Chong. Minimal
Multi-threading: Finding and Removing Redundant Instructions in Multi-threaded
Processors. Int’l Symp. on Microarchitecture (MICRO), Dec 2010.

[LIB15] D. Lockhart, B. Ilbeyi, and C. Batten. Pydgin: Generating Fast Instruction Set Simu-
lators from Simple Architecture Descriptions with Meta-Tracing JIT Compilers. Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Mar 2015.

[llv11] The LLVM Compiler Infrastructure Project. Online Webpage, 2011 (accessed Febru-
ary, 2011). http://www.llvm.org.

[LNOM08] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A Unified
Graphics and Computer Architecture. IEEE Micro, 28(2):39–55, Mar/Apr 2008.

[LSB09] D. Leijen, W. Schulte, and S. Burckhardt. The Design of a Task Parallel Library.
Conf. on Object-Oriented Programming Systems Languages and Applications (OOP-
SLA), Oct 2009.

[LZB14] D. Lockhart, G. Zibrat, and C. Batten. PyMTL: A Unified Framework for Verti-
cally Integrated Computer Architecture Research. Int’l Symp. on Microarchitecture
(MICRO), Dec 2014.

[MBJ09] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A Tool to
Model Large Caches, 2009.

129

[MBW14] M. Mckeown, J. Balkind, and D. Wentzlaff. Execution Drafting: Energy Efficiency
Through Computation Deduplication. Int’l Symp. on Microarchitecture (MICRO),
Dec 2014.

[MCM+14] T. Milanez, S. Collange, F. Magno, Q. Pereira, W. Meira, and R. Ferreira. Thread
Scheduling and Memory Coalescing for dynamic Vectorization of SPMD Workloads.
Journal of Parallel Computing, 40(9), 2014.

[Moo65] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics
Magazine, 1965.

[NGAS17] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam. Stream-Dataflow
Acceleration. Int’l Symp. on Computer Architecture (ISCA), Jun 2017.

[nvi17] NVIDIA TESLA V100 GPU Architecture. NVIDIA White Paper,
2017. http://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

[OHL+06] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W. Tseng. UTS:
An Unbalanced Tree Search Benchmark. Int’l Workshop on Lanaguages and Com-
pilers for Parallel Computing (LCPC), Nov 2006.

[ope13] OpenMP Application Program Interface, Version 4.0. OpenMP Architecture Review
Board, Jul 2013. http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[Oya99] Y. Oyanagi. Development of Supercomputers in Japan: Hardware and Software.
Parallel Computing, 25(13–14):1545–1567, Dec 1999.

[pbe14] Polyhedral Benchmark Suite. Online Webpage, 2014 (accessed May, 2014). http:
//www.cse.ohio-state.edu/~pouchet/software/polybench.

[PNK+11] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. Hassaan, R. Kaleem, T. Lee,
A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos, and X. Sui. The Tao of
Parallelism in Algorithms. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), Jun 2011.

[PPA+13] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lusting, V. Pavlov,
A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess, S. Maresh, and J. Emer.
Triggered Instructions: A Control Paradigm for Spatially-programmed Architectures.
Int’l Symp. on Computer Architecture (ISCA), Jun 2013.

[QHS+13] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. Horowitz.
Convolution engine: balancing efficiency and flexibility in specialized computing.
Int’l Symp. on Computer Architecture (ISCA), Jun 2013.

[Rei07] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Proces-
sor Parallelism. O’Reilly, 2007.

130

[Rob14] A. D. Robison. A Primer on Scheduling Fork-Join Parallelism with Work Stealing.
Technical report, Intel Corporation, Jan 2014.

[Rup18] K. Rupp. Microprocessor Trend Data. Github Page, 2018 (accessed March 18, 2018.
https://github.com/karlrupp/microprocessor-trend-data.

[SBF+12] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, and H. V. Simhadri.
Brief Announcement: The Problem Based Benchmark Suite. Symp. on Parallel Al-
gorithms and Architectures (SPAA), Jun 2012.

[SBV95] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Processors. Int’l Symp. on Com-
puter Architecture (ISCA), Jun 1995.

[SCZM00] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A Scalable Approach to
Thread-Level Speculation. Int’l Symp. on Computer Architecture (ISCA), May 2000.

[SIT+14] S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, and C. Batten. Architectural Special-
ization for Inter-Iteration Loop Dependence Patterns. Int’l Symp. on Microarchitec-
ture (MICRO), Dec 2014.

[SRS+12] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D.
Liu, and W. mei W. Hwu. Parboil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing. Technical report, UIUC, IMPACT-12-01, Mar
2012.

[SS00] N. Slingerland and A. J. Smith. Multimedia Instruction Sets for General Purpose
Microprocessors: A Survey. Technical report, EECS Department, University of Cal-
ifornia, Berkeley, Dec 2000.

[Str17] I. B. Strategies. IBS July 2017 monthly report: Design Activities and Strategic Im-
plications. Technical report, International Business Strategies, Jul 2017.

[SYK10] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible Architectural Support for Fine-
Grain Scheduling. Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Mar 2010.

[SYW+13] R. Sampson, M. Yangt, S. Weit, C. Chakrabarti, and T. F. Wenisch. Sonic Millip3De:
A Massively Parallel 3D-Stacked Accelerator for 3D Ultrasound. Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb 2013.

[Tay13] M. B. Taylor. A Landscape of the New Dark Silicon Design Regime. IEEE Micro,
33(5):8–19, Sep/Oct 2013.

[Thi09] W. Thies. Language and Compiler Support for Stream Programs. Ph.D. Thesis, MIT,
2009.

131

[ti08] TMS320C28x Floating Point Unit and Instruction Set. Reference Guide, 2008.
http://www.ti.com/lit/ug/sprueo2a/sprueo2a.pdf.

[TWB16] C. Torng, M. Wang, and C. Batten. Asymmetry-Aware Work-Stealing Runtimes.
Int’l Symp. on Computer Architecture (ISCA), Jun 2016.

[VSG+11] G. Venkatesh, J. Sampson, N. Goulding, S. K. Venkata, M. B. Taylor, and S. Swan-
son. QsCores: Trading Dark Silicon for Scalable Energy Efficiency with Quasi-
Specific Cores. Int’l Symp. on Microarchitecture (MICRO), 2011.

[WAK+96] J. Wawrzynek, K. Asanović, B. Kingsbury, D. Johnson, J. Beck, and N. Morgan.
Spert-II: A Vector Microprocessor System. IEEE Computer, 29(3):79–86, Mar 1996.

[WKP11] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi GF100 GPU Architecture.
IEEE Micro, 31(2):50–59, Mar/Apr 2011.

[WLP+14] L. Wu, A. Lottarini, T. K. Paine, M. Kim, and K. A. Ross. Q100: the architecture
and design of a database processing unit. Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Feb 2014.

[Xil18] Xillinux Linux Distribution. Online Webpage, 2018 (accessed March, 2018). http:
//xillybus.com/xillinux.

[YBC+06] V. Yalala, D. Brasili, D. Carlson, A. Hughes, A. Jain, T. Kiszely, K. Kodandapani,
A. Varadharajan, and T. Xanthopoulos. A 16-Core RISC Microprocessor with Net-
work Extensions. Int’l Solid-State Circuits Conf. (ISSCC), Feb 2006.

[ZLS+16] R. Zhao, G. Liu, S. Srinath, C. Batten, and Z. Zhang. Improving High-Level Synthe-
sis with Decoupled Data Structure Optimization. Design Automation Conf. (DAC),
Jun 2016.

[ZMLM08] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering Hidden Loop
Level Parallelism in Sequential Applications. Int’l Symp. on High-Performance Com-
puter Architecture (HPCA), Feb 2008.

[ZMTC18] D. Zhang, X. Ma, M. Thomson, and D. Chiou. Minnow: Lightweight Offload En-
gines for Worklist Management and Worklist-Directed Prefetching. Int’l Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
Mar 2018.

[Zyn18] Zynq-7000 Programmable SoC. Online Webpage, 2018 (accessed March, 2018).
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.
html.

132

