
Symbolic Elaboration: Checking Generator Properties
in Dynamic Hardware Description Languages

Peitian Pan, Shunning Jiang, Yanghui Ou, Christopher Batten

Cornell University

Ithaca, NY, USA

{pp482,sj634,yo96,cbatten}@cornell.edu

ABSTRACT
Recent research in hardware development methodologies has ar-

gued for using programmatic hardware generators and dynamically

typed behavioral models to significantly improve hardware design

and verification productivity. Dynamic hardware description lan-

guages (HDLs) promise to realize these productivity benefits by

composing generated hardware instances with models backed by

virtually any dynamically typed code. However, dynamic HDLs

generally lack powerful static checking capabilities which prevents

these HDLs from detecting generator bugs early in the design-

debug cycle. In this paper, we propose symbolic elaboration, a

novel static checking technique, to provide useful static correctness

guarantees for hardware generators in dynamic HDLs. Symbolic

elaboration builds an abstract representation for a given hardware

generator and translates its properties into constraints solvable by

a satisfiability modulo theory (SMT) solver. Symbolic elaboration

provides static correctness guarantees for generator properties in-

cluding matching bitwidths, correct local port directions, bounded

array indexing, and valid hierarchical references. We evaluate sym-

bolic elaboration on eight hardware generators in a state-of-the-art

dynamic HDL. Our evaluation shows that, on average, symbolic

elaboration can statically detect 90.6% of randomly injected bugs

and 53.0% more bugs than an off-the-shelf static type checker.

CCS CONCEPTS
• Hardware→ Hardware description languages and compila-
tion.

KEYWORDS
hardware description languages, hardware generators, static analy-

sis

ACM Reference Format:
Peitian Pan, Shunning Jiang, Yanghui Ou, Christopher Batten. 2023. Sym-

bolic Elaboration: Checking Generator Properties in Dynamic Hardware

Description Languages . In 21st ACM-IEEE International Conference on For-
mal Methods and Models for System Design (MEMOCODE ’23), September
21–22, 2023, Hamburg, Germany. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3610579.3611076

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0318-8/23/09. . . $15.00

https://doi.org/10.1145/3610579.3611076

Hardware
Generators Simulation Outputs

Elaboration Simulation

Hardware
Instances

Mux(width,N)

Adder(width)

TH(width,N)

width

width

.
.
.

.
.
.

N

N

Test Pass?
Test Fail?

Test Coverage?
Elapsed Time?
Hardware Perf?
Signal Toggles?
Exceptions?

top: TH(32,2)

32

32

top.mux1

top.mux2

top.adder

Feature Development and Bug Fixes

Target Design Test Harness

Figure 1: A Typical Design-Debug Cycle with Hardware Generators.

1 INTRODUCTION
The slowdown of Moore’s law and the breakdown of Dennard

scaling have driven computer architects towards more specialized

hardware designs to meet applications’ growing performance and

energy efficiency demands. However, such specialized hardware

designs tend to have high non-recurring engineering (NRE) costs

that hinder the research and development of promising hardware

systems. Recent research in hardware development methodologies

addresses the high NRE costs of specialized hardware designs in two

ways: (1) the promotion of programmatic hardware generators to

maximize design reuse [3, 5, 13, 15, 23, 29, 32] and (2) the extensive

use of dynamically typed behavioral models to facilitate the creation

of highly parametrized and polymorphic test harnesses, golden

reference models, and cycle-approximate hardware models [11, 14,

15, 17, 19, 22]. Researchers have embedded hardware description

languages (HDLs) into dynamic languages like Python to realize

the benefits of these two proposals [9, 10, 15, 19, 20]. These dynamic
HDLs increase hardware design and verification productivity by

allowing sophisticated hardware generators and composition of

generated hardware instances with behavioral models backed by

virtually any dynamically typed code.

Unfortunately, dynamic HDLs generally do not provide any static

correctness guarantees for hardware generators and defer correct-

ness checks to either elaboration or simulation. Figure 1 illustrates a

typical three-step hardware design cycle in existing HDLs. The early

step of the design cycle is to create or reuse hardware generators

for the target design and its test harness. The middle step performs

elaboration, which takes the top-level generator (typically a test

harness generator) and a set of parameters to construct a hierarchy

of hardware instances. The final step of the design cycle performs

simulation on the elaborated hierarchy of instances and generates

simulation outputs for feature development and bug fixing pur-

poses. As an example, dynamic HDLs perform virtually no checks

on hardware generators Mux, Adder, and TH in Figure 1 because the

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Peitian Pan et al.

Table 1: Existing HDLs and Their Characteristics

HDLs
Programmatic
Generators

Dyn. Typed
Behavioral
Models

Num. of Properties Enforced Target of Properties Enforcement

AoT ET ST AoT ET ST

Traditional Static HDLs
Single Instance

Verilog/SystemVerilog, VHDL

High-Level Static HDLs
✓ All Instances Single Instance

Bluespec SystemVerilog, C𝜆ash

Constructional Static HDLs
✓ All Instances Single Instance

Chisel, SpinalHDL, Lava

Dynamic HDLs
✓ ✓ Single Instance Single Input

PyRTL, Migen, MyHDL, PyMTL3

Dynamic HDLs with
✓ ✓ All Instances Single Instance Single InputSymbolic Elaboration*

Programmatic generators: hardware generators that programmatically generate hardware instances. HW: hardware. Hardware properties can be enforced at three

times: ahead of time (AoT) by checking hardware generators (static); elaboration time (ET) by checking hardware instances; simulation time (ST) by checking signal

assignments in simulation. We focus on hardware properties discussed in §2.2 in this paper. All Instances: the given hardware property is guaranteed to hold on all

instances of the target generator under all input; Single Instance: the given hardware property is guaranteed to hold on the target instance under all input; Single

Input: the given hardware property is guaranteed to hold on the target instance under the given input. / / : almost all/some/no properties enforced; Dyn.

typed: dynamically typed. *: our proposal statically provides strong generator correctness guarantees (All Instances) for dynamic HDLs.

concrete generator parameters are not available before elaboration.

Given a set of concrete generator parameters (e.g., 32-bit data path

width for adder and muxes, 2-input muxes), dynamic HDLs elabo-

rate generators into a hierarchy of hardware instances and checks

for structural connection errors during elaboration among those

instances (e.g., dynamic HDLs can verify the signals connected to

the inputs of the adder have the same bitwidth 32). And further

given a set of concrete test vectors, dynamic HDLs simulate the

target design with the test harness and check for behavioral errors.

The lack of capable static checking abilities creates a long design-

debug cycle where design issues can only be identified and fixed

after elaboration or simulation, which hinders design productivity.

In this paper, we propose symbolic elaboration (SE) to provide

static correctness guarantees for hardware generators in dynamic

HDLs and shorten the design-debug cycle. We first explore existing

off-the-shelf Python static type checkers for generators and observe

that they are too specific to software programs and cannot effec-

tively verify critical hardware generator properties. To overcome

the above limitations, we observe that most hardware generators

can be expressed as an abstract model whose structural and behav-

ioral models rely on a symbolic generator parameter rather than

concrete values. We propose symbolic elaboration, a novel tech-

nique that translates these abstract structural and behavioral models

into integer constraints that can be solved by SMT solvers. The

proof of the correctness of hardware generators is obtained if the

solver finds such constraints unsatisfiable, and a counterexample of

the violation of generator properties is generated if the solver finds

a satisfiable assignment of variables. Our prototype implementation

of symbolic elaboration can verify critical generator properties in-

cluding matching bitwidths, correct local port directions, bounded

array indexing, and valid hierarchical references.

This paper makes the following contributions:

• We apply an off-the-shelf static type checker to hardware

generators in dynamic HDLs and analyze its limitations (§3).

• We propose symbolic elaboration to overcome the limita-

tions of off-the-shelf static type checkers and statically verify

critical hardware generator properties (§4).

• We evaluate a prototype SE implementation on eight RTL

design generators in a state-of-the-art dynamic HDL using a

mutation-based abstract syntax tree (AST) fuzzer (§5).

This paper is organized as follows: §2 provides the background

for existing HDLs and the target hardware generator properties

we focus on in this paper. §3 describes how Mypy, an existing

static type checkers for Python, can be applied to check hardware

generators and its limitations. §4 discusses symbolic elaboration

which overcomes Mypy’s limitations. §5 presents the evaluation of

a prototype SE implementation. §6 discusses related works.

2 BACKGROUND
We begin by providing some background on hardware description

languages and the target hardware generator properties we focus

on in this paper. §2.1 introduces existing HDLs. §2.2 introduces the

hardware properties we try to verify in this paper.

2.1 Existing HDLs
Table 1 summarizes existing HDLs based on the following charac-

teristics: generator support, dynamically typed behavioral model

support, when hardware properties are enforced in the hardware

design cycle, and the target on which the given properties are en-

forced. Table 1 shows that (1) traditional HDLs like SystemVerilog

and VHDL fail to support programmatic generators and dynami-

cally typed behavioral modules; (2) high-level HDLs and construc-

tional HDLs are able to enforce hardware properties on all instances

of some generators but generally do not support dynamically typed

behavioral models; (3) dynamic HDLs support both programmatic

Symbolic Elaboration: Checking Generator Properties in Dynamic Hardware Description Languages MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

generators and dynamically typed behavioral modules but do not

enforce hardware properties ahead of time.

Traditional StaticHDLs –Verilog/SystemVerilog [2] andVHDL [1]

belong to traditional statically typed HDLs. Verilog, SystemVer-

ilog, and VHDL all support limited forms of hardware genera-

tion through generate statements (if- and for-statements). How-

ever, hardware generators in these HDLs cannot leverage more

advanced programmatic constructs such as recursive functions,

object-oriented abstractions, and advanced data structures beyond

lists. This makes it challenging to programmatically construct hard-

ware instances with these HDLs. Their static type systems also

impose challenges on creating dynamically typed components. Tra-

ditional HDLs enforce hardware properties by type checking the

elaborated hierarchy of hardware instances, which happens in the

middle of a hardware design cycle.

High-Level Static HDLs – Bluespec SystemVerilog [24] has a

powerful static type system. It supports programmatic hardware

generators and can type check the generators to discover potential

design issues early in the design cycle. However, Bluespec cannot

verify critical properties such as bitwidth mismatches in vector slic-

ing operations and defers this check to elaboration. C𝜆ash [4] is a

Haskell dialect for hardware development. It benefits fromHaskell’s

static type system and is able to type check the generators before

elaboration. Both Bluespec SystemVerilog and C𝜆ash adopt a differ-

ent level of abstraction from the conventional register-transfer level

abstraction and do not support dynamically typed components.

Constructional Static HDLs – Chisel [5] and SpinalHDL [30]

are HDLs embedded in Scala. Both Chisel and SpinalHDL support

programmatic hardware generators. Lava [7] is an HDL embedded

in Haskell capable of programmatic generators. Unlike C𝜆ash, Lava

does not leverage Haskell’s type system to type check hardware

generators. Constructional static HDLs mainly enforce HDL hard-

ware invariants by type checking the elaborated hardware instances.

More specifically, for Chisel, type checks on hardware instances

happen through a detailed analysis on FIRRTL, a post-elaboration

intermediate representation of hardware [13]. Constructional static

HDLs focus on hardware construction using various modeling prim-

itives embedded in the statically typed host language (such as Scala)

and do not support dynamically typed components.

Dynamic HDLs – Dynamic HDLs support both programmatic

hardware generators and dynamically typed behavioral models

thanks to the flexibility of its host language. PyRTL [9], Migen [20],

MyHDL [10], PyMTL [19], and PyMTL3 [15] are all HDLs embed-

ded in Python, a dynamically typed programming language. Figure

2 shows a parametrized adder generator and a dynamically typed

polymorphic test harness in PyMTL3, a state-of-the-art dynamic

HDL. The polymorphic test harness highlights how dynamic HDLs

help improve verification productivity by promoting the reuse of

parametrizable verification modules. In the polymorphic test har-

ness example, the input setter and output checker of the test harness

can be abstracted as functions taking variable number of arguments.

Therefore, it is possible to reuse the harness and simulation setup

across different designs by passing in different functions. Almost

all existing dynamic HDLs do not check generators due to the lack

of static checking capabilities. Instead, most dynamic HDLs rely

on elaboration- and simulation-time checks on a flattened module

hierarchy to enforce critical hardware properties.

1 class FullAdder(Component):
2 def construct(s):
3 s.a = InPort(Bits1); s.b = InPort(Bits1)
4 s.cin = InPort(Bits1)
5 s.sum = OutPort(Bits1); s.cout = OutPort(Bits1)
6

7 @update
8 def upblk():
9 s.sum @= s.cin ^ s.a ^ s.b
10 s.cout @= ((s.a ^ s.b) & s.cin) | (s.a & s.b)
11

12 class Adder(Component):
13 def construct(s, Width):
14 n = get_nbits(Width)
15 s.a = InPort(Width);
16 s.b = InPort(Width)
17 s.out = OutPort(mk_bits(n+1))
18

19 s.fa = [FullAdder() for _ in range(n)]
20 s.carry = Wire(mk_bits(n+1));
21 s.sum = Wire(Width)
22

23 s.carry[0] //= 0
24 for i in range(n):
25 s.fa[i].a //= s.a[i]
26 s.fa[i].b //= s.b[i]
27 s.fa[i].cin //= s.carry[i]
28 s.carry[i+1] //= s.fa[i].cout
29 s.sum[i] //= s.fa[i].sum
30

31 s.out //= lambda: concat(s.carry[n], s.sum)

(a) PyMTL3 Adder. Adder is parametrized by its data path width (Width); it uses
the FullAdder module as its sub-components; ports and wires are constructed

with their bitwidth in parentheses; //= is the connection operator that connects

two ports or wires together.

1 class PolyTestHarness:
2 def __init__(s, m, test_vectors, ifunc, ofunc):
3 m.apply(DefaultPassGroup())
4 m.sim_reset()
5 for t in test_vectors:
6 ifunc(m, t)
7 m.sim_eval_combinational()
8 ofunc(m, t)
9 m.sim_tick()
10 print("Test Passed!")
11

12 th = PolyTestHarness(
13 Adder(), [
14 (3, 5, 8),
15 (1, 42, 32),
16 (10, 8, 18),
17 (0, 0, 0),
18],
19 lambda m,t: (Assign(m.a,t[0]), Assign(m.b,t[1])),
20 lambda m,t: Eq(m.out,t[2])
21)

(b) Polymorphic Test Harness. Line 12-21 show how to specialize the test

harness for the adder, which includes test vectors and input setting/output

checking lambda functions; the harness is dynamically typed to allow passing

in customized input and output functions of any valid Python code.

Figure 2: Adder in PyMTL3, a State-of-the-Art Dynamic HDL.

Scope of This Paper – We focus on symbolic elaboration in

the context of dynamic HDLs in this paper. Symbolic elaboration is

particularly well suited to dynamic HDLs because it helps fill the

static checking gap commonly found in these languages. We also

note that the core idea of symbolic elaboration can be applied to

other HDLs to enable more powerful static checking on generators

than currently available in static HDLs.

2.2 Target Hardware Generator Properties
In this paper, we focus on four key hardware generator properties

on design correctness and synthesizability.

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Peitian Pan et al.

Matching Bitwidths – One important aspect of structural mod-

eling is modeling the circuit using a set of interconnected signals.

Therefore, it is crucial for HDLs to verify that structurally con-

nected signals have the same bitwidth. The matching bitwidth

property also applies to behavioral modeling, where the bitwidths

of operands in arithmetic operations should be equal. As an example,

the left-hand side (LHS) and right-hand side (RHS) of connections

on line 25-29 in Figure 2 (a) should have the same bitwidth.

Correct Local Port Directions – Interconnected signals in

circuits are generally further elaborated into nets of signals where
at most one active signal drives all other signals in the same net.

A complete net representation requires extensive cross-module

analysis on the elaborated component [13, 15] and may not be

possible using static analysis. Local port direction analysis focuses

on the connections within a component and can find common

direction issues such as attempting to drive input-only ports from

inside a component. As an example, only an output port can be

used on the LHS of a signal assignment (line 31 in Figure 2 (a)).

Bounded Array Indexing – Hardware generators often lever-

age arrays to model signals and sub-components. Design issues can

therefore arise from out-of-bound array indexing. Unlike array in-

dex calculation in programs which can have arbitrary computation,

array index generation in hardware generators generally consists

only of simple arithmetics over constants, generator parameters,

and loop induction variables. Therefore, static analysis on hardware

generators should be able to detect almost all out-of-bound array

indexing. As an example, array indices have to be smaller than the

array length (line 23, 25-29 in Figure 2 (a)).

Valid Hierarchical References – Traditional HDLs like Verilog
allow accessing any attribute in the elaborated module hierarchy

using a globally unique hierarchical name to facilitate hardware test-
ing [2]. However, arbitrary hierarchical references do not model ac-

tual hardware behaviors. Synthesizable hardware generators must

communicate through input and output data ports between two

immediate levels in the module hierarchy. As a concrete example,

the valid hierarchical reference property requires that only the

input and output ports of the FullAdder sub-components can be

accessed (line 25-29 in Figure 2 (a)).

3 CHECKING GENERATOR PROPERTIES
WITH AN OFF-THE-SHELF STATIC TYPE
CHECKER

In this section, we discuss how to apply Mypy, an off-the-shelf

static type checkers for Python [18], to statically check PyMTL3

hardware generators. We present type annotations for the PyMTL3

hardware modeling domain-specific language (DSL), which Mypy

requires to analyze hardware generators. We show that Mypy can

verify simple generator properties and discuss its limitations.

3.1 Type Annotations for PyMTL3 DSL and
Generators

As a static type checker, Mypy leverages Python’s type annotation

syntax to type check programs. Two kinds of type annotations are

necessary to repurpose Mypy for hardware generator properties:

annotations for the PyMTL3 hardware modeling DSL (Figure 3 (a))

and annotations for the target generator (Figure 3 (b)).

1 # Hardware data types
2 class Bits: ...
3 class Bits1(Bits): ...
4 class Bits32(Bits): ...
5

6 def mk_bits(nbits: int) -> Type[Bits]: ...
7 def get_nbits(Width: Type[Bits]) -> int: ...
8

9 # Hardware signal types
10 T_Sig = TypeVar("T_Sig", bound=Bits)
11 class Signal(Generic[T_Sig]):
12 def __init__(s, Width: Type[T_Sig]) -> None:
13 ...
14 def __xor__(s, o: Signal[T_Sig]) -> Signal[T_Sig]:
15 ...
16 def __and__(s, o: Signal[T_Sig]) -> Signal[T_Sig]:
17 ...
18 def __or__(s, o: Signal[T_Sig]) -> Signal[T_Sig]:
19 ...
20

21 InPort = OutPort = Wire = Signal
22

23 # Hardware modeling primitive types
24 T_Con = TypeVar("T_Con", bound=Bits)
25 @overload
26 def connect(l: Signal[T_Con],
27 r: Signal[T_Con]) -> None: ...
28 @overload
29 def connect(l: Signal[T_Con],
30 r: int) -> None: ...
31

32 def concat(*args: List[Any]) -> Signal[Bits]: ...

(a) Type-Annotated Core PyMTL3 Hardware Modeling DSL

1 class FullAdder(Component):
2 def __init__(s) -> None: ...
3 def construct(s) -> None:
4 # All ports have type Signal[Bits1]
5 s.a = InPort(Bits1); s.b = InPort(Bits1)
6 s.cin = InPort(Bits1)
7 s.sum = OutPort(Bits1); s.cout = OutPort(Bits1)
8

9 @update
10 def upblk() -> None:
11 s.sum @= s.cin ^ s.a ^ s.b
12 s.cout @= ((s.a ^ s.b) & s.cin) | (s.a & s.b)
13

14 T_Adder = TypeVar("T_Adder", bound=Bits)
15 class Adder(Component, Generic[T_Adder]):
16 def __init__(s, Width: Type[T_Adder]) -> None:
17 ...
18 def construct(s, Width: Type[T_Adder]) -> None:
19 n = get_nbits(Width)
20 s.a = InPort(Width) # Signal[T_Adder]
21 s.b = InPort(Width) # Signal[T_Adder]
22 s.out = OutPort(mk_bits(n+1)) # Signal[Bits]
23 s.fa = [FullAdder() for _ in range(n)]
24 # List[FullAdder]
25 s.carry = Wire(mk_bits(n+1)) # Signal[Bits]
26 s.sum = Wire(Width) # Signal[T_Adder]
27

28 for i in range(n):
29 if i >= 0:
30 # Both sides of connect are of Signal[Bits1]
31 connect(s.fa[i].a , s.a[i])
32 connect(s.fa[i].b , s.b[i])
33 connect(s.fa[i].cin , s.carry[i])
34 connect(s.carry[i+1], s.fa[i].cout)
35 connect(s.sum[i] , s.fa[i].sum)
36 if i == 0:
37 # Left: Signal[Bits1]; right: int
38 connect(s.carry[i], 0)
39

40 @update
41 def upblk() -> None:
42 # concat(s.carry[n], s.sum): Signal[Bits]
43 s.out @= concat(s.carry[n], s.sum)

(b) Type-Annotated Adder Generator Checked by Mypy

Figure 3: Type-Annotated PyMTL3 Generators

Hardware Data Types – Hardware data types in PyMTL3 are

Python classes that represent a specific bitwidth and are used to

Symbolic Elaboration: Checking Generator Properties in Dynamic Hardware Description Languages MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

specify the bitwidth of signals. PyMTL3 dynamically generates

and caches such class objects during import, which is a dynamic

behavior that cannot be type-annotated precisely. Instead, line 2-5

in Figure 3 (a) exhaustively lists all data types used in the generators
(only Bits1 and Bits32 is used in this example). When the type

checker cannot determine the exact bitwidth of a signal, the base

class object Bits is used. PyMTL3 also provides functions that

converts an integer to and from a bitwidth type (i.e., a class object),
which are annotated on line 6-7. The annotation again is imprecise

because the exact bitwidth is not known at annotation time.

Hardware Signal Types – Line 10-21 annotate the signal type in
the PyMTL3 modeling DSL, which is used whenever a port (input or

output) or wire is instantiated. We declare Signal as a generic type
over type variable T_Sig, which represents a hardware data type

indicating the signal’s bitwidth (achieved with the bound argument

of the type variable). Line 12 in Figure 3 (a) declares that only class

objects are allowed to be passed into signal constructors, which

enables the detection of misuse of other invalid objects to construct

a signal during type check. Line 14-19 specify the type signature of

common bitwise operators: both sides of the operation should be

a signal of the same bitwidth, and the operation returns a signal

of the same bitwidth. This allows Mypy to detect simple bitwidth

mismatch errors in generators. It is also worth noting that encoding

the direction of signals into Mypy’s type system is challenging.

Therefore, we disregard the direction of signals while annotating

the PyMTL3 modeling DSL (line 21 in Figure 3 (a)).

Hardware Modeling Primitive Types – Line 24-30 show the

type annotations of the connect method, which is used to connect

two signals in a design. The signature of connect is overloaded to

support connecting signals to other signals (line 24-27) and integers

(line 28-30). The method signature ensures that if two signals are

connected, theymust have the same bitwidth to satisfy thematching

bitwidth property. If a signal is connected to an integer, no checks

are necessary because the PyMTL3 semantics ensures that the

integer will be cast to fit the bitwidth of the other signal. Finally,

line 32 shows the signature of the concatmethod, which is used to

concatenate a variable number of explicitly sized signals into one.

Since it is not always possible to know the exact bitwidth of the

resulting signal, Signal[Bits] is an imprecise annotation we can

do for concat’s return type.

Hardware Generator Annotations – Figure 3 (b) shows the

type-annotated adder generator. Unlike annotations for the PyMTL3

hardware modeling DSL which can be built into the dynamic HDL,

hardware designers need to manually annotate their generator de-

sign to get it type checked by a static type checker. Fortunately,

only a few annotations in the generator class or function definition

are required. On line 2, 3, and 10, the ->None symbol is a dummy

annotation that enables Mypy checking at the function scope. For

generators with parameters, the type checker requires annotations

that declare the generator class as having generic type (shown on

line 14-15) over the hardware data types. Mypy can infer the types

of signals based on its instantiation (line 20-22).

Putting It All Together – with annotations for the PyMTL3

modeling DSL and the generators, Mypy can verify the matching

bitwidths for the bit-wise operations on line 11-12 in Figure 3 (b)

because all operands are explicitly declared to be single-bit wide

(Bits1). Mypy can also verify the matching bitwidths for structural

connections on line 31-35 because these signals are explicitly sized.

3.2 Limitations of Mypy
Despite Mypy’s success in verifying parts of the bitwidth match-

ing property, it has several limitations.

Mypy Cannot Statically Verify All Matching Bitwidths –
In the adder generator in Figure 3 (b), Mypy cannot reason about

the exact bitwidth of s.out (line 22) and the result of concat()
(line 43). Therefore, it fails to verify that the LHS and RHS of line

43 in Figure 3 (b) have the same bitwidth. We make the observa-

tion that Mypy is only able to verify matching bitwidths that are not
parametrized. Unfortunately, many hardware generators rely on

parametrized signal bitwidths (line 20-21) and deriving new hard-

ware data types (line 22,25), which undermine Mypy’s effectiveness.

Verifying Other Generator Properties with Mypy is Chal-
lenging – Besides the matching bitwidth property, it is challenging

to encode other generator properties discussed in §2.2 into Mypy.

For example, the bounded array indexing property requires anal-

ysis of the possible values of array indices, which Mypy does not

support; both the correct local port direction and valid hierarchi-

cal reference properties involve complex analysis of signals and

components, which is challenging to encode in Mypy’s type system.

Mypy does not Account for Path Conditions during Anal-
ysis – Hardware generators can also include if-statements to con-

ditionally generate different hardware instances based on the given

generator parameters. We refer to the if-conditions required to

model a structural connection or behavior as path conditions. Path
conditions can significantly affect the analysis of hardware gener-

ators. For example, the for loop body on line 28-38 in Figure 3 (b)

connects different signals based on the if-condition on line 29 and

line 36. If-conditions can affect the result of the array index analysis

because the possible values of an array index may depend on the

if-condition. Mypy does not account for path conditions by design

and therefore cannot perform the analysis described above.

4 CHECKING GENERATOR PROPERTIES
WITH SYMBOLIC ELABORATION

In this section, we propose a novel technique, symbolic elaboration,
to address the limitations of off-the-shelf static type checkers. We

observe that important generator properties can be encoded into

integer constraints and that such constraints can be solved by a

satisfiability modulo theory (SMT) solver. We design and imple-

ment a symbolic elaborator to perform symbolic elaboration, which

statically analyzes the given hardware generator, builds an abstract

generator model, constructs the integer constraints corresponding

to the properties, and solves them using the Z3 SMT solver [21].

Compared to Mypy, the symbolic elaborator is able to reason about

path conditions and statically verify all four properties in §2.2.

4.1 Building Abstract Generator Models
In this section we discuss how to build the abstract generator model

based on a given target generator. We will use Figure 4 (a) and (b) as

an example and demonstrate how to build an abstract adder model

based on an example adder generator.

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Peitian Pan et al.

1 T = TypeVar("T", bound=Bits)
2

3 class Adder(Component, Generic[T]):
4 def __init__(s, Width:Type[T]) -> None:
5 ...
6 def construct(s, Width:Type[T]) -> None:
7 n = get_nbits(Width)
8 s.a = InPort(Width)
9 s.b = InPort(Width)
10 s.out = OutPort(mk_bits(n+1))
11 s.fa = [FullAdder() \
12 for _ in range(n)]
13 s.carry = Wire(mk_bits(n+1))
14 s.sum = Wire(Width)
15

16 for i in range(n):
17 if i >= 0:
18 connect(s.carry[i+1],s.fa[i].cout)
19 ...
20 if i == 0:
21 connect(s.carry[i],0)
22

23 @update
24 def upblk() -> None:
25 s.out @= concat(s.carry[n], s.sum)

(a) Target adder generator

Adder Symbol Table

Name Type DefCond

Width Bits; generator arg true

n int; to_value(Width) true

i int; 0 ≤ i < n i ≥ 0

Adder Abstract Generator Model

Name Type DefCond

a InPort[Width] true

b InPort[Width] true

out OutPort[n+1] true

fa List[FullAdder] of n true

carry Wire[n+1] true

sum Wire[Width] true

(b) Symbolic elaboration results

Property: Bounded Array Index

s.carry[i+1]
Array Length: n+1

Index Expression: i+1

Use Condition: i ≥ 0

¬ (0 ≤ 𝑖 + 1 < 𝑛 + 1) ∧ (𝑖 ≥ 0)
∧ (0 ≤ 𝑖 < 𝑛) ∧ (𝑛 =𝑊𝑖𝑑𝑡ℎ)

Property: Matching Bitwidth

out@=cat(carry[n],sum)
LHS Width: n+1

RHS Width: 1+to_value(Width)

Use Condition: true

¬ (𝑛 + 1 = 1 +𝑊𝑖𝑑𝑡ℎ)
∧ (𝑛 =𝑊𝑖𝑑𝑡ℎ)

(c) Properties to Constraints

Figure 4: Symbolic Elaboration of an Adder. (a) target adder generator to be symbolically elaborated (identical to Adder in Figure 3 (b)); (b)
symbolic elaboration results: the abstract generator model of adder and the symbol table; dark red line indicates the state of the symbol table
when the elaborator is processing line 19; (c) translation of bounded array index and bitwidth matching properties into integer constraints.

Reasoning about Generator Argument Arithmetics – The

key feature that distinguishes symbolic elaboration from static type

checkers like Mypy is the ability to precisely reason about generator

argument arithmetics. Figure 4 (b) shows the symbol table (which

keeps track of active symbols the elaborator has encountered) and

the abstract generator model (which records all active attributes of

the current generator). The abstract generator model demonstrates

that generator attributes can be potentially generic over a symbol

or any arithmetics on symbols and concrete numbers. For example,

the s.out port has a bitwidth derived from the arithmetics between

the argument Width and an integer one. This arithmetic operation

is preserved and will be translated into SMT-solvable constraints

when checking properties of the abstract model.

Accounting for Path Conditions – In contrary to static type

checkers like Mypy, path conditions are first-class citizens in sym-

bolic elaboration: every entry in the symbol table or the abstract

generator model has a definition condition (or defcond) which is the

path condition up to the entry’s point of definition. The symbolic

elaborator maintains path conditions by pushing the if-condition or

its negation to the PathConds stack before visiting the statements

in the if- or else-branch. It pops the condition from the PathConds
stack after the if-statement visit has finished. When the elaborator

registers an entry with the symbol table or the abstract generator

model, it constructs a boolean expression of the conjunction of all

conditions in PathConds and use it as the definition condition of

the entry. For example, in Figure 4 (b), the dark red entry for loop

induction variable i has a definition condition 𝑖 ≥ 0 because it is

under the if-branch of the if-condition on line 17.

4.2 Checking Properties of Abstract Generator
Models

In this section we discuss how to encode hardware generator prop-

erties and path conditions into integer constraints that the Z3 SMT

solver can verify. We will use Figure 4 (c) as an example and demon-

strate how to check the bounded array index and matching bitwidth

properties on an example adder generator.

Translating If-Conditions and Numeric Expressions – We

use the term numeric expressions to refer to the arithmetics be-

tween symbols (i.e., generator arguments and loop induction vari-

ables) and concrete integers. Translating numeric and boolean ex-

pressions into Z3 expressions is straightforward because (1) gen-

erator arguments have a one to one correspondence to integer

variables in Z3; (2) for-loop induction variables correspond to inte-

ger variables with two constraints on its lower and upper bound

(e.g., induction variable i in for i in range(n) has constraints
i >= 0 and i < n); (3) conversion between bitwidth types and

integers using get_nbits and mk_bits functions can be handled

by adding one constraint that asserts the two symbols involved

in the conversion are equal; (4) the Python binding of Z3 also of-

fers integer constants and common binary arithmetic/comparison

operations over integers.

Encoding the clog2 Function – One difficulty in encoding nu-

meric expressions is that the clog2 operation (clog2(n) = ⌈𝑙𝑜𝑔2𝑛⌉)
does not have a straightforward encoding in SMT solvers like Z3.

We address this issue in two ways. We first add constant folding

support so that clog2 operations on constant values can be evalu-

ated and replaced with its result. For non-constant clog2 operands,
we encode the clog2 operation as an uninterpreted function from

an integer to an integer in Z3. Z3 makes no assumptions about an

uninterpreted function 𝐹 except that 𝑥 = 𝑦 ⇒ 𝐹 (𝑥) = 𝐹 (𝑦). This
encoding scheme makes sure that any verified generator properties

related to clog2 must be true (i.e., no false-negatives).

Verifying Generator Properties – After translating numeric

and boolean expressions to Z3, it is straightforward to verify the

generator properties. To verify the bounded array index property,

we construct an integer constraint that asserts the index has values

out of the array bound. More specifically, for index expression 𝑖

Symbolic Elaboration: Checking Generator Properties in Dynamic Hardware Description Languages MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

1 module Generator
2 {
3 -- Statements
4 stmt = Construct(arg* args, stmt* body)
5 | If(bool_expr cond, stmt* body, stmt* orelse)
6 | TmpVarAssign(string target, num_expr value)
7 | AttrAssign(string target, inst value)
8 | SignalAssign(sig_expr target, sig_expr value)
9 | Connect(sig_expr u, sig_expr v)
10 | For(string var, int start, int end, stmt* body)
11

12 -- Numeric Expressions
13 num_expr = GeneratorArgNum(string name)
14 | InductionVarNum(string name,
15 int start, int end)
16 | UnsizedNum(int num)
17 | UniOpNum(num_uni_op op, num_expr value)
18 | BinOpNum(num_expr left,
19 num_bin_op op,
20 num_expr right)
21 | NumFromDataType(data_type t)
22

23 num_uni_op = NumClog2
24

25 num_bin_op = NumAdd | NumSub | NumMult
26

27 -- Types
28 data_type = GeneratorArgDataType(string name)
29 | DataTypeFromNum(num_expr bitwidth)
30

31 type = ComponentType(string comp)
32 | DataType(data_type t)

33 -- Signal Expressions
34 sig_expr = CurrentGenerator()
35 | AttributeAccess(sig_expr value, string attr)
36 | ArrayIndex(sig_expr value, num_expr index)
37 | VectorIndex(sig_expr value, num_expr index)
38 | BinOpSig(sig_expr left, sig_bin_op op,
39 sig_expr right)
40 | Concat(sig_expr* args)
41

42 sig_bin_op = Add | Sub | Mult | LShift
43

44 -- Boolean Expressions
45 bool_expr = NumCompare(num_expr left,
46 bool_cmp_op op,
47 num_expr right)
48 | BinOpBool(bool_expr left,
49 bool_bin_op op,
50 bool_expr right)
51 | UniOpBool(bool_uni_op op, bool_expr value)
52

53 bool_cmp_op = BoolCmpEq | BoolCmpLt
54 bool_bin_op = BoolAnd | BoolOr | BoolXor
55 bool_uni_op = BoolNot
56

57 -- Component/Signal Instantiation
58 inst = CompInst(string comp, arg* args, int* dims)
59 | SignalInst(data_type bitwidth, int* dims)
60

61 -- Construction Arguments
62 arg = Argument(string name, type t)
63 }

Figure 5: Core Generator Modeling Syntax Targeted by the Symbolic Elaborator.

and array length 𝑙𝑒𝑛 with definition condition 𝑑𝑒 𝑓 and under use

condition 𝑢𝑠𝑒 , integer constraint Equation 2 will be checked by Z3

for counter examples (as shown in Figure 4 (c)). To verify if bitwidth

𝑢 is the same as 𝑣 under definition condition 𝑑𝑒 𝑓 and use condition

𝑢𝑠𝑒 , we solve (1) (as shown in Figure 4 (c)). To verify the correct

port direction or the valid hierarchical access property, we solve

the conjunction of definition condition 𝑑𝑒 𝑓 and use condition 𝑢𝑠𝑒

Equation 3 and consult the symbolic elaboration results to check if

the port direction or hierarchical name is valid. It is worth noting

that if Z3 finds 𝑑𝑒 𝑓 ∧𝑢𝑠𝑒 unsatisfiable, checking the target property
is unnecessary because the definitions of symbols and signals in

the target property are not available at the point of use.

(𝑢 ≠ 𝑣) ∧ 𝑑𝑒 𝑓 ∧ 𝑢𝑠𝑒 (1)

¬(0 ≤ 𝑖 ∧ 𝑖 < 𝑙𝑒𝑛) ∧ 𝑑𝑒 𝑓 ∧ 𝑢𝑠𝑒 (2)

𝑑𝑒 𝑓 ∧ 𝑢𝑠𝑒 (3)

If Z3 finds Equation 1 or Equation 2 unsatisfiable, we have ob-

tained a proof that 𝑢 = 𝑣 or 𝑖 does not cause out-of-bound accesses

for all possible values of integer variables. Otherwise we have ob-

tained a counter example which corresponds to a set of symbol

values that lead to design issues to be fixed.

4.3 Symbolic Elaboration Implementation
We implement a symbolic elaborator prototype that targets a subset

of PyMTL3 hardware modeling DSL. Our implementation requires

type annotations for generator parameters as shown in Figure 3 (b).

The supportedmodeling syntax allows efficient static analysis and is

also expressive enough to model most hardware generators. Figure

5 shows the core components of the supported modeling syntax

in the Zephyr abstract syntax description language [33]. The core

syntax is designed to be similar to the Python 3 syntax [25] and

serve as a straightforward target for PyMTL3 hardware generators.

Statements – The root of the generator abstract syntax tree is a

Construct node, which corresponds to the construct method of

each hardware generator. We explain the following three syntax

nodes because they interact with the elaborator data structure in

important ways: (1) If nodes corresponds to an if-else statement

in the generator (e.g., line 17,20 of Figure 4 (a)); this node has

an if-condition of boolean expressions which are used to derive

path conditions; (2) For nodes corresponds to a for-loop in the

generator (e.g., line 16 of Figure 4 (a)); this node introduces a new

name constrained by the star and end of the for-loop under the

current path condition; (3) AttrAssign nodes indicate the addition
of signal and sub-component attributes to the current generator

(e.g., line 8-14 of Figure 4 (a)); this node adds an attribute to the

current generator under the current path condition.

Signal Expressions – Signal expressions reference signals in

the current generator and are common operands of arithmetic

operations and structural connections (e.g., s.fa[i].cout and

concat(s.carry[n], s.sum) in Figure 3 (b) are both signal ex-

pressions). Common signal expressions include attribute accesses

(AttributeAccess), indexing into a signal array (ArrayIndex), in-
dexing into a signal (VectorIndex), binary arithmetic operations

between signals (BinOpSig), and signal concatenation (Concat).
Numeric Expressions – Numeric Expressions represent inte-

gers used in hardware generators. Common numeric expressions in-

clude generator arguments that have an integer type (GeneratorArgNum),
for-loop induction variables (InductionVarNum), and integer lit-

erals (UnsizedNum). The numeric expressions also keep track of

the binary (BinOpNum) or unary (UniOpNum) operations between
numeric expressions. This enables precise reasoning about numeric

values, which is critical in matching bitwidth analysis.

Boolean Expressions – Boolean expressions are used in if-

conditions. The syntax in Figure 5 assumes that only comparisons

between numeric expressions can be used in the if-conditions.

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Peitian Pan et al.

Algorithm 1 Core Symbolic Elaboration Algorithm. def-

cond=definition condition; 𝐺𝑖=set of input ports of generator 𝐺 ;

𝐺𝑜=set of output ports of generator𝐺 ;𝐺𝑠=set of subgenerators of

generator𝐺 (i.e., generators instantiated inside𝐺);𝐺𝑝=𝐺𝑖 ∨𝐺𝑜 (set

of all ports of generator 𝐺).

Require: 𝑇 : AST node of the generator under elaboration.

Require: 𝑃 : Path conditions (set of bool_expr).
Require: 𝑁 : Symbols encountered (set of num_expr).
Require: 𝐺 : Generator (set of pairs (attribute name, inst)).
Ensure: Return type of AST node 𝑇 ; none if 𝑇 is a statement.

1: function SymbElab(𝑇, 𝑃, 𝑁 ,𝐺) ⊲ Args passed by reference.
2: if 𝑇 is Construct then
3: for all 𝑠𝑡𝑚𝑡 ∈ 𝑇 .𝑏𝑜𝑑𝑦 do
4: SymbElab(𝑇, 𝑃, 𝑁 ∨𝑇 .𝑎𝑟𝑔𝑠,𝐺)
5: if 𝑇 is If then
6: for all 𝑡 ∈ 𝑇 .𝑏𝑜𝑑𝑦 do
7: SymbElab(𝑡, 𝑃 ∨𝑇 .𝑐𝑜𝑛𝑑, 𝑁 ,𝐺)

8: for all 𝑡 ∈ 𝑇 .𝑜𝑟𝑒𝑙𝑠𝑒 do
9: SymbElab(𝑡, 𝑃 ∨ ¬𝑇 .𝑐𝑜𝑛𝑑, 𝑁 ,𝐺)

10: if 𝑇 is For then
11: for all 𝑡 ∈ 𝑇 .𝑏𝑜𝑑𝑦 do
12: SymbElab(𝑡, 𝑃, 𝑁 ∨ (𝑇 .𝑣𝑎𝑟,𝑇 .𝑠𝑡𝑎𝑟𝑡,𝑇 .𝑒𝑛𝑑),𝐺)
13: if 𝑇 is AttrAssign then ⊲ 𝑣 |𝑃 : 𝑣 only valid if 𝑃 holds
14: 𝑣 ← SymbElab(𝑇 .𝑣𝑎𝑙𝑢𝑒, 𝑃, 𝑁 ,𝐺)

15: 𝐺 ← 𝐺 ∨ (𝑇 .𝑡𝑎𝑟𝑔𝑒𝑡, 𝑣) |𝑃
16: if 𝑇 is GeneratorArgNum then
17: 𝑁 ← 𝑁 ∨𝑇 .𝑛𝑎𝑚𝑒 |𝑃
18: return GeneratorArgNum(T.name)
19: if 𝑇 is ArrayIndex then
20: 𝐼 ← bitwidth of SymbElab(𝑇 .𝑖𝑛𝑑𝑒𝑥, 𝑃, 𝑁 ,𝐺)

21: 𝐿 ← length of SymbElab(𝑇 .𝑣𝑎𝑙𝑢𝑒, 𝑃, 𝑁 ,𝐺)

22: 𝐶 ← defcond of 𝐼 and 𝐿 via 𝑁 ∨𝐺
23: if ¬(0 <= 𝐼 < 𝐿) solvable w.r.t 𝐶 ∧ 𝑃 then
24: Report out-of-bound array index at 𝑇

25: if 𝑇 is SignalAssign,Connect,BinOpSig then
26: ⊲ Assume two operands are 𝑇 .𝑙𝑒 𝑓 𝑡 and 𝑇 .𝑟𝑖𝑔ℎ𝑡 . ⊳

27: 𝐿 ← bitwidth of SymbElab(𝑇 .𝑙𝑒 𝑓 𝑡, 𝑃, 𝑁 ,𝐺)

28: 𝑅 ← bitwidth of SymbElab(𝑇 .𝑟𝑖𝑔ℎ𝑡, 𝑃, 𝑁 ,𝐺)

29: 𝐶 ← defcond of 𝐿 and 𝑅 via 𝑁 ∨𝐺
30: if ¬(𝐿 = 𝑅) solvable w.r.t 𝐶 ∧ 𝑃 then
31: Report bitwidth mismatch at 𝑇

32: if 𝑇 is SignalAssign then
33: 𝑡 ← SymbElab(𝑇 .𝑙𝑒 𝑓 𝑡, 𝑃, 𝑁 ,𝐺)

34: if ∃𝐻 ∈ 𝐺𝑠 : 𝑡 ∈ 𝐺𝑖 ∨ 𝐻𝑜 w.r.t 𝐶 ∧ 𝑃 then
35: Report incorrect port direction at 𝑇

36: if 𝑇 is AttributeAccess then
37: 𝑉 ← SymbElab(𝑇 .𝑣𝑎𝑙𝑢𝑒, 𝑃, 𝑁 ,𝐺)

38: 𝐶 ← defcond of 𝑉 via 𝑁 ∨𝐺
39: if 𝑉 ∈ 𝐺𝑠 ∧𝑇 .𝑎𝑡𝑡𝑟 ∉ 𝑉𝑝 w.r.t 𝐶 ∧ 𝑃 then
40: Report invalid hierarchical reference at 𝑇

However, it is straightforward to extend the syntax to support if-

conditions with signal values (often used in behavioral modeling).

Boolean expressions enable the precise reasoning of array index

values, which is critical to detecting out-of-bound array indices.

Core Symbolic Elaboration Algorithm – Algorithm 1 shows

the core algorithm of symbolic elaboration which is based on the

Table 2: Evaluated Hardware Generators

Generator
LoC

Instance
LoC

Instance

LFSR 31 23 32-bit register

Gray Enc./Dec. 42 76 32-bit input

Priority Enc. 45 79 32-bit input

RR. Arbiter 49 88 8 requesters

FIFO Queue 125 174 32-bit 2-element queue

Divider 172 535 32-bit datapath

Processor 903 2135 single-core RV32-IM

CGRA 1170 4004 8×8 32-bit PE array

LoC (lines of code) reported by cloc; lines exclude comments and blanks.

The upper/lower segment includes standard hardware IPs/standalone de-

signs. Enc./Dec.: encoder/decoder. RR: round-robin.

traversal of the target generator’s abstract syntax tree (AST; syntax

defined in Figure 5). The symbolic elaborator holds three book-

keeping data structures during elaboration; as the elaborator walks

through the generator AST, it keeps tracks of all symbols derived

from the generator’s arguments and for-loop induction variables

(𝑁), maintains the current path condition based on the if-conditions

encountered and the if-else branches (𝑃), and records all attributes

added to the generator (𝐺). While verifying the properties dis-

cussed in §2.2, the algorithm generates a path constraint which is

the conjunction between the current use condition and the defini-

tion conditions of names and expressions under verification (𝐶 ∧𝑃).
The algorithm checks for out-of-bound array indices by searching

for index values less than zero or larger than or equal to the length

under the path constraint with the SMT solver; similarly it checks

for bitwidth mismatches by searching for mismatched left and right

bitwidths under the path constraint; checks for correct port direc-

tions and valid hierarchical names only invoke the SMT solver to

verify the path constraint is satisfiable and verify the properties by

looking up attributes in the bookkeeping data structures.

5 EVALUATION
In this section, we describe how we evaluate the prototype imple-

mentation of symbolic elaboration and the evaluation results. In

order to quantitatively evaluate symbolic elaboration’s static check-

ing capabilities, we implement a mutation-based abstract syntax

tree (AST) fuzzer that randomly injects six common categories of

bugs that we learned from actual hardware generator development.

We randomly inject mutations into eight design generators using

the AST fuzzer and compare when the bug is detected (earlier is

better): ahead of time (early), elaboration time (middle), or simu-

lation time (late). We compare our SE prototype to PyMTL3 with

and without the Mypy static type checker.

5.1 Evaluation Designs
Our evaluation of symbolic elaboration uses eight hardware gen-

erators shown in Table 2. LFSR, Gray encoder/decoder, priority

encoder, round-robin arbiter, and FIFO queue are commonly used

hardware IPs. Divider, processor, and CGRA represent three stan-

dalone hardware designs: an integer divider, a RISC-V processor,

Symbolic Elaboration: Checking Generator Properties in Dynamic Hardware Description Languages MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

and an elastic coarse-grain reconfigurable array [12]. The divider

generator generates a radix-4 iterative divider for a given data path

width. The processor generator generates one or more RV32-IM

five-stage cores. The CGRA generator generates a reconfigurable

processing element array with elastic flow control for the given

dimension. The hardware generators are used in the bug detec-

tion evaluation and their corresponding instances are used in the

simulation performance evaluation.

We choose these eight designs because they form a representative

suite of hardware generators that includes both commonly used

IPs and standalone hardware designs. On the one hand, standard

hardware IPs are generally harder to check statically because such

generators are heavily parameterized and sometimes customized

for specific parameter combinations. On the other hand, hardware

designers are more interested in SE’s checking capabilities on real

designs because it is much closer to the designer’s use cases.

5.2 Mutation-Based Abstract Syntax Tree Fuzzer
To evaluate the effectiveness of symbolic elaboration’s static check-

ing capabilities, we implement a mutation-based AST fuzzer to

inject mutations to designs in §5.1. The AST fuzzer is capable of

injecting six kinds of mutations that we categorized from 249 git

commits in the development and testing of the three standalone de-

sign generators. The AST fuzzer mutates part of the target syntactic

construct to produce a syntactically correct but potentially seman-

tically flawed hardware generator. The AST fuzzer recognizes the

following syntactic constructs: constant integers, explicitly sized

constants, signal slicing, accessing attributes of a component, ref-

erencing an object by identifier, and all arithmetic and boolean

operations. Each mutation stresses symbolic elaboration’s ability to
verify one of the generator properties discussed in §2.2. It is worth
noting that the AST fuzzer may inject mutations that are benign

(not a bug), which we classify as a bug not detected (§5.3).

Bitwidth Mutation – Based on our experiences reviewing hard-

ware development git commits, bitwidth mismatching is a common

category of design bugs in generators. To perform a bitwidth muta-

tion, The AST fuzzer searches for signal bitwidth declaration state-

ments, slicing operations, and constants andmutates the bitwidth to

force a bitwidth mismatch. This category of bugs stresses symbolic

elaboration’s ability to verify the bitwidth matching property.

Component AttributeMutation –Dynamic HDLs rely heavily

on accessing component attributes to construct hardware program-

matically. It is often easy for designers to mix the name of one

attribute with the other, and component attribute mutation aims

to inject this kind of bug. More specifically, The AST fuzzer looks

for an attribute name in attribute access (get or set) and replaces

it with the name of another attribute from the same object. This

mutation stresses symbolic elaboration’s ability to verify the valid
hierarchical reference property.

Port Direction Mutation – Incorrect port direction is another

common category of design issues. The AST fuzzer introduces port

direction bugs by flipping the direction of one port in the given

design. This mutation stresses symbolic elaboration’s ability to

verify the local port direction property.

Name Expression Mutation – Name expression mutation fo-

cuses on changing the variable identifiers to model typos that are

common in the git commits we reviewed. However, mutating a

variable name will almost certainly generate references to nonex-

istent variables, which is trivial. To avoid referencing nonexistent

variables (which is a trivial bug), The AST fuzzer keeps track of

all available variable names in the current scope and only replaces

the target name with a name in the current scope. This mutation

stresses the general robustness of the prototype SE implementation.

Attribute Base Mutation – Attribute base mutation is a cat-

egory of bugs where hardware designers remove the base object

from attribute access expressions (e.g., s.out becomes out). Most of

these bugs lead to accessing nonexistent variables. However, when

this bug appears on the left-hand side of an assignment expression,

the mutated syntax will create a temporary variable which can only

be detected at simulation time. This mutation stresses the general

robustness of the prototype SE implementation.

Functionality Mutation – Finally, the AST fuzzer implements

functionality mutation by flipping constant values and arithmetic

operators in generators. Unlike other mutations, some functional

bugs cannot be detected through type checking (e.g., a-b type

checks if a+b already type checks). Therefore, a test suite of high

code coverage is required to achieve a high detection rate in this

category. But other cases of functionality mutation which changes

the constants in an array index expression can be detected because

symbolic elaboration verifies the bounded array indexing property.

5.3 Bug Detection
In this section, we evaluate the bug detection effectiveness of

PyMTL3, Mypy+PyMTL3, and SE+PyMTL3 on eight design gen-

erators. We randomly inject mutations into a generator using the

AST fuzzer (one mutation at a time) and then evaluate if PyMTL3,

Mypy+PyMTL3, and SE+PyMTL3 are able to detect the injected mu-

tation. This evaluation compares the effectiveness of symbolic elab-

oration against state-of-the-art elaboration-time checks (PyMTL3)

and an off-the-shelf static type checker (Mypy).

Figure 6 shows the number of bugs detected by PyMTL3,Mypy+PyMTL3,

and SE+PyMTL3 at each stage: ahead of time (statically), during

elaboration, during simulation, or not detected (including benign

mutations). A syntax mutation may not be detected because the

mutation does not change the generator’s functionality or the simu-

lation test vectors do not reach 100% coverage. We can see that sym-
bolic elaboration detects the same number of more bugs than PyMTL3
and Mypy+PyMTL3. On average, symbolic elaboration detects 90.6%

of the injected syntax mutations, which is slightly higher than

PyMTL3 (86.6%) and Mypy+PyMTL3 (89.4%). This demonstrates

the effectiveness of symbolic elaboration, which is able to detect

bugs missed by simulation (simulation test vector may not achieve

100% coverage). Figure 6 also shows that symbolic elaboration is
able to detect significantly more bugs ahead of time than Mypy. On
average, symbolic elaboration detects 77.1% of syntax mutations

ahead of time, whereas Mypy only detects 50.4%. This confirms

that the symbolic elaborator is a better approach to statically check

generators than existing static type checkers.

6 RELATEDWORK
Symbolic elaboration is partly inspired by existing symbolic execu-

tion techniques. Symbolic execution generally applies constraint

MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany Peitian Pan et al.

(a) Bug Detection Results on Common IPs (b) Bug Detection Results on Standalone Designs

Figure 6: Bug Detection Results – (a) and (b) show the number of bugs detected by PyMTL3 (P), Mypy+PyMTL3 (M), and GT-HDL (G) at different
stages. The more bugs detected ahead of time the better.

solving techniques to reason about path conditions and is commonly

used in program analysis activities including software testing, soft-

ware vulnerability detection, and security analysis [8, 28, 31]. Tradi-

tional concrete execution of programs requires concrete test inputs,

and each execution is limited to one control flow. Symbolic execu-

tion is able to explore multiple conditional paths in parallel and

keep track of the constraints applied to the input symbols along

the path as a series of boolean expressions. Symbolic execution

often leverages a satisfiability modulo theories (SMT) solver to

verify whether certain program properties have been violated and

whether some paths are feasible [6]. If the SMT solver proves that

some properties are violated, or a path is feasible, it can generate a

feasible solution to the boolean expressions, which can be mapped

back to a concrete test input that triggers the offending violations

or exercises certain branches.

The symbolic elaboration technique is similar to symbolic exe-

cution techniques in two ways: (1) symbolic elaboration is a purely

static analysis technique and does not support arbitrary code exe-

cution; (2) symbolic elaboration also heavily relies on constraint

solving and SMT solvers. However, symbolic elaboration is differ-

ent from symbolic execution in that (1) symbolic elaboration lever-

ages constraint solving to reason about path conditions, matching

bitwidths, and bounded array indexing, whereas symbolic execu-

tion typically uses constraint solving to trigger rarely explored pro-

gram control paths that might include program bugs; (2) symbolic

elaboration maintains much fewer symbolic states (only generator

arguments in numeric expressions are symbolic) than symbolic

execution, which generally maintains symbolic states for memory

locations to generate accurate analysis results [16].

Salama et al. propose to use constraint solving to detect consis-

tency issues in Verilog generator interconnects [27]. They define

Featherlight Verilog, a hardware modeling language inspired by Ver-

ilog syntax, as the target of their consistency analysis. Both Feath-

erlight Verilog and symbolic elaboration encodes signal bitwidths

and array indices as integer constraints and use an SMT solver

to detect inconsistencies among bitwidths and indices. However,

symbolic elaboration targets more hardware generator properties

and more aspects of hardware modeling. Featherlight Verilog specif-

ically targets bitwidth and array index inconsistencies in structural

modeling, whereas symbolic elaboration targets bitwidths, array

indexing, port directions, and hierarchical references in both struc-

tural and behavioral modeling.

Rondon et al. propose liquid types, a type system that infers

dependent types to aide static detections of out-of-bound array

indexing errors [26]. Similar to symbolic elaboration, liquid types

leverage a constraint solver to verify the safety of array accesses.

Both SE and liquid type try to reduce programmer type annota-

tion efforts by inferring precise types whenever possible. However,

symbolic elaboration focuses on inferring types for dynamic HDLs

and can statically verify generator properties discussed in §2.2. In

contrast, liquid types focuses on protecting array indexing accesses

in traditional functional programming languages.

7 CONCLUSION
In this paper, we propose a novel static checking technique called

symbolic elaboration to shorten the design-debug cycles in dy-

namic HDLs. Symbolic elaboration targets the hardware generator

modeling syntax and translates generator properties into integer

constraints solvable by SMT solvers. It is able to verify generator

properties including matching bitwidths, correct local port direc-

tions, bounded array indexing, and valid hierarchical references.

Our evaluation of a prototype symbolic elaborator demonstrates a

53.0% improvement in its ability to statically identify design bugs

comparing to an off-the-shelf static type checker.

ACKNOWLEDGMENTS
This work was supported in part by the Center for Applications

Driving Architectures (ADA), one of six centers of JUMP, a Semi-

conductor Research Corporation program co-sponsored by DARPA,

a research gift from Xilinx, Inc., and donations from Intel.

Symbolic Elaboration: Checking Generator Properties in Dynamic Hardware Description Languages MEMOCODE ’23, September 21–22, 2023, Hamburg, Germany

REFERENCES
[1] 2009. IEEE Standard VHDL Language Reference Manual. Online Webpage.

https://ieeexplore.ieee.org/document/5981354.

[2] 2017. IEEE Standard for SystemVerilog–Unified Hardware Design, Specifica-

tion, and Verification Language. Online Webpage. https://ieeexplore.ieee.org/

document/8299595.

[3] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-

vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric

Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,

David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,

and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Report

UCB/EECS-2016-17. EECS Department, University of California, Berkeley.

[4] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco Ger-

ards. 2010. C𝜆ash: Structural Descriptions of Synchronous Hardware Using

Haskell. Euromicro Conf. on Digital System Design (DSD) (Sep 2010).

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-

mas Avizienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Constructing

Hardware in a Scala Embedded Language. DAC (Jun 2012).

[6] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and

Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. Comput.
Surveys (2018).

[7] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava: Hard-

ware Design in Haskell. ICFP (Sep 1998).

[8] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Pasareanu, Koushik

Sen, Nikolai Tillmann, and Willem Visser. 2011. Symbolic Execution for Software

Testing in Practice: Preliminary Assessment. International Conference on Software
Engineering (ICSE) (2011).

[9] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMa-

han, and Timothy Sherwood. 2017. A Pythonic Approach for Rapid Hardware

Prototyping and Instrumentation. FPL (Sep 2017).

[10] Jan Decaluwe. 2004. MyHDL: A Python-based HDL. Linux Journal (Nov 2004).
[11] Shai Fine and Avi Ziv. 2003. Coverage Directed Test Generation for Functional

Verification using Bayesian Networks. DAC (Jun 2003).

[12] Yuanjie Huang, Paolo Ienne, Olivier Temam, Yunji Chen, and Chengyong Wu.

2013. Elastic CGRAs. FPGA (Feb 2013).

[13] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Mag-

yar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan

Bachrach. 2017. Reusability is FIRRTL Ground: Hardware Construction Lan-

guages, Compiler Frameworks, and Transformations. ICCAD (Nov 2017).

[14] Shunning Jiang, Yanghui Ou, Peitian Pan, Kaishuo Cheng, Yixiao Zhang, and

Christopher Batten. 2021. PyH2: Using PyMTL3 to Create Productive and Open-

Source Hardware Testing Methodologies. IEEE Design Test 38 (Apr 2021), 53–61.
Issue 2.

[15] Shunning Jiang, Peitian Pan, Yanghui Ou, and Christopher Batten. 2020. PyMTL3:

A Python Framework for Open-Source Hardware Modeling, Generation, Simula-

tion, and Verification. IEEE Micro 40 (May 2020), 58–66. Issue 4.

[16] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
(1976).

[17] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.

2018. RFUZZ: Coverage-Directed Fuzz Testing of RTL on FPGAs. ICCAD (Nov

2018).

[18] Jukka Lehtosalo. 2017 (accessed Nov., 2021). Mypy - Optional Static Typing for

Python. Online Webpage. (2017 (accessed Nov., 2021)). http://mypy-lang.org.

[19] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A Unified

Framework for Vertically Integrated Computer Architecture Research. MICRO
(Dec 2014).

[20] 2013 (accessed Nov., 2021). Migen: A Python Toolbox For Building Complex

Digital Hardware. Online Webpage. (2013 (accessed Nov., 2021)). https://m-

labs.hk/gateware/migen/.

[21] Leonardo De Moura and Niklaj Bjørner. 2008. Z3: an Efficient SMT Solver. Int’l
Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
(Mar 2008).

[22] Amir Nahir, Avi Ziv, and Subrat Panda. 2012. Optimizing Test-Generation to

the Execution Platform. Asia and South Pacific Design Automation Conference
(ASP-DAC) (Jan 2012).

[23] Matthew Naylor and Simon Moore. 2015. A Generic Synthesisable Test Bench.

Int’l Conf. on Formal Methods and Models for Co-Design (MEMOCODE) (Sep 2015).
[24] Rishiyur Nikhil. 2004. Bluespec System Verilog: Efficient, Correct RTL from High-

Level Specifications. Int’l Conf. on Formal Methods and Models for Co-Design
(MEMOCODE) (Jun 2004).

[25] Python. 2021 (accessed Apr., 2022). Python Documentation - Abstract Syntax

Trees. Online Webpage. (2021 (accessed Apr., 2022)). https://docs.python.org/3.

7/library/ast.html.

[26] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. PLDI
(2008).

[27] Cherif Salama, Gregory Malecha, Walid Taha, Jim Grundy, and John O’Leary.

2011. Static Consistency Checking for Verilog Wire Interconnects. Higher-Order
and Symbolic Computation (2011).

[28] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You

Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic

Execution (But Might Have Been Afraid to Ask). IEEE Symposium on Security
and privacy (2010).

[29] Ofer Shacham, Megan Wachs, Andrew Danowitz, Sameh Galal, John Brunhaver,

Wajahat Qadeer, Sabarish Sankaranarayanan, Artem Vassilev, Stephen Richard-

son, and Mark Horowitz. 2012. Avoiding Game Over: Bringing Design to the

Next Level. DAC (Jun 2012).

[30] 2013 (accessed Nov., 2021). SpinalHDL. Online Webpage. (2013 (accessed Nov.,

2021)). https://spinalhdl.github.io/SpinalDoc-RTD/.

[31] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-

gna. 2016. Driller: Augmenting Fuzzing through Selective Symbolic Execution.

Network and Distributed System Security Symposium (2016).

[32] Lenny Truong and Pat Hanrahan. 2019. A Golden Age of Hardware Description

Languages: Applying Programming Language Techniques to Improve Design

Productivity. Summit on Advances in Programming Languages (SNAPL) (May

2019).

[33] Daniel C. Wang, Andrew W. appel, and Jeff L. Korn. 1997. The Zephyr Abstract

Syntax Description Language. Conf. on Domain-Specific Languages (DSL) (Oct
1997).

