Appears in the 3rd Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE'23), June 2023

Towards Gradually Typed Hardware Description Languages

Peitian Pan, Shunning Jiang, Yanghui Ou, Christopher Batten
Cornell University
Ithaca, NY, USA

ABSTRACT

Recent research in hardware development methodologies has ar-
gued for sophisticated hardware generators and dynamically typed
high-level components to improve the hardware design and veri-
fication productivity. In this talk, we describe our on-going work
towards gradually typed HDLs to realize such productivity benefits
through powerful static type checking and safe and performant
composition of mixed-typed components.

1 MOTIVATION

Specialized hardware tend to have high non-recurring engineer-
ing (NRE) costs that hinder the development of promising hard-
ware systems. Recent research addresses the high NRE costs in two
ways: (1) parametrized hardware generators to maximize design
reuse [1, 3, 10, 12, 16, 18, 20] and (2) dynamically typed high-level
components to enable polymorphic test harnesses, reference mod-
els, and cycle-approximate models [7, 11-15]. Unfortunately, sev-
eral challenges have prevented state-of-the-art HDLs from realizing
these productivity benefits. First, existing HDLs suffer from a
long design-debug cycle because they generally fail to stati-
cally type check hardware generators. For example, instead of
verifying matching bitwidths statically, most existing HDLs delay
bitwidth checks among connections until hardware instances have
been generated and bitwidth parameters have been resolved into
concrete values. Second, disciplined composition of mixed-
typed components is difficult. Statically typed components are
guaranteed to drive well-typed values on output ports, as long as all
input port values have the expected types. In contrast, dynamically
typed components can drive potentially ill-typed values on out-
put ports because the input values can be ill-typed, or there might
be a type error in the component. Third, modern dynamically
typed HDLs sacrifice simulation performance to ensure a dis-
ciplined composition of mixed-typed components. Modern
HDLs that support dynamically typed components generally insert
simulation-time checks to ensure safe interoperation between com-
ponents [12]. However, this approach incurs performance overhead
and fails to leverage the static type information.

2 A SPECTRUM OF EXISTING HDLS

Table 1 shows that existing HDLs either (1) do not support sophis-
ticated hardware generators and dynamically typed components or
(2) have long design-debug cycles due to late type checks.
Traditional HDLs - Verilog/SystemVerilog [9] and VHDL [8]
are traditional statically typed HDLs. Traditional HDLs enforce type
invariants by type checking the elaborated hierarchy of hardware
instances, which happens in the middle of a hardware design cycle.
High-Level Statically Typed HDLs — Bluespec SystemVer-
ilog [17] allows static type checking of a generator to discover
potential design issues early in the design cycle. However, Bluespec

is not able to detect bitwidth mismatches in vector slicing opera-
tions and defers this check to elaboration. CAash [2] is a Haskell
dialect for hardware development. It benefits from Haskell’s static
type system and can type check the generators before elaboration.

Embedded Statically Typed HDLs — Chisel [3] and Spinal-
HDL [19] are embedded in Scala, a statically typed programming
language. Lava [4] is embedded in Haskell and supports sophisti-
cated generators. Embedded statically typed HDLs mainly enforce
type invariants by checking the elaborated hardware instances.

Embedded Dynamically Typed HDLs - PyRTL [5], MyHDL [6],
PyMTL [14], and PyMTL3 [12] are embedded in Python, a dynami-
cally typed programming language. Almost all existing embedded
dynamically typed HDLs lack static type checking capabilities, and
most of them do not perform elaboration- nor simulation-time type
checks. Instead, type errors typically occur when an ill-typed object
is used, which causes difficulties for debugging.

Gradually Typed HDLs — GT-HDLs achieve the best of both
statically and dynamically typed HDLs. Instead of only allowing
either statically or dynamically typed components, GT-HDLs sup-
port the safe interoperation of mixed-typed components. Similar
to high-level statically typed HDLs, GT-HDLs improve design pro-
ductivity by performing static type checks on hardware generators
to shorten the design-debug cycle. Similar to embedded dynam-
ically typed HDLs, GT-HDLs are flexible and allow dynamically
typed high-level components to improve verification productivity.
GT-HDLs can also improve verification productivity by improving
simulation performance using the available static type information.

3 RESEARCH DIRECTIONS FOR GT-HDLS

We discuss three techniques that address the challenges in §1. We
envision that a GT-HDL implementation will incorporate these
techniques to boost hardware design and verification productivity.

Static Type Checking for Generators — GT-HDLs need power-
ful static type checking capabilities to ensure a short design-debug
cycle. Existing HDLs either do not perform static checks at all (e.g.,
embedded dynamically typed HDLs) or require intimate knowl-
edge of advanced type systems (e.g., high-level/embedded statically
typed HDLs) that are foreign to most hardware designers.

We propose to build static type checkers that specifically target
the HDL syntax of synthesizable hardware generators and trans-
late critical hardware generator properties into integer constraints
solvable by a satisfiability modulo theory (SMT) solver. We assume
that hardware generators take non-negative integer parameters,
which correspond to integer variables in the generated constraints.

For example, a repeater generator generates circuit that dupli-
cates the n-bit input X times to form the output, where n and X
are parameters. The proposed static type checker first propagates
the symbolic bitwidths to all signals in the generator. It then builds
the following bitwidth constraint for the syntax construct that

LATTE ’23, March 26, 2023, Vancouver, BC, Canada

Peitian Pan, Shunning Jiang, Yanghui Ou, Christopher Batten

i ?

Sophisticated D).In. Typed How are Type Invariants Enforced? When Type
HDLs Generators High-Level Type check Type check Type check in Checks Occur

Components : . . in Design Cycle
generators instances simulations

Traditional HDLs .
Verilog/SystemVerilog, VHDL o ® o Middle
High-Level Stat. Typed HDLs .
Bluespec SystemVerilog, CAash v ® - o Early/Middle
Embedded Stat. Typed HDLs .
Chisel, SpinalHDL, Lava v - ® O Early/Middle
Embedded Dyn. Typed HDLs .
PyRTL, MyHDL, PyMTL, PyMTL3 v v o ® o Middle/Late
Embedded Grad. Typed HDLs v v °® o o Early/Middle/Late

GT-HDL*

Sophisticated generators: generators that programmatically generate hardware instances. Earlier type checks in the design cycle leads to lower bug-fixing
costs. @/@/(: almost all/some/no invariants enforced; Stats./Dyn./Grad. typed: statically/dynamically/gradually typed; *: our proposal.

Table 1: A Spectrum of Existing Hardware Description Languages

concatenates the X copies of n-bit input to the output:

n+n+...+n=nxX (1)
—_—————

X times

If the SMT solver finds —(1) unsatisfiable, the checker has estab-
lished the proof that both sides of the concatenation has matching
bitwidth; if the solver finds a satisfiable assignment to variables
n and X, the checker has found a counterexample that triggers a
potential design issue in the generator. The above trivial example
can be generalized to verify more properties including bounded
array indices and matching bitwidths on slicing operations.

Safe Mixed-Typed Component Composition - In response
to the second challenge in §1, we propose elaboration-time and
simulation-time type checks. Elaboration-time type checks ver-
ify the hardware generator parameters against its type signature
to prevent admitting ill-typed parameters. Simulation-time type
checks are inserted to every signal assignment that crosses the
mixed-typed component boundary and verify if LHS and RHS of
the assignment have matching bitwidth. Figure 1 shows a compo-
sition of a statically typed divider and a dynamically typed test
bench. The light blue signals are the targets of simulation-time
type checks. Only three simulation-time checks are necessary for
correctness because the statically typed domain is guaranteed to
generate well-typed operands as long as its input is well-typed.

Type-Based Simulation Optimizations — GT-HDLs enable
mixed-typed component compositions and can potentially bene-
fit from the static type information of hardware components. To
demonstrate how a GT-HDL implementation can leverage static
type information for simulation performance, we describe signal co-
alescing, a technique that reduces the number of signal assignments
in simulation. To simulate the behavior of a circuit, the simulator
of an HDL generally presents a group of connected signals using
the net data structure [12], where one writer signal continuously
drives values to zero or more readers. In an unoptimized implemen-
tation, the continuous update is generally implemented as per-cycle
signal assignments from the writer to all readers, which include a
simulation-time type check to prevent a dynamically typed writer
from injecting ill-typed values. Instead of performing actual signal
assignments, signal coalescing sets up a reference from the group of

. [Div
T - 1 en
i | IDivCtrl I
rdy;] rc

. IDivDpath nen®2] resp_msg
o -
S !

: [2
%) 5 g -
- 0—s = o 3
2 2 A =
= ..
1. 2 =
'ﬁ 2] | 5 g
= z =
o — VAN /M
/M 2
-

3 [0:n]] > = ﬁ
= = a

/N
wweeees Boundary [Dyn. Typed [Static. Typed 1) ~ (3 Dyn. Checks

Figure 1: A Mixed-Typed Composition in GT-HDL

dynamically typed readers to the dynamically typed writer to elimi-
nate unnecessary assignments. This technique does not undermine
the safety of mixed-typed component composition because it still
preserves the simulation-time type checks when any dynamically
typed signal updates a statically typed signals.

4 CONCLUSION

Hardware designers have benefited from the type safety of stati-
cally typed HDLs and the flexibility of dynamically typed HDLs.
However, existing HDLs remain either statically or dynamically
typed, which limits the peak designer productivity. In this paper,
we propose GT-HDLs to achieve the best of both worlds. We be-
lieve GT-HDLs are a compelling solution to realize the productivity
benefits of advances in hardware design methodology research. We
hope this paper will spark interests from the methodology research
community to tackle the challenges in providing strong static type
checking capabilities, disciplined mixed-typed composition, and
type-based optimizations to fully realize the potential of GT-HDLs.

ACKNOWLEDGMENT

This work was supported in part by the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a Semi-
conductor Research Corporation program co-sponsored by DARPA,
a research gift from Xilinx, Inc., and donations from Intel.

Towards Gradually Typed Hardware Description Languages

REFERENCES

(1]

Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric
Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,
and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco
Gerards. 2010. CAash: Structural Descriptions of Synchronous Hardware Using
Haskell. Euromicro Conf. on Digital System Design (DSD) (Sep 2010).

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-
mas Avizienis, John Wawrzynek, and Krste Asanovi¢. 2012. Chisel: Constructing
Hardware in a Scala Embedded Language. DAC (Jun 2012).

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava: Hard-
ware Design in Haskell. ICFP (Sep 1998).

John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMa-
han, and Timothy Sherwood. 2017. A Pythonic Approach for Rapid Hardware
Prototyping and Instrumentation. FPL (Sep 2017).

Jan Decaluwe. 2004. MyHDL: A Python-based HDL. Linux Journal (Nov 2004).
Shai Fine and Avi Ziv. 2003. Coverage Directed Test Generation for Functional
Verification using Bayesian Networks. DAC (Jun 2003).

IEEE. 2009. IEEE Standard VHDL Language Reference Manual. Online Webpage.
https://ieeexplore.ieee.org/document/5981354.

IEEE. 2017. IEEE Standard for SystemVerilog-Unified Hardware Design, Specifi-
cation, and Verification Language. Online Webpage. https://ieeexplore.icee.org/
document/8299595.

Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Mag-
yar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL Ground: Hardware Construction Lan-
guages, Compiler Frameworks, and Transformations. ICCAD (Nov 2017).

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

LATTE ’23, March 26, 2023, Vancouver, BC, Canada

Shunning Jiang, Yanghui Ou, Peitian Pan, Kaishuo Cheng, Yixiao Zhang, and
Christopher Batten. 2021. PyH2: Using PyMTL3 to Create Productive and Open-
Source Hardware Testing Methodologies. IEEE Design Test 38 (Apr 2021), 53-61.
Issue 2.

Shunning Jiang, Peitian Pan, Yanghui Ou, and Christopher Batten. 2020. PyMTL3:
A Python Framework for Open-Source Hardware Modeling, Generation, Simula-
tion, and Verification. IEEE Micro 40 (May 2020), 58-66. Issue 4.

Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.
2018. RFUZZ: Coverage-Directed Fuzz Testing of RTL on FPGAs. ICCAD (Nov
2018).

Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A Unified
Framework for Vertically Integrated Computer Architecture Research. MICRO
(Dec 2014).

Amir Nahir, Avi Ziv, and Subrat Panda. 2012. Optimizing Test-Generation to
the Execution Platform. Asia and South Pacific Design Automation Conference
(ASP-DAC) (Jan 2012).

Matthew Naylor and Simon Moore. 2015. A Generic Synthesisable Test Bench.
Int’l Conf. on Formal Methods and Models for Co-Design (MEMOCODE) (Sep 2015).

Rishiyur Nikhil. 2004. Bluespec System Verilog: Efficient, Correct RTL from
High-Level Specifications. Int’l Conf. on Formal Methods and Models for Co-Design
(MEMOCODE) (Jun 2004).

Ofer Shacham, Megan Wachs, Andrew Danowitz, Sameh Galal, John Brunhaver,
Wajahat Qadeer, Sabarish Sankaranarayanan, Artem Vassilev, Stephen Richard-
son, and Mark Horowitz. 2012. Avoiding Game Over: Bringing Design to the
Next Level. DAC (Jun 2012).

2013 (accessed Nov., 2021). SpinalHDL. Online Webpage. (2013 (accessed Nov.,
2021)). https://spinalhdl.github.io/SpinalDoc-RTD/.

Lenny Truong and Pat Hanrahan. 2019. A Golden Age of Hardware Description
Languages: Applying Programming Language Techniques to Improve Design
Productivity. Summit on Advances in Programming Languages (SNAPL) (May
2019).

