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The application of large language models (LLMs) to digital hardware code generation is an emerging field,
with most LLMs primarily trained on natural language and software code. Hardware code like Verilog con-
stitutes a small portion of training data, and few hardware benchmarks exist. The open-source VerilogEval
benchmark, released in November 2023, provided a consistent evaluation framework for LLMs on code com-
pletion tasks. Since then, both commercial and open models have seen significant development.

In this work, we evaluate new commercial and open models since VerilogEval’s original release—including
GPT-40, GPT-4 Turbo, Llama3.1 (8B/70B/405B), Llama3 70B, Mistral Large, DeepSeek Coder (33B and 6.7B),
CodeGemma 7B, and RTL-Coder—against an improved VerilogEval benchmark suite. We find measurable
improvements in state-of-the-art models: GPT-40 achieves a 63% pass rate on specification-to-RTL tasks. The
recently released and open Llama3.1 405B achieves a 58% pass rate, almost matching GPT-40, while the smaller
domain-specific RTL-Coder 6.7B models achieve an impressive 34% pass rate.

Additionally, we enhance VerilogEval’s infrastructure by automatically classifying failures, introducing
in-context learning support, and extending the tasks to specification-to-RTL translation. We find that prompt
engineering remains crucial for achieving good pass rates and varies widely with model and task. A bench-
mark infrastructure that allows for prompt engineering and failure analysis is essential for continued model
development and deployment.
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1 Introduction

Applications of large language models (LLMs) to software coding have reached wide deploy-
ment, with examples such as GitHub Copilot [10]. Yet, applications of LLMs to hardware design
are still in their infancy [5, 7]. Hardware code generation benchmarks have only been available
since 2023, including RTLLM [21], VerilogEval [19], VeriGen [29, 30], and most recently RTL-Repo
[3]. Despite this, LLM model releases have been extremely rapid. In this work, we survey the
progress LLMs have made in the past year by evaluating newer LLMs than those tested in the
original VerilogEval paper (published November 2023), including GPT-40 [27] and GPT-4 Turbo
[26], open-source models like Llama3.1 [23], and domain-specific models such as RTL-Coder [20].
In short, we assess the latest state-of-the-art language models to determine the current frontier
of LLM-based Verilog code generation while also evaluating the impact of prompt tuning. We
find that recent open models are competitive with closed models and that prompt tuning varies
considerably across models.

We also take the opportunity to release an improved version of VerilogEval to better align
with instruction-tuned models and to encourage further prompt tuning research. While RTLLM
benchmarked conversational specification-to-RTL generation performance, VerilogEval, VeriGen,
and RTL-Repo are code completion benchmarks. Additionally, none of the benchmarks explore
a model’s generation performance using in-context learning (ICL) [6] examples, nor do they
provide a detailed way to inspect the reasons for a model’s failure.

This work aims to address these limitations by extending VerilogEval [19] (henceforth known
as “VerilogEval v1”) to support specification-to-RTL tasks in addition to the original code com-
pletion task. We also incorporate a variable number of ICL prompts and provide a robust failure
classification mechanism to provide a more comprehensive evaluation framework for Verilog code
generation tasks. The significance of these improvements is their potential to push LLM develop-
ment forward for hardware design, through offering insights into model performance and the
efficacy of prompt tuning, and to point out differences in generation quality across tasks. Even
with similar problem statements and ICL examples, we find divergent responses by LLMs. This
variability highlights the importance of understanding how different models respond to various
prompts and contexts through the use of the benchmarks, providing granular failure feedback.

The following new features are part of the improved “VerilogEval v2” benchmark infrastructure:

(1) Specification-to-RTL task support: VerilogEval v1 only supported code completion tasks, such
as used in Copilot [10], while many models are tuned and deployed as instruction-tuned
models [35], with question-and-answer prompting.

(2) In-context learning examples: No ICL [6] examples were supported as part of the prompt in
VerilogEval v1. Prompt tuning techniques, such as ICL, can improve LLM responses.

(3) Failure classification: VerilogEval v1 only reported pass/fail results of a benchmark problem
and did not give fine-grained feedback on failures.

(4) Makefile-based evaluation environment: The original VerilogEval benchmark [19] used a
monolithic dataset, whereas the proposed infrastructure uses a Makefile-based approach.
This allows for easier scaling while sweeping evaluation settings across more models than
the original benchmark, and easier human inspection of the dataset.

The improved VerilogEval benchmark is available publicly at https://github.com/NVlabs/
verilog-eval.

2 VerilogEval v1 Revisited

The original VerilogEval [19] contains 156 problems adopted from questions and solutions on
the HDLBits Verilog instructional website, picked based on clarity and diversity. The VerilogEval
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dataset contains both VerilogEval-machine and VerilogEval-human problem descriptions. The for-
mer is based on GPT-3.5-generated descriptions of the solution RTL, while the latter are human-
created problem descriptions from HDLBits. While both problem description sets are useful when
evaluating an LLM’s code generation capability, VerilogEval-human is most aligned with common
code generation deployments, such as Copilot [10].

VerilogEval evaluated an LLM’s performance by reporting the pass rate, specifically a pass@k
metric meaning at least one sample passes among k samples. Because LLM responses will be non-
deterministic at non-zero temperature, the LLM is sampled multiple times, and if at least one sam-
ple passes, the problem passes. If none of the k samples passes, then the problem fails. Formally
pass@k is defined as follows:

(")
> 1
<z>l v

where n > k represents the total number of trials for each problem, and c represents the number
of trials that pass the functional check.

The original VerilogEval paper reported results with k = 1, 5, 10. This pass@k metric is useful
to evaluate if given knowledge is available within an LLM, and thus beneficial for model develop-
ment, but a typical LLM deployment for code generation (say, in an interactive copilot application
[10]) will only sample for a response once. Therefore, for the evaluation of LLMs in this work, only
pass@1 is reported to mimic single-turn (single-query and -response) scenarios. However, we re-
port two sets of model parameters: high temperature (T = 0.8, top_p = 0.95) and low temperature
(T = 0.0, top_p = 0.01) sets. The high-temperature model parameters are identical to those used in
[19]. For high temperature, we report pass@1 across 20 samples (n = 20). In other words, we report
how many of the 20 sampled responses pass the benchmark for each problem within the dataset.
For low temperature (nearly equivalent to greedy sampling), where responses are generally deter-
ministic, we report a single sample (n = 1).

For this study, we only evaluated models against VerilogEval-human to highlight the most
useful LLM evaluation results. VerilogEval-machine, in comparison, can be overly descriptive
compared to real-world code generation problems. The infrastructure was revised to more
easily re-run a subset of the dataset (discussed in the next session), to better post-process
the LLM response, and 14 problems had their descriptions or test benches revised to fix
consistency or clarity issues. Beyond these changes, and minor white space differences, the
dataset and prompts were kept the same as the study in [19]. In [19] the highest-achieving
model was GPT-4 [25] with a pass@1 pass rate of 43.5% and 60.0% for VerilogEval-human
and VerilogEval-machine, respectively. GPT-3.5 exhibited lower pass rates of 26.7% and 46.7%,
respectively.

We evaluate 14 publicly available LLMs against these VerilogEval-human code completion
prompts:

— OpenAlI GPT-4o [27]

— OpenAl GPT-4 Turbo (gpt-4-1106-preview) [26]
— OpenAI GPT-4 (gpt-4-0613) [25]

— Mistral AI Mistral Large [1]

— Meta Llama3.1 405B, 70B, and 8B [23]

— Meta Llama3 70B [23]

— Meta Llama2 70B [23]

— Meta CodeLlama 70B [22]

— Google CodeGemma 7B [13]

Pass@k := Eproblems [1 -
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Code Completion Pass Rate (n=20, temperature=0.8, top_p=0.95)
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Fig. 1. Pass rate across recent large language models similar to VerilogEval v1 for pass@1. Green models
are closed general-purpose models, orange are open general-purpose models, dark blue are coding-specific
models, and light blue is an RTL-specific model.

— DeepSeek Coder 33B and 6.7B [14]
— RTL-Coder DeepSeek v1.1 6.7B [20]

The models are composed of a range of closed to open source, parameter sizes, and general
purpose to specialized. Figure 1 shows the equivalent of VerilogEval-human pass@1 results for
recent models, with pass rate on the y-axis and model release date on the x-axis. The data point
size represents the approximate model size. Note that GPT-4, GPT-4 Turbo, GPT-40, and Mistral
Large have undisclosed sizes. The data points are green in color for undisclosed size, orange for
general-purpose open models, dark blue for coding-specific models, and light blue for domain-
specific (RTL code generation) models.

GPT-4 with our new infrastructure and adjusted prompts is slightly lower than previously
measured in [19], at 41.6% instead of 43.5%. This can be attributed mostly to slight changes in
prompt, such as whitespace (line breaks) and punctuation, and is in the measurement noise. Of the
large models, GPT-40 (56.1%) and GPT-4 Turbo (49.8%) exceed GPT-4, while Llama3.1 405B goes
further still with the best pass rate (57.0%) despite being an open model. Coding-specific models
such as DeepSeek Coder 33B (29.3%) and CodeLlama 70B (29.0%) did well for their size at their
respective times of release. Significant improvement is seen from Llama2 70B (1.7%) to Llama3
70B (39.1%), while Llama3.1 70B (35.3%) is slightly worse than its predecessor. However, as we
shall see in the next section, prompt tuning can change the pass rate, significantly in some cases.
Mistral Large (33.1%) and CodeGemma 7B (8.7%) appear to lag Verilog code generation tasks
compared to their peers. Notably, RTL-Coder 6.7B (31.5%) performs almost as well as Llama3.1
70B (36.3%) while being an order of magnitude smaller, demonstrating the efficiency of smaller
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Specification-to-RTL LLM Under Test ProbXXX/
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. Code Completion sampleYY-sv-generation.log
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Python Script
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Test Benches Icarus
Golden References Verilog
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sample-YY-sv-iv-test.log

Each dataset consists of the associated
prompts and in-context learning
examples for the given task category.
The Makefile runs Python scripts and
Icarus Verilog to prompt the LLM with
the given problems and ICL examples,

captures and simulates the responses,
and classifies failures. Makefile summary.txt

Failure Classification
Python Script

Fig. 2. Overview of VerilogEval v2 flow.

and cheaper domain-specific models. Overall, LLMs have demonstrated tremendous progress
across model releases, especially open and domain-specific models.

An LLM’s quality of result is not solely dependent on the model; prompt tuning can have a
large impact on generated code quality. In the next section, we extend our new VerilogEval v2
benchmark to support two prompt tuning techniques: (1) in-context learning [6] and (2) chang-
ing the task type from code completion to specification-to-RTL. In-context learning has been
demonstrated to have similar impact to training or tuning [2, 8, 15, 34], while many models
are instruction-tuned, such that specification-to-RTL may be better aligned with how models are
created.

3 VerilogEval v2 Improvements

The improved VerilogEval v2 flow is shown in Figure 2, which is substantially different than the
flow from [19]. The original VerilogEval infrastructure features a monolithic JSONL file with the
dataset and a Python script to evaluate, while the proposed v2 flow uses a Makefile-based ap-
proach. A Makefile parameter specifies which of multiple datasets is used for the evaluation, and
each dataset contains the problem prompts, reference solutions, and in-context learning examples.
Two datasets are included in the VerilogEval v2 repository, one for code completion and one for
specification-to-RTL tasks. An evaluation Python script, similar to the one in [19], queries the
LLM under test with prompts and contains problem descriptions along with in-context learning
examples, if applicable. LLM responses are saved in a working directory specific to each problem.
Icarus Verilog is then used to evaluate the generated SystemVerilog against the reference solution.
Lastly, a failure classification script detects keywords in the Icarus Verilog output (both compile
time and runtime) to classify failures. A summary of failures across problems is saved into a text
file for human analysis.

3.1 Specification-to-RTL Task Support

The enhanced VerilogEval v2 benchmark supports both code completion and specification-to-RTL
tasks to better match the instruction tuning [35] of recent models. The full 156-problem dataset
from VerilogEval is converted into specification-to-RTL prompting in this work. Code completion
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has the problem description in Verilog-compatible comments and always appends the module
interface declaration to the end of the prompt, similar to how Copilot [10] is typically implemented
in an integrated development environment (IDE).

On the other hand, specification-to-RTL’s prompt style is like a chatbot, with well-defined “Ques-
tion” and “Answer” sections. The specification-to-RTL prompting is implemented in a manner sim-
ilar to the Mostly Basic Python Problems (MBPP) benchmark [4] with [BEGIN] and [DONE ]
tags surrounding code blocks. Examples of these two styles can be found in Listings 1 and 2, with
only the yellow highlighted code indicating the prompt styles.

3.2 Support for In-context Learning Examples

ICL was proposed by [6] to add examples of task questions and desired responses into the prompt
context so that an LLM can better respond to a given task. ICL is implemented through simple
Verilog code examples, tailored for both code completion (Listing 1) and specification-to-RTL tasks
(Listing 2). The listings contain the one-shot examples used for both tasks, except line width and
whitespace were adjusted for printing. The examples were selected to be short and simple, while
including a full module (from declaration to endmodule).

Two additional examples for each task are also added to the infrastructure, as shown in
Listings 3 and 4: a sequential incrementer (Listing 3) similar to the first one-shot example and
a basic finite-state machine (Listing 4). The number of shots is parameterized and can easily be
swept to determine the sensitivity of a model’s pass rate as ICL examples are added to the prompt.
One-shot includes only the combinational incrementer, two-shot adds the sequential incrementer,
and three-shot includes all three examples in the context prompt.

Listing 1. The one-shot in-context learning example for code completion tasks. The highlighted code is the
prompt style.

// Implement the Verilog module based on the
// following description. Assume that sigals
// are positive clock/clk triggered unless
// otherwise stated.

// The module should implement an incrementer

// which increments the input by one and

// writes the result to the output. Assume

// all values are encoded as two's complement

// binary numbers.

module TopModule

(

input logic [7:0] in_,

output logic [7:0] out

)s
// Combinational logic
assign out = in_ + 1;

endmodule

Listing 2. The one-shot ICL example for specification-to-RTL tasks. The highlighted code is the prompt style.

Question :

Implement a hardware module named TopModule
with the following interface. All input and
output ports are one bit unless otherwise
specified.

— input in_ (8 bits)
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— output out (8 bits)

The module should implement an incrementer
which increments the input by one and writes
the result to the output. Assume all values
are encoded as two's complement binary
numbers .

Enclose your code with [BEGIN] and [DONE].
Only output the code snippet and do NOT output
anything else.

Answer :
[BEGIN]
module TopModule
(
input logic [7:0] in_,

output logic [7:0] out

)
// Combinational logic
assign out = in_ + 1;
endmodule
[DONE ]

Listing 3. The two-shot in-context learning example for code completion tasks.

// Implement the Verilog module based on

// the following description. Assume that sigals
// are positive clock/clk triggered unless

// otherwise stated .

// The module should implement an 8—bit registered incrementer with an

// active—high synchronous reset. The 8—bit input is first registered and
// then incremented by one on the next cycle. The internal state should be
// reset to zero when the reset input is one. Assume all values are encoded
// as two's complement binary numbers. Assume all sequential logic is
// triggered on the positive edge of the clock.

module TopModule
(
input logic clk ,
input logic reset ,
input logic [7:0] in_,
output logic [7:0] out
)s
// Sequential logic
logic [7:0] reg_out;
always @( posedge clk ) begin
if ( reset )
reg_out <= 0;
else
reg_out <= in_;
end
// Combinational logic
logic [7:0] temp_wire;
always @(«) begin
temp_wire = reg_out + 1;
end

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 6, Article 91. Publication date: October 2025.



91:8 N. Pinckney et al.

// Structural connections
assign out = temp_wire;
endmodule

Listing 4. The three-shot in-context learning example for code completion tasks.

// Implement the Verilog module based on

// the following description. Assume that sigals
// are positive clock/clk triggered unless

// otherwise stated .

// Build a finite—state machine that takes as input a

// serial bit stream and outputs a one whenever the bit stream contains two
// consecutive one's. The output is one on the cycle _after_ there are two
// consecutive one's.

// The reset input is active high synchronous and should reset the

// finite—state machine to an appropriate initial state.

module TopModule

(
input logic clk,
input logic reset,
input logic in_,
output logic out

// State enum
localparam STATE A = 2'b00;
localparam STATE_B 2'b01;
localparam STATE_C = 2'b10;
// State register
logic [1:0] state;
logic [1:0] state_next;
always @(posedge clk) begin
if ( reset )
state <= STATE_A;
else
state <= state_next;

end
// Next state combinational logic
always @(+) begin

state_next = state;

case ( state )

STATE_A: state_next = ( in_ ) ? STATE_B : STATE_A;
STATE_B: state_next = ( in_ ) ? STATE_C : STATE_A;
STATE_C: state_next = ( in_ ) ? STATE_C : STATE_A;
endcase
end

// Output combinational logic
always @(+) begin
out = 1'b0;
case ( state )
STATE_A: out = 1'b0;

STATE B: out = 1'b0;
STATE C: out = 1'bl;
endcase
end
endmodule
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Table 1. Types of Failures Supported by the Automatic Failure Classification

Failure Type

Example
\ P

Compile-time Failures

Unable to Bind Wire/Reg “clk”

Clk is missing in interface ports list, such as if a code completion task does
not specify a clock to be used yet the LLM used it in the generated code.

Unable to Bind Wire/Reg

Other port-related bind problems.

Explicit Cast Required

A datatype problem occurred, often with use of enums.

Module Missing

Typically indicates the modular declaration is missing from the generated
code.

Sensitivity Problem

Sensitivity lists for always blocks are not defined properly.

Reg Declared as Wire

A wire is assigned to as a reg.

Syntax Error

General syntax errors in generated code.

General Compiler Error

Other compiler errors without specific classification.

Runtime Failures

Reset Issue

Reset should be synchronous but is asynchronous.

Timeout

The simulation did not complete in reasonable time, indicating a sequential
block does not have a correct implementation.

General Runtime Error

Other runtime errors that are not classified, including mismatched outputs.

91:9

3.3 Support for Failure Classification

Failures of LLM-generated responses are automatically classified by broad reasons for failure,
including both Verilog compile-time errors and simulation runtime errors, such as incorrectly
using a wire as a register, incorrect bit widths, and missing module interface definitions. This
classification feature provides insight into the most common reasons for failures and how to
mitigate poor code generation through prompt tuning. The classification is dependent on specific
warnings and errors given by Icarus Verilog or the test harness. The failures are classified in
Table 1.

Classifications were developed by human inspection of common failure modes across the code
completion benchmark. For example, LLMs were observed frequently mixing up the use of regis-
ters and wires. Solutions in prompt tuning could vary: from adding prompt rules to only use wires
on ports; to suggesting the use of SystemVerilog logic port types, obviating the immediate type
confusion; to allowing the LLM to generate the interface entirely on its own (as in the case of
specification-to-RTL, rather than code completion). By classifying failures, the impact of prompt
changes on code generation performance can be directly observed and guided.

3.4 Other Infrastructural Improvements

The original VerilogEval benchmark contained all problems in a monolithic JSONL format. This is
efficient to run but inefficient to inspect manually using a text editor. In the improved benchmark,
each problem was split into a set of files, including problem prompts, module interfaces, and test
benches. Autoconf [12] and GNU Make [11] were employed to target a model evaluation build
directory to a specific evaluation target, including the LLM itself to run, number of shots, number of
samples, task to complete, and other parameters. For each problem, a resulting problem evaluation
directory is created containing a log of the LLM prompt/responses, generated Verilog file, and
Icarus Verilog output log. This infrastructure allows for scalable sweeps through the use of Make’s
parallel run feature, helps to resume an evaluation run if it is interrupted, and allows for easy
human inspection of the resulting collateral. A backwards-compatible mode with JSONL support
is planned for VerilogEval v2.
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4 VerilogEval v2 Evaluation

The graph in Figure 3 illustrates the performance of the recent LLMs on code completion and
specification-to-RTL translation tasks, as measured by the benchmark pass rate (pass@1 in [19]).
As in the previous section, model results were captured as both a 20-sample (n = 20) high-
temperature (T = 0.8, top_p = 0.95) set and 1-sample (n = 1) low-temperature (T = 0.0, top_p =
0.01) set. Models are arranged along the x-axis by model size, with undisclosed model sizes on the
right. The evaluation compares models with and without one-shot ICL examples, represented by
arrows indicating the change in performance as one-shot examples are added. For code comple-
tion tasks, Llama3.1 405B initially achieves the highest pass rate in zero-shot, as previously shown
in Figure 1. However, when one-shot is added, GPT-40 achieves the highest pass rate at approxi-
mately 61% from 56% in zero-shot, establishing the new state-of-the-art frontier. As both prompt
configurations show, GPT-40 has robust improvement over GPT-4 for RTL generation tasks.

Llama3.1 405b established the new Pareto frontier at zero-shot (57.0%), demonstrating that open
models have matched closed commercial models, but showed very little improvement in one-shot
(57.9%). The older Llama3 70B (purple line) was included to demonstrate a clear counter-example
to ICL’s improving pass rate. While Llama3.1 generally improves with ICL examples, Llama3 70B
declines in pass rate when the one-shot ICL example is added to the prompt, which will be
discussed in detail in the next section. Among the smaller specialized models, RTL-Coder 6.7B
showed an impressive pass rate of around 33%, while being much smaller than general-purpose
models. RTL-Coder when originally sampled did not properly insert whitespace after endmodule
statements and would often repeat code blocks. We modified our post-process script that extracts
the Verilog code from the response to match the post-processing in RTL-Coder’s evaluation scripts
[16], and Figure 3’s RTL-Coder results are shown using this modified response extraction. This
post-processing is also used across the other models as well. DeepSeek Coder 6.7B (30.3%) nearly
reaches the pass rate of RTL-Coder (32.6%) in code completion when an ICL example is added.

Specification-to-RTL task results showed generally similar pass rates compared to code com-
pletion, with some exceptions. GPT-4 Turbo showed noticeable pass rate improvement in code
completion tasks but some degradation in spec-to-RTL. Mistral Large showed improvements in
both tasks. Llama3.1 70B and CodeGemma 7B saw much larger improvements in specification-to-
RTL when adding one-shot ICL. In particular, at this prompt tuning configuration, Llama3.1 70B
exceeds the highest pass rate achieved by Llama3 70B across all configurations presented, despite
Llama3.1 starting at a lower pass rate than Llama3 across both tasks at zero-shot. In Llama3.1 405B
across both tasks, adding an ICL example made little difference in pass rate. Llama3 70B saw a
decline with one-shot in spec-to-RTL, more so than in code completion. As with code completion,
RTL-Coder 6.7B (33.5%) maintained a lead over DeepSeek Coder 6.7B in spec-to-RTL (25.6%).

The full results are shown in Table 2 and include both n = 20 (20 samples, temperature = 0.8,
top_p = 0.95) from Figure 3 along with deterministic n = 1 (1 sample, temperature = 0.0, top_p
= 0.01). Some models performed notably better in spec-to-RTL than code completion, such as
Llama3.1 70B one-shot with 48.5% in spec-to-RTL versus 39.0% in code completion. This variability
underscores the importance of tailored prompt tuning and the potential of ICL to enhance code
generation performance in certain models.

Overall, larger models generally achieve higher pass rates, though resource costs and model-
specific responses to ICL examples vary significantly. Within the context of VerilogEval, GPT-40
and Llama3.1 405B have become clear leaders for the highest-achieved pass rates, demonstrating
that open models (Llama3.1 405B) have reached parity with closed models. Additionally, smaller
(70B) open models have become competitive with last year’s larger closed models. Domain-specific
models (RTL-Coder) are also competitive in some scenarios at a much smaller size.
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Fig. 3. Pass rate across recent large language models. Green models are closed general-purpose models,
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specific model. Purple is the older Llama3 70B to demonstrate a large degradation due to ICLs.
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Table 2. VerilogEval Pass Rates of Recent Large Language Models
‘ Model Name ‘ Model Size ‘ License ‘ Type H‘ Task: Code Completion H Task: Specification-to-RTL ‘
In-context Learning Examples: Zero-shot One-shot Zero-shot One-shot

Temperature: || T=0 T=08|T=0 T=08| T=0 T=08|T=0 T=0.38
GPT-4o0 [27] Undisclosed | Closed General 59.0% 56.1% | 62.8% 60.7% || 62.5% 61.4% | 65.1% 62.6%
GPT-4 Turbo [26] Undisclosed | Closed General 53.9% 49.8% | 59.6% 59.5% || 59.6% 61.1% | 56.4% 56.7%
GPT-4 [25] Undisclosed | Closed General 423% 41.6% | 513% 50.1% || 32.0% 31.7% | 48.7% 51.4%
Mistral Large [1] Undisclosed | Closed General 34.0% 33.1% | 44.2% 42.7% || 37.5% 359% | 48.7% 46.0%
Llama3.1 [23] 405B Open General 56.4% 57.0% | 59.6% 57.9% 57.2% 57.1% | 57.9%  58.3%
Llama3.1 [23] 70B Open General 353% 36.3% | 34.0% 33.0% 42.8%  39.0% | 48.0% 48.5%
Llama3 [23] 70B Open General 37.8% 39.1% | 36.5% 36.5% || 40.8% 43.9% | 39.5% 40.5%
Llamaz2 [23] 70B Open General 1.3% 1.7% | 154% 13.3% 4.6% 53% | 17.8% 19.2%
CodeLlama [22] 70B Open Coding 372% 290% | 41.7%  27.4% 349% 253% | 41.5%  27.0%
DeepSeek Coder [14] 33B Open Coding 25.0% 29.3% | 423% 37.5% || 21.7% 19.5% | 40.1% 38.1%
Llama3.1 [23] 8B Open General 2.6% 4.9% 10.9% 12.8% 19.1% 16.8% | 27.6% 26.5%
CodeGemma [13] 7B Open Coding 8.3% 8.7% | 199% 16.2% 6.6% 9.5% | 24.3% 22.2%
DeepSeek Coder [14] 6.7B Open Coding 244% 21.0% | 333% 30.3% || 29.6% 22.6% |27.6% 25.6%
RTL-Coder [20] 6.7B Open | Verilog RTL || 35.9% 31.5% | 37.2% 32.6% 36.8% 30.9% | 34.9% 33.5%

Number of samples n = 1 when T = 0 and n = 20 when T = 0.8.

5 Impact of ICL on Pass Rates and Failures

As demonstrated in the previous section, ICL examples improve model generation accuracy in
some conditions but degrade accuracy in others. ICL impact bears further investigation to better
understand strategies to apply prompt tuning.

5.1

Higher-shot ICL runs were conducted for four models across parameter size classes: GPT-4o,
Llama3.1 70B, Llama3 70B, and RTL-Coder 6.7B. Pass rates of these four models for the two tasks
across zero-shot to three-shot are shown in Figure 4. The figure highlights the varying impact of
ICL examples on different models and tasks, emphasizing the potential benefits of task-specific
tuning and the necessity of providing contextual examples to enhance model outputs. Notably,
GPT-40 exhibits stable and high performance across all ICL example counts of at least one-shot,
maintaining a pass rate of 55% to 63%. In contrast, Llama3 70B demonstrates divergent trends: its
spec-to-RTL performance improves from 40% to nearly 50% with more ICL examples, whereas its
code completion performance declines from 40% to just above 30%. Llama3.1 70B achieves even
better pass rates with ICL examples as compared to Llama3 for spec-to-RTL and is fairly stable in
code completion. RTL-Coder shows stability from zero-shot to three-shot in both code completion
and spec-to-RTL, with only very little improvements in the latter case. To understand how specific
ICL examples can influence response pass and failure, we will look at specific case examples in the
next section across Llama models.

Increased In-context Learning Examples

5.2 Case Study: Problem 9 and Problem 34

ICL may improve model pass rate through better aligning the model response with the task at
hand if the ICL example is well chosen. To better understand the impact of in-context learning
on Verilog code generation pass rate, we consider two problems from the dataset: Problem 9 and
Problem 34. Problem 9 is a simple combinational design question that asks: “A  “ ‘population
count’’ circuit counts the number of ‘1’s in an input vector. Build a population
count circuit for a 3-bit input vector.” In contrast, Problem 34 is a simple sequential
design question: “Create 8 D flip-flops. All DFFs should be triggered by the positive
edge of clk.”

In zero-shot (no ICL examples are given) for Problem 9, none of the 20 high-temperature samples
pass on Llama3 70B. The failure case is an “Unable to Bind Wire/Reg ‘clk’” error given by
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Fig. 4. Pass rate of three models for code completion and specification-to-RTL tasks, with zero-shot to three-
shot in-context learning examples. Solid lines are code completion and dashed lines are spec-to-RTL.

Icarus Verilog, in which the LLM tries to use a non-existent clock signal. In effect, the LLM is
confusing a combinational design problem for a sequential design problem. An example failing
response to Problem 9 is given in the listing below:

module TopModule (
input [2:0] in,
output [1:0] out

’reg [1:0] out_reg;
always @(posedge clk) begin

out_reg = (in[2] == 1'bl) + (in[1] == 1'bl) + (in[0] == 1'bl);
end
assign out = out_reg;
endmodule

In this example, the clock is not present, which causes the error. In code completion tasks, the
LLM does not have the flexibility to define the port types (wire or reg) but attempts to use the port
as an incorrect type. When the one-shot example shown in Listing 1, which demonstrates a simple
combination incrementer, is added to the prompt as an ICL example, the pass rate of Problem 9
increases substantially to 65% (13 of the 20 samples pass). A typical Llama3 70B passing response

to this problem is:

module TopModule (
input [2:0] in,
output [1:0] out

5

// Combinational logic
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assign out = (in[2] + (in[1] + in[0]));
endmodule

In effect, the LLM response has been better aligned to handle combinational design problems,
at least for a trivial example like Problem 9. Of the remaining seven failures in one-shot, three
are missing an endmodule keyword that terminates the module definition, and four try to use the
output port as a register instead of a wire (Reg Declared as Wire). This suggests that even with
the ICL example, the LLM does not understand where it should terminate its response and the
distinction between wires and registers.

The added one-shot example focuses on combinational design, yet Problem 34 is a sequential
design. Initially, the 20-sample pass rate of Problem 34 is 100% in zero-shot but drops precipitously
to 5% in one-shot. Thus, a question arises of whether sequential design problems are improved
in one-shot at the expense of combinational design problems. However, on inspection, all failing
responses are due to a missing endmodule and the above-mentioned confusion on sequential ver-
sus combinational design. An example failing response for Problem 34 is, where an endmodule
keyword is missing:

module TopModule (
input clk,

input [7:0] d,
output reg [7:0] ¢
)s

always @(posedge clk)
q <= d;

Adding another ICL example in two-shot (Listing 3, a combinational design example) increases
the Problem 9 pass rate to 100% in two-shot and three-shot, eliminating both of the above-
mentioned missing endmodule and reg versus wire confusion demonstrated for Problem 9. How-
ever, only 50% of the 20 sample responses pass for Problem 34 in two-shot, with all failing cases
missing an endmodule. One culprit may be the confusion with begin and end block start and end
keywords. All failing cases use begin and end for the sequential always block, while in the passing
cases begin and end are omitted.

Adding one more ICL example in three-shot (Listing 4, an FSM design example), Problem 34 gets
even worse: 0% of the cases pass. All cases use begin and end while omitting endmodule. Osten-
sibly, the multiple always of Listing 4 caused the LLM to over-emphasize the always blocks with
begin and end but did not learn how to correctly use endmodule. However, Problem 9 maintains
a 100% pass rate in three-shot.

While the code completion task by nature constrains the port types (reg or wire), specification-
to-RTL allows the full interface specification to be given in the response. This leads to a higher zero-
shot pass rate on Llama3, with a 75% pass rate on Problem 9 (compared to 0% in code completion)
and a 100% pass rate on Problem 34 (compared to 65%). However, in one-shot the spec-to-RTL pass
rate drops to 0% on Problem 9 because it picks up a slightly different input port name (in_) used
in the ICL example that is not present in the prompt. Problem 34 is unaffected and is successful
across all samples. Increasing ICL examples to two-shot fully recovers and surpasses zero-shot
to 100% pass rates across both problems. Similarly, three-shot has full 100% pass rates on both.
Overall, specification-to-RTL tasks perform better than code completion for these problems on
Llama3 70B.

Broadening the results across older and newer generations of the Llama 70B models on code
completion, Llama2 70B only has a 0% and 15% pass rate for Problems 9 and 34, respectively, with an
assortment of failures. In one-shot, Problem 9 shows no improvement, while Problem 34 increases
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to 30%. Code sections are often repeated in the responses, causing failures and demonstrating poor
instruction following. Adding additional ICL examples continues to show no improvement, with
Problem 9 never passing in two- or three-shot and Problem 34 regressing to 15% in two-shot and
5% in three-shot.

The newer Llama3.1 70B in zero-shot fails all Problem 9 samples, from a mix of failures includ-
ing using a non-existent clock and redefining the output port as a register, but passes all Problem
34 samples. Adding one-shot, Problem 9 improves to a 75% pass rate and Problem 34 maintains
a 100% pass rate across all 20 samples. Interestingly, all five failures in Problem 9 are due to bad
combinational logic for the counting task, causing mismatch against the golden reference in simu-
lation, and not compile-time errors. In particular, the Boolean expressions derived for population
counting are incorrect.

Adding the Listing 3 ICL example to the prompt in two-shot to Llama3.1 70B code completion
reduces Problem 9 pass rates to 60% and causes all sample responses on Problem 34 to fail. In this
case, the failure is consistent inclusion of an English natural language explanation of the model
being created, causing obvious syntax issues. None of the Problem 9 failures feature this failure
mode. Increasing ICL examples to three-shot completely clears up the Problem 34 failures and
returns Problem 9 to a 75% pass rate with only Boolean logic failures. As we can see for Llama3.1
70B, adding ICL examples can generally improve results, but sometimes wrong behavior will be
learned, as in the case of two-shot.

The much larger Llama3.1 405B exhibited 100% 20-sample pass rates for Problem 9 and Problem
34 in all ICL shot scenarios, understanding these basic problems well. Thus, the exact impact of
prompt tuning on a model can be very model dependent in terms of model parameter size, lineage,
and generation.

5.3 Aggregate Failure Analysis

Figure 5 employs the new failure classification feature of the improved benchmark infrastructure
to illustrate the number and types of failures encountered by different models across various num-
bers of ICL examples. The y-axis represents the number of failures, with lower values indicating
better pass rates. Each bar is segmented to show different categories of errors, with orange shades
representing compiler errors and blue shades representing runtime errors. The figure is divided
into three sections for three generations of Llama 70B models, highlighting the numbers and types
of failures across zero-shot to three-shot ICL examples. As compiler errors will be flagged and mask
runtime errors (since code that does not compile never runs), the bars on the graph are best read
from bottom to top. A reduction in runtime errors for the same total bar height indicates that
compiler errors have displaced runtime errors. This layering effect should be considered when
interpreting the improvements or degradations in model performance as additional ICL examples
are introduced.

Llama2 70B initially improves in code completion from zero-shot to one-shot but then degrades
as more examples are added. The “Reg Declared as Wire” error, which confuses wire output
ports with registered output ports, as discussed in the last section, is especially pronounced at
three-shot. In comparison, specification-to-RTL greatly improves compile-time errors, including
wire and registered output confusion, even at one-shot. This suggests that specification-to-RTL
has a naturally higher pass rate because of the flexibility of the LLM to define the interface types.
However, runtime errors remain as the LLM is unable to solve the dataset problems with correct
logic.

Llama3 and Llama3.1 70B both exhibit a similar pattern of code completion versus specification-
to-RTL, with “Reg Declared as Wire” errors mostly eliminated in high ICL shot cases. However,
only Llama3.1 70B improves substantially and consistently as ICL examples are added. It’s also
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Failure Classification Across Llama 70B Models and In-Context Learning Examples
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Fig. 5. Failure classification for Llama2 70B, Llama3 70B, and Llama3.1 70B models with zero-shot to three-
shot ICL examples across the two tasks. Orange coloring indicates compiler errors, while blue indicates

runtime issues.

notable that general syntax errors are much reduced in specification-to-RTL as compared to code
completion. This is true even in zero-shot cases, although the overall failure rate is similar. In the
context of code completion in Llama3 70B, the inclusion of ICL examples has a tendency to increase
the number of compile-time failures, whereas the failure rate remains relatively stable with ICL
examples in Llama3.1 70B.

The results emphasize the need for careful tuning of ICL examples to optimize results. While
ICL can help correct certain types of mistakes, it can also introduce new issues, leading to similar
or even worse performance. In addition to the failure classification feature capturing high-level
counts of types of failures across different models and prompting settings, it also allows for de-
tailed inspection on a problem-by-problem basis within a run. This granular analysis helps iden-
tify whether specific problems or categories of problems have systematic types of failures. Such
insights can guide more careful tuning of prompts across the benchmark, leading to more effective
and targeted improvements in model performance. A careful analysis of the problem categories
within VerilogEval and comparative failure counts could help find the best ICL examples to use
for a given model.

6 Future Work

Since its release last year, VerilogEval has been commonly used in state-of-the-art LLM Verilog
code generation research, with over 100 citations.! However, application of VerilogEval is quickly
becoming limited due to the low complexity of the dataset problems, especially when LLM deploy-
ments move beyond single-turn prompts and responses and into multi-turn flows with feedback,
as we shall discuss below. Additionally, hardware design extends far beyond specification-to-RTL

1 As reported by Google Scholar.
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code generation tasks, and benchmarks need to cover many other tasks for LLM-based hardware
design automation to continue.

6.1 Agent-based Code Generation

Moving beyond single-turn prompt response to agent-based approaches is key to solving more
complex tasks. LLM-based agentic approaches are typically composed of a high-level planning
agent (a dedicated prompt and model pair that is optimized for high-level planning) to enumerate
tasks to the prompted problem and dedicated expert LLMs to implement said tasks. Additionally,
there may be LLMs to integrate and combine disparate responses, rank the best responses, and
detectif a given problem is solved or if instead the solution must be refined further. These dedicated
LLMs may use the same LLM model but with different prompting or context, or models may be
heterogeneous to efficiently solve targeted tasks.

Recent agent-based Verilog code generation approaches include RTLFixer [32], VeriAssist [18],
Alvril [33], MAGE [37], PromptV [24], and VerilogCoder [17]. RTLFixer employs RAG and a
thought-action-observation loop to resolve syntactical issues found during code compilation, im-
proving VerilogEval-human pass@1 by 10%. VeriAssist applies multi-turn, chain-of-thought rea-
soning to fix both syntactical and functional errors in generated code and improves VerilogEval-
human pass@1 by about 7%. Alvril includes a coding agent to generate code and a review agent
to analyze compilation and simulation errors. The review agent provides feedback to the coding
agent to revise the code. Their approach improves pass@1 by 14% to a total 65% on VerilogEval
when using gpt-40. PromptV employs code and testbench generation agents, code and testbench
learner agents, and a single teacher agent to suggest errors and fixes to the learners based on
simulation results, achieving 80% pass@1.

VerilogCoder [17] and MAGE [37] achieve some of the highest pass rates of agent-based ap-
proaches. VerilogCoder includes a planning agent, a plan verification assistant, a Verilog engineer
agent, and a Verilog verification assistant in its multi-agent frameworks. The task planner breaks
down the natural language prompt into various subtasks to implement, and the plan verification
assistant reviews whether the tasks were implemented properly. This approach achieves a 94%
pass@1 rate on VerilogEval, far exceeding the roughly 63% pass rate shown from state-of-the-art
models in this work. However, VerilogCoder achieves this high pass rate by also having access to
testbenches, simulation, and waveforms, so it can automatically debug a failing case until it passes.
This is far more data and computing resources than what is given to models in single-turn, and
individual models still have much room for improvement. Even more recently, MAGE leverages
multiple agents, including a testbench agent, RTL agent, judge agent, and debug agent. Multiple
RTL candidates are generated, ranked, and refined iteratively. MAGE’s approach achieves a 95%
pass rate on VerilogEval.

Agentic approaches mimic the implement-debug cycle that human designers employ. Addition-
ally, real-world design specifications are far from perfect and often have bugs and ambiguities
themselves. LLM-based agent flows will be essential in solving future real-world hardware design
problems that move beyond trivial toy examples. Benchmarks must rise to meet these complexity
needs and continue to aid in pushing the frontier by presenting realistic design problems that are
challenging for Al agents to solve. VerilogEval cannot meet this challenge, as the dataset is already
solved for VerilogCoder and MAGE.

The construction of future benchmarks to address the needs demanded by agentic flows will
not be trivial: realistic and complex design problems are needed, and they must not be overly
descriptive but instead allow for reasoning and flexibility that a human designer would be afforded.
This may include an assumed set of base knowledge on traditional digital design structures and
best practices but afford microarchitectural decision-making. An overly descriptive prompt that
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defines every wire or flip-flop will, at best, be a poor natural language proxy for RTL. Instead,
benchmarks should include accurate behavioral specifications and design goals and allow an LLM
agent to approach generating a solution within reasonable decision space bounds.

6.2 Related Hardware Design Tasks

Hardware design is not limited to only RTL code generation, and many areas of hardware design
would benefit from LLM enhancement within a tool flow. Even for RTL code generation, agentic
approaches will demand specialized models or prompts for targeted tasks. This includes, but is
not limited to, testbench creation [24, 36], assertion generation [28], documentation generation,
debugging [31, 32], code review, analyzing consistency of specifications, correspondence of the
testbench or RTL to test plan or specification, microarchitectural optimization, Q&A, and many
more [9]. However, overall, benchmark development for frontend hardware tasks beyond code
generation is still early, and future benchmarks should strive to thoroughly and systematically
evaluate many tasks.

There are fundamental differences between RTL and testbench code generation that must be
addressed by benchmarks, models, and agents. For instance, Verilog testbench code is not con-
strained by the synthesizable subset of Verilog required for RTL. Moreover, verification code often
adheres to coding conventions distinct from those used for RTL within an organization. Evaluation
metrics must extend beyond mere syntactical and functional correctness. For verification code, key
metrics include coverage of the RTL under test, whereas for RTL, the primary focus is on quality
metrics such as power, performance, and area.

In essence, assessing LLMs and agents solely on their language capabilities is insufficient for
hardware design. Tackling complex, high-level hardware design tasks necessitates breaking them
down into smaller, manageable subtasks. This decomposition is particularly suited to agent-based
approaches that leverage specialized LLMs for specific subtasks. Identifying and addressing weak-
nesses in models for these subtasks requires the development of additional benchmarks tailored
to these categories.

7 Conclusions

Much improvement has been observed in LLMs for hardware code generation since VerilogEval
v1 [19] was released. Furthermore, the enhanced VerilogEval v2 benchmark proposed in this work
provides a more robust framework for evaluating the performance of LLMs on digital hardware
code generation tasks. Llama-3.1 405B and GPT-40 have both pushed the state of the art as open and
commercial models, while domain-specific models such as RTL-Coder 6.7B and DeepSeek Coder
6.7B have offered impressive pass rates for their parameter size.

When evaluated on zero-shot ICL for code completion, Llama3.1 405B outperforms GPT-4o0 in
the equivalent of pass@1 on the VerilogEval-human benchmark. However, as in-context examples
are added to the prompt, GPT-40 achieves parity with Llama3.1 405B, though Llama3.1 benefits
from being an open model. Most models showed performance improvements with the addition
of ICL examples. However, exceptions were observed, such as the degradation of Llama3 70B’s
performance from zero-shot to one-shot. Transitioning the benchmark task from code completion
to specification-to-RTL generally yielded better results, as this approach grants models greater
flexibility in defining interfaces. These findings highlight the critical role of task-specific tuning in
enhancing code generation accuracy.

The improved benchmark infrastructure, including the new failure classification feature, pro-
vides more in-depth insights into the types of errors encountered by different models. For example,
Llama3 70B frequently encounters endmodule missing errors during code completion, which care-
ful prompt tuning or model alignment may be able to fix. The ability to classify and inspect failures
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on a problem-by-problem basis is critical for understanding and mitigating poor code generation,
leading to more effective and targeted improvements in LLM performance for digital hardware
code generation.

In the future, the research community would benefit from digital hardware benchmarks further
expanded to include more tasks beyond RTL code generation representative of the digital hardware
design flow. The enhanced VerilogEval v2 benchmark in this work is meant to be a step toward
facilitating additional task support on top of a common set of design problems that allows for a
more comprehensive assessment of model performance for hardware design. While the application
of LLMs to hardware design is still in its infancy, models and generative Al techniques are quickly
becoming capable of overcoming the code generation problems in the VerilogEval benchmark suite.
It is imperative that as models and agents become more powerful, benchmark complexity increases
to continue pushing technological development and sophistication in generative Al for hardware
design.
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