
ADDRESSING THE VERIFICATION CHALLENGE
OF AGILE HARDWARE METHODOLOGIES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Peitian Pan
May 2024

© 2024 Peitian Pan

ALL RIGHTS RESERVED

ADDRESSING THE VERIFICATION CHALLENGE

OF AGILE HARDWARE METHODOLOGIES

Peitian Pan, Ph.D.

Cornell University 2024

The slowdown of Moore’s Law and the breakdown of Dennard scaling have driven computer

architects towards more specialized hardware designs to meet the growing performance and energy

efficiency demands. Such specialized hardware designs tend to have high non-recurring engineer-

ing (NRE) costs that hinder the research and development of promising hardware systems. The

recent rise of agile hardware design methodologies addresses the high NRE costs by promoting

the reuse of hardware designs and applying state-of-the-art software design and testing practices

to hardware design. Unfortunately, agile hardware methodologies also face unique verification

challenges in the hardware development process.

In this thesis, I identify and address key verification challenges in agile hardware methodolo-

gies. First, I address the verification challenges in dynamic HDLs. Modern HDLs embedded in

dynamically typed programming languages facilitate the composition of statically typed hardware

instances and dynamically typed test harnesses. However, existing dynamic HDLs suffer from the

lack of early-in-design-cycle and complete safety guarantees for mixed-typed compositions and

low simulation performance. I propose GT-HDL, an embedded HDL that leverage a combination

of optional type checkers, guarded generator parameters, and type-based simulation optimizations

to improve simulation performance of dynamic HDLs without compromising safety. Second, I ad-

dress the verification challenges in generator creation. Recent HDLs heavily rely on parametrized

and sophisticated hardware generators to achieve and maximize design reuse. However, it is chal-

lenging to verify the correctness of the hardware generators across the entire parameter space.

To systematically and statically verify generator properties over a large parameter space, I pro-

pose symbolic elaboration, a static analysis technique based on satisfiability modulo theory (SMT)

solving. Symbolic elaboration targets a synthesizable subset of HDL syntax and translates gener-

ator properties into integer constraints that can be solved by SMT solvers. Third, I overcome the

verification challenges in instance composition. Latency-insensitive (LI) interfaces are critical to

instance composition in agile hardware because they enable modular and composable hardware de-

signs. However, it is challenging to verify the correctness of the LI interface handshake logic using

dynamic verification techniques. I propose a formal verification solution to automatically verify

hardware designs with LI interfaces that also generates counter example waveforms to debug LI

handshake issues. Finally, I address the verification challenges in co-simulation. Modern HDLs

used in agile hardware are typically embedded in a general-purpose host programming language.

To maximize verification productivity, designers ideally should iterate on the target design using

native simulations before generating RTL in a prototyping language such as Verilog. However, it

is challenging to co-simulate the generated Verilog RTL and the test bench in the host language

due to semantic gap between the host and the prototyping languages. To overcome this limita-

tion, I propose seamless co-simulation based on a translation-import mechanism. I implement the

translation-import mechanism in the PyMTL3 framework and demonstrate how it can improve

verification productivity by reusing one test bench for both native simulation and co-simulation.

In addition to the proposed solutions to verification challenges, I also present a coarse-grain re-

configurable array (CGRA) chip tape-out case study in GlobalFoundries 14nm technology. This

case study demonstrates how the proposed solutions in this thesis can be integrated into an ASIC

prototyping workflow and contribute to productive design and testing of the target hardware.

BIOGRAPHICAL SKETCH

Peitian Pan was born on March 13th, 1996 to Hu Pan and Hui Wang in Taian, Shandong, China.

He is the son of a piano teacher mother and a civil servant father. In his early childhood, he enjoyed

reading the illustrated encyclopedia and listening to his mother playing piano. Peitian’s family got

a computer when he was ten, and he started learning programming when he was in Taian No.6 High

School. His computer class teacher Mr. Zhengqing Bu taught him the basics of C programming,

simple algorithms and data structures and prepared him for participating the National Olympiad

in Informatics in Province. It was also at this time that he picked up the much-needed vim editing

skills. He continued his exploration of algorithms and data structures in Taian No.1 Senior High

School and decided to pursue the study of computer science after high school.

Peitian was accepted to Shanghai Jiao Tong University as an undergraduate student majoring in

computer science and engineering. He spent the next four years happily learning about operating

systems, computer networks, programming languages, and more. As an undergraduate student,

his favorite course was the introductory computer architecture course. For the first time he peeked

through all layers of software/hardware abstractions and witnessed the clever designs of out-of-

order CPUs and pipelined caches. With the curiosity to learn about the architectures of all kinds of

hardware, Peitian applied to PhD programs in the United States at the end of his undergrad.

In 2018, Peitian was admitted to Cornell University as a PhD student in Electrical and Computer

Engineering. He met Professor Christopher Batten at Cornell, who he was fortunate to work with

in the next six years. At Batten Research Group, Peitian had the opportunities to work on projects

on computer architecture, agile hardware methodologies, parallel programming, and ASIC proto-

typing, which helped him gain invaluable knowledge, experiences, and skills in various fields of

computer engineering. During his PhD, Peitian interned at the Heterogeneous Platforms Lab of

Intel Lab (mentored by Dr. Tanay Karnik) and at the Google TPU compiler team (mentored by

Dr. Berkin Ilbeyi and Dr. Yunming Zhang). He is grateful for these industrial experiences which

broadened his horizon to computer engineering challenges outside the academia.

Peitian is grateful for his PhD experience, which he found very worthwhile and rewarding.

Despite the difficult work-from-home times during the pandemic, he was fortunate to have worked

with brilliant colleagues, advisors, and mentors. It was truly a wonderful experience of invaluable

personal growth and bonding with so many amazing people.

iii

This document is dedicated to my parents and Jian, for their love and support.

iv

ACKNOWLEDGEMENTS

I had both delightful and challenging times in my graduate career. I would like to thank my

friends, colleagues, and mentors for making my PhD experience much more worthwhile and en-

joyable.

First of all, I would like to thank my advisor Professor Christopher Batten. Chris is the best

advisor I could have imagined having, and he provided me help and guidance on things more than

just doing solid research. When I started my graduate career, I was not very good at communicating

my ideas. Chris brought this up to me and offered advices that help me become a clear and

efficient communicator. When I became a mid-career student and decided to pursue a position in

the industry, Chris reminded me to develop my personal networks. He encouraged me to talk to

more people at conferences and make more connections. I learned from Chris about the importance

of constantly breaking out of my comfort zone. I think without Chris, I would not have gained the

invaluable personal growth in entire PhD career.

I am also deeply thankful to my friends and colleagues at Batten Research Group for their help

and support. Most of my PhD friends were more senior and they have profound impacts on me.

I would like to thank Christopher Torng, who was a great collaborator and an inspiring model for

me to take ownership and develop visions for my research projects. I entered the same time Berkin

Ilbeyi was about to graduate and he was the JIT wizard who always managed to speed up Python.

I am very thankful to Berkin for hosting me during my internship at Google’s TPU compiler team

and introducing me to the industrial ML compiler. Similar thanks go out to Ji Kim, who helped me

onboard the TPU sparse core compiler team and was always fun to talk to. I have been fortunate

to have the support from my PhD friends at BRG during the pandemic. Moyang Wang, you were

the senior PhD student model and I will always remember your humorous comments on quantum

computing. Shunning Jiang, you were a great mentor and helped me so much when I first joined

the group; I learned about pursuing impactful research from you and will never forget the time we

work together on PyMTL3. Khalid Al-Hawaj, you are a great friend and I will never forget how you

never hesitate to help anyone in need. Tuan Ta, you were a generous researcher and were always

willing to share all the implementation details of gem5; I enjoyed working with you on the vector

graphic analytics project and having cheerful daily conversations. Lin Cheng, I will never forget

rushing B with you after a long week and thank you for those get-togethers during the pandemic.

Yanghui Ou, you are always the all-around Boss Ou to me and thank you for carrying me through

v

the digital design course when I was an RTL newbie. Nick Cebry, it is amazing how quickly you

pick things up and started leading your research project shortly into the group. Derin Ozturk, we

did not overlap for long but it was always a pleasure to learn about robotics from you. I have also

been fortunate to work with brilliant postdoc researchers at BRG. Dr. Cheng Tan, thank you for

your invaluable input when I was struggling with CGRAs and their compilers. Dr. Shady Agwa,

you were always so willing to help and thank you for teaching me about the PDKs and helping

me on VLSI results of the CGRA. Dr. Austin Rovinski, it was always a pleasure to hear about

VLSI and open-source EDA from you and I wish you a successful career as a professor. I want to

thank the younger researchers at BRG for being great fun to work with: Kaishuo Cheng, Cameron

Haire, Krithik Ranjan, Eric Hall, Courtney Golden, Yixiao Zhang, Raymond Yang, Dhruv Sharma,

Megha Shyam, and Anya Prabowo.

The Computer System Laboratory (CSL) has been a supportive and caring community and

I am thankful for my CSL friends, colleagues, and mentors. I want to thank Professor Zhiru

Zhang and Professor Adrian Sampson for agreeing to be on my committee and providing invaluable

insights and guidance on my research. I also want to thank Zhiru and Adrian for teaching me

high-level synthesis and programming languages and inspiring me to pursue the hardware design

methodology research. I would also like to thank my fellow PhD friends at CSL. Philip Bedoukian,

I totally enjoyed the cheerful conversations and I look forward to more Counter-Strike sessions

with you. Neil Adit and Rachit Nigam, I am glad you are around to chat about compilers and

programming languages. Helena Caminal, Kailin Yang, Cecilio C. Tamarit, and Socrates Wong,

I took inspirations from your computer architecture research to develop better methodologies to

realize your ideas. Ritchie Zhao and Jordan Dotzel, thank you for your hard work leading the

CSL student steering committee to make CSL a better community for everyone. It was always

great fun working with the younger generation of CSL researchers: Lisa Li, Yuzong Chen, and

Preslav Ivanov. I am also indebted to many friends for their help in both life and work: Yu Gan,

Shuang Chen, Yanqi Zhang, Mulong Luo, Yichi Zhang, Chenhui Deng, Hanchen Jin, Mingyu

Liang, Zhuangzhuang Zhou, Jie Liu, Zichao Yue, and Niansong Zhang.

From the broader architecture community, I am thankful to Professor Michael B. Taylor and

his research group at University of Washington, who were amazing collaborators during the SDH

project and the subsequent Bigblade tapeout. There are many people I would like to thank here:

Dustin Richmond, Dai Cheol Jung, Max Ruttenberg, and Daniel Petrisko. I owe a special thank-

vi

you to Daniel Petrisko, who generously agreed to help the Cornell team and integrated the CGRA

module into the Bigblade tapeout. From the formal verification community, I would like to thank

Professor Cunxi Yu at University of Maryland, College Park and Marcelo Orenes-Vera at Princeton

University. Their insights into formal verification were invaluable while I was trying to step into the

formal verification realm. I am also thankful to the mentors of my internships, who answered my

naive questions and opened my horizon to challenges in the industry. Berkin Ilbeyi and Phitchaya

Mangpo Phothilimthana, it was great fun learning about ML compilers and how ML itself can

make its compilers better. Yunming Zhang, Josh Varty, and Ji Kim, thank you for teaching me the

sparse side of things of ML and I look forward to working with you in the future. Tanay Karnik,

I was amazed by state-of-the-art heterogeneous architectures and am thankful for your mentoring

throughout my time at Intel Lab.

Finally, I would like to thank my parents for raising me up and supporting me through my PhD

career. It was really rough during the pandemic time and I look forward to coming back home to

see them. I also want to thank Jian Zhou for his support – this thesis would not have been possible

without him.

This thesis was supported in part by DARPA POSH Award #FA8650-18-2-7852, DARPA SDH

Award #FA8650-18-2-7863, the Center for Applications Driving Architectures (ADA), one of six

centers of JUMP, a Semiconductor Research Corporation program co-sponsored by DARPA, a

research gift from Xilinx, Inc., and equipment, tool, and/or physical IP donations from Intel, Syn-

opsys, Cadence, and ARM. The U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation thereon. Any opinions, findings,

and conclusions or recommendations expressed in this publication are those of the author(s) and

do not necessarily reflect the views of any funding agency.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Figures . xi
List of Tables . xiii
List of Abbreviations . xiv

1 Introduction 1
1.1 Agile Hardware Methodologies . 2
1.2 Implementing Agile Hardware Methodologies . 4
1.3 Verification Challenges in Agile Hardware Methodologies 9
1.4 Thesis Overview . 11
1.5 Collaboration, Previous Publications, and Funding 15

2 GT-HDL: Addressing Verification Challenges in Dynamic HDLs 19
2.1 Introduction . 19
2.2 Background . 21

2.2.1 Existing HDLs . 22
2.2.2 HDL Features and Challenges . 26

2.3 Checking Generators using Optional Type Checkers 27
2.4 Safe and Performant Mixed-Typed Compositions 31

2.4.1 Safe Mixed-Typed Composition . 31
2.4.2 Performant Mixed-Typed Composition 34

2.5 Evaluation . 37
2.5.1 Evaluation Designs . 37
2.5.2 Mutation-Based Abstract Syntax Tree Fuzzer 38
2.5.3 Bug Detection . 40
2.5.4 Simulation Performance . 41

2.6 Related Work . 41
2.7 Conclusion . 43

3 Symbolic Elaboration:
Addressing Verification Challenges in Generator Development 44
3.1 Introduction . 44
3.2 Background . 47

3.2.1 Existing HDLs . 48
3.2.2 Target Hardware Generator Properties . 49

3.3 Limitations of Optional Type Checkers . 50
3.4 Checking Generators using Symbolic Elaboration 51

3.4.1 Building Abstract Generator Models . 52
3.4.2 Checking Properties of Abstract Generator Models 54
3.4.3 Symbolic Elaboration Implementation . 56

viii

3.5 Evaluation . 58
3.5.1 Bug Detection . 59
3.5.2 Scalability . 61

3.6 Related Work . 62
3.7 Conclusion . 63

4 Latency Equivalence Checking:
Addressing Verification Challenges in Instance Composition 64
4.1 Introduction . 64
4.2 The Stall Invariant of Latency-Insensitive RTL Modules 67
4.3 Bounded Latency Equivalence Checking . 69

4.3.1 Verification Modules . 70
4.3.2 Construction of Verification Harness . 73

4.4 Implementation . 73
4.4.1 Property Specification in SystemVerilog Assertion 74
4.4.2 Proof Acceleration . 76

4.5 Case Studies . 76
4.5.1 The Latency-Insensitive Processing Element 77
4.5.2 The Greatest Common Divisor Unit . 78
4.5.3 The Pipelined RISC-V Processor . 81
4.5.4 Discussions . 83

4.6 Related Work . 84
4.7 Conclusions . 86

5 Translation-Import: Addressing Verification Challenges in Co-Simulation 87
5.1 Introduction . 88

5.1.1 A Taxonomy of Simulation-Based Verification in HDLs 88
5.1.2 PyMTL3 Background . 90

5.2 Translation-Import Mechanism in PyMTL3 . 91
5.2.1 The Register-Transfer Level Intermediate Representation 92
5.2.2 The Translation Framework . 96
5.2.3 The Import Pass in PyMTL3 . 97

5.3 Case Study: Co-Simulation of an Ultra-Elastic CGRA 99
5.3.1 UE-CGRA Overview . 99
5.3.2 Experiment Methodologies . 100
5.3.3 Results and Analysis . 101

5.4 Conclusion . 103

6 The CGRA Tape-out Case Study 104
6.1 CGRA and Chip Details . 104
6.2 Addressing the CGRA Verification Challenges . 107

6.2.1 GT-HDL for Safe and Performant CGRA Test Harness Composition 107
6.2.2 Symbolic Elaboration for CGRA Generator Development 108
6.2.3 Latency Equivalence Checking for PE Instance Composition 109
6.2.4 Translation-Import for Functional Verification 111

ix

6.3 Conclusion . 112

7 Conclusion 113
7.1 Thesis Summary and Contribution . 113
7.2 Future Work . 115

7.2.1 Formalizing Safety Guarantees for Mixed-Typed Compositions 115
7.2.2 Type Checking for Embedded Hardware Description Languages 116
7.2.3 Democratizing Formal Verification for Agile Hardware Methodologies . . 117
7.2.4 Extensive and Productive Co-Simulation 118

Bibliography 119

x

LIST OF FIGURES

1.1 Traditional vs. Agile Hardware Design Workflow 2
1.2 Thesis Overview . 12

2.1 A Typical Hardware Design Cycle with a Dynamic HDL 20
2.2 Full Adder Examples in Different HDLs . 23
2.3 Adder Examples in Different HDLs . 24
2.4 Registered Adder Examples in Different HDLs 25
2.5 Type-Annotated Core PyMTL3 DSL . 28
2.6 Type Check PyMTL3 Generators using Mypy . 29
2.7 Composition Issue during Elaboration and Simulation 32
2.8 Composition of Dynamically Typed Test Bench and Statically Typed Divider . . . 35
2.9 Signal Coalescing on a Net of Five Readers . 36
2.10 Bug Detection Results . 40

3.1 Adder and Polymorphic Test Harness in PyMTL3 45
3.2 Symbolic Elaboration of an Adder . 53
3.3 Core Generator Modeling Syntax Targeted by the Symbolic Elaborator 54
3.4 Core Symbolic Elaboration Algorithm . 57
3.5 Bug Detection Results . 59

4.1 Examples of Bugs in a Two-Stage Pipelined Latency-Insensitive RTL Module . . 65
4.2 Design Behaviors under Different Stall Conditions 66
4.3 Verification Harness for a DUV with One Ingress and One Egress LI Interface in

Bounded Latency Equivalence Checking . 70
4.4 Workflow with BLEC Implementation . 72
4.5 Construction of the BLEC Verification Harness 72
4.6 Bugs in Unconstrained Latency-Insensitive Interfaces 74
4.7 Register Files with Integrated Proof Acceleration RAM 76
4.8 Latency-Insensitive PE . 77
4.9 GCD Unit . 79
4.10 Pipelined Processor . 81
4.11 Pipelined Processor Bug . 82

5.1 A Taxonomy of Simulation-Based Verification 89
5.2 PyMTL3 Workflow . 90
5.3 PyMTL3 Translation and Import Passes . 92
5.4 Core RTLIR Types and an Example Model . 93
5.5 Core Structural RTLIR and an Example Model 94
5.6 Core Behavioral RTLIR and an Example Model 94
5.7 Translation APIs and an Example Translator . 96
5.8 UE-CGRA Overview . 99
5.9 UE-CGRA Microbenchmarks . 101

6.1 CGRA PE Architecture . 105

xi

6.2 CGRA Architecture . 106
6.3 CGRA Preliminary Physical Design . 107
6.4 Example CGRA Generator Bug . 108
6.5 Example of PE Composition Verification Challenge 110

xii

LIST OF TABLES

1.1 Existing Works that Implement Agile Hardware Methodologies 5

2.1 Existing HDLs and Their Characteristics . 22
2.2 Evaluated Hardware Generators . 38
2.3 Simulation Performance . 41

3.1 Existing HDLs and Their Characteristics . 47
3.2 Number of Injected Bugs Detected at Different Stages 60
3.3 Symbolic Elaboration Run Time . 61

4.1 RTL Modules and BLEC Parameters Used in Case Studies 77

5.1 The Python and C Interface of a Imported Model 98
5.2 Simulation Results of UE-CGRA Microbenchmarks 102

6.1 CGRA Functional Verification using Seamless Co-Simulation 111

xiii

LIST OF ABBREVIATIONS

NRE non-recurring engineering
CAD computer aided design
VLSI very-large-scale integration
ASIC application-specific integrated circuit
FPGA field-programmable gate array
HDL hardware description language
RTL register-transfer level
LI latency-insensitive
IP intellectual property
UVM universal verification methodology
DSL domain-specific language
AST abstract syntax tree
RTLIR register-transfer level intermediate representation
IR intermediate representation
DUT design under test
DUV design under verification
TB test bench
HLS high-level synthesis
AoT ahead-of-time
SMT satisfiability modulo theories
CFFI C Foreign Function Interface
DVFS dynamic voltage and frequency scaling
DMA direct memory access
SoC system-on-chip
NoC network-on-chip
CGRA coarse-grain reconfigurable array
PE processing element
ISA instruction set architecture
SRAM static random access memory
DRAM dynamic random access memory
I$ instruction cache
D$ data cache

xiv

CHAPTER 1
INTRODUCTION

With Moore’s Law and Dennard scaling coming to an end [Dub05], computer architects have

turned to specialized hardware to satisfy the energy efficiency and performance needs of emerging

applications [WLP+14,CKES17,AHY+15,CLX+16,HLM+16]. In response to the high NRE costs

of specialized hardware [KZVT17], researchers propose agile hardware methodologies, which

promises productive hardware design and testing. Contrary to the existing waterfall model of

hardware development which consists of sequential steps, agile hardware design prioritizes cre-

ating a small yet working hardware prototype and iterates on this prototype to implement more

features [LWC+16]. Unfortunately, agile hardware methodologies often lead to unique challenges

in the verification step of hardware development. First, the increasing adoption of dynamically

typed test harnesses creates challenges for safe and performant mixed-typed compositions in mod-

ern HDLs. Second, the promotion of parametrized and sophisticated hardware generators makes it

challenging to statically verify generator properties ahead of time. Third, the ubiquitous latency-

insensitive (LI) interfaces in agile hardware design facilitates modularity and composition of com-

ponents but complicates the verification of its handshake logic. Finally, the use of a high-level

domain-specific language (DSL) in recent HDLs poses a challenge to productively verify the func-

tionality of the translated Verilog RTL against the DSL hardware model.

In this thesis, I take a vertically-integrated approach to address the key verification challenges

in agile hardware methodologies. I identify the verification challenges in a representative agile

hardware design workflow: dynamic HDLs, generator development, instance composition, and

co-simulation. I argue that innovations across all steps in the workflow are necessary to fulfill

the promise of productive hardware design and verification: to enable safe and performant mixed-

typed composition, I propose GT-HDL to safeguard compositions and selectively remove runtime

type checks for better simulation performance. To enable verification of generator properties, I

leverage SMT solving to statically analyze parametrized and sophisticated generators. To enable

verification of LI interfaces in RTL instance composition, I leverage formal verification to deter-

mine the correctness of LI handshake logic. To enable verification of the generated RTL, I propose

a translation-import mechanism to achieve seamless co-simulation of the translated RTL in the

high-level DSL test bench.

1

F1+F2+F3-
S

F1+F2+F3-
V

F1+F2+F3-
T

F1+F2+F3-
D

F1+F2+F3

(a) Traditional Hardware Design Workflow

Spec.

Verif.

Physical
Design

Design &
Impl.

F1

F1-S

F1-D

F1-V

F1-T

F2 F3

(b) Agile Hardware Design Workflow

Project Time Project Time

Input:
Features

F2-S

F2-D

F2-V

F2-T

F3-S

F3-D

F3-V

F3-T

Output:
Tape-Out

Spec.

Verif.

Input:
Features

Output:
Tape-Out

Design &
Impl.

Physical
Design

Figure 1.1: Traditional vs. Agile Hardware Design Workflow – Spec.: specification. Design & Impl.: design
and implementation. Verif.: verification. In both figures, F1 through F3 represent features to be included in the
hardware. Specification, design and implementation, verification, and physical design represent the typical steps in
hardware design. The star symbols indicate the tape-out of the target hardware. î: partial-featured yet manufacturable
prototype; ï: full-featured and manufacturable prototype. (a) a waterfall workflow adopted by traditional hardware
methodologies; this workflow revolves around a fully featured prototype (F1+F2+F3) and components and tools used
in the workflow are specific to this instance; (b) an iterative workflow adopted by agile hardware methodologies; this
workflow emphasizes on reusable components and tools to enable smoother, iterative inclusion of features (F1, F2,
F3). Figure inspired by [LWC+16].

1.1 Agile Hardware Methodologies

Hardware prototyping is a sophisticated activity that generally spans across several sequentially

dependent steps: specification, where the behaviors of the target hardware system are determined

and specified unambiguously; design and implementation, where the target hardware is divided

into subcomponents and implemented at the register-transfer level (RTL); verification, where the

implemented RTL is tested against the specification to identify violations; and physical design,

where the verified RTL is synthesized, placed, and routed to produce ASIC layout or an FPGA

bitstream.

Figure 1.1 contrasts the workflow of a traditional hardware design versus that of an agile hard-

ware design. Traditional hardware methodologies adopt a waterfall workflow (Figure 1.1(a)) with

a strict sequence of prototyping steps. For example, the specification of features F1 through F3

has to be finished before the design and implementation step. The hardware including all desired

2

features has to be completed before the verification steps can start. And the physical design has to

wait until the verification of all features are done. The waterfall workflow enables collaboration

between hardware design engineers of different expertise. However, it has high cost of communi-

cating the design intent from one step to another and the risk of subtle misunderstandings between

different teams [LWC+16]. Verification with traditional hardware methodologies can also be chal-

lenging due to the large number of features in the target hardware. And since each step in the

waterfall workflow is centered around a monolithic hardware design of a large number of features,

traditional hardware methodologies encourage use of instances and specialized tools and scripts

over generic and reusable components.

Unlike the traditional hardware methodologies, agile hardware methodologies typically adopt

an iterative workflow. The agile hardware design workflow generally revolves around one manu-

facturable hardware prototype which can be a minimal, feature-incomplete prototype at an early

stage of the development. Hardware designers iteratively add new features to the prototype and

push the prototype through all steps after each feature is added. Figure 1.1(b) shows that with agile

hardware methodologies, the desired features F1 through F3 are integrated into the target hard-

ware via an iterative workflow. Hardware designers work on a small subset of features (potentially

one) at a time and each feature is executed deep into the physical design step. Compared to the

traditional hardware methodologies, agile hardware methodologies reduce the risk of misunder-

standing in design intents due to fewer number of features. Agile hardware methodologies can

potentially reduce the verification step time because with a successful previous iteration, each iter-

ation exposes a much smaller surface of change than with a complete feature set. With an iterative

workflow, agile hardware methodologies encourage use of parametrized generators and reusable

tools.

Through the above comparison between agile and traditional hardware methodologies, I high-

light two principles of agile hardware design described by [LWC+16].

• Incomplete, fabricatable prototypes over fully featured models.

• Improvement of tools and generators over improvement of the instance.

The first principle states that agile hardware methodologies generally favor incomplete yet work-

ing prototypes. As shown in Figure 1.1(b), an iterative workflow centers around models with

incomplete features, and features are added to this prototype at a much finer granularity than in the

3

traditional workflow. The second principle highlights the importance of creating and maintaining

reusable components throughout the prototyping steps to boost productivity. The traditional work-

flow in Figure 1.1(a) concerns only the fully featured model at each step, which tends to encourage

components and tools that are specialized for the said instance. On the other hand, agile hardware

methodologies promote reusable components through iterative feature additions and incrementally

increase the development velocity. Putting together, these two principles promise a productive

iterative workflow where feature additions become smoother by reusing quality components and

tools.

1.2 Implementing Agile Hardware Methodologies

To encourage the wider adoption of agile hardware methodologies, the research and the engi-

neering communities have developed tools and frameworks that facilitate agile hardware. Table 1.1

provides an overview of existing work to facilitate the specification, design and implementation,

verification, and physical design of agile hardware. In this thesis, I specifically focus on research

that identifies and tackles agile hardware verification challenges. The remaining section provides

a more thorough survey of representative tools and frameworks that implement agile hardware

methodologies.

High-level synthesis (HLS) [CLN+11,CCA+11] is a productive hardware development method-

ology where the HLS tools accept a high-level description of hardware behaviors (usually in C or

its variants) and synthesize the description into timed RTL implementations. HLS raises the level

of abstractions so that agile hardware designers can focus on specifying critical hardware behaviors

and leave most of the RTL implementation to HLS tools.

HeteroCL [LCH+19] is a programming framework that facilitates the programming of FPGAs.

HeteroCL implements a novel Python-based domain-specific language (DSL) that decouples the

actual algorithm to be implemented from the customizations of computation, data types, and mem-

ory architectures. With HeteroCL, programmers can efficiently explore various tradeoffs between

performance and accuracy and generate FPGA implementations.

Some existing works tackle the specification step from the programming language perspective

and propose DSLs to raise the level of abstraction. Dahlia [NAT+20] is a language that targets

predictable architecture generation. To avoid generating hardware of significant resource require-

4

Specification Design & Implementation Verification Physical Design

High-Level Synthesis [CLN+11] 3 3

LegUp [CCA+11] 3 3

HeteroCL [LCH+19] 3 3

Dahlia [NAT+20] 3 3

Calyx [NTLS21] 3 3

Filament [NdAS23] 3 3

BaseJump STL [Tay18a] 3

OpenPiton [BCJ+20] 3

Rocket Chip [AAB+16] 3

OpenCGRA [TAZ+21] 3

OpenFPGA [TGC+20] 3

PRGA [LW21] 3

PyOCN [TOJ+19] 3

Constellation [ZANA22] 3

Chipyard [ABG+20] 3 3

MyHDL [Dec04] 3 3

Migen [Mig23] 3 3

SpinalHDL [Spi23] 3 3

Magma [Han24] 3 3

Clash [BKK+10] 3 3

Chisel [BVR+12] 3 3

FIRRTL [IKL+17] 3 3

PyRTL [DTS20] 3 3

PyMTL3 [JPOB20] 3 3

fault [THS+20] 3

cocotb [Git24] 3

PyVSC [Bal24] 3

BlueCheck [NM15] 3

CoSA [MMB+18] 3

MinJie [XYT+22] 3

FireSim [KMK+18] 3

mflowgen [CTN+22] 3

Hammer [LGW+22] 3

Silicon Compiler [ORM22] 3

Table 1.1: Existing Works that Implement Agile Hardware Methodologies – 3: this work facilitates the corre-
sponding step in an agile hardware workflow.

ments, Dahlia adopts an affine type system to systematically rules out programs of unclear or

expensive hardware implementations. Dahlia can generate C++ code suitable for HLS tools which

can then be used to drive an ASIC or FPGA flow. Calyx [NTLS21] is an intermediate represen-

5

tation for hardware designs. It allows structural description of the hardware with control flow

primitives for productive specification of hardware accelerators. Unlike Dahlia which generates

HLS C++ output, Calyx directly outputs RTL code for the target hardware. Filament [NdAS23]

is a language for specifying modular hardware designs with enforced timing and structural con-

straints. Filament uses timeline types to describe the latency of static pipelines and ensures that

statically scheduled modules always produce and consume messages at the right cycle.

The BaseJump standard template library [Tay18a] is a collection of highly parametrized hard-

ware generators described in the SystemVerilog HDL. Hardware designers reuse the IPs in the

BaseJump template library by instantiating the generators with the desired parameters in their Sys-

temVerilog source code.

OpenPiton is a framework for simulating, emulating, and building manycore processors [BCJ+20].

As a library of IPs, OpenPiton provides a parametrized and extensible manycore design that in-

cludes processors, caches, interconnects, and peripherals. In addition to facilitating IP reuse, Open-

Piton also distributes scripts of CAD tools to help reuse scripts in the emulation and prototyping

of manycore hardware.

The Rocket chip generator [AAB+16] is a library of parametrized RISC-V processors, caches,

and interconnects in the Chisel hardware construction language [BVR+12]. Compared to Base-

Jump and OpenPiton, the Rocket chip generator leverages Scala, the general-purpose programming

language in which Chisel is embedded, to implement sophisticated hardware generators.

Generators for reconfigurable architectures have also witnessed a surge of interests in re-

cent years. OpenCGRA [TXL+20, TAZ+21] is an open-source framework for modeling, testing,

and evaluating coarse-grain reconfigurable arrays (CGRAs). CGRAs consist of loosely intercon-

nected functional units and are a promising hardware architecture of more flexibility than ASIC

accelerators and higher energy efficiency than FPGAs. OpenCGRA supports a full design flow

from functional-level modeling all the way to area, power, and timing characterization. OpenF-

PGA [TGC+20] is an open-source framework for agile FPGA prototyping. Comparing to CGRAs,

FPGAs achieve higher flexibility with finer-grain bit-level reconfigurability. OpenFPGA allows

customization of FPGAs through a high-level architecture description language and supports gen-

eration of Verilog netlists that can drive an ASIC or FPGA flow. Princeton Reconfigurable Gate

Array (PRGA) [LW21] is a customizable open-source framework for building custom FPGAs. It

is capable of generating synthesizable Verilog RTL from user specifications of FPGA architectures

6

and open-source CAD tool scripts. PRGA facilitates exploring FPGA architectures for emerging

application domains and the prototyping of such architectures.

Network-on-chip (NoC) IPs also attract agile hardware designers because they provide flexi-

ble interconnection of cores, accelerators, memory systems, and more. PyOCN [TOJ+19] is an

open-source framework that supports modeling, testing, and evaluation of NoC IPs. PyOCN offers

a wide selection of NoC IPs from functional-level descriptions to detailed register-transfer level

implementations. It also provides a comprehensive testing suite of unit tests, integration tests,

and property-based random tests. Furthermore, PyOCN enables productive evaluations of NoC

IPs with user-friendly NoC generation, simulation, and characterization. Constellation [ZANA22]

is an open-source NoC IP generator specialized for heterogeneous SoCs. In addition to support-

ing NoC RTL generation, testing, and characterization, Constellation also leverages a parameter

system, which allows specification of logical, physical, and routing behaviors, to customize NoC

IPs.

FIRRTL is a hardware compiler framework that serves as an IR between Chisel [BVR+12] and

synthesizable Verilog [IKL+17]. Chisel is a hardware construction language embedded in Scala,

which enables sophisticated and parametrized hardware generators and acts as one frontend of

FIRRTL. FIRRTL automatically performs analysis, transformations, and optimizations on the IR

of the target hardware design and supports lowering into HDLs such as Verilog for prototyping.

PyRTL is a toolkit of Python-based hardware development utilities that bridges the designing,

testing, analysis, and evaluation aspects of agile hardware [DTS20]. PyRTL allows describing the

design, testing, analysis, and evaluation tasks of prototyping using modern Python programming

features, which enables fast design iterations on a wide range of hardware generators.

Also based on Python, PyMTL3 is a framework for hardware modeling, generation, simulation,

and verification [JPOB20]. Similar to PyRTL, PyMTL3 also draws on the expressiveness of Python

to facilitate reusing some prototyping tasks as Python code. In addition, PyMTL3 also supports

direct co-simulation between PyMTL3 models and Verilog models.

In addition to the above works, MyHDL [Dec04], Migen [Mig23], SpinalHDL [Spi23], Magma [Han24],

and Clash [BKK+10] are all HDLs embedded in a high-level programming language. These

works enable highly parametrized generators by constructing a hardware module using the produc-

tive features of the host programming language, which facilitates the design and implementation

7

step of an agile workflow. They also allow using the target hardware as a simulatable object to

improve verification productivity.

fault [THS+20] is a verification language embedded in Python. Thanks to its close integra-

tion with the Magma hardware description language, fault allows detailed inspection of the target

hardware and the reuse of verification components across numerous commercial and open-source

verification tools. fault provides a unified interface to constrained random testing and formal veri-

fication, making these two forms of verification more productive in an agile workflow.

cocotb [Git24] is a library for digital circuit verification in Python. Unlike traditional veri-

fication approaches which requires complex testbenches in SystemVerilog, cocotb allows using

coroutines in Python as testbenches and interfaces arbitrary Python code with the DUT running

in a simulator. cocotb can significantly improve the verification productivity in an agile workflow

thanks to the productive features of Python.

PyVSC [Bal24] is a verification library embedded in Python with a focus on providing con-

strained random stimulus generation and coverage data collection. Inspired by the constrained

random and functional coverage tools for SystemVerilog, PyVSC provides familiar syntax for ag-

ile hardware designers and improves the verification productivity for any tests using constrained

randomization and coverage metrics.

BlueCheck is a generic synthesizable test bench capable of automatic test sequence generation

and counter-example shrinking [NM15] in BlueSpec HDL. BlueCheck enables reuse of a signif-

icant number of test bench utilities by parametrizing the generic test bench with a correctness

specification of the target hardware. The correctness specification, which is implemented as an

executable in BlueSpec HDL, determines whether an input-output combination of the hardware

is valid. Therefore, the verification process can be automated and reused for a vast number of

hardware designs.

CoSA is a symbolic model checker that enables close integration of formal verification into

agile hardware [MMB+18]. CoSA targets hardware designs in the CoreIR intermediate repre-

sentation, which supports commonly used hardware description formats including Verilog and

preserves the design intents in these formats to assist formal verification.

MinJie is an open-source platform for agile processor development including tools for func-

tional verification [XYT+22]. Similar to BlueCheck, MinJie adopts an agile verification method-

ology where the test bench is parametrized by the correctness specification known as diff-rules.

8

The use of parametrized test benches eliminates the needs of creating test benches for each pro-

cessor design and significantly improves verification productivity. MinJie also includes functional

verification tools that facilitate bug reproducing and visualization.

FireSim is a verification technique for cycle-exact simulation on cloud FPGAs [KMK+18,

ABG+20]. Compared to prior FPGA-accelerated simulation tools, FireSim has significantly better

scalability and is capable of simulating thousands of processors. FireSim improves verification

productivity of large-scale hardware systems at affordable cost and acceptable simulation speed.

mflowgen is a modular flow generator with a focus of improving physical design productiv-

ity [CTN+22]. To enable parametrization of the physical design flow, mflowgen implements an

instrumentation layer in Python over Tcl scripts, which helps preserve reusable physical design

code in the face of needs for specializations.

Hammer is a modular physical design flow tool that is compatible with numerous commercial

and open-source CAD tools and technology nodes [LGW+22]. Similar to mflowgen, Hammer is

implemented in Python and manages the entire physical design flow through customizable hooks

and plugins. In addition, Hammer adopts a human-readable intermediate representation that spec-

ifies parameters and operations for certain steps in the physical design process.

Silicon compiler is a modular hardware build system also implemented in Python [ORM22].

Similar to mflowgen and Hammer, silicon compiler adopts a tool abstraction layer over vastly

different CAD tools. It also supports a readable representation of ASIC/FPGA design intents

which can be parsed by modular plugins of the build system.

1.3 Verification Challenges in Agile Hardware Methodologies

Despite their success at managing the NRE costs of hardware designs, agile hardware method-

ologies also face unique challenges in verification. Section 1.2 identified numerous existing works

that facilitate verification. However, the verification challenges in agile hardware methodologies

remain and this thesis focuses on identifying and addressing these challenges. This section in-

troduces four verification challenges that I specifically focus on in this dissertation. The list of

verification challenges is not exhaustive and future research may identify and address more verifi-

cation challenges to make agile hardware methodologies even more productive.

9

Verification Challenges in Dynamic HDLs – Dynamic HDLs, which are embedded in dynam-

ically typed programming languages such as Python, facilitate the composition of statically typed

hardware instances and dynamically typed test harnesses. However, existing dynamic HDLs often

lack early static type checking to type check statically typed hardware instances, generally fail to

safeguard mixed-typed compositions, and suffer from low simulation performance. Without safe

mixed-typed compositions, agile hardware designers may encounter subtle, hard-to-debug errors

from the statically typed hardware instances which are caused by ill-typed messages or parameters

from dynamic components. An ideal solution to this challenge requires both static type checking

or analysis techniques that target commonly used hardware constructs in dynamic HDLs and care-

fully inserted type guards to safeguard mixed-typed compositions without sacrificing simulation

performance.

Verification Challenges in Generator Development – Hardware generators are a central con-

cept to IP reuse in agile hardware design. Recent HDLs for agile hardware methodologies typically

define a set of core modeling primitives and are often embedded in a host general-purpose pro-

gramming language. Generators are often expressed as a function in the host language which takes

generators parameters and constructs the desired hardware instance. Certain generator properties

have to hold before it can be reused. For example, a generator should have matching bitwidth for

all connections under all possible combinations of parameters. A synthesizable generator should

not include cross-hierarchy accesses under all possible combinations of parameters. And a genera-

tor should not include any out-of-bound array accesses under all possible parameter combinations.

The verification challenges in generator development arise because the potentially enormous space

of generator parameters renders most traditional verification approaches that exhaustively search

through the parameter space intractable. Static analysis approaches are a promising approach to

verifying generator properties. However, existing static analysis tools generally do not target the

HDL syntax commonly used in agile hardware methodologies and fail to extract the hardware-

specific semantics from the syntactic constructs in the host programming languages. A solution

to these verification challenge has to be tractable even for generators with a large parameter space

and is capable of reasoning about generator parameters.

Verification Challenges in Instance Composition – Latency-insensitive (LI) interfaces [CMSV99,

CMSSV99] are a critical enabler of modular and reusable hardware designs. By decoupling the

output of a hardware design from its internal timings, the LI interfaces are pivotal to the seam-

10

less composition of hardware instances. However, the complex LI handshake protocols are often

a source of design bugs in agile hardware methodologies. For example, in a processing element

that consumes input from multiple LI interfaces, the hardware designer has to carefully orchestrate

the LI handshake logic to make sure the input messages are consumed at exactly the same cycle.

Furthermore, certain subtle LI handshake bugs can only be triggered by stalling the LI interface

for a specific number of cycles. The verification challenges in instance composition arise due to

the difficulty of creating test vectors that trigger the potential LI handshake design bugs. It takes

tremendous efforts to construct a comprehensive test suite that covers almost all stall events of a

LI interface to discover LI handshake bugs. Even worse, such comprehensive test suites are highly

unlikely to be reusable due to the unique functionalities and internal timings of hardware modules.

An ideal solution to these verification challenge can be automatically reused across different LI

RTL modules and produce concise counter-examples to facilitate debugging.

Verification Challenges in Co-Simulation – Existing HDLs for agile hardware methodologies

are typically embedded in general-purpose programming languages and have their own primitives

for hardware modeling. To improve interoperability with open-source and commercial computer-

aided design (CAD) tools, most modern HDLs support translation into Verilog or SystemVer-

ilog [BVR+12, IKL+17, DTS20, LZB14, JPOB20, Dec04, Mig23], the best supported HDL for

FPGA or ASIC prototyping. The verification challenges in co-simulation arise because the test

benches for the translated RTL are typically written in the host programming language of the

HDL and therefore cannot be productively reused to test the translated RTL. Some agile hard-

ware methodology tools choose to implement a read-write compatibility layer between the trans-

lated Verilog RTL and the test bench in the host language using the Verilog programming inter-

face [BVR+12, JB99]. However, this design choice hinders verification productivity because the

target hardware has to be translated into Verilog RTL before verification. Ideally, the solution to

co-simulation verification challenges should support both native simulations and co-simulations

using the same test bench in the host language.

1.4 Thesis Overview

To identify and address the key verification challenges in agile hardware methodologies, I adopt

a vertically integrated research approach to identify verification challenges in typical agile hard-

11

Generators CGRA(n,m)
generator

Instances

Co-Simulation

ASIC/
FPGA

Chapter 6: CGRA
Tape-Out

Prototype

XBar(n,m)
generator

Scratchpad(size)
generator

4x4 CGRA

4x4 Req/Resp
Memory
Message

XBar

1KB SctachpadMem
Req/Rsp
Interfaces

Mem
Req/Rsp
Interfaces 1KB Sctachpad

1KB Sctachpad

1KB Sctachpad

Test Harness4x4 CGRA + 4 KB Mem
DUT

Test Harness4x4 CGRA + 4 KB Mem
Reference

Same
Results?

4x4 CGRA +
4 KB Mem

System DUT

4x4 CGRA +
4 KB Mem

System
Verilog RTL

Generation
ASIC/FPGA

Toolflow

Chapter 5: Translation-Import
[IEEE MICRO'20]

Chapter 2: GT-HDL
[LATTE'23] HDLs

Chapter 4: Latency Equivalence
Checking [MEMOCODE'23]

Chapter 3: Symbolic Elaboration
[MEMOCODE'23]

Adder(N)

+

class Adder(Component):
 def construct(s, N):
 s.in1 = InPort(N)
 s.in2 = InPort(N)
 s.out = OutPort(N)
 @update
 def upblk():
 s.out @= s.in1 + s.in2

Figure 1.2: Thesis Overview – This figure shows the key components in a typical agile hardware design workflow
starting from HDLs to an FPGA or ASIC prototype. Chapter 2, Chapter 3, Chapter 4, and Chapter 5 identify and
address verification challenges in the discussed workflow. Chapter 6 presents a case study of a CGRA tape-out in
GlobalFoundries 14nm technology to demonstrate the effectiveness of the proposed techniques in this thesis.

ware workflows: the dynamic HDL verification challenge, the generator property verification chal-

lenge, the composition interface verification challenge, and the seamless co-simulation verification

challenge. I also demonstrate the effectiveness of the proposed solutions with a CGRA tape-out

case study.

Chapter 2 focuses on the dynamic HDL verification challenge and proposes gradually typed

HDL (GT-HDL), an embedded HDL with safe and efficient mixed-typed compositions. To provide

safety guarantees for mixed-typed compositions, GT-HDL incorporates guarded generator param-

eters and simulation type checks. These type guards are inserted to prevent ill-typed parameters

or values from propagating from dynamically typed components into statically typed hardware in-

12

stances, which reduces debugging efforts involved in mixing dynamic test harnesses with DUTs.

In addition, GT-HDL also employs typed-based simulation optimizations to improve simulation

performance without sacrificing safety guarantees. I present an evaluation of GT-HDL on eight

RTL modules and demonstrate up to 48.1% better simulation performance over a state-of-the-art

dynamic HDL. This chapter is based on my paper published at the Workshop on Languages, Tools,

and Techniques for Accelerator Design (LATTE) held in conjunction with the International Con-

ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)

in 2023 [POJB23].

Chapter 3 focuses on the generator property verification challenge, which aims to prove or fal-

sify common generator properties (such as matching bitwidths, in-bound array indices, etc.) ahead

of time. This chapter proposes symbolic elaboration, a constraint-solving technique that targets

the PyMTL3 hardware modeling syntax to statically prove or falsify generator properties. Sym-

bolic elaboration leverages the observation that many critical generator properties can be encoded

as integer constraints over the generator parameters. Furthermore, these integer constraints can be

effectively solved by an SMT solver. This chapter presents a detailed evaluation of symbolic elab-

oration and shows that on average, symbolic elaboration can detect 90.6% of randomly injected

bugs to a benchmark of five IP generators and three design generators. This chapter is based on

my paper published at the International Conference on Formal Methods and Models for Co-Design

(MEMOCODE) in 2023 [PJOB23].

Chapter 4 focuses on the composition interface verification challenge. Specifically, this chap-

ter describes the challenge of verifying the handshake logic of latency-insensitive (LI) interfaces

which are ubiquitous in agile hardware designs. This chapter formalizes the behavior of LI inter-

faces through the concept of stall invariant, which abstracts the messages communicated over an LI

interface as an untimed sequence of events. This chapter also proposes latency equivalence check-

ing, a formal verification technique to automatically verify or falsify the stall invariant property of

a given LI RTL module. The main contribution of latency equivalence checking includes an algo-

rithm that constructs a verification harness targeting the LI interfaces of a given RTL module. To

demonstrate the effectiveness of the proposed technique, this chapter also includes case studies that

apply latency equivalence checking to real-world hardware designs including a RISC-V processor.

In all cases, latency equivalence checking successfully identified the bug in the studied design and

generates counter-examples for reproducibility. This chapter is based on my paper published at

13

the International Conference on Formal Methods and Models for Co-Design (MEMOCODE) in

2023 [PB23].

Chapter 5 focuses on the seamless co-simulation verification challenge. Specifically, this chap-

ter describes the challenge of productively testing the functionality of the generated Verilog RTL

using a test bench in the host programming language. This chapter discusses translation and import

mechanisms that enable reuse of the same test bench on both the DSL and the Verilog hardware

model. The translation mechanism relies on a robust IR called register-transfer level intermediate

representation (RTLIR), which provides a canonical representation of all synthesizable hardware

instances in the PyMTL3 DSL. To enable co-simulation of the translated RTL with Python test

benches, this chapter introduces the import mechanism, which is built on the shared interface

between the PyMTL3 and the compiled Verilog hardware models. This chapter also presents a

case study on the ultra-elastic CGRA (UE-CGRA) to demonstrate how translation-import signif-

icantly improves the productivity of evaluating the ultra-elastic CGRA (UE-CGRA), a complex

digital design with multiple clock networks. The UE-CGRA case study is based on the paper I

co-authored and published at the International Symposium on High-Performance Computer Ar-

chitecture (HPCA) in 2021 [TPO+21].

Chapter 6 presents a case study of a CGRA tape-out in GlobalFoundries 14nm technology

using the techniques proposed in the previous chapters. This chapter describes the architecture

of the target CGRA, the challenges of verifying the target CGRA, and the solutions employed in

the tape-out. The CGRA tape-out leverages symbolic elaboration to verify the properties of the

CGRA generator. It also leverages the latency equivalence checking to verify the correctness of

LI handshake in the CGRA’s processing element (PE). Finally, the translation-import mechanism

allows for a sophisticated direct, random, and property-based testing suite for the CGRA to achieve

high confidence of design correctness. This case study shows that the techniques proposed in the

thesis significantly improve the verification productivity of the CGRA design.

The primary contributions of this thesis are:

• I propose GT-HDL, an embedded HDL that supports safe and performant mixed-typed com-

positions. I apply GT-HDL to three standalone hardware designs and demonstrate that it

improves simulation performance without compromising safety.

14

• I propose symbolic elaboration, an SMT solving-based static analysis approach to validating

hardware generator properties. I apply symbolic elaboration on a suite of IP and design

generators and demonstrate its effectiveness on the generator property verification challenge.

• I propose the stall invariant property and latency equivalence checking, a formal verifica-

tion technique that automatically proves the correctness of or finds falsifying inputs to the

stall invariant property. I apply latency equivalence checking to three LI designs and demon-

strate that the proposed technique correctly identify and provides easy-to-debug LI hand-

shake waveforms.

• I propose and implement a translation-import mechanism in the PyMTL3 HDL to enable

productive verification of the generated RTL against the high-level DSL hardware model. I

apply the translation-import mechanism to co-simulate an ultra-elastic CGRA (UE-CGRA)

and demonstrate it significantly improves verification productivity.

• I present a case study of a CGRA tape-out in the GlobalFoundries 14nm technology and

demonstrate that the techniques proposed in this thesis help overcome the verification chal-

lenges of the CGRA module.

1.5 Collaboration, Previous Publications, and Funding

This thesis would not have been possible without support from all of the members of the Batten

Research Group and others. My advisor Professor Christopher Batten was the key source of guid-

ance and inspiration. I cannot understate how many times my ideas became much more interesting

through our brainstorming sessions.

I am a core contributor to the PyMTL3 project. I collaborated closely with Dr. Shunning Jiang

and Yanghui Ou to design and implement the PyMTL3 framework from scratch. Dr. Shunning

Jiang led the PyMTL3 project and he designed and implemented the core DSL, the pass mecha-

nism, the scheduling and simulation passes, the first PyMTL3 standard library, and various other

aspects of the framework. Yanghui Ou is also a core contributor to the PyMTL3 project and he

contributed to the method-based interfaces, the parameter mechanism in the DSL, and numerous

IPs using PyMTL3. I designed and implemented the translation mechanism in PyMTL3 to enable

extensible translation from the PyMTL3 DSL to numerous backends. I implemented RTLIR, an

15

intermediate representation of synthesizable PyMTL3 hardware components, which also serves as

the canonical input of the translation passes. I implemented a significant portion of the unit test

suite in PyMTL3 to ensure timely feedbacks from PyMTL3 CI/CD pipeline. I also contributed to

PyMTL3’s import mechanism with numerous crash bug fixes and improved integration with the

Verilator simulator. Chapter 5 covers a majority of my work on the PyMTL3 framework in details.

The PyMTL3 framework was published in IEEE Micro in 2020 [JPOB20].

I was a core contributor to the ultra-elastic CGRA (UE-CGRA) project led by Dr. Christopher

Torng. Yanghui Ou contributed to the first implementation of the CGRA in PyMTL3. Dr. Cheng

Tan contributed to the CGRA compiler and the efforts to map microbenchmarks to actual CGRA

placements and routings. Dr. Christopher Torng explored the opportunity of fine-grain DVFS in

CGRAs and implemented the energy and performance analysis model of UE-CGRA and the ar-

chitecture and VLSI designs of UE-CGRA. I implemented the UE-CGRA RTL in PyMTL3 based

on Yanghui Ou’s initial efforts, led the ASIC energy and area analysis of the UE-CGRA, and the

performance results of UE-CGRA based on RTL simulations. The UE-CGRA project was pub-

lished and presented at the International Symposium on High-Performance Computer Architecture

(HPCA) in 2021 [TPO+21].

I was a core contributor to the Software-Defined Hardware (SDH) project between the collab-

oration of Cornell University and University of Washington (UW). I led the implementation of the

ASIC energy analysis flow which was used by Cornell and UW teams to carry out accurate gate-

level energy analysis in the SDH evaluation. As part of the efforts to evaluate the performance

and energy efficiency of the manycore architecture in SDH by UW, I led the efforts to design and

implement a high-performance parallel fast-fourier transform (FFT) algorithm on the manycore. I

was also a graduate student lead of the Cornell team in the SDH tape-out. I led a group of three

Cornell graduate students to implement and test a CGRA block at RTL, which was then handed

off to Professor Michael Taylor’s group at UW for integration and physical design. Dr. Lin Cheng

contributed to the random testing of the CGRA block both at RTL and gate-level. Nick Cebry con-

tributed to the directed testing of the CGRA block and the continuous integration of each CGRA

RTL release candidate. Professor Michael Taylor’s group at UW led the design, implementation,

and testing of the chip which includes the Hammerblade manycore and the Blackparrot RISC-V

processors [PGW+20]. I wish to thank Dan Petrisko from Professor Michael Taylor’s group, who

16

generously agreed to help the Cornell team by doing the physical design for the CGRA block and

testing the connections between the CGRA block and the manycore block.

I led the gradually typed hardware description language (GT-HDL) project. I explored applying

optional static type checkers to verifying hardware generator properties and proposed to augment

the dynamically typed PyMTL3 HDL with static type checking capabilities. I implemented the

symbolic elaborator in PyMTL3, which statically proves or falsifies generator properties leverag-

ing an SMT solver. I further leveraged the static type information and implemented elaboration-

time guards and simulation-time optimizations. I evaluated the symbolic elaboration technique on

a suite of 5 IP generators and 3 design generators and demonstrated its effectiveness at detect-

ing violations of generator properties. Professor Adrian Sampson (Cornell Univeristy) and Rachit

Nigam shared their valuable insights about gradual type systems, numeric types, and many more

inspirational thoughts and examples in the programming language landscape. Dr. Shunning Jiang

and Yanghui Ou contributed to this project by helping with the iterative divider, the processor, and

the CGRA hardware models in PyMTL3 that are used in the evaluation. The symbolic elabora-

tion aspect of the GT-HDL project was published and presented at the International Conference

on Formal Methods and Models for Co-Design (MEMOCODE) in 2023 [PJOB23]. The vision of

the GT-HDL project was published and presented by me at the Workshop on Languages, Tools,

and Techniques for Accelerator Design (LATTE) held in conjunction with the International Con-

ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)

in 2023 [POJB23].

I led the stall invariant project. I explored applying formal verification techniques to RTL

modules with latency-insensitive (LI) interfaces. Professor Cunxi Yu (University of Maryland,

College Park) and Marcelo Orenes-Vera (Princeton University) shared their valuable insights about

this formal verification question at an early stage of this project. I proposed stall invariant, a

property of LI interfaces which indicates the absence of LI handshake errors. I also proposed

latency equivalence checking to prove or find counter-examples to the stall invariant property for a

given RTL module. I evaluated the proposed latency equivalence checking technique on an iterative

divider, a processing element (PE), and a RISC-V processor and demonstrated its effectiveness

at identifying LI handshake bugs. Dhruv Sharma and Megha Shyam implemented the LI PE in

Verilog and identified the bug used in the PE case study. This project was published and presented

17

at the International Conference on Formal Methods and Models for Co-Design (MEMOCODE) in

2023 [PB23].

This thesis was supported in part by DARPA POSH Award #FA8650-18-2-7852, DARPA SDH

Award #FA8650-18-2-7863, the Center for Applications Driving Architectures (ADA), one of six

centers of JUMP, a Semiconductor Research Corporation program co-sponsored by DARPA, a

research gift from Xilinx, Inc., and equipment, tool, and/or physical IP donations from Intel, Syn-

opsys, Cadence, and ARM. The U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation thereon. Any opinions, findings,

and conclusions or recommendations expressed in this publication are those of the author(s) and

do not necessarily reflect the views of any funding agency.

18

CHAPTER 2
GT-HDL:

ADDRESSING VERIFICATION CHALLENGES
IN DYNAMIC HDLS

Recent research in agile hardware methodologies has argued for using dynamically typed com-

ponents in dynamic HDLs to improve the productivity of verification. However, mixing dynam-

ically typed components with statically typed hardware models leads to verification challenges

for dynamic HDLs. Existing dynamic HDLs generally have to make a trade-off between safety

guarantees for mixed-typed compositions and simulation performance. In this chapter, I propose

GT-HDL, a new dynamic HDL with optional typing to facilitate safe and performant composition

of dynamically typed components with statically typed hardware models. GT-HDL ensures safe

mixed-typed compositions through guarded generator parameters and simulation-time type checks.

To improve simulation performance, GT-HDL selectively removes redundant simulation-time type

checks without sacrificing safety. I evaluate GT-HDL on eight hardware generators. My evaluation

shows that, on average, GT-HDL has 48.1% better simulation performance than a state-of-the-art

embedded dynamically typed HDL.

2.1 Introduction

The slowdown of Moore’s law and the breakdown of Dennard scaling have driven computer

architects towards more specialized hardware designs to meet applications’ growing performance

and energy efficiency demands. However, such specialized hardware designs tend to have high

non-recurring engineering (NRE) costs that hinder the research and development of promising

hardware systems. Recent research in hardware development methodologies addresses verifica-

tion aspect of the NRE costs by dynamically typed high-level components to facilitate the cre-

ation of highly parametrized and polymorphic test harnesses, golden reference models, and cycle-

approximate hardware models [LKK+18, FZ03, NZP12, LZB14, JPOB20, JOP+21]. Figure 2.1

illustrates a typical three-step hardware design cycle that involves parametrized hardware genera-

tors and dynamically typed components. The early step of the design cycle is to create or reuse

hardware generators for the target design and its test harness. The middle step performs elabora-

tion, which takes the top-level generator (typically a test harness generator) and a set of parameters

19

Hardware
Generators Simulation Outputs

Elaboration Simulation

Hardware
Instances

Mux(width,N)
Adder(width)

TH(width,N)

width

width

.
.
.

.
.
.

N

N

Test Pass?
Test Fail?

Test Coverage?
Elapsed Time?
Hardware Perf?
Signal Toggles?
Exceptions?

top: TH(32,2)

32

32

top.mux1

top.mux2

top.adder

Bug Fixes and Feature Development

Statically Typed Dynamically Typed

Figure 2.1: A Typical Hardware Design Cycle with a Dynamic HDL – This figure shows how hardware designers
leverage hardware generators and dynamically typed components in their typical workflow.

to construct a hierarchy of hardware instances. The final step of the design cycle performs simula-

tion on the elaborated hierarchy of instances and generates simulation outputs for debugging and

feature development purposes. Dynamically typed high-level components promise a significant

improvement in productivity for verification of new hardware designs.

Unfortunately, it is challenging to realize the benefits of dynamically typed components, even in

state-of-the-art dynamic HDLs. More specifically, it is challenging to provide both safety guaran-

tees for mixed-typed compositions and high simulation performance. In dynamic HDLs, statically

typed components1 are guaranteed to drive values of expected types on all output ports, as long as

all input port values have the expected types. In contrast, dynamically typed components can drive

potentially ill-typed values on output ports because the input values can be ill-typed, or there might

be a type error in the component. Almost all existing dynamic HDLs do not provide static type

checking nor elaboration- or simulation-time type checks to safeguard mixed-typed compositions.

The naive approach to enable safety guarantees is to insert simulation-time type checks for every

signal assignment at each simulation cycle. However, this approach incurs simulation performance

overhead and fails to leverage the static type information for performance optimizations.

In this chapter, I make the case for gradually typed HDLs to address the above challenge and

unlock the productivity benefits of recent hardware development methodology research. Inspired

by gradually typed programming languages [ST06, SVCB15], I propose GT-HDL, an HDL that
1I refer to components that are instances of hardware generators that have been type checked before elaboration as

statically typed components. All other components are considered to be dynamically typed.

20

supports the safe and performant composition of mix-typed components. GT-HDL is based on

PyMTL3, a modern dynamically typed HDL embedded in Python [JPOB20]. GT-HDL ensures

the safe composition of mix-typed components with guarded generator parameters and simulation

type checks (Section 2.4.1). GT-HDL also leverages optional static type information to improve

its simulation performance (Section 2.4.2).

This chapter makes the following contributions:

• I apply optional type checkers to embedded dynamic HDLs and demonstrate its success at

type checking hardware generators (Section 2.3).

• I propose guarded generator parameters and simulation-time type checks to safeguard mixed-

typed compositions (Section 2.4.1).

• I propose simulation type check pruning and signal coalescing to improve simulation perfor-

mance (Section 2.4.2).

• I evaluate the simulation performance of a prototype of GT-HDL on three standalone hard-

ware designs (Section 2.5).

This chapter is organized as follows: Section 2.2 provides the background for existing HDLs

and their features. Section 2.3 discuss using an off-the-shelf option type checker to validate gener-

ator properties. Off-the-shelf optional type checkers require low HDL implementation and testing

efforts and can statically type check simple hardware generators. Section 2.4.1 describes two

systematic approaches to securing mixed-typed elaboration and simulation in GT-HDL: guarded

generator parameters and simulation type checks. Section 2.4.2 describes simulation optimiza-

tions that leverage static type information to improve the simulation performance of GT-HDL.

Section 2.5 presents the evaluation of a GT-HDL prototype using three standalone hardware de-

signs.

2.2 Background

I begin by providing some background on hardware description languages. Section 2.2.1 intro-

duces some of the existing HDLs and their characteristics. Section 2.2.2 introduces the standard

functionalities of HDLs and demonstrate the safety and performance challenges of dynamic HDLs

using a registered adder example.

21

HDL Type System Examples Safety Performance

Simple Static Typing Verilog/SystemVerilog [iee17], VHDL [iee09]

Advanced Static Typing Bluespec SystemVerilog [Nik04], Clash [BKK+10]

Embedded Static Typing Chisel [BVR+12], SpinalHDL [Spi23], Lava [BCSS98]

Embedded Dynamic Typing
PyRTL [DTS20], Migen [Mig23], MyHDL [myh14],
PyMTL [LZB14], PyMTL3 [JPOB20]

Embedded Gradual Typing GT-HDL*

Table 2.1: Existing HDLs and Their Characteristics – : almost no type safety guarantees/very low simulation
performance; : incomplete or late in the design cycle type safety guarantees/medium simulation performance; :
complete and early in the design cycle type safety/high simulation performance. *: our proposal.

2.2.1 Existing HDLs

Table 2.1 summarizes different HDLs based on the following characteristics: generator sup-

port, dynamically typed high-level component support, type invariant enforcement, and when type

check happens in the hardware design cycle (earlier is better). Table 2.1 shows that existing HDLs

either (1) do not support both sophisticated hardware generators and dynamically typed high-level

components (e.g., traditional HDLs, high-level statically typed HDLs, embedded statically typed

HDLs) or (2) perform type checks late in the hardware design cycle (e.g., embedded dynamically

typed HDLs). Compared to existing HDLs, GT-HDL realizes the benefits of both quality hard-

ware generators and dynamically typed high-level components and performs most type checks on

generators to identify design issues early in the design cycle.

Simple Statically Typed HDLs – Verilog/SystemVerilog [iee17] and VHDL [iee09] are tradi-

tional statically typed HDLs and are widely used in industry hardware design, implementation, and

verification. It is challenging to programmatically construct hardware instances in those HDLs be-

cause they are not designed to be general-purpose programming languages. Their rigid static type

systems also impose significant challenges on creating and using dynamically typed components.

Simple statically typed HDLs enforce type invariants by thoroughly type checking the elaborated

hierarchy of hardware instances, which happens in the middle of a typical hardware design cycle.

Despite their awkwardness, many modern HDLs choose to emit hardware models in these HDLs

(typically Verilog/SystemVerilog) to improve interoperability with commercial EDA tools.

Advanced Statically Typed HDLs – Bluespec SystemVerilog [Nik04] is an HDL with a pow-

erful static type system. It supports sophisticated hardware generators and can type check the

22

1 function Bit#(2) FullAdder(
2 Bit#(1) a, Bit#(1) b, Bit#(1) cin
3);
4 Bit#(1) sum = a ^ b ^ cin; 3
5 Bit#(1) cout = ((a ^ b) & cin) | (a & b);
6 return {cout, sum};
7 endfunction

(a) Bluespec SystemVerilog Full Adder

1 class FullAdder() extends Module {
2 val io = IO(new Bundle{
3 val a = Input(UInt(1.W))
4 val b = Input(UInt(1.W))
5 val cin = Input(UInt(1.W))
6 val sum = Output(UInt(1.W))
7 val cout = Output(UInt(1.W))
8 })
9 io.sum := io.a ^ io.b ^ io.cin 3

10 io.cout := ((io.a ^ io.b) & io.cin) | (io.a & io.b)
11 }

(b) Chisel Full Adder
1 class FullAdder(Component):
2 def construct(s):
3 s.a = InPort(Bits1)
4 s.b = InPort(Bits1)
5 s.cin = InPort(Bits1)
6 s.sum = OutPort(Bits1)
7 s.cout = OutPort(Bits1)
8
9 @update

10 def upblk():
11 s.sum @= s.cin ^ s.a ^ s.b 3
12 s.cout @= ((s.a ^ s.b) & s.cin) | (s.a & s.b)

(c) PyMTL3 Full Adder

Figure 2.2: Full Adder Examples in Different HDLs – (a)-(c): full adder generators in Bluespec SystemVer-
ilog/Chisel/PyMTL3. 3 behavioral modeling; (see 2.2.2 for details)

generators to discover some potential design issues early in the design cycle. One design issue cat-

egory that is not caught statically in Bluespec is bitwidth mismatches during vector slicing since

the bounds for slicing operations have to be values. Bluespec SystemVerilog checks the bitwidths

of slicing operations on hardware instances during elaboration. Bluespec SystemVerilog does not

support dynamically typed components for improved hardware modeling and verification produc-

tivity. Clash [BKK+10] is a Haskell dialect for hardware development. It benefits from Haskell’s

static type system and is able to type check the generators before elaboration. Similar to Bluespec

SystemVerilog, Clash does not support dynamically typed components.

Embedded Statically Typed HDLs – Chisel [BVR+12] is an HDL embedded in Scala, a stat-

ically typed programming language. A hardware generator in Chisel is a Scala class that program-

matically constructs class instances with members that model the desired hardware (e.g., members

representing ports, wires, and circuits). SpinalHDL [Spi23] is another HDL embedded in Scala

and also supports sophisticated generators. Lava [BCSS98] is an HDL embedded in Haskell capa-

ble of sophisticated generators. Unlike Clash, which is a Haskell dialect, Lava does not leverage

Haskell’s type system to type check hardware generators. Although it is possible to partially type

check hardware generators (e.g., using features like Scala traits), embedded statically typed HDLs

23

1 function Bit#(TAdd#(n,1)) Adder(
2 Bit#(n) a, Bit#(n) b 1
3);
4 Bit#(n) sum
5 Bit#(TAdd#(n,1)) carry = 0;
6
7 for (Integer i = 0; i<valueOf(n); i=i+1)
8 begin
9 Bit#(2) t = FullAdder(a[i], b[i], carry[i]); 2

10 carry[i+1] = t[1];
11 sum[i] = t[0];
12 end
13

14 return {carry[valueOf(n)], sum}; 4
15 endfunction

(a) Bluespec SystemVerilog Adder

1 class Adder(n: Int) extends Module { 1
2 val n_inc = n + 1
3
4 val io = IO(new Bundle{
5 val a = Input(UInt(n.W))
6 val b = Input(UInt(n.W))
7 val out = Output(UInt(n_inc.W))
8 })
9

10 val fa = Array.fill(n)(Module(new FullAdder()).io) 2
11 val carry = Wire(Vec(n_inc, UInt(1.W)))
12 val sum = Wire(Vec(n, Bool()))
13
14 carry(0) := 0.U
15 for(i <- 0 until n) {
16 fa(i).a := io.a(i)
17 fa(i).b := io.b(i)
18 fa(i).cin := carry(i)
19 carry(i+1) := fa(i).cout
20 sum(i) := fa(i).sum
21 }
22
23 io.out := Cat(carry(n), sum.asUInt)
24 }

(b) Chisel Adder
1 class Adder(Component):
2 def construct(s, Width): 1
3 n = get_nbits(Width)
4 s.a = InPort(Width)
5 s.b = InPort(Width)
6 s.out = OutPort(mk_bits(n+1))
7

8 s.fa = [FullAdder() for _ in range(n)] 2
9 s.carry = Wire(mk_bits(n+1))

10 s.sum = Wire(Width)
11
12 s.carry[0] //= 0
13 for i in range(n):
14 s.fa[i].a //= s.a[i]
15 s.fa[i].b //= s.b[i]
16 s.fa[i].cin //= s.carry[i]
17 s.carry[i+1] //= s.fa[i].cout
18 s.sum[i] //= s.fa[i].sum
19
20 s.out //= lambda: concat(s.carry[n], s.sum)

(c) PyMTL3 Adder

Figure 2.3: Adder Examples in Different HDLs – (a)-(c): adder generators in Bluespec SystemVerilog/Chis-
el/PyMTL3. 1 generators; 2 structural modeling; 4 type checks on generators; (see 2.2.2 for details)

mainly enforce HDL type invariants by type checking the elaborated hardware instances. More

specifically, for Chisel, type checks on hardware instances happen through detailed analysis on

FIRRTL, a post-elaboration intermediate representation of hardware [IKL+17]. Similar to ad-

vanced statically typed HDLs, embedded statically typed HDLs do not support dynamically typed

components.

Embedded Dynamically Typed HDLs – PyRTL [CTD+17], Migen [Mig23], MyHDL [Dec04],

PyMTL [LZB14], and PyMTL3 [JPOB20] are all HDLs embedded in Python, a dynamically typed

24

1 interface RegAdder;
2 method Action write(Bit#(32) a, Bit#(32) b);
3 method Bit#(33) read();
4 endinterface
5
6 module mkRegAdder(RegAdder);
7 Reg#(Bit#(33)) reg_out <- mkReg(0); 2
8
9 method Action write(Bit#(32) a, Bit#(32) b);

10 reg_out <= Adder(a, b);
11 endmethod
12
13 method Bit#(33) read();
14 return reg_out;
15 endmethod
16 endmodule

(a) Bluespec SystemVerilog Registerd Adder

1 class RegAdder() extends Module {
2 val io = IO(new Bundle{
3 val a = Input(UInt(32.W))
4 val b = Input(UInt(32.W))
5 val out = Output(UInt(33.W))
6 })
7
8 val adder = Module(new Adder(32)).io
9 val reg_out = Reg(UInt(33.W)) 2

10
11 adder.a := io.a
12 adder.b := io.b
13 reg_out := adder.out
14 io.out := reg_out
15 }

(b) Chisel Registerd Adder

1 class RegAdder(Component):
2 def construct(s):
3 s.a = InPort(Bits32)
4 s.out = OutPort(Bits33)
5 s.b = InPort(Bits32)
6
7 s.reg_out = Wire(Bits33)
8 s.adder = Adder(Bits32); 2
9

10 s.adder.a //= s.a
11 s.adder.b //= s.b
12 s.out //= s.reg_out
13
14 @update_ff
15 def up_reg():
16 s.reg_out <<= s.adder.out

(c) PyMTL3 Registered Adder

1 class PolyTestHarness:
2 def __init__(s, m, test_vectors, ifunc, ofunc):
3 m.apply(DefaultPassGroup())
4 m.sim_reset()
5 for t in test_vectors: 5
6 ifunc(m, t)
7 m.sim_eval_combinational()
8 ofunc(m, t)
9 m.sim_tick()

10 print('Test Passed!')
11
12 th = PolyTestHarness(
13 RegAdder(), [
14 (3, 5, '?'),
15 (10, 8, 43),
16 (0, 0, 18),
17],
18 lambda m, t: (assign(m.a, t[0]), assign(m.b, t[1])),
19 lambda m, t: assert_eq(m.out, t[2]) if t[2] != '?' else None
20)

(d) Polymorphic Test Harness

Figure 2.4: Registered Adder Examples in Different HDLs – (a)-(c): registered adder generators in Bluespec
SystemVerilog/Chisel/PyMTL3. (d): a polymorphic test harness for RegAdder in PyMTL3. 2 structural modeling;
5 dynamically typed high-level components. (see 2.2.2 for details)

programming language. All these HDLs support sophisticated hardware generators, and many of

them support dynamically typed components thanks to Python’s flexibility, which allows the mix-

ing of almost any components. Similar to simple statically typed HDLs, embedded dynamically

typed HDLs (or dynamic HDLs for short) generally do not check the generators and focus on type

checking the elaborated hierarchy of hardware instances. Due to the lack of pre-elaboration type

checks in existing embedded dynamically typed HDLs, components in such HDLs can always be

treated as dynamically typed components. Most embedded dynamically typed HDLs do not per-

form elaboration- nor simulation-time type checks, and type errors generally fail in places where

an ill-typed object is used, which causes difficulties for debugging.

25

2.2.2 HDL Features and Challenges

This section describes the standard features of HDLs and the safety and performance challenges

of mixed-typed compositions in dynamic HDLs. I use examples in Figure 2.2, Figure 2.3, and

Figure 2.4, which include three hardware generators (full adder, adder, and registered adder) and a

dynamically typed high-level component (a polymorphic test harness).

Hardware Generators – All three HDLs support the creation and use of sophisticated hard-

ware generators. In Figure 2.3, 1 marks lines that correspond to the definition of hardware gen-

erators. In Chisel and PyMTL3, hardware generators are classes that programmatically construct

instances of the desired attributes. This is a common practice in embedded HDLs, where an HDL

provides different types of hardware modeling primitives (including input and output ports, wires,

modules, and bundles) that are instantiated during elaboration. Generators in Bluespec SystemVer-

ilog are represented using functions and modules. Note that a function in Bluespec generally maps

to some combinational logic instead of a program.

Structural Modeling – Structural modeling describes the composition of a hardware instance.

It includes interface instantiation, subcomponent instantiation, and connections between different

components. In Figure 2.3 and Figure 2.4, 2 marks lines that perform structural modeling. Chisel

and PyMTL3 instantiate interfaces and subcomponents using the object instantiation syntax in

their host language. Both languages also leverage overloaded operators (:= in Chisel and //= in

Python) to connect different signals. Bluespec uses similar object instantiation syntax to instan-

tiate components and interfaces. In the registered adder example (Figure 2.4(a)), connections in

Bluespec are inferred from the arguments used to call functions FullAdder and Adder.

Behavioral Modeling – Behavioral modeling describes the behavior of circuits using high-

level languages (e.g., arithmetic operators). In Figure 2.2, 3 marks lines that perform behavioral

modeling. In all three HDLs, designers describe circuit behaviors using arithmetic expressions,

as shown in Figure 2.2(a,b,c). PyMTL3 further supports two types of update blocks to model the

combinational and sequential behaviors of hardware: @update and @update_ff.

Tension between Safety and Performance of Mixed-Typed Adder Composition – 5 in Fig-

ure 2.4 marks a polymorphic test harness PolyTestHarness. This test harness achieves poly-

morphism by applying the test vector input and verifying the module output using customizable

input and output functions (ifunc and ofunc). PolyTestHarness increases hardware verification

productivity because the test harness details (e.g., line 3, 4, 7, 9 of Figure 2.4(d)) are abstracted

26

away and can be reused across any design under test (DUT). Embedded dynamically typed HDLs

naturally supports dynamically typed high-level components. However, composing dynamically

and statically typed components may cause subtle type errors. For example, the input function

ifunc of the polymorphic test harness can be any dynamically typed code and may not respect

the bitwidth requirements of input ports. If the input function produces ill-typed messages, these

messages can propagate deep into the statically typed DUT and eventually emerge as abstruse

simulation errors that do not directly point to the source of the issue.

One possible solution to overcome the potential composition issues during the simulation of

mixed-typed components is to insert simulation-time type checks to signal assignments, signifi-

cantly increasing simulation performance overhead [JPOB20]. Many of the inserted simulation-

time type checks are unnecessary. For example, line 14-18 in Figure 2.3(c) do not require simulation-

time type checks because a static type checker can prove that they are all well-typed.

2.3 Checking Generators using Optional Type Checkers

In this section, I discuss applying off-the-shelf optional type checkers to hardware generators.

Even in dynamically typed programming languages like Python, programmers generally find it

helpful to document their code with types and have those types checked automatically by static type

checkers [THFF+17,ST06]. Optionally typed programming languages address this issue by adding

an optional type system and type annotation syntax to an existing dynamically typed language. A

defining characteristic of optionally typed languages is that type annotations do not change the

runtime semantics of the language – the compiler only leverages type annotations for static type

checking purposes and erases the annotations while emitting code [MMI14, BSDTH16, BAT14].

Optional type checkers can be useful for a growing number of embedded dynamically typed HDLs.

Compared to designing and implementing static analysis tools that target one specific HDL, using

off-the-shelf software significantly reduces the efforts required by HDL design, implementation,

and testing.

I focus on repurposing Mypy, an optional static type checker for Python [Leh23], to statically

type check PyMTL3 hardware generators. I present a set of type annotations for the PyMTL3

hardware modeling DSL, which Mypy requires to analyze hardware generators correctly. With an

27

1 class Bits: ... 1
2 class Bits1(Bits): ...
3
4 # T_Sig is invariant
5 T_Sig = TypeVar("T_Sig", bound=Bits)
6 class Signal(Generic[T_Sig]): 2
7 def __init__(s, Width: Type[T_Sig]) -> None:
8 ...
9 def __xor__(s, o: Signal[T_Sig]) -> Signal[T_Sig]:

10 ...
11 def __and__(s, o: Signal[T_Sig]) -> Signal[T_Sig]:
12 ...
13 def __or__(s, o: Signal[T_Sig]) -> Signal[T_Sig]:
14 ...
15
16 # Ignore directionality of ports
17 InPort = OutPort = Wire = Signal
18

19 T_Con = TypeVar("T_Con", bound=Bits) 3
20 @overload
21 def connect(l: Signal[T_Con], r: Signal[T_Con]) -> None:
22 ...
23 @overload
24 def connect(l: Signal[T_Con], r: int) -> None:
25 ...
26

27 def mk_bits(nbits: int) -> Type[Bits]: 4
28 ...
29 def get_nbits(Width: Type[Bits]) -> int:
30 ...
31

32 def concat(*args: List[Any]) -> Signal[Bits]: 5
33 ...

Figure 2.5: Type-Annotated Core PyMTL3 DSL – 1 : annotations of PyMTL3 data types. 2 : annotation of signals.
3 : annotations of structural connect method. 4 : annotations of numeric type utilities. 5 : annotation of structural
concat method.

adder generator example, I show that Mypy can verify simple bitwidth matching cases in hardware

generators and discuss its limitations.

Mypy leverages Python’s type annotation syntax to type check programs statically. Type anno-

tations for both the PyMTL3 hardware modeling DSL (Figure 2.5) and the generator itself (Fig-

ure 2.6) are necessary when applying Mypy to PyMTL3 generators.

Type Annotated PyMTL3 Hardware Modeling DSL – Figure 2.5 shows the type-annotated

core PyMTL3 hardware modeling DSL. The remaining of this subsection explains the modeling

primitives and their type signatures in 1 to 5 .

1 marks the annotated hardware data types in the PyMTL3 DSL. Hardware data types are

Python classes that represent a specific bitwidth and are used to specify the bitwidth of signals.

PyMTL3 dynamically generates and caches such class objects during import, which is a dynamic

behavior that cannot be annotated precisely. Instead, line 1-2 in Figure 2.5 lists all data types used

in the generators (only Bits1 is used in this example). When the type checker cannot determine

the exact bitwidth of a signal, the base class object Bits is used.

28

1 class FullAdder(Component):
2 def __init__(s) -> None:
3 ...
4 def construct(s) -> None:
5 # All ports have type Signal[Bits1]
6 s.a = InPort(Bits1)
7 s.b = InPort(Bits1)
8 s.cin = InPort(Bits1)
9 s.sum = OutPort(Bits1)

10 s.cout = OutPort(Bits1)
11
12 @update
13 def upblk() -> None:
14 # Type check because all operands are Signal[Bits1]
15 s.sum @= s.cin ^ s.a ^ s.b
16 s.cout @= ((s.a ^ s.b) & s.cin) | (s.a & s.b)

(a) Full Adder Generator Checked by Mypy

1 T_Adder = TypeVar("T_Adder", bound=Bits)
2 class Adder(Component, Generic[T_Adder]):
3 def __init__(s, Width: Type[T_Adder]) -> None:
4 ...
5 def construct(s, Width: Type[T_Adder]) -> None:
6 n = get_nbits(Width)
7
8 s.a = InPort(Width) # Signal[T_Adder]
9 s.b = InPort(Width) # Signal[T_Adder]

10 s.out = OutPort(mk_bits(n+1)) # Signal[Bits]
11 s.fa = [FullAdder() for _ in range(n)] # List[FullAdder]
12 s.carry = Wire(mk_bits(n+1)) # Signal[Bits]
13 s.sum = Wire(Width) # Signal[T_Adder]
14
15 for i in range(n):
16 if i >= 0:
17 # Both sides of connect are of Signal[Bits1]
18 connect(s.fa[i].a , s.a[i])
19 connect(s.fa[i].b , s.b[i])
20 connect(s.fa[i].cin , s.carry[i])
21 connect(s.carry[i+1], s.fa[i].cout)
22 connect(s.sum[i] , s.fa[i].sum)
23 if i == 0:
24 connect(s.carry[i], 0)
25
26 @update
27 def upblk() -> None:
28 # concat arg1: Signal[Bits1]
29 # concat arg2: Signal[T_Adder]
30 # concat(s.carry[n], s.sum): Signal[Bits]
31 s.out @= concat(s.carry[n], s.sum)

(b) Adder Generator Checked by Mypy

Figure 2.6: Type Check PyMTL3 Generators using Mypy – (a) A full adder generator type checked using Mypy. (b)
An adder generator type checked using Mypy. Both the full adder and the adder generator have the same functionality
as Figure 2.2(c) and Figure 2.3(c).

2 points to the annotation of the signal type in generators. I declare Signal as a generic type

over type variable T_Sig, which represents a hardware data type. Line 7 in Figure 2.5 declares

that only class objects are allowed to be passed into signal constructors. Line 9-14 specify the

expected type of both operands in common bitwise operations: both sides of the operation have

to be a signal of the same bitwidth, and the operation returns a signal of the same bitwidth. This

29

allows Mypy to detect simple bitwidth mismatch errors in generators. It is also worth noting that

encoding the direction of signals into types is challenging. Therefore, I disregard the direction of

signals while annotating the PyMTL3 DSL (line 17 in Figure 2.5).

3 shows the type annotations of the connect method. The signature of connect is overloaded

to support connecting signals to other signals and integers. The method signature ensures that

if two signals are connected, they must have the same bitwidth to satisfy the matching bitwidth

property. If a signal is connected to an integer, no checks are necessary because the PyMTL3

semantics ensures that the integer will be cast to fit the bitwidth of the other signal.

4 marks the type annotations of the mk_bits and get_nbits methods. These two methods are

used to convert hardware data types from and to integers. This allows hardware designers to derive

new hardware data types from existing ones and enables more complicated hardware generators.

Since the exact value of the integer nbits is not known until elaboration time, I use the Bits class

object in the annotations because it does not contain explicit bitwidth information.

5 points to the annotation of the concat method. This method takes a variable number of

signal arguments and returns a concatenated signal whose bitwidth is the sum of all input signal

bitwidths. Since it is not possible to know the exact bitwidth of the resulting signal before elabora-

tion, Signal[Bits] is the best annotation I can do for concat’s return type. It might be tempting

to annotate its input argument as having type List[Signal], but this will only accept an array of

the same bitwidth signals and reject all other potentially reasonable cases (e.g., an array of signals

that have different bitwidth). This is the place where I intentionally make the type system unsound

by giving the input argument a List[Any] signature, and this design decision allows reasonable

uses of the concat method to be accepted as well.

Type Checking the Adder Generator – Figure 2.6(b) shows an example adder generator that

uses a full adder subcomponent (Figure 2.6(a)) and can be type checked by Mypy. Mypy is able

to verify the matching bitwidths for signal assignments on line 15-16 in Figure 2.6(a) because all

operands involved in the bitwise and signal assignment (@=) operations are explicitly marked to be

single-bit wide. Mypy is also able to verify the matching bitwidths for structural connections on

line 18-22 in Figure 2.6(b).

30

2.4 Safe and Performant Mixed-Typed Compositions

In the previous section, I demonstrated how Mypy, an optional static type checker, can statically

type check simple generators in dynamic HDLs. Optional static type checkers provide some static

correctness guarantees about the statically typed hardware modules but does not eliminate type

errors at elaboration and simulation.

In this section, I describe how GT-HDL achieves safe and performant mixed-typed composi-

tions during elaboration and simulation. My approach to safe and performant composition has two

components: (1) guarded generator parameters and simulation-time type checks, which are system-

atic and comprehensive mechanism to insert elaboration- and simulation-time checks to help agile

designers pin-point type errors; (2) simulation type checking pruning and signal coalescing, which

selectively remove redundant simulation-time type checks to improve simulation performance.

2.4.1 Safe Mixed-Typed Composition

The use of dynamically typed high-level components in dynamically typed HDLs can incur

composition issues during elaboration and simulation. In this section, I motivate the need for safe

mixed-typed composition with concrete examples in Figure 2.7 and propose two techniques: (1)

a novel guarded generator parameter technique to secure mixed-typed elaboration (Section 2.4.1)

and (2) simulation type checks to secure mixed-typed simulation (Section 2.4.1). These two tech-

niques address the safety composition issue (discussed in Section 2.2.2). GT-HDL employs both

techniques to ensure the disciplined composition of dynamically and statically typed components.

Securing Mixed-Typed Elaboration with Guarded Generator Parameters

Dynamically typed components can cause subtle composition issues during elaboration, espe-

cially when the statically typed generators have other generators as their parameters.

Problem – Figure 2.7(a) illustrates the problem of composing a statically typed registered adder

with a dynamically typed test harness (polymorphic test harness in Figure 2.4(d)). A registered

adder (line 23-35) instantiates a concrete adder (s.adder) and registers the adder’s output. The

adder generator on line 1-7 defines the common interface of adders. Two concrete types of adders

inherit from Adder and are defined on line 9-21: a ripple carry adder and a behavioral adder. The

31

1 T_Adder = TypeVar("T_Adder", bound=Bits)
2 class Adder(Component):
3 def construct(s, Width: Type[T_Adder]):
4 n = get_nbits(Width)
5 s.a = InPort(Width)
6 s.b = InPort(Width)
7 s.out = OutPort(mk_bits(n+1))
8
9 T_RippleCarry = TypeVar("T_RippleCarry", bound=Bits)

10 class RippleCarryAdder(Adder):
11 def construct(s, Width: Type[T_RippleCarryAdder]):
12 super().construct(Width)
13 # model ripple carry adder ...
14
15 T_Behavioral = TypeVar("T_Behavioral", bound=Bits)
16 class BehavioralAdder(Adder):
17 def construct(s, Width: Type[T_BehavioralAdder]):
18 super().construct(Width)
19 @update
20 def up_adder():
21 s.out @= s.a + s.b 2
22
23 class RegAdder(Component):
24 def construct(s, AdderType: Type[Adder]):
25 s.a = InPort(Bits32)
26 s.b = InPort(Bits32)
27 s.out = OutPort(Bits33)
28 s.adder = AdderType(Bits32) 1
29
30 connect(s.a, s.adder.a)
31 connect(s.b, s.adder.b)
32
33 @update_ff
34 def up_reg():
35 s.out <<= s.adder.out
36
37 ripple_carry_th = PolyTestHarness(
38 RegAdder(FooBar), # Elaboration Error! 1
39 [(3, 5, '?')],
40 lambda m, t: (assign(m.a, t[0]), assign(m.b, t[1])),
41 lambda m, t: assert_eq(m.out, t[2]) if t[2] != '?' else None
42)

(a) Elaboration-Time Composition Issue

1 behavioral_th = PolyTestHarness(
2 RegAdder(BehavioralAdder), [
3 ('3', '5', '?'), # Simulation Error! 2
4],
5 lambda m, t: (assign(m.a, t[0]), assign(m.b, t[1])),
6 lambda m, t: assert_eq(m.out, t[2]) if t[2] != '?' else None
7)

(b) Simulation-Time Composition Issue

Figure 2.7: Composition Issue during Elaboration and Simulation using a Registered Adder Example – 1
Elaboration error: expecting an Adder but gets FooBar. 2 Simulation error: expecting integers but gets strings.

type annotation of the AdderType generator parameter on line 24 implies that the connections and

signal assignments on line 30, 31, and 35 can all be statically verified.

However, dynamically typed high-level components may not respect this type annotation and

may pass in ill-typed objects as generator parameters. 1 in Figure 2.7(a) shows a dynamically

typed test harness that passes a non-adder FooBar object where an adder generator is expected.

32

In the best case, the elaboration process will halt at line 28 because FooBar is not a component

generator or does not take one data type parameter. The elaboration process may also halt at line

30, 31, or 35 because the FooBar generator does not have ports a, b, out of the desired bitwidth.

In the worst case, the FooBar generator provides the same interface as Adder but implements a

different behavior. These problems are hard to debug without proper handling of mixed-typed

components during elaboration because the symptoms do not point to the root cause. For example,

the problem in the worst case can only be detected during simulation by comparing the simulation

behavior of FooBar, which is buried deep in the component hierarchy, against an adder.

Solution – I propose guarded generator parameters, an elaboration-time technique to help

secure the mixed-typed composition in GT-HDL. I observe that the subtle composition issues dis-

cussed above can be detected effectively if the generator parameters are checked against their type

annotations during elaboration. The implementation of guarded generator parameters leverages

Python’s run-time inspection feature to extract and enforce the type annotations of parameters.

With guarded generator parameters, the problem 1 in Figure 2.7(a) can be reported during elabo-

ration because FooBar is not a subclass of Adder.

Securing Mixed-Typed Simulation with Simulation Type Checks

Dynamically typed components can also cause issues during simulation. A dynamically typed

component may drive arbitrary data into the input ports of a statically typed component.

Problem – 2 in Figure 2.7(b) shows a dynamically typed test harness (the polymorphic test

harness in Figure 2.4(d)) causing simulation issues. Instead of driving integer test vectors into the

behavioral adder, the dynamically typed test harness drives strings (line 3 in Figure 2.7(b)) into

the design-under-test (DUT). This typically leads to simulation-time value errors because most

arithmetic operations between signals do not apply to non-integer types. However, 2 represents a

subtle simulation problem because the overloaded + operator also concatenates strings (line 16 on

the right). This problem leads to confusing simulation errors and requires extensive inspection of

internal component states to debug.

Solution – I reuse the simulation type check technique from PyMTL3 [JPOB20] to address the

above composition issues. After elaboration, the GT-HDL simulator performs two steps to convert

the elaborated DUT hierarchy into a simulatable function: (1) block generation, which dynamically

compiles the structural and behavioral models of the DUT hierarchy into Python functions called

33

blocks; (2) scheduling, which determines the execution order of all blocks in one simulated cycle

to model the desired hardware behavior. Signal assignments are performed extensively in blocks

to propagate the values of signals from the top-level input ports to output ports. To implement

simulation type checks, I instrument the signal assignment operator to check if the right-hand side

(RHS) of the assignment has the same type (including bitwidth) as the left-hand side (LHS) before

performing the actual assignment. In the case of 2 in Figure 2.7(b), simulation type checks allow

early detections of the type error when the assign function (line 5 in Figure 2.7) attempts to drive

strings into the input ports a and b of RegAdder.

2.4.2 Performant Mixed-Typed Composition

Section 2.4.1 shows that simulation type checks are necessary to ensure a safe composition

of mixed-typed components in GT-HDL. However, the inserted simulation type checks also add

performance overhead. In this section, I propose two type-based simulation optimizations to im-

prove the simulation performance of GT-HDL: simulation type check pruning and signal coalesc-

ing. Simulation type check pruning removes unnecessary type checks during simulation. Signal

coalescing analyzes the connectivities between statically typed signals and coalesces a group of

connected signals into one signal proxy. These two techniques address the performance issue

(described in Section 2.2.2) by eliminating redundant computations based on type information.

GT-HDL adopts both techniques to improve simulation performance.

Simulation Type Check Pruning

As discussed in Section 2.4.1, GT-HDL inserts simulation type checks as part of signal assign-

ments to prevent ill-typed values from propagating and to reduce debugging difficulties. However,

the inserted type checks also incur simulation performance overhead. Simulation type check prun-

ing is a systematic approach to reducing the number of simulation type checks without undermin-

ing the safe mixed-typed composition by leveraging the static type information.

Motivation – I use a mixed-typed composition in 2.8 to motivate the simulation type check

pruning technique. The composition in 2.8 includes two dynamically typed components (one test

source and one test sink) in blue and one statically typed DUT (an iterative divider, with all sub-

components) in green. Section 2.4.1 proposes to insert simulation type checks to all signal assign-

34

IDiv

Te
st

 B
en

ch
: T

es
t S

ou
rc

e

Te
st

 B
en

ch
: T

es
t S

in
k

IDivCtrl

IDivDpath

-

>>1 -

+

>>1

Q
M

U
X

R
M

U
X

D
M

U
X

Q
uo

R
em

D
iv

0

[n:n*2]

[0:n]

[n:n*2]

[0:n]

resp_msg

req_msg ②

en ①

rdy

en

rdy ③

<<2

Dyn. Typed Static. Typed Dyn. Checks①�~ ③Boundary

is<0?

is<0?

diff

diff

sum

TM
U

X

Figure 2.8: A Composition of Dynamically Typed Test Bench and Statically Typed Divider in GT-HDL – Signals
1 through 3 form the minimal set of signals that require simulation-time signal assignment type checks.

ments, which include (1) assignments inside the dynamic domain (blue), (2) assignments inside

the static domain (green), and (3) assignments between these two domains (the boundary between

blue and green). I make the observation that adding simulation type checks to signal assignments

inside the dynamic and static domains and from the static domain to the dynamic domain are not

necessary. On the one hand, no type errors will be generated in the static domain as long as all

components in the static domain have been type checked and the input to the static domain is well-

typed. On the other hand, propagating ill-typed values in the dynamic domain (i.e., "garbage-in,

garbage-out") is acceptable because the domain only includes intentionally made untyped com-

ponents. Therefore, simulation type checks are only necessary at the static and dynamic domain

boundary when values propagate from the dynamic domain to the static one.

Implementation – GT-HDL’s implementation of simulation type check pruning is based on the

type check scheme described in Section 2.4.1. I implement the pruning scheme by removing type

checks in the signal assignment operator and selectively inserting type checks into the dynamically

compiled blocks. During assembling of signal assignment code in the block generation step, we

check if this assignment propagates data from the dynamic domain to the static domain. I only

insert a simulation type check before the corresponding assignment if that is true.

35

wr

rd0
rd1
rd2
rd3
rd4

wr

rd0
rd1
rd2
rd3
rd4

A

A

signal assignment
B @= A

reference
B = A

Before
Signal Coalescing

After
Signal Coalescing

B

B

Static. Typed
Dyn. Typed

Figure 2.9: Signal Coalescing on a Net of Five Readers

Signal Coalescing

In this section, I describe signal coalescing, an optimization technique that leverages the static

type information to reduce the number of signal assignments.

Motivation – A critical aspect of simulation in HDLs is to update the values of intercon-

nected signals correctly. GT-HDL uses the net data structure to represent a group of connected

signals, where precisely one writer signal continuously drives values to zero or more readers. In

PyMTL3, this continuous update is implemented as signal assignments from the writer to all read-

ers, which happen every simulated clock cycle. This assignment-based implementation prevents a

dynamically typed writer2 from driving ill-typed signals to every reader in the net. However, this

implementation also introduces performance overhead due to unnecessary signal assignments.

Signal coalescing leverages the fact that as long as a pair of writer and reader is statically typed,

it is safe to make the reader a reference of the writer instead of performing a signal assignment.

Whenever a statically typed writer is updated, all statically typed readers in the same net will

see the same value via reference. This significantly reduces the number of signal assignments

performed during simulation. I use a net of five readers in Figure 2.9 to illustrate the idea of signal

coalescing. Before signal coalescing, five signal assignments are needed to propagate the writer’s

value to all five readers, regardless of whether the writer or the readers are statically typed or not.

Signal coalescing reduces the required signal assignments from five to two.

Implementation – I implement signal coalescing by modifying how signal assignments are

generated in the block generation step of the simulation step in GT-HDL (related discussions in

Section 2.4.1). I enumerate reader signals in each net and generate code to set up a reference

between the reader and the writer if both signals are from statically typed components. Signal
2More precisely, a writer from a dynamically typed component

36

coalescing requires relatively low implementation efforts because even without coalescing, the

simulation infrastructure needs to keep track of the signal values through a map from attribute

names to the actual value objects. The signal coalescing implementation can be easily built on the

existing attribute-value map.

2.5 Evaluation

GT-HDL draws together guarded generator parameters (Section 2.4.1), simulation type checks

(Section 2.4.1), simulation type check pruning (Section 2.4.2), and signal coalescing (Section 2.4.2)

to achieve safe mixed-typed compositions and high simulation performance. In this section, I de-

scribe my methodology of evaluating the GT-HDL prototype and the evaluation results. In order to

quantitatively evaluate GT-HDL’s static type checking capabilities, I implement a mutation-based

abstract syntax tree (AST) fuzzer that can randomly inject six common categories of bugs that I

learned from actual hardware generator development. I compare the simulation performance of

GT-HDL against PyMTL3 using a composition of dynamically typed test harnesses and statically

typed designs.

This section is organized as follows: Section 2.5.1 introduces the eight RTL design generators

used in my evaluation and why they were chosen. Section 2.5.2 discusses the AST fuzzer and

the categories of bugs it is able to inject. Section 2.5.3 evaluates the bug detection accuracy of

GT-HDL (using Mypy) against PyMTL3 and provides a detailed breakdown of when the bugs are

identified. Section 2.5.4 compares the simulation performance of GT-HDL against PyMTL3.

2.5.1 Evaluation Designs

My evaluation of GT-HDL uses eight hardware design generators shown in Table 2.2. LFSR,

Gray encoder/decoder, priority encoder, round-robin arbiter, and FIFO queue are commonly used

hardware IPs that can be found in most hardware IP libraries. Divider, processor, and CGRA rep-

resent three standalone hardware designs: an integer divider, a RISC-V processor, and an elastic

coarse-grain reconfigurable array [HIT+13]. The divider generator generates a radix-4 iterative

divider for a given data path width. The processor generator generates one or more RV32-IM five-

stage cores. The CGRA generator generates a reconfigurable processing element array with elastic

37

Generator
LoC

(Python)

Instance LoC
(Verilog)

Instance
Configuration

LFSR 31 23 32-bit register
Gray Encoder/Decoder 42 76 32-bit input
Priority Encoder 45 79 32-bit input
Round-Robin Arbiter 49 88 8 requesters
FIFO Queue 125 174 32-bit 2-element queue

Divider 172 535 32-bit datapath
Processor 903 2135 single-core RV32-IM
CGRA 1170 4004 8✓8 32-bit PE array

Table 2.2: Evaluated Hardware Generators – LoC (lines of code) reported by cloc; lines exclude comments and
blanks. The upper segment includes standard hardware IPs and the lower segment includes standalone hardware
designs.

flow control for the given dimension. I choose these eight designs because they form a represen-

tative suite of hardware generators that include both commonly used IPs and standalone hardware

designs. Standard hardware IPs are generally harder to statically type check because such genera-

tors are heavily parameterized and sometimes customized for specific parameter combinations.

2.5.2 Mutation-Based Abstract Syntax Tree Fuzzer

To evaluate the effectiveness of GT-HDL’s static type checking capability, I implement a mutation-

based AST fuzzer to inject design bugs to designs in Section 2.5.1. The AST fuzzer is capable of

injecting six kinds of bugs that I categorized from 249 git commits in the development and testing

of the three standalone design generators. The AST fuzzer parses the syntax tree of the target

hardware generator and searches for syntactic constructs that are suitable for bug injection. The

AST fuzzer recognizes the following commonly used syntactic constructs: constant integers, ex-

plicitly sized constants, signal slicing operations, accessing attributes of a component or interface,

referencing an object by identifier, and all arithmetic and boolean operations. The AST fuzzer

injects a bug by mutating part of the target syntactic construct to produce a syntactically correct

but semantically flawed hardware generator.

Bitwidth mutation – Based on my experiences reviewing hardware development git commits,

bitwidth mismatching is a common category of design bugs in generators. To perform a bitwidth

mutation, the AST fuzzer searches for signal bitwidth declaration statements, slicing operations,

38

and constants and mutates the bitwidth to force a bitwidth mismatch. This category of bugs stresses

GT-HDL’s ability to verify the bitwidth matching generator property.

Component attribute mutation – Embedded dynamically typed HDLs rely heavily on access-

ing component attributes to construct hardware programmatically. It is often easy for designers to

mix the name of one attribute with the other, and component attribute mutation aims to inject this

kind of bug. More specifically, the AST fuzzer looks for an attribute name in attribute access (get

or set) and replaces it with the name of another attribute from the same object. This mutation

stresses GT-HDL’s ability to verify the valid hierarchical reference property because the mutated

attribute may not be a valid hierarchical reference.

Port direction mutation – Incorrect port direction is another common category of design is-

sues. The AST fuzzer introduces port direction bugs by flipping the direction of one port in the

given design. This mutation stresses GT-HDL’s ability to verify the local port direction property.

Name expression mutation – This mutation focuses on changing the variable identifiers to

model various typos that are common in the git commits I reviewed. However, simply mutating a

variable name will almost certainly generate references to nonexistent variables, which is trivial.

To avoid referencing nonexistent variables (which is a trivial bug), the AST fuzzer keeps track of

all available variable names in the current scope and only replaces the target name with a name in

the current scope. This mutation stresses the general robustness of GT-HDL’s symbolic elaborator.

Attribute base mutation – This is a surprisingly simple category of bugs that I found in actual

hardware development commits where hardware designers remove the base object from attribute

access expressions (e.g., s.out becomes out). Most of these bugs lead to accessing nonexistent

variables. However, when this bug appears on the left-hand side of an assignment expression, the

mutated syntax will create a temporary variable, an incorrect behavior that can only be detected at

simulation time. This mutation stresses the general robustness of GT-HDL’s symbolic elaborator.

Functionality mutation – The AST fuzzer implements this mutation by flipping constant val-

ues and arithmetic operators in the code of hardware generators. Unlike other mutations, most

functional bugs cannot be detected through type checking (e.g., a-b type checks if a+b already

type checks). Therefore, a test suite of high code coverage is required to achieve a high detection

rate in this category. Some cases of functionality mutation stress GT-HDL’s ability to verify the

bounded array indexing property because the constants in the indexing expression can be mutated.

39

(a) Bug Detection Results on Common IPs (b) Bug Detection Results on Standalone Designs

Figure 2.10: Bug Detection Results – (a) and (b) show the number of bugs detected by PyMTL3 (P) and GT-HDL
using Mypy (G) at different stages. The more bugs detected ahead of time the better.

2.5.3 Bug Detection

In this section, I evaluate the bug detection effectiveness of PyMTL3 and GT-HDL (using Mypy

as an optional type checker) on eight bug-injected hardware modules. I randomly inject bugs into

a generator using the AST fuzzer (one bug at a time) and then evaluate if PyMTL3 and GT-HDL

are able to detect the injected bug. This evaluation compares the effectiveness of Mypy against

state-of-the-art elaboration-time checks in PyMTL3.

Figure 2.10 shows the number of bugs detected by PyMTL3 and GT-HDL at each stage: ahead

of time (statically), during elaboration, during simulation, or not detected. A syntax mutation may

not be detected because the mutation does not lead to a type error, does not change the generator’s

functionality, or the simulation test vectors do not reach 100% coverage. The figure indicates that

in general, GT-HDL with Mypy can statically detect a significant number of design bugs that would

have been caught with elaboration time checks in PyMTL3. In the cases of a standalone design

(divider, processor, and CGRA), GT-HDL with Mypy can even detect some design bugs that are

only captured with simulation time checks in PyMTL3. These results show that GT-HDL with

Mypy can detect more design bugs than PyMTL3 alone and Mypy discovers these bugs ahead of

time.

40

Divider Processor CGRA

Sim. Cycles 360K 130K 10K

Performance cycles/s speedup cycles/s speedup cycles/s speedup

PyMTL3 5.91K - 1.04K - 9.42 -
GT-HDL 10.01K 70.57% 1.42K 37.35% 12.85 36.35%

Table 2.3: Simulation Performance

2.5.4 Simulation Performance

I evaluate the simulation performance implications of type-based simulation optimizations by

comparing the simulation performance of GT-HDL against PyMTL3. I run long simulations on

a mixed-typed composition (including a dynamically typed test harness and a statically typed de-

sign instance) and record simulation performance (simulated cycles per second). For the divider

instance, I send 20K integer division requests to the 32-bit divider. For the processor instance,

I use a program with a 10K-iteration loop that performs memory loads, arithmetics, and branch

instructions. For the 32-bit 8-row by 8-column CGRA instance, I simulate a dot product kernel

whose input is two 10K-element vectors. I use the CPython interpreter for the simulation perfor-

mance experiments and take the average execution time of five simulation runs. Table 2.3 shows

the simulation performance and speedups.

We can see from the table that, on average, the GT-HDL simulation performance is 48.1%

higher than the simulation performance of PyMTL3. This considerable performance improvement

of GT-HDL supports my claim (Section 2.4.2) that type-based simulation optimizations can signif-

icantly improve simulation performance (simulated cycles per second) by eliminating unnecessary

simulation type checks and signal assignments inside the statically typed components.

2.6 Related Work

Scaling dynamically typed scripting languages to large applications is challenging partly due

to the lack of type annotation syntax or a static type system. Optionally typed programming lan-

guages generally add an optional static type system to a scripting language to support static type

warnings while still preserving the common programming idioms in the scripting languages. Ex-

isting optionally typed programming languages include Typed Lua [MMI14], Typed Clojure [BS-

41

DTH16], TypeScript [BAT14], and Dart [FNT15]. The optional static type system allows for a

relatively smooth transition from an existing scripting language codebase. However, most option-

ally typed programming languages implement type erasure in their compilers, which means they

do not leverage static type information for performance optimization.

Siek and Taha proposed gradual typing [ST06, ST07], a promising solution to the scalability

issue of dynamically typed languages. Researchers have since designed numerous gradually typed

languages. Typed Racket [THF08, TFG+16] implements part of the support for sound gradual

typing using contracts [FF02]. When a higher-order value crosses the boundary between statically

and dynamically typed code, a contract is created to monitor the value’s runtime behavior. If the

value’s behavior is incompatible with its type, the contract signals this violation to the program-

mer. Reticulated Python [VKSB14] is a framework of several gradually typed Python dialects.

Vitousek et al. studied the performance implications of different dynamic semantics using Reticu-

lated Python. Similar to the transient dynamic semantics in Reticulated Python, guarded generator

arguments in GT-HDL enforce the type annotations of generator arguments by systematically in-

serting elaboration-time type checks. It is worth noting that combining Reticulated Python and

PyMTL3 should produce a PyMTL3 implementation with the same dynamic semantics as the

PyMTL3 reference implementation. However, Reticulated Python+PyMTL3 will almost certainly

not be as capable and performant as GT-HDL.

More recently, researchers have come to define a more rigorous criterion that examines the pro-

gram’s behaviors when type annotations are added or removed [SVCB15]. This criterion, known

as the “gradual guarantee”, helps determine if a new language qualifies as a gradually typed one.

Since GT-HDL assumes that type annotations have to be added at a per-generator granularity,

adding or removing type annotations in GT-HDL simply changes the number of statically and

dynamically typed components in the component hierarchy. Removing type annotations from a

well-typed design does not affect any other typed components or change the simulation outputs.

Adding type annotations to a well-typed design does not affect the simulation outputs either unless

the typed generator is rejected by GT-HDL due to an incorrect type annotation. Therefore, we

hypothesize that GT-HDL does provide the gradual guarantee.

42

2.7 Conclusion

In this chapter, I address the verification challenge in dynamic HDLs with GT-HDL, a new

HDL with optional type checking to ensure safe and efficient mixed-typed composition. GT-HDL

statically checks generators using an off-the-shelf optional type checker, which can type check

simple hardware modules in dynamic HDLs. To enable safe and performant mixed-typed com-

positions, GT-HDL first insert elaboration- and simulation-time type checks and then selectively

removes redundant simulation-time checks based on static type information to improve simulation

performance. My evaluation of a GT-HDL prototype demonstrates up to 70.1% improvement of

simulation performance across three standalone hardware designs.

43

CHAPTER 3
SYMBOLIC ELABORATION:

ADDRESSING VERIFICATION CHALLENGES
IN GENERATOR DEVELOPMENT

Recent research in agile hardware methodologies has argued for using sophisticated and highly

parametrized hardware generators to significantly improve the productivity of hardware design and

implementation. However, challenges for verifying critical generator properties across all possible

parameter combinations have made it challenging for hardware description languages (HDLs) to

realize the productivity benefits of these advances. In this chapter, I propose symbolic elaboration,

an SMT-based static analysis technique that validates generator properties for all parameter com-

binations. Symbolic elaboration validates common generator properties (e.g., matching bitwidths,

bounded array indexing) to improve the verification productivity during generator development.

I evaluate symbolic elaboration on a suite of hardware generators. My evaluation shows that, on

average, the symbolic elaborator is able to statically detect 90.6% of randomly injected bugs.

3.1 Introduction

Dynamic HDLs play a pivotal role in addressing the verification challenges associated with

generator development within the context of agile hardware methodologies. As mentioned in the

previous chapter, the end of Moore’s Law and Dennard scaling is driving computer architects

to specialized hardware systems to meet the performance and efficiency demands of emerging

applications. Dynamic HDLs promote the creation of highly-parameterized generators and en-

able rapid prototyping [SWD+12, AAB+16, IKL+17, BVR+12, TH19, JPOB20, NM15], address-

ing both the increasing complexity of specialized hardware designs and the need to mitigate sub-

stantial non-recurring engineering (NRE) costs. Additionally, dynamic HDLs facilitate generator

verification by enabling the integration of generated hardware instances with flexible behavioral

models [LKK+18,FZ03,NZP12,LZB14, JPOB20, JOP+21], further streamlining the development

cycle.

Unfortunately, dynamic HDLs generally do not provide any static correctness guarantees for

hardware generators, which creates a prolonged design cycle where generator properties have to

be validated during elaboration or simulation. Figure 3.1 shows an adder generator example and

44

1 class FullAdder(Component):
2 def construct(s):
3 s.a = InPort(Bits1)
4 s.b = InPort(Bits1)
5 s.cin = InPort(Bits1)
6 s.sum = OutPort(Bits1)
7 s.cout = OutPort(Bits1)
8
9 @update

10 def upblk():
11 s.sum @= s.cin ^ s.a ^ s.b
12 s.cout @= ((s.a ^ s.b) & s.cin) | (s.a & s.b)
13
14 class Adder(Component):
15 def construct(s, Width):
16 n = get_nbits(Width)
17 s.a = InPort(Width);
18 s.b = InPort(Width)
19 s.out = OutPort(mk_bits(n+1))
20
21 s.fa = [FullAdder() for _ in range(n)]
22 s.carry = Wire(mk_bits(n+1));
23 s.sum = Wire(Width)
24
25 s.carry[0] //= 0
26 for i in range(n):
27 s.fa[i].a //= s.a[i]
28 s.fa[i].b //= s.b[i]
29 s.fa[i].cin //= s.carry[i]
30 s.carry[i+1] //= s.fa[i].cout
31 s.sum[i] //= s.fa[i].sum
32
33 s.out //= lambda: concat(s.carry[n], s.sum)

(a) PyMTL3 Adder
1 class PolyTestHarness:
2 def __init__(s, m, test_vectors, ifunc, ofunc):
3 m.apply(DefaultPassGroup())
4 m.sim_reset()
5 for t in test_vectors:
6 ifunc(m, t)
7 m.sim_eval_combinational()
8 ofunc(m, t)
9 m.sim_tick()

10 print("Test Passed!")
11
12 th = PolyTestHarness(
13 Adder(Bits32), [
14 (3, 5, 8),
15 (1, 42, 32),
16 (10, 8, 18),
17 (0, 0, 0),
18],
19 lambda m,t: (Assign(m.a,t[0]), Assign(m.b,t[1])),
20 lambda m,t: Eq(m.out,t[2])
21)

(b) Polymorphic Test Harness

Figure 3.1: Adder and Polymorphic Test Harness in PyMTL3 – (a) Adder is parametrized by its data path width
(Width); it uses the FullAdder module as its sub-components; ports and wires are constructed with their bitwidth
in parentheses; //= is the connection operator that connects two ports or wires together. (b) Line 12-21 show how
to specialize the test harness for the adder, which includes test vectors and input setting/output checking lambda
functions; the harness is dynamically typed to allow passing in customized input and output functions of any valid
Python code.

45

its test harness in PyMTL3, a state-of-the-art dynamic HDL. Similar to other dynamic HDLs,

PyMTL3 performs no static checks on the FullAdder nor the Adder generator because the con-

crete generator parameters are not available before elaboration. Given a set of concrete generator

parameters (e.g., 32-bit data path width for Adder), PyMTL3 elaborates the generator into a hier-

archy of hardware instances and checks for structural connection errors during elaboration among

those instances (e.g., dynamic HDLs can verify the signals connected to the inputs of the adder

have the same bitwidth 32, as indicated in line 27 31 in Figure 3.1(a)). And further given a set

of concrete test vectors, PyMTL3 simulates the target design with the test harness and check for

behavioral errors using a polymorphic test harness (Figure 3.1(b)). The lack of capable static

checking abilities creates a long design-debug cycle where design issues can only be identified and

fixed after elaboration or simulation, which hinders design productivity.

In this chapter, I propose symbolic elaboration (SE) to provide static correctness guarantees for

hardware generators in dynamic HDLs and shorten the design-debug cycle. I first make the obser-

vation that optional type checkers, which can type check some hardware generators, are too spe-

cific to software programs and cannot effectively verify critical hardware generator properties. To

overcome this limitation, I observe that most hardware generators can be expressed as an abstract

model whose structural and behavioral models rely on a symbolic generator parameter rather than

concrete values. I propose symbolic elaboration, a novel technique that translates these abstract

structural and behavioral models into integer constraints that can be solved by SMT solvers. The

proof of the correctness of hardware generators is obtained if the solver finds such constraints un-

satisfiable, and a counterexample of the violation of generator properties is generated if the solver

finds a satisfiable assignment of variables. The prototype implementation of symbolic elaboration

can verify critical generator properties including matching bitwidths, correct local port directions,

bounded array indexing, and valid hierarchical references. I evaluate the symbolic elaboration pro-

totype on a suite of IP and design generators in PyMTL3 and demonstrate significant improvement

in bug detection rate over an optional type checker. It is worth noting that even though I evaluate

symbolic elaboration in a dynamic HDL, the concept of symbolic elaboration can be applied to

virtually all HDLs that support generators.

This chapter makes the following contributions:

• I describe the limitations of using off-the-shelf optional type checkers to type check hardware

generators (Section 3.3).

46

HDLs
Prop. Checked Target of Prop. Enforcement

AoT ET ST AoT ET ST

Traditional Static HDLs
Single InstanceVerilog/SystemVerilog [iee17],

VHDL [iee09]

High-Level Static HDLs
All Instances Single InstanceBluespec SystemVerilog [Nik04],

Clash [BKK+10]

Constructional Static HDLs

All Instances Single Instance
Chisel [BVR+12],
SpinalHDL [Spi23],
Lava [BCSS98]

Dynamic HDLs

Single Instance Single Input
PyRTL [DTS20], Migen [Mig23],
MyHDL [myh14],
PyMTL3 [JPOB20]

Dynamic HDLs with
All Instances Single Instance Single Input

Symbolic Elaboration*

Table 3.1: Existing HDLs and Their Characteristics – Prop.: properties. Hardware properties can be enforced at
three times: ahead of time (AoT) by checking hardware generators (static); elaboration time (ET) by checking hard-
ware instances; simulation time (ST) by checking signal assignments in simulation. We focus on hardware properties
discussed in Section 3.2.2. All Instances: the given hardware property is guaranteed to hold on all instances of the tar-
get generator under all input; Single Instance: the given hardware property is guaranteed to hold on the target instance
under all input; Single Input: the given hardware property is guaranteed to hold on the target instance under the given
input. / / : almost all/some/no properties enforced; Dyn. typed: dynamically typed. *: our proposal statically
provides strong generator correctness guarantees (All Instances) for dynamic HDLs.

• I propose symbolic elaboration to overcome the limitations of off-the-shelf static type check-

ers and statically verify critical hardware generator properties (Section 3.4).

• I evaluate a prototype SE implementation on eight RTL design generators in a state-of-the-art

dynamic HDL using a mutation-based abstract syntax tree (AST) fuzzer (Section 3.5).

3.2 Background

I begin by providing some background on hardware description languages and the target hard-

ware generator properties I focus on in this chapter. Section 3.2.1 introduces existing HDLs. Sec-

tion 3.2.2 introduces the hardware properties I try to verify in this chapter.

47

3.2.1 Existing HDLs

Table 3.1 summarizes existing HDLs based on the following characteristics: generator support,

dynamically typed behavioral model support, when hardware properties are enforced in the hard-

ware design cycle, and the target on which the given properties are enforced. Table 3.1 shows that

(1) traditional HDLs like SystemVerilog and VHDL fail to support programmatic generators and

dynamically typed behavioral modules; (2) high-level HDLs and constructional HDLs are able to

enforce hardware properties on all instances of some generators but generally do not support dy-

namically typed behavioral models; (3) dynamic HDLs support both programmatic generators and

dynamically typed behavioral modules but do not enforce hardware properties ahead of time.

Traditional Static HDLs – Verilog/SystemVerilog [iee17] and VHDL [iee09] belong to tra-

ditional statically typed HDLs. Verilog, SystemVerilog, and VHDL all support limited forms of

hardware generation through generate statements (if- and for-statements). However, hardware gen-

erators in these HDLs cannot leverage more advanced programmatic constructs such as recursive

functions, object-oriented abstractions, and advanced data structures beyond lists. This makes it

challenging to programmatically construct hardware instances with these HDLs. Their static type

systems also impose challenges on creating dynamically typed components. Traditional HDLs en-

force hardware properties by type checking the elaborated hierarchy of hardware instances, which

happens in the middle of a hardware design cycle.

High-Level Static HDLs – Bluespec SystemVerilog [Nik04] has a powerful static type sys-

tem. It supports programmatic hardware generators and can type check the generators to discover

potential design issues early in the design cycle. However, Bluespec cannot verify critical proper-

ties such as bitwidth mismatches in vector slicing operations and defers this check to elaboration.

Clash [BKK+10] is a Haskell dialect for hardware development. It benefits from Haskell’s static

type system and is able to type check the generators before elaboration. Both Bluespec SystemVer-

ilog and Clash adopt a different level of abstraction from the conventional register-transfer level

abstraction and do not support dynamically typed components.

Constructional Static HDLs – Chisel [BVR+12] and SpinalHDL [Spi23] are HDLs embedded

in Scala. Both Chisel and SpinalHDL support programmatic hardware generators. Lava [BCSS98]

is an HDL embedded in Haskell capable of programmatic generators. Unlike Clash, Lava does

not leverage Haskell’s type system to type check hardware generators. Constructional static HDLs

mainly enforce HDL hardware invariants by type checking the elaborated hardware instances.

48

More specifically, for Chisel, type checks on hardware instances happen through a detailed analysis

on FIRRTL, a post-elaboration intermediate representation of hardware [IKL+17]. Constructional

static HDLs focus on hardware construction using various modeling primitives embedded in the

statically typed host language (such as Scala) and do not support dynamically typed components.

Dynamic HDLs – Dynamic HDLs support both programmatic hardware generators and dy-

namically typed behavioral models thanks to the flexibility of its host language. PyRTL [CTD+17],

Migen [Mig23], MyHDL [Dec04], PyMTL [LZB14], and PyMTL3 [JPOB20] are all HDLs em-

bedded in Python, a dynamically typed programming language. Figure 3.1 shows a parametrized

adder generator and a dynamically typed polymorphic test harness in PyMTL3, a state-of-the-art

dynamic HDL. The polymorphic test harness highlights how dynamic HDLs help improve verifi-

cation productivity by promoting the reuse of parametrizable verification modules. In the polymor-

phic test harness example, the input setter and output checker of the test harness can be abstracted

as functions taking variable number of arguments. Therefore, it is possible to reuse the harness and

simulation setup across different designs by passing in different functions. Almost all existing dy-

namic HDLs do not check generators due to the lack of static checking capabilities. Instead, most

dynamic HDLs rely on elaboration- and simulation-time checks on a flattened module hierarchy to

enforce critical hardware properties.

Scope of This Chapter – I focus on symbolic elaboration in the context of dynamic HDLs in

this chapter. Symbolic elaboration is particularly well suited to dynamic HDLs because it helps fill

the static checking gap commonly found in these languages. It is also worth noting that the core

idea of symbolic elaboration can be applied to other HDLs to enable more powerful static checking

on generators than currently available in static HDLs.

3.2.2 Target Hardware Generator Properties

In this section, I introduce four key hardware generator properties on design correctness and

synthesizability, which are targeted by symbolic elaboration.

Matching Bitwidths – One important aspect of structural modeling is modeling the circuit

using a set of interconnected signals. Therefore, it is crucial for HDLs to verify that structurally

connected signals have the same bitwidth. The matching bitwidth property also applies to be-

havioral modeling, where the bitwidths of operands in arithmetic operations should be equal. As

49

an example, the left-hand side (LHS) and right-hand side (RHS) of connections on line 27-31 in

Figure 3.1(a) should have the same bitwidth.

Correct Local Port Directions – Interconnected signals in circuits are generally further elab-

orated into nets of signals where at most one active signal drives all other signals in the same net.

A complete net representation requires extensive cross-module analysis on the elaborated compo-

nent [IKL+17,JPOB20] and may not be possible using static analysis. Local port direction analysis

focuses on the connections within a component and can find common direction issues such as at-

tempting to drive input-only ports from inside a component. As an example, only an output port

can be used on the LHS of a signal assignment (line 33 in Figure 3.1(a)).

Bounded Array Indexing – Hardware generators often leverage arrays to model signals and

sub-components. Design issues can therefore arise from out-of-bound array indexing. Unlike

array index calculation in programs which can have arbitrary computation, array index generation

in hardware generators generally consists only of simple arithmetics over constants, generator

parameters, and loop induction variables. Therefore, static analysis on hardware generators should

be able to detect almost all out-of-bound array indexing. As an example, array indices have to be

smaller than the array length (line 25, 27-31 in Figure 3.1(a)).

Valid Hierarchical References – Traditional HDLs like Verilog allow accessing any attribute

in the elaborated module hierarchy using a globally unique hierarchical name to facilitate hard-

ware testing [iee17]. However, arbitrary hierarchical references do not model actual hardware

behaviors. Synthesizable hardware generators must communicate through input and output data

ports between two immediate levels in the module hierarchy. As a concrete example, the valid

hierarchical reference property requires that only the input and output ports of the FullAdder

sub-components can be accessed (line 27-31 in Figure 3.1(a)).

3.3 Limitations of Optional Type Checkers

In Section 2.3 of the previous chapter, I demonstrated that Mypy, an optional type checker

for Python, can provide static correctness guarantees for simple hardware generators in PyMTL3.

However, more sophisticated generators typically have complex properties that are challenging to

encode in optional type checker’s simple type system. Therefore, optional type checkers like Mypy

often fails to capture some of the trial generator properties violations. In this section, I discuss

50

the concrete limitations of applying off-the-shelf optional type checkers on hardware generators.

These limitations motivate the symbolic elaboration technique and Section 3.4 presents solutions

to these limitations.

Mypy cannot statically verify all matching bitwidths – In the adder generator in Figure 3.1(a),

Mypy cannot reason about the exact bitwidth of s.out and the result of concat(). Therefore, it

fails to verify that the LHS and RHS of line 33 in Figure 3.1(a) have the same bitwidth. I make the

observation that Mypy is only able to verify matching bitwidths that are not parametrized. Unfortu-

nately, many hardware generators rely on parametrized signal bitwidths (line 16 in Figure 3.1(a))

and deriving new hardware data types (line 19, 22 in Figure 3.1(a)), which undermine Mypy’s

effectiveness of type checking generators.

Verifying other generator properties with Mypy is challenging – Apart from the matching

bitwidth property, it is challenging to encode other important generator properties discussed in

Section 3.2.2 into Mypy. The bounded array indexing property requires analysis of the possible

values of array indices, which Mypy does not perform. Both the correct local port direction and

valid hierarchical reference properties involve complicated analysis of signals and components,

which is challenging to encode in Mypy’s simple type system.

Mypy does not account for path conditions during analysis – Hardware generators can also

include if-statements to conditionally generate different hardware instances based on the given

generator parameters. I refer to the set of if-conditions required to model a structural connection or

behavior as path conditions. Path conditions can significantly affect the analysis of hardware gen-

erators because connections and child components may be instantiated conditionally. If-conditions

can affect the result of the array index analysis because the possible values of an array index might

depend on the if-condition. Mypy does not account for path conditions by design and therefore

cannot perform the analysis described above.

3.4 Checking Generators using Symbolic Elaboration

In the previous section, I showed that existing off-the-shelf optional type checkers can verify

certain generator properties but still have severe limitations in their capabilities. To overcome the

limitations of existing optional type checkers, In this section, I propose a novel technique, symbolic

elaboration, to address the limitations of off-the-shelf static type checkers. I observe that important

51

generator properties can be encoded into integer constraints and that such constraints can be solved

by a satisfiability modulo theory (SMT) solver. I design and implement a symbolic elaborator to

perform symbolic elaboration, which statically analyzes the given hardware generator, builds an

abstract generator model, constructs the integer constraints corresponding to the properties, and

solves them using the Z3 SMT solver [MB08]. Compared to Mypy, the symbolic elaborator is able

to reason about path conditions and statically verify all four properties in Section 3.2.2.

3.4.1 Building Abstract Generator Models

In this section I discuss how to build the abstract generator model based on a given target

generator. I use Figure 3.2(a) and (b) as an example and demonstrate how to build an abstract

adder model based on an example adder generator.

Reasoning about Generator Argument Arithmetics – The key feature that distinguishes

symbolic elaboration from static type checkers like Mypy is the ability to precisely reason about

generator argument arithmetics. Figure 3.2(b) shows the symbol table (which keeps track of active

symbols the elaborator has encountered) and the abstract generator model (which records all active

attributes of the current generator). The abstract generator model demonstrates that generator

attributes can be potentially generic over a symbol or any arithmetics on symbols and concrete

numbers. For example, the s.out port has a bitwidth derived from the arithmetics between the

argument Width and an integer one. This arithmetic operation is preserved and will be translated

into SMT-solvable constraints when checking properties of the abstract model.

Accounting for Path Conditions – In contrary to static type checkers like Mypy, path condi-

tions are first-class citizens in symbolic elaboration: every entry in the symbol table or the abstract

generator model has a definition condition (or defcond) which is the path condition up to the entry’s

point of definition. The symbolic elaborator maintains path conditions by pushing the if-condition

or its negation to the PathConds stack before visiting the statements in the if- or else-branch. It

pops the condition from the PathConds stack after the if-statement visit has finished. When the

elaborator registers an entry with the symbol table or the abstract generator model, it constructs a

boolean expression of the conjunction of all conditions in PathConds and use it as the definition

condition of the entry. For example, in Figure 3.2(b), the dark red entry for loop induction variable

i has a definition condition i ' 0 because it is under the if-branch of the if-condition on line 17.

52

1 T = TypeVar("T", bound=Bits)
2 class Adder(Component, Generic[T]):
3 def __init__(s, Width:Type[T]) -> None:
4 ...
5 def construct(s, Width:Type[T]) -> None:
6 n = get_nbits(Width)
7 s.a = InPort(Width)
8 s.b = InPort(Width)
9 s.out = OutPort(mk_bits(n+1))

10 s.fa = [FullAdder() for _ in range(n)]
11 s.carry = Wire(mk_bits(n+1))
12 s.sum = Wire(Width)
13
14 for i in range(n):
15 if i >= 0:
16 ...
17 connect(s.carry[i+1],s.fa[i].cout)
18 if i == 0:
19 connect(s.carry[i],0)
20
21 @update
22 def upblk() -> None:
23 s.out @= concat(s.carry[n], s.sum)

(a) Target adder generator

Adder Symbol Table

Name Type DefCond

Width Bits; generator arg true
n int; to_value(Width) true
i int; 0 & i < n i ' 0

Adder Abstract Generator Model

Name Type DefCond

a InPort[Width] true
b InPort[Width] true
out OutPort[n+1] true
fa List[FullAdder] of n true
carry Wire[n+1] true
sum Wire[Width] true

(b) Symbolic elaboration results

Property: Bounded Array Index

s.carry[i+1]

Array Length: n+1
Index Expression: i+1

Use Condition: i ' 0

¬ (0 & i+1 < n+1) 0 (i ' 0)
0 (0 & i < n) 0 (n =Width)

Property: Matching Bitwidth

out@=cat(carry[n],sum)

LHS Width: n+1
RHS Width: 1+to_value(Width)

Use Condition: true

¬ (n+1 = 1+Width)
0 (n =Width)

(c) Properties to Constraints

Figure 3.2: Symbolic Elaboration of an Adder – (a) target adder generator under elaboration (identical to Adder

in Figure 3.1(a)); (b) symbolic elaboration results: dark red line indicates the state of the symbol table when the
elaborator is processing line 16; (c) translation of bounded array index and bitwidth matching properties into integer
constraints.

53

1 module Generator {
2 -- Types
3 data_type = GeneratorArgDataType(string name)
4 | DataTypeFromNum(num_expr bitwidth)
5
6 type = ComponentType(string comp)
7 | DataType(data_type t)
8
9 -- Statements

10 stmt = Construct(arg* args, stmt* body)
11 | If(bool_expr cond, stmt* body, stmt* orelse)
12 | TmpVarAssign(string target, num_expr value)
13 | AttrAssign(string target, inst value)
14 | SignalAssign(sig_expr target, sig_expr value)
15 | Connect(sig_expr u, sig_expr v)
16 | For(string var, int start, int end, stmt* body)
17
18 -- Expressions
19 num_expr = GeneratorArgNum(string name)
20 | InductionVarNum(string name, int start, int end)
21 | UnsizedNum(int num)
22 | UniOpNum(num_uni_op op, num_expr value)
23 | BinOpNum(num_expr left, num_bin_op op, num_expr right)
24 | NumFromDataType(data_type t)
25
26 num_uni_op = NumClog2
27 num_bin_op = NumAdd | NumSub | NumMult
28
29 sig_expr = CurrentGenerator()
30 | AttributeAccess(sig_expr value, string attr)
31 | ArrayIndex(sig_expr value, num_expr index)
32 | VectorIndex(sig_expr value, num_expr index)
33 | BinOpSig(sig_expr left, sig_bin_op op, sig_expr right)
34 | Concat(sig_expr* args)
35
36 sig_bin_op = Add | Sub | Mult | LShift
37
38 bool_expr = NumCompare(num_expr left, bool_cmp_op op, num_expr right)
39 | BinOpBool(bool_expr left, bool_bin_op op, bool_expr right)
40 | UniOpBool(bool_uni_op op, bool_expr value)
41
42 bool_cmp_op = BoolCmpEq | BoolCmpLt
43 bool_bin_op = BoolAnd | BoolOr | BoolXor
44 bool_uni_op = BoolNot
45
46 -- Component/Signal Instantiation
47 inst = CompInst(string comp, arg* args, int* dims)
48 | SignalInst(data_type bitwidth, int* dims)
49
50 -- Construction Arguments
51 arg = Argument(string name, type t)
52 }

Figure 3.3: Core Generator Modeling Syntax Targeted by the Symbolic Elaborator – *: zero or more objects.

3.4.2 Checking Properties of Abstract Generator Models

In this section I discuss how to encode hardware generator properties and path conditions into

integer constraints that the Z3 SMT solver can verify. I use Figure 3.2(c) as an example and

demonstrate how to check the bounded array index and matching bitwidth properties on an example

adder generator.

54

Translating If-Conditions and Numeric Expressions – I use the term numeric expressions

to refer to the arithmetics between symbols (i.e., generator arguments and loop induction vari-

ables) and concrete integers. Translating numeric and boolean expressions into Z3 expressions is

straightforward because (1) generator arguments have a one to one correspondence to integer vari-

ables in Z3; (2) for-loop induction variables correspond to integer variables with two constraints

on its lower and upper bound (e.g., induction variable i in for i in range(n) has constraints

i >= 0 and i < n); (3) conversion between bitwidth types and integers using get_nbits and

mk_bits functions can be handled by adding one constraint that asserts the two symbols involved

in the conversion are equal; (4) the Python binding of Z3 also offers integer constants and common

binary arithmetic/comparison operations over integers.

Encoding the clog2 Function – One difficulty in encoding numeric expressions is that the

clog2 operation (clog2(n) = *log2n0) does not have a straightforward encoding in SMT solvers

like Z3. I address this issue in two ways. I first add constant folding support so that clog2

operations on constant values can be evaluated and replaced with its result. For non-constant clog2

operands, I encode the clog2 operation as an uninterpreted function from an integer to an integer in

Z3. Z3 makes no assumptions about an uninterpreted function F except that x = y � F(x) = F(y).

This encoding scheme makes sure that any verified generator properties related to clog2 must be

true (i.e., no false-negatives).

Verifying Generator Properties – After translating numeric and boolean expressions to Z3, it

is straightforward to verify the generator properties. To verify the bounded array index property,

I construct an integer constraint that asserts the index has values out of the array bound. More

specifically, for index expression i and array length len with definition condition de f and under

use condition use, integer constraint Equation 3.2 will be checked by Z3 for counter examples (as

shown in Figure 3.2(c)). To verify if bitwidth u is the same as v under definition condition de f and

use condition use, I solve Equation (3.1) (as shown in Figure 3.2(c)). To verify the correct port

direction or the valid hierarchical access property, I solve the conjunction of definition condition

de f and use condition use Equation 3.3 and consult the symbolic elaboration results to check

if the port direction or hierarchical name is valid. It is worth noting that if Z3 finds de f 0 use

unsatisfiable, checking the target property is unnecessary because the definitions of symbols and

signals in the target property are not available at the point of use.

55

(u j v)0de f 0use (3.1)

¬(0 & i0 i < len)0de f 0use (3.2)

de f 0use (3.3)

If Z3 finds Equation 3.1 or Equation 3.2 unsatisfiable, we have obtained a proof that u = v or

i does not cause out-of-bound accesses for all possible values of integer variables. Otherwise we

have obtained a counter example which corresponds to a set of symbol values that lead to design

issues to be fixed.

3.4.3 Symbolic Elaboration Implementation

I implement a symbolic elaborator prototype that targets a subset of PyMTL3 hardware mod-

eling DSL. My implementation requires type annotations for generator parameters. The supported

modeling syntax allows efficient static analysis and is also expressive enough to model most hard-

ware generators. Figure 3.3 shows the core components of the supported modeling syntax in the

Zephyr abstract syntax description language [WaK97]. The core syntax is designed to be similar to

the Python 3 syntax [py23] and serve as a straightforward target for PyMTL3 hardware generators.

Statements – The root of the generator abstract syntax tree is a Construct node, which corre-

sponds to the construct method of each hardware generator. I explain the following three syntax

nodes because they interact with the elaborator data structure in important ways: (1) If nodes

corresponds to an if-else statement in the generator (e.g., line 17,19 of Figure 3.2(a)); this node

has an if-condition of boolean expressions which are used to derive path conditions; (2) For nodes

corresponds to a for-loop in the generator (e.g., line 14 of Figure 3.2(a)); this node introduces a

new name constrained by the star and end of the for-loop under the current path condition; (3)

AttrAssign nodes indicate the addition of signal and sub-component attributes to the current gen-

erator (e.g., line 7-13 of Figure 3.2(a)); this node adds an attribute to the current generator under

the current path condition.

Signal Expressions – Signal expressions reference signals in the current generator and are

common operands of arithmetic operations and structural connections (e.g., concat(s.carry[n],

s.sum) in Figure 3.1(a) are both signal expressions). Common signal expressions include attribute

56

Require: T : AST node of the generator under elaboration.
Require: P: Path conditions (set of bool_expr).
Require: N: Names encountered (set of num_expr).
Require: G: Generator (set of pairs (attribute name,

inst)).
Ensure: Return type of AST node T ; none if T is a state-

ment.
1: function SYMBELAB(T,P,N,G) V Args passed by

reference.
2: if T is Construct then
3: for all stmt " T.body do
4: SYMBELAB(T,P,N 1T.args,G)
5: if T is If then
6: for all t " T.body do
7: SYMBELAB(t,P1T.cond,N,G)
8: for all t " T.orelse do
9: SYMBELAB(t,P1¬T.cond,N,G)

10: if T is For then
11: for all t " T.body do
12: SYMBELAB(t,P,N 1(T.var,T.start,T.end),G)
13: if T is AttrAssign then V v∂P: v only valid if P

holds
14: v ⇥ SYMBELAB(T.value,P,N,G)
15: G ⇥ G1 (T.target,v)∂P
16: if T is GeneratorArgNum then
17: N ⇥ N 1T.name∂P
18: return GeneratorArgNum(T.name)

19: if T is ArrayIndex then
20: I ⇥ bitwidth of SYMBE-

LAB(T.index,P,N,G)
21: L ⇥ length of SYMBELAB(T.value,P,N,G)
22: C ⇥ defcond of I and L via N 1G
23: if ¬(0 <= I < L) solvable w.r.t C0P then
24: Report out-of-bound array index at T
25: if T is SignalAssign,Connect,BinOpSig then
26: V Assume two operands are T.le f t and

T.right. X
27: L ⇥ bitwidth of SYMBELAB(T.le f t,P,N,G)
28: R ⇥ bitwidth of SYMBE-

LAB(T.right,P,N,G)
29: C ⇥ defcond of L and R via N 1G
30: if ¬(L = R) solvable w.r.t C0P then
31: Report bitwidth mismatch at T
32: if T is SignalAssign then
33: t ⇥ SYMBELAB(T.le f t,P,N,G)
34: if øH " Gs ⇥ t " Gi 1Ho w.r.t C0P then
35: Report incorrect port direction at T
36: if T is AttributeAccess then
37: V ⇥ SYMBELAB(T.value,P,N,G)
38: C ⇥ defcond of V via N 1G
39: if V " Gs 0T.attr /"Vp w.r.t C0P then
40: Report invalid hierarchical reference at T

Figure 3.4: Core Symbolic Elaboration Algorithm. defcond=definition condition; Gi=set of input ports of generator
G; Go=set of output ports of generator G; Gs=set of sub-generators of generator G (i.e., generators instantiated inside
G); Gp=Gi 1Go (set of all ports of generator G).

accesses (AttributeAccess), indexing into a signal array (ArrayIndex), indexing into a signal

(VectorIndex), binary arithmetic operations between signals (BinOpSig), and signal concatena-

tion (Concat).

Numeric Expressions – Numeric Expressions represent integers used in hardware generators.

Common numeric expressions include generator arguments that have an integer type (GeneratorArgNum),

for-loop induction variables (InductionVarNum), and integer literals (UnsizedNum). The numeric

expressions also keep track of the binary (BinOpNum) or unary (UniOpNum) operations between

numeric expressions. This enables precise reasoning about numeric values, which is critical in

matching bitwidth analysis.

57

Boolean Expressions – Boolean expressions are used in if-conditions. The syntax in Figure 3.3

assumes that only comparisons between numeric expressions can be used in the if-conditions.

However, it is straightforward to extend the syntax to support if-conditions with signal values

(often used in behavioral modeling). Boolean expressions enable the precise reasoning of array

index values, which is critical to detecting out-of-bound array indices.

Core Symbolic Elaboration Algorithm – Figure 3.4 shows the core algorithm of symbolic

elaboration which is based on the traversal of the target generator’s abstract syntax tree (AST; syn-

tax defined in Figure 3.3). The symbolic elaborator holds three bookkeeping data structures during

elaboration; as the elaborator walks through the generator AST, it keeps tracks of all symbols de-

rived from the generator’s arguments and for-loop induction variables (N), maintains the current

path condition based on the if-conditions encountered and the if-else branches (P), and records all

attributes added to the generator (G). While verifying the properties discussed in Section 3.2.2, the

algorithm generates a path constraint which is the conjunction between the current use condition

and the definition conditions of names and expressions under verification (C0P). The algorithm

checks for out-of-bound array indices by searching for index values less than zero or larger than or

equal to the length under the path constraint with the SMT solver; similarly it checks for bitwidth

mismatches by searching for mismatched left and right bitwidths under the path constraint; checks

for correct port directions and valid hierarchical names only invoke the SMT solver to verify the

path constraint is satisfiable and verify the properties by looking up attributes in the bookkeeping

data structures.

3.5 Evaluation

In this section, I describe my methodology of evaluating the symbolic elaborator prototype and

the evaluation results. In order to quantitatively evaluate symbolic elaborator’s static type checking

capabilities, I reuse the mutation-based abstract syntax tree (AST) fuzzer that can randomly inject

six common categories of bugs from the evaluation of GT-HDL in Section 2.5.2. I apply the pro-

totype symbolic elaboration implementation to the eight RTL design generators in Section 2.5.1.

58

(a) Bug Detection Results on Common IPs (b) Bug Detection Results on Standalone Designs

Figure 3.5: Bug Detection Results – (a) and (b) show the number of bugs detected by PyMTL3 (P), Mypy+PyMTL3
(M), and Symbolic Elaboration+PyMTL3 (S) at different stages. The more bugs detected ahead of time the better.

3.5.1 Bug Detection

In this section, I evaluate the bug detection effectiveness of PyMTL3, Mypy+PyMTL3 (using

Mypy as an optional type checker), and symbolic elaboration+PyMTL3 on eight bug-injected de-

sign generators. I randomly inject bugs into a generator using the AST fuzzer (one bug at a time)

and then evaluate if PyMTL3, PyMTL3+Mypy, and symbolic elaboration+PyMTL3 are able to

detect the injected bug. This evaluation compares the effectiveness of symbolic elaboration’s sym-

bolic elaborator against state-of-the-art elaboration-time checks (PyMTL3) and an optional type

checker (Mypy).

Figure 3.5 shows the number of bugs detected by PyMTL3, Mypy+PyMTL3, and symbolic

elaboration+PyMTL3 at each stage: ahead of time (statically), during elaboration, during simula-

tion, or not detected. A syntax mutation may not be detected because the mutation does not lead

to a type error, does not change the generator’s functionality, or the simulation test vectors do not

reach 100% coverage. We can see that symbolic elaboration detects the same number of more bugs

than PyMTL3 and Mypy+PyMTL3. On average, symbolic elaboration+PyMTL3 detects 90.6% of

the injected syntax mutations, which is slightly higher than PyMTL3 (86.6%) and Mypy+PyMTL3

(89.4%). This demonstrates the effectiveness of symbolic elaboration’s symbolic elaborator, which

is able to detect bugs missed by simulation (simulation test vector may not achieve 100% cover-

age). Figure 3.5 also shows that symbolic elaboration is able to detect significantly more bugs

59

Bug BitWid CpAttr PortDir NameExp AtBase Funct Total %
D

iv
id

er
Num. Bugs 26 30 * 20 30 * 30 * 29 165

PyMTL3
ET 20 20 20 29 30 0 119 72.1 %
ST 3 10 0 1 0 24 38 23.0 %

Total 23 30 20 30 30 24 157
% 88.5 % 100.0 % 100.0 % 100.0 % 100.0 % 82.8 % 95.2 %

Mypy+
PyMTL3

AoT 18 19 0 29 30 0 96 58.2 %
ET 2 4 20 0 0 0 26 15.8 %
ST 3 7 0 1 0 24 35 21.2 %

Total 23 30 20 30 30 24 157
% 88.5 % 100.0 % 100.0 % 100.0 % 100.0 % 82.8 % 95.2 %

SE

AoT 22 23 20 29 30 6 130 78.8 %
ET 0 2 0 0 0 0 2 1.2%
ST 1 5 0 1 0 18 25 15.2 %

Total 23 30 20 30 30 24 157
% 88.5 % 100.0 % 100.0 % 100.0 % 100.0 % 82.8 % 95.2 %

Pr
oc

es
so

r

Num. Bugs 100 * 100 * 75 100 * 100 * 100 * 575

PyMTL3
ET 42 79 75 39 96 25 356 61.9 %
ST 54 14 0 49 0 52 169 29.4 %

Total 96 93 75 88 96 77 525
% 96.0 % 93.0 % 100.0 % 88.0 % 96.0 % 77.0 % 91.3 %

Mypy+
PyMTL3

AoT 77 70 0 59 98 0 304 52.9 %
ET 2 19 75 3 0 25 124 21.6 %
ST 17 5 0 30 0 52 104 18.1 %

Total 96 94 75 92 98 77 532
% 96.0 % 94.0 % 100.0 % 92.0 % 98.0 % 77.0 % 92.5 %

SE

AoT 92 76 73 80 98 23 442 71.8 %
ET 1 14 2 3 0 24 44 9.0%
ST 3 4 0 12 0 30 49 13.0 %

Total 96 94 75 95 98 77 535
% 96.0 % 94.0 % 100.0 % 95.0 % 98.0 % 77.0 % 93.0 %

C
G

R
A

Num. Bugs 100 * 100 * 100 * 100 * 100 * 100 * 600

PyMTL3
ET 52 77 100 35 93 4 361 60.2 %
ST 43 2 0 57 0 31 133 22.2 %

Total 95 79 100 92 93 35 494
% 95.0 % 79.0 % 100.0 % 92.0 % 93.0 % 35.0 % 82.3 %

Mypy+
PyMTL3

AoT 55 69 0 100 100 0 324 54.0 %
ET 7 13 100 0 0 4 124 20.7 %
ST 33 2 0 0 0 31 66 11.0 %

Total 95 84 100 100 100 35 514
% 95.0 % 84.0 % 100.0 % 100.0 % 100.0 % 35.0 % 85.7 %

SE

AoT 98 77 83 100 100 25 483 80.5 %
ET 0 9 17 0 0 4 30 5.0%
ST 0 1 0 0 0 6 7 1.2%

Total 98 87 100 100 100 35 520
% 98.0 % 87.0 % 100.0 % 100.0 % 100.0 % 35.0 % 86.7 %

Table 3.2: Number of Injected Bugs Detected at Different Stages – AoT/ET/ST: bug detected ahead of time/during
elaboration/during simulation. SE: symbolic elaboration. Numbers indicate the number of bugs detected. *I randomly
sample the same number of mutations to make sure bug injection is not biased.

ahead of time than Mypy. On average, symbolic elaboration detects 77.1% of syntax mutations

ahead of time, whereas Mypy only detects 50.4%. This confirms that the symbolic elaborator is a

better approach to statically type check generators than existing optional type checkers.

60

RCA Generator 2-bit RCA 4-bit RCA 8-bit RCA 16-bit RCA

0.087s 0.055s 0.082s 0.131s 0.241s

Table 3.3: Symbolic Elaboration Run Time – RCA: ripple-carry adder. Ripple-carry adders with a specific bitwidth
indicates an adder instance with explicitly described structural connections. Run time is averaged across five runs of
symbolic elaboration.

To better understand the results on standalone designs, I break down the number of bugs de-

tected in each syntax mutation category (Section 2.5.2) in Table 3.2. We can see from the table that

symbolic elaboration is particularly effective at detecting bitwidth mismatches and incorrect port

directions ahead of time. On average, symbolic elaboration detects 91.5% of the injected bitwidth

mutations and 93.4% of the port direction mutations, while Mypy detects only 67.1% and 0.0%

of them. This demonstrates the significant benefits of the symbolic elaborator’s constraint solving

approach capabilities, which is superior at handling bitwidths and directions than Mypy.

3.5.2 Scalability

In this section, I discuss the scalability of symbolic elaboration with increasingly complex

hardware generators. Since the symbolic elaborator detects generator property violations at the

source code level, the run time of symbolic elaboration is, to the first order, linear to the number

of lines of generator code. To validate this claim, I apply the symbolic elaborator to a ripple-carry

adder generator and ripple-carry adder instances of bitwidth 2, 4, 8, and 16, which are described

with structural connections between full adders. Table 3.3 shows the averaged run time of symbolic

elaboration on these designs. We can see from the table that symbolic elaboration spends more time

on the adder generator than on adder instances of bitwidth one and two. This is mostly because the

adder generator contains if-statement and for-loops that lead to more definition and use conditions

for the SMT solver. However, as the bitwidths of adder instances grow larger, the instances have

more lines of code which translate to longer symbolic elaboration run time. The averaged run times

show that symbolic elaboration scales roughly linearly with respect to the increasing bitwidth of

adders. For sophisticated hardware generators in agile workflows, this scalability analysis implies

that agile designers may experience longer symbolic elaboration time on complex generators with

a significant focus of structural modeling, but not on individual hardware instances because their

parent generator has been symbolically elaborated.

61

3.6 Related Work

Symbolic execution generally applies constraint solving techniques to reason about path con-

ditions and is commonly used in program analysis activities including software testing, software

vulnerability detection, and security analysis [CGK+11, SGS+16, SAB10]. Traditional concrete

execution of programs requires concrete test inputs, and each execution is limited to one control

flow. Symbolic execution is able to explore multiple conditional paths in parallel and keep track of

the constraints applied to the input symbols along the path as a series of boolean expressions. To

solve the constraints, symbolic execution often leverages a satisfiability modulo theories (SMT)

solver to verify whether certain program properties have been violated and whether some paths are

feasible [BCD+18]. If the SMT solver proves that some program properties are violated, or a path

is feasible, it can generate a feasible solution to the boolean expressions, which can be mapped

back to a concrete test input that triggers the offending violations or exercises certain branches.

The symbolic elaboration technique of GT-HDL is similar to symbolic execution techniques in

two ways: (1) symbolic elaboration is a purely static analysis technique and does not support arbi-

trary code execution; (2) symbolic elaboration also heavily relies on constraint solving and SMT

solvers. However, symbolic elaboration is different from symbolic execution in that (1) symbolic

elaboration leverages constraint solving to reason about path conditions, matching bitwidths, and

bounded array indexing, whereas symbolic execution typically uses constraint solving to trigger

rarely explored program control paths that might include program bugs; (2) symbolic elaboration

maintains much fewer symbolic states (only generator arguments in numeric expressions are sym-

bolic) than symbolic execution, which generally maintains symbolic states for memory locations

to generate accurate analysis results [Kin76].

Salama et al. propose to use constraint solving to detect consistency issues in Verilog gener-

ator interconnects [SMT+11]. They define Featherlight Verilog, a hardware modeling language

inspired by Verilog syntax, as the target of their consistency analysis. Compared to symbolic elab-

oration, both Featherlight Verilog and symbolic elaboration encodes signal bitwidths and array

indices as integer constraints and use an SMT solver to detect inconsistencies among bitwidths

and indices. However, the symbolic elaborator of GT-HDL targets more hardware generator prop-

erties and more aspects of hardware modeling. Featherlight Verilog specifically targets bitwidth

and array index inconsistencies in structural modeling, and symbolic elaboration targets bitwidths,

62

array indexing, port directions, and hierarchical references in both structural and behavioral mod-

eling.

Rondon et al. propose liquid types, a type system that infers dependent types to aide static

detections of out-of-bound array indexing errors [RKJ08]. Similar to symbolic elaboration, liquid

types leverage a constraint solver to verify the safety of array accesses. Both SE and liquid type try

to reduce programmer type annotation efforts by inferring precise types whenever possible. How-

ever, symbolic elaboration focuses on inferring types for dynamic HDLs and can statically verify

generator properties discussed in Section 3.2.2. In contrast, liquid types focuses on protecting

array indexing accesses in traditional functional programming languages.

3.7 Conclusion

In this chapter, I address the verification challenge in generator development through symbolic

elaboration, an SMT-based static analysis technique that validates generator properties ahead of

time. symbolic elaboration supports powerful static checks on hardware generators. Symbolic

elaboration statically checks generators using the symbolic elaborator that enforces critical gener-

ator properties such as matching bitwidths, correct local port directions, bounded array indexing,

and valid hierarchical references. My evaluation of a symbolic elaboration prototype demonstrates

a significant improvement in its ability to identify design bugs early in the design cycle.

63

CHAPTER 4
LATENCY EQUIVALENCE CHECKING:

ADDRESSING VERIFICATION CHALLENGES
IN INSTANCE COMPOSITION

Latency-insensitive protocols are widely used in hardware standard libraries and network-on-

chip IPs because they enable modular hardware design and efficient circuit implementation of

communication channels. However, RTL modules with latency-insensitive protocols at their in-

terfaces (or latency-insensitive RTL modules) create a verification challenge because subtle design

bugs in these RTL modules may only be triggered after a specific number of stall cycles. Verifying

latency-insensitive RTL modules with simulation-based techniques requires a comprehensive test

suite that covers all possible stall cycles up to a sufficiently large number, which needs significant

verification efforts to build and maintain.

In this chapter, I address the verification challenge in the composition of latency-insensitive

instances. I propose a formal verification methodology to detect bugs in latency-insensitive RTL

modules by verifying the stall invariant property of these modules. I introduce bounded latency

equivalence checking (BLEC) to detect violations of the stall invariant property under finite buffer-

ing. BLEC includes a systematic approach to construct a verification harness which applies ingress

and egress stalls and checks if the DUV egress results are the same under varying stall conditions.

I implement the proposed method with state-of-the-art commercial formal verification tools and

demonstrate its effectiveness with case studies on a latency-insensitive processing element, a great-

est common divisor unit, and a pipelined RISC-V processor. In all three case studies, the proposed

method can detect subtle design bugs inserted in the design. With some manual simplifications to

the target RTL modules, existing formal verification tools can provide a bounded proof of the stall

invariant property to many RTL modules.

4.1 Introduction

Latency-insensitive (LI) protocols [CMSV99, Car15, CMSV01] are an effective hardware de-

sign methodology that significantly improves design productivity with minimal performance, power,

and area overhead [CMSSV99, LSC10]. By decoupling the communication and computation as-

pects of hardware design, RTL modules with latency-insensitive interfaces (or simply latency-

64

val

rdy

msg

val

rdy

msg

Control Unit

A Stage
A

B Stage
B

ostallA enB ostallB squash

Stage
A

Ctrl

Stage
B

Ctrl

enA

DUV

Bug-B: no ostallB?

Bug-A: no enB?

Figure 4.1: Examples of Bugs in a Two-Stage Pipelined Latency-Insensitive RTL Module – the design under
verification (DUV) has complex control logic to adapt to possible delays on the ingress (left) or the egress (right)
interface. Both pipeline registers (A and B) are enabled when there is no stall originating from their respective stages;
stage B can also squash stage A due to a hazard that is only visible in a later stage. Bug-A is a design bug where the
ostallA signal is not accounted for in the enable signal of stage B (enB); Bug-B shows a bug where the ostallB

signal is not propagated from stage B to stage A. ostallA/B: signal is asserted if stage A/B originates a stall; the
ostall signals may be propagated to earlier stages; enA/B: enable signal for pipeline register of stage A/B.

insensitive modules) offer two major benefits over the traditional synchronous design paradigm [BCE+03,

HS07]. First, hardware designers can safely compose modules with latency-insensitive interfaces

without worrying about the potentially variable latencies of upstream and downstream modules.

In the case where the upstream or downstream modules are not generating valid messages or not

ready to accept messages, a stalling event occurs on the latency-insensitive interface and sequen-

tial states are preserved until an informative event containing the real message eventually hap-

pens [CMSV01]. Second, latency-insensitive protocols enable more efficient circuit implementa-

tion of communication channels than with the synchronous design paradigm. Inter-module com-

munication channels designed under a synchronous system assumption often synthesize into long

global wires that limit the system clock frequency. On the other hand, the communication between

latency-insensitive modules can be pipelined by inserting relay stations [CMSV01] between the

modules to achieve higher clock frequency. Because of these benefits, latency-insensitive modules

are virtually ubiquitous across hardware standard libraries, hardware compositions, and network-

on-chip IPs [Tay18b, FAP+12, TOJ+19, DT01, BM02, Ltd11].

However, implementing latency-insensitive RTL modules presents a unique verification chal-

lenge. Figure 4.1 shows a two-stage pipelined latency-insensitive RTL module. To handle the

potential backpressure from the egress interface or the input delays on the ingress interface, the

design under verification (DUV) has complex control logic which includes pipeline register enable

signals, per-stage originating stall signals, and a squash signal. Two examples of control logic bugs

65

No Stalls

Cycle 1 2 3 4 5

Ingress a b c
Egress � a b c

Ingress Stall

Cycle 1 2 3 4 5

Ingress a � b c
Egress � a � b c

Egress Stall

Cycle 1 2 3 4 5

Ingress a b # c
Egress � a # b c

Egress Informative Events

No Stalls a b c
Ingress Stall a b c
Egress Stall a b c

(a) Behaviors of the Correct Design

No Stalls

Cycle 1 2 3 4 5

Ingress a b c
Egress � a b c

Ingress Stall

Cycle 1 2 3 4 5

Ingress a � b c
Egress � a ✓ b c

Egress Stall

Cycle 1 2 3 4 5

Ingress a b # c
Egress � a # b c

Egress Informative Events

No Stalls a b c
Ingress Stall a ✓ b c
Egress Stall a b c

(b) Behaviors of the Design with Bug-A

No Stalls

Cycle 1 2 3 4 5

Ingress a b c
Egress � a b c

Ingress Stall

Cycle 1 2 3 4 5

Ingress a � b c
Egress � a � b c

Egress Stall

Cycle 1 2 3 4 5

Ingress a b c
Egress � a # b

Egress Informative Events

No Stalls a b c
Ingress Stall a b c
Egress Stall a b

(c) Behaviors of the Design with Bug-B

Figure 4.2: Design Behaviors under Different Stall Conditions – Designs are the same as in Figure 4.1. �: not-
val stalling event; #: not-ready stalling event. Three designs are used in this figure: the correct design as shown in
Figure 4.1, the design with Bug-A (wrong enB signal), and the design with Bug-B (ostallB signal not forwarded to
stage A). Three stall conditions are used in this figure: no stalls: the ingress LI interface is always valid to produce a
message and the egress LI interface is always ready to accept an output message; ingress stall: the ingress LI interface
is not valid at cycle 2 (marked with black circle) which leads to a bubble (� at cycle 3) in the correct design’s pipeline;
egress stall: the egress LI interface is not ready at cycle 3 (marked with black circle) which causes the pipeline in the
correct design to stall (# at cycle 3). Only the correct design is stall-invariant because the other two designs have a
different sequence of egress informative events (✓: incorrect value registered; c: message c accepted when pipeline
stalls) either under ingress stalls (Bug-A) or egress stalls (Bug-B).

are also in this figure. For Bug-A, the ostallA signal is not propagated to the enable signal of

stage B (enB), which means pipeline register B can be enabled while stage A is originating a stall

and may register incorrect data. For Bug-B, the ostallB signal is not propagated to the control

logic of stage A, which can lead to data loss because the content of pipeline register B can be over-

written by outputs from stage A even when stage B is originating a stall. It is worth noting that

these two bugs only manifest when there is backpressure on the egress interface, and that similar

and subtler bugs might only get triggered with a specific number of cycles of stalls on the ingress

and/or the egress interface. It is challenging to discover these bugs via simulation-based dynamic

verification techniques. Detecting these bugs in simulation needs a comprehensive test suite that

66

covers all possible stall cycles (up to a sufficiently large number) on the DUV’s latency-insensitive

interfaces, which requires significant testing and verification efforts to build and maintain.

In this chapter, I propose a formal verification methodology to address the verification chal-

lenges of latency-insensitive RTL modules. I make the observation that most correct latency-

insensitive RTL modules have the same behavior even under different number of stall cycles, which

I call the stall invariant property. I propose bounded latency equivalence checking (BLEC), a tech-

nique that detects violations of the design under verification (DUV)’s stall invariant property under

finite buffering. BLEC constructs a verification harness that contains two duplicated DUVs with

different stall conditions and verifies the latency equivalence [CMSV99] between the DUVs using

formal verification. A BLEC verification process generates one of two possible outcomes: (1)

BLEC finds a violation to the stall invariant property of the DUV and provides a waveform to help

identify origin of issues or (2) BLEC proves that the stall invariant property holds true for the DUV

up to a certain number of stall cycles.

This chapter makes the following contributions:

• I introduce the stall invariant property and make the observation that many bugs in latency-

insensitive RTL modules violate the stall invariant property;

• I propose bounded latency equivalence checking, a formal verification technique to detect

violations of the DUV’s stall invariant property under finite buffering; I implement bounded

latency equivalence checking using state-of-the-art commercial formal verification tools;

• I demonstrate the effectiveness of the proposed method by evaluating bounded latency equiv-

alence checking on three latency-insensitive RTL designs: a latency-insensitive processing

element, a greatest common divisor (GCD) unit, and a RISC-V pipelined processor.

4.2 The Stall Invariant of Latency-Insensitive RTL Modules

In this section, I introduce the stall invariant property with the motivating DUV in Figure 4.1.

Figure 4.2 (a)-(c) refer to the behaviors of the DUV without bugs, with Bug-A, with Bug-B, respec-

tively. I examine the behaviors of the DUV both with and without bugs and compare the behaviors

under different stall conditions. I make the observation that bugs in RTL modules generally lead

to inconsistent behaviors on the egress LI interface under different ingress and/or egress stalls.

67

Events in Latency-Insensitive RTL Modules – The behaviors of each design in Figure 4.2 are

characterized by the sequence of events that occurs on the ingress and egress LI interfaces of the

DUV. Using the terminology from the original latency-insensitive design theory paper [CMSV01],

I call events where a message is successfully transferred over the LI interface an informative event

(cycles that are marked a, b, c, or ✓ in Figure 4.2); I call any other events where a message is

not transferred stalling events. I further classify stalling events into two categories: (1) not-valid

(indicated by symbol � in Figure 4.2), where the sender of the LI interface is not valid to send a

message at the cycle of the event; (2) not-ready (indicated by symbol # in Figure 4.2), where the

sender of the LI interface has valid message to send but the receiver is not ready to accept that

message at the cycle of the event. In an RTL module that implements a val-rdy LI interface (e.g.,

DUV in Figure 4.1), not-valid stalling events correspond to cycles where val is low and not-ready

stalling events are cycles where val is high but rdy is low.

Stall Conditions of a Latency-Insensitive DUV – The ingress and egress interfaces of a LI

DUV need to be connected to upstream and downstream modules for the DUV to function properly.

An upstream module can apply input stalls to the DUV by de-asserting the val signal at cycles

it does not have valid messages to send, which creates a not-valid stalling event. Similarly a

downstream module can apply output stalls to the DUV by de-asserting the rdy signal at cycles

it is not ready to accept messages from DUV, which can create a not-ready stalling event. For the

same sequence of informative events, I call the cycles where input and output stalls are applied

the stall condition of the DUV. To make my explanations more clear, I examine three simple stall

conditions for each design in Figure 4.2: (1) No Stalls, where the ingress interface is always valid

to send a message to the DUV and the egress interface is always ready to accept a message from the

DUV; (2) Ingress Stall, where the ingress interface is not valid at cycle 2 for illustration purposes;

(3) Egress Stall, where the egress interface is not ready at cycle 3.

Behaviors of the DUV – Figure 4.2 (a) shows the behaviors of the correct DUV under the

three stall conditions described above. It is straightforward that the correct design exhibits pipeline

behaviors between its input stage A and output stage B: it always takes two cycles for a message

to traverse from ingress to egress when no stalls are applied; applying input stalls creates bubbles

in the pipeline, as shown by the not-valid stalling events in cycle 2 and 3 (Ingress Stall); and

applying output stalls stalls the pipeline as shown in cycle 3 (Egress Stall). Figure 4.2 (b) shows

the behaviors of the DUV with Bug-A, where the pipeline registers of stage B can still be enabled

68

even when stage A is stalling. Bug-A has the same behaviors as the correct design when no stalls

or only output stalls are applied because stage A is not stalled in these two cases; however, when

ingress stall is applied on cycle 2, the pipeline registers of stage B will register invalid data from

the stalled stage A, which leads to an erroneous output message on cycle 3 (marked by red ✓).

Figure 4.2 (c) shows the behaviors of the DUV with Bug-B, where stage A is not stalled when stall

B is stalled. Bug-B has the same behaviors as the correct design when no stalls or only input stalls

are applied because stage B is not stalled in these two cases; however, when egress stall is applied

on cycle 3, message C is lost at this cycle because stage A does not stall.

The Stall Invariant Property – The example in Figure 4.2 shows that some designs have

inconsistent behaviors (as determined by the sequence of informative events on their egress inter-

faces) under different stall conditions. I call a latency-insensitive RTL module stall invariant if

the module has the same sequence of informative events on its egress interfaces under all possible

stall conditions. The stall invariant property is useful for catching bugs that lead to a different se-

quence of informative events on the LI interface of the DUV, which include numerous subtle bugs

especially in a pipelined DUV module. It is worth noting that the stall invariant property only re-

quires the equivalence of the sequence of egress informative events and does not imply functional

correctness of the DUV.

4.3 Bounded Latency Equivalence Checking

In this section, I introduce bounded latency equivalence checking (BLEC), a formal verification

technique that detects violations of the DUV’s stall invariant property under finite buffering. For

a given latency-insensitive RTL module (the DUV), BLEC constructs a verification harness with

formal assertions that can be verified by hardware formal property verification (FPV) tools. The

FPV tools can either find a violation of the stall invariant property (which generally indicates

the existence of a design bug) or provide a potentially bounded proof that the target DUV is stall

invariant. I first introduce the necessary verification modules that are used in the BLEC verification

harness (Section 4.3.1). I then propose a systematic method that constructs the BLEC verification

harness for any given latency-insensitive RTL module (Section 4.3.2).

69

Perturber

val
rdy
msg

val
rdy
msg

DUV

val

rdy
msg

N-element
FIFO

val
rdy

msg

val
rdy
msg

val
rdy
msg

DUVstall_ingress

s_val

Strict Path

Perturbed Path

s_rdy

N-element
FIFO

val
rdy

msg

Splitter

Perturber

N-element
FIFO

val
rdy

msg

N-element
FIFO

val
rdy

msg

Eq.
Checker

p_val
s_msg

p_msg
p_rdy

s_val ∧ p_val
⇒

s_msg = p_msg

stall_egress

Figure 4.3: Verification Harness for a DUV with One Ingress and One Egress LI Interface in Bounded Latency
Equivalence Checking – stall_ingress/egress: stall variables for the ingress/egress LI interface. N: a parameter
which determines the depth of FIFOs in the verification harness. Strict path: a path in the harness where no ingress
or egress stalls are applied on the DUV. Perturbed path: a path in the harness where the perturbers apply a random
number of stalls on the ingress and egress interface. Eq. checker: equivalence checker; a module that checks if the
result messages from the two paths are the same.

4.3.1 Verification Modules

Figure 4.3 shows the verification harness of a DUV with one ingress and one egress latency-

insensitive interface. The verification harness in Figure 4.3 exposes five input and output ports:

• val, rdy, and msg: these three ports form the LI interface that generates input messages to

the ingress LI interface of the DUV.

• stall_ingress and stall_egress: these two ports are stall variables whose value decides

if an ingress stall or an egress stall is applied on the DUV’s LI interface (1 for stall and 0 for

not stall).

As is shown in the figure, the verification harness contains two duplicated instances of the

target DUV with different stall conditions: the DUV in the strict path (i.e., the strict DUV) has

no ingress or egress stalls under with FIFOs of N elements; the DUV in the perturbed path (i.e.,

the perturbed DUV) has random ingress and egress stalls injected by perturbers. At the end of

both path, a equivalence checker compares the result messages in the output FIFOs and reports a

violation of the stall invariant property if the two messages are different.

N-Element FIFOs – The verification harness includes four N-element FIFOs to decouple the

LI interfaces of the two DUV instances, where N is a constant determined ahead of the construction

of verification harness. Two FIFOs are inserted between the ingress LI interfaces of the two DUVs

and the top-level ingress LI interface (val, rdy, msg). These FIFOs decouple the strict DUV from

70

the ingress stalls of the perturbed DUV, which achieves almost zero ingress stalls for the strict

DUV. Similarly, the two FIFOs between the egress LI interfaces of the DUVs and the message

checker decouple the strict DUV from the egress stalls of the perturbed DUV, which achieves

almost zero egress stalls for the strict DUV.

Assuming no ingress stalls nor egress stalls are applied on the DUV, FPV tools can generate

a proof that the DUV is indeed stall invariant. This can be shown by comparing the behaviors of

the perturbed DUV against the strict DUV: the equivalence checker ensures that the sequence of

egress informative events of the DUV under all stall conditions (output of the perturbed path) is

the same as if no stalls are applied (output of the strict path); therefore, the DUV is stall invariant

by definition (Section 4.2).

It is worth noting that even with deep FIFOs (large N’s), the strict DUV may still experience

ingress or egress stalls. The FPV tools can still prove that the perturbed and strict DUV have

the same sequence of egress informative events. I call this proof a bounded stall invariant proof

because the strict DUV experiences ingress and/or egress stalls due to finite buffering. The finite

buffering also defines the bounded nature of the proposed BLEC technique: BLEC is only able to

provide bounded stall invariant proofs because FIFO sizes are finite. The finite size of FIFOs does

not affect the technique’s effectiveness in finding violations of the stall invariant property because

stall variant DUVs mostly generate different sequences of egress informative events under non-

zero stalls, not necessarily zero stalls. Large depths of FIFOs may also have negative impacts on

the performance of the formal property verification tools. Therefore, I choose a small FIFO depth

of two (2) in this chapter to decouple the strict and perturbed DUVs without causing too much tool

performance overhead.

Perturbers – Perturbers are a verification module inserted between the DUV and FIFOs to

inject random stalls to the ingress or egress LI interface of the DUV (i.e., to perturb the DUV

with random ingress or egress stalls). A perturber takes as input a stall variable (stall_ingress

and stall_egress input ports in Figure 4.3), which decides if stall is applied on the LI interface.

As the green-shaded components in Figure 4.3 show, the perturbers connect the val and rdy LI

handshake signals and the corresponding negated stall variable with an AND gate. This logic

suppresses the LI handshake (and thus stalls the LI interface) when the stall variable is high.

Equivalence Checker – The equivalence checker is a module that checks if the results of the

egress latency-insensitive interface from the two paths are the same. As shown in Figure 4.3, the

71

JasperGold
Config
(.tcl)

Verification
Harness

(.sv)

Target DUV
(.sv)

JasperGold
Formal

Property
Verification

Verilog
Parser

Waveform to
Debug Potential
Design Issues

Halt or
Increase Bound
for Confidence

Failed
Assertions?

Proof of SI
Property?

Figure 4.4: Workflow with BLEC Implementation – SI: stall invariant. The Verilog parser implements Figure 4.5
to generate the verification harness and necessary JasperGold configuration scripts. The generated verification harness
contains assertions that JasperGold FPV proves or finds counterexamples to.

Require: D: The target design under verification.
Require: N: The depth of FIFOs in the verification harness.
Ensure: Verification harness H with ports Hp and connections Hc.
1: function CONSTRUCTHARNESS(D,N)
2: H ⇥ Ds < Dp

3: Hp,Hc ⇥o
4: for all i " IngressLatencyInsensitiveInterface(D) do
5: H ⇥ H < N-FIFOs,i < N-FIFOp,i < Perturberi

6: Hp ⇥ Hp < TopLIi < StallVariablei

7: Hc ⇥ Hc < (TopLIi, N-FIFOs,i, Ds) < (TopLIi, N-FIFOp,i, Perturberi, Dp)
< (StallVariablei, Perturberi,)

8: for all e " EgressLatencyInsensitiveInterface(D) do
9: H ⇥ H < N-FIFOs,e < N-FIFOp,e < Perturbere < EqCheckere

10: Hp ⇥ Hp < StallVariablee

11: Hc ⇥ Hc < (Ds, N-FIFOs,e, EqCheckere) < (Dp, Perturbere, N-FIFOp,e, EqCheckere)
< (StallVariablee, Perturbere,)

Figure 4.5: Construction of the BLEC Verification Harness – s and p in subscripts indicate the module belongs to
the strict/perturbed path; i and e in subscripts indicate the signal or module is associated with the ingress interface i
or the egress interface e. TopLIi: toplevel latency-insensitive interface that generates messages to the LI interface i.
N-FIFO, EqChecker: N-element FIFOs, equivalence checkers as introduced in Section 4.3.1. H is a set of modules;
Hp is a set of interfaces and ports; Hc is a set of tuples where neighboring tuple elements are connected and data flow
through elements in ascending index order.

checker (in red) is interfaced to the two egress FIFOs. The equivalence checker only dequeues from

the FIFOs and performs the equivalence check if both FIFOs are non-empty (i.e., val is asserted).

The behaviors of the equivalence checker can be expressed as a property of an RTL module, which

is boolean expressions between its signals. In Figure 4.3, I use the implication operator (º) to

indicate that the equivalence check between s_msg and p_msg only happens when both s_val and

p_val are true.

72

4.3.2 Construction of Verification Harness

I demonstrate the verification harness of a DUV with one ingress and one egress LI interface

in the previous section. In this section, I describe a systematic method to construct a verification

harness for any latency-insensitive RTL modules.

Figure 4.5 shows the steps to construct a BLEC verification harness for any given latency-

insensitive RTL DUV D with N-element FIFOs. The algorithm proceeds by enumerating all

ingress and egress LI interfaces of D and adds modules, ports, and connections to the verifica-

tion harness H. For each ingress LI interface i of D, the algorithm adds one toplevel LI interface

to generate messages to i, one perturber to apply random stalls on i, and two N-element FIFOs;

for each egress LI interface e of D, the algorithm similarly adds two FIFOs, one perturber, and

one equivalence checker to compare the results of the strict and perturbed paths. The generated

verification harness H may have multiple equivalence checkers and a violation of the stall invariant

property is found if the FPV tool finds a failed assertion in any of these checkers.

4.4 Implementation

In this section, I describe the implementation of the bounded latency equivalence checking tech-

nique in JasperGold, a state-of-the-art commercial formal property verification tool. Section 4.4.1

describes the specifications of the key properties in the verification harness in the SystemVerilog

Assertion language. Section 4.4.2 discusses how I improve JasperGold’s performance by incorpo-

rating proof acceleration modules into the verification harness.

To provide an overview of my BLEC implementation, Figure 4.4 shows an example workflow

with our implementation of BLEC: I implement a Verilog parser that assumes the naming of ports

in a latency-insensitive interface, which generates the verification harness and JasperGold config-

uration scripts using a templated approach; the JasperGold FPV tool either finds a counterexample

to the stall invariant property (in which case the designers can debug the potential design issues

with a waveform from the counterexample) or proves the stall invariant property with respect to

the bounded FIFO size (in which case the verification engineer can stop or increase the FIFO size

for higher confidence of the proof).

73

clk

val

rdy

msg a b c

1 2 3 4

(a) Wrong Message

clk

val

rdy

msg a

1 2 3 4

rdy asserted in
response to val

val deasserted

(b) Phantom Message

Figure 4.6: Bugs in Unconstrained Latency-Insensitive Interface – (a) msg may change while val is asserted; the
downstream module may sample a wrong message depending on when rdy is asserted. (b) val may get de-asserted
before a previously asserted val is acknowledged by rdy; if rdy is asserted in response to val, the downstream
module may end up acknowledging an non-existent transaction.

4.4.1 Property Specification in SystemVerilog Assertion

In this section, I discuss how to specify some of the critical assumptions and properties in

the SystemVerilog Assertion (SVA) language [iee17]. These are assumptions and properties are

embedded in the verification harness and are generated by the Verilog parser in a templated fashion.

While solving the formal property verification problem, JasperGold will assume the constraints to

be true and try to find counterexamples to the asserted properties.

Constraints on Toplevel LI Interface – As discussed in Section 4.3.2, each ingress latency-

insensitive interface in the target DUV will add a toplevel LI interface which streams messages to

the ingress interface in the strict and perturbed DUV. However, an unconstrained LI interface of

three ports (val, rdy, and msg) may not implement the correct LI handshake behaviors. Figure 4.6

shows two possible bugs when each of the three ports are allowed to change independently from

each other. Figure 4.6 (a) shows a bug where the downstream module may accept a wrong mes-

sage because msg is allowed to change while val is asserted. Figure 4.6 (b) demonstrates a bug

where the downstream module tries to acknowledge a non-existent transaction because val gets

deasserted before a previous val is acknowledged.

To ensure correct LI handshakes, I add the following assumption to the toplevel LI interface to

constrain its behavior.
1 li_ifc_asms: assume property (

2 @(posedge clk) disable iff (reset) (

3 (val |-> rdy) or

4 (val |=> ($stable(msg) & $stable(val))

5 s_until_with (val & rdy))

6)

7);

74

In the above assumption, |-> and |=> are implication operators in the SVA language that in-

dicates the consequent (right hand side of the operator) is true if the antecedent (left hand side of

the operator) is true [CDHK15]. The difference between |-> and |=> is that |-> requires the con-

sequent to be true at the same cycle when the antecedent is true; |=> requires the consequent to be

true at the next cycle after the antecedent becomes true. This assumption uses the s_until_with

operator, which indicates that msg and val have to remain stable at the same cycle val & rdy

becomes true. This assumption states that at any non-reset cycle, if val is asserted, then either

val and rdy are asserted at the same cycle or val and msg remain stable until the transaction is

acknowledged (val & rdy).

Properties of Equivalence Checkers – As mentioned in Section 4.3.1, the equivalence checker

checks if the results from the strict and perturbed paths are the same when both egress FIFOs are

not empty. I formalize this equivalence check into the following SVA assertion, which guards the

check with an antecedent of both val signals asserted.
1 same_msg_ast: assert property (

2 @(posedge clk) disable iff (reset) (

3 (s_val & p_val) |-> (s_msg == p_msg)

4)

5);

However, the same_msg_ast assertion alone is not sufficient to capture all violations to the

stall invariant property. Consider one category of violations where the perturbed DUV fails to

assert the val signal on the egress interface at all. In this case, the formal property verification tool

considers this property to be vacuously true because the antecedent of the same_msg_ast assertion

is false [CDHK15]. To detect this category of design bugs, I add the following SVA assertion.
1 same_vals_ast: assert property (

2 @(posedge clk) disable iff (reset) (

3 (s_val & ~p_val) |->

4 s_eventually (s_val & p_val)

5 and

6 (~s_val & p_val) |->

7 s_eventually (s_val & p_val)

8)

9);

The assertion same_vals_ast has the same consequent among its two clauses which indicates

that s_val & p_val will become true in some future cycle. The s_eventually operator provides

a way to express that some event will happen after a finite but uncertain number of cycles. This

assertion indicates that no matter which DUV (strict or perturbed) asserts the egress val signal,

the other DUV will eventually assert its val as well.

75

clk
raddr0

waddr
wdata

wen

ren0
raddr1

ren1

1'b1

Jasper
Proof
Xcel
RAM

0

rdata0

rdata1

Jasper
Proof
Xcel
RAM

1

clk

raddr0

waddr
wdata

wen

ren0

1'b1

Jasper
Proof
Xcel
RAM

0

rdata

(a) Register File 1r1w (b) Register File 2r1w

Figure 4.7: Register Files with Integrated Proof Acceleration RAM – 1r1w: one read port and one write port;
2r1w: two read ports and one write port.

4.4.2 Proof Acceleration

To reduce the run time of the verification tool, the BLEC implementation incorporates Jasper-

Gold’s proof acceleration modules into commonly used RTL modules. Proof acceleration modules

are behavioral modules that have built-in behaviors in JasperGold and can be verified more effi-

ciently than their manually implemented RTL counterparts. I specifically target the RTL RAM

modules because (1) they generally contain a large number of states and the increasing number of

states often strongly correlates with longer tool run time [CDHK15]; (2) the RTL RAM modules

are widely reused across IPs including FIFOs, register files, caches, and behavioral memories.

Figure 4.7 shows how I integrate the RAM proof acceleration module into two kinds of register

files. For the register file with one read port and one write port (1r1w), I wrap the proof acceleration

RAM within the regular register file module and connect all ports accordingly. The read enable

port on the proof acceleration RAM is driven by high voltage because the register file is read every

cycle. For the register file with two read ports and one write port (2r1w), I duplicate the proof

acceleration RAM within the register file module to support simultaneous reads. The write address

and data are applied on both proof acceleration RAM. Since I do not modify the interface of the

register files, our integration of proof acceleration modules reduces the run time of verification

without changing the RTL code of the DUV.

4.5 Case Studies

In this section, I perform case studies on the following three RTL modules with my imple-

mentation of BLEC to demonstrate its effectiveness in detecting numerous design bugs: a latency-

76

Design Flip-Flops Gates RTL Lines FIFO Depth

PE 113 729 143 2
GCD 66 655 490 2
Proc. 5983 86830 4898 2

Table 4.1: RTL Modules and BLEC Parameters Used in Case Studies – PE: the latency-insensitive processing
element; GCD: the greatest common divisor unit; Proc.: the RISC-V processor

val rdy msgN

val
rdy

msgW

PE

sel

val
rdy
msgE

val rdy msgS

acc
× +

Control

B

A
M
U
X

en

en

Figure 4.8: Latency-Insensitive PE – N, W: ingress interface on the north and west side of PE; E, S: egress interface
on the east and south side of PE. acc: accumulation register.

insensitive processing element (PE), a greatest common divisor (GCD) unit, and a RISC-V pro-

cessor. I use JasperGold FPV 2023.03 as the formal verification tool and run the case studies on

a commodity server with 72 cores of Intel Xeon E7-8867 v4 CPU and 256 GiB of main memory.

Table 4.1 shows the number of flip-flops, gates, the lines of RTL code, and the BLEC parameters

used in our case studies.

4.5.1 The Latency-Insensitive Processing Element

The first case study is on a latency-insensitive processing element (PE) RTL module which

is intended to be used as sub-modules of a latency-insensitive systolic array. Figure 4.8 shows

the architecture of the PE module. The PE takes input from two LI interfaces at the north and

west side and produces output to the east and south LI interfaces. The PE also performs multiply-

accumulation and stores the sum into its internal accumulation register. The PE also forwards the

west message to the east side. Depending on the selection input signal, the PE either forwards the

north message or the accumulation result to the south side.

Bug: Incorrect Ingress Ready Condition – I examine a PE bug discovered from the commit

history of an in-house systolic array (performing matrix multiplication) git repository. According

77

to the commit history, the designers created wrong control logic for the ingress rdy signals: rdy

from the east egress interface was simply bypassed to the west ingress interface and rdy from the

south egress interface was bypassed to the north ingress interface. This bug created an incorrect

ingress ready condition (ingress ready should be true only if both rdy from the east and the south

side interface are true) which escaped the designer’s unit test because the behavioral downstream

module of PE always applies egress stalls at the same cycle.

My implementation of BLEC detects this bug in under ten seconds. JasperGold finds a 5-cycle

counterexample to the same_msg_ast assertion in the equivalence checker: the strict DUV in the

counterexample registers msgN and msgW at the same cycle; the perturbed DUV has one cycle of

egress stall on the east interface, which causes msgW to be registered one cycle later than msgN.

This difference in the timing of registering ingress messages eventually leads to different results

from the strict path and the perturbed path.

The PE designer initially identified this bug with a manually crafted test case which captures the

exact timing of egress stalls required to trigger this bug. With the waveform of this counterexample

derived from BLEC, the PE designer is able to identify and fix the root cause of the failed assertion

much faster without manipulating the timings of egress stalls.

Bounded Proof: PE is Stall Invariant – After fixing the ingress ready condition bug, I also

leverage BLEC to generate a bounded proof that the PE module is stall invariant. I observe that

JasperGold is not able to converge on the PE design because the single-cycle multiplier (two 32-bit

inputs, one 32-bit output) in the PE datapath significantly increases the complexity of verification.

To help the FPV tool converge, I leverage the fact that the precise multiplier functionality is not

required in BLEC. Therefore, we can replace the complex multiplier logic with a much simpler bit-

wise XOR operation to improve converge time. Since the LI handshake logic does not depend on

the multiply-accumulate result, performing this replacement does not affect the equivalence prop-

erties BLEC tries to prove. After replacing the single-cycle multiplier with bit-wise XOR gates,

JasperGold is able to prove both the same_msg_ast assertion and the same_vals_ast assertion

within 1.5 hours.

4.5.2 The Greatest Common Divisor Unit

The second case study design is a greatest common divisor (GCD) unit which computes the

GCD of two input 32-bit integers using a subtraction-based Euclidean algorithm. Figure 4.9 shows

78

B

A

_

<

Control
val

rdy

msgB

msgA

3-M
U

X
2-M

U
X

enA

enB

selA

selB
lt

zd

GCD Unit

rdy

msg

val

Control FSM

IDLE

CALC DONE

reset

ingress:
val & rdy

B is zero

egress:
val & rdy

IDLE: waiting for input message
CALC: calculating GCD of A and B
DONE: waiting for result to send out

Figure 4.9: GCD Unit – lt: if A is less than B; zd: if B is zero.

the RTL GCD unit and the finite state machine (FSM) in its control unit. The GCD unit has one

ingress LI interface to stream in the two input integers within a single bundle and one egress LI

interface to stream out the result. In this case study, I examine and detect two bugs with my BLEC

implementation and also prove that the correct GCD unit is stall invariant.

Bug: Unconditional Transition from CALC to DONE – The first bug I investigate is when

the control FSM transits unconditionally from the DONE state to the IDLE state. With this bug,

the GCD unit may not send out the result correctly if the downstream module is not ready in the

cycle GCD unit is in the DONE state. However, this bug is only observed if there is more than one

cycle of stalls on the egress interface, which helps the bug escape some simulation-based testing

that assumes no egress stalls on the DUV.

My implementation of BLEC detects this bug in under one minute. JasperGold finds a 7-

cycle counterexample to the same_msg_ast assertion in the equivalence checker: the toplevel LI

interface generates two messages into the two instances of DUV; the egress perturber applies one

cycle of stall on the egress interface, which causes the first result of the perturbed DUV to drop;

the equivalence checker therefore finds the first result from the strict DUV and the second result

from the perturbed DUV to be different, triggering a failed assertion. Verification engineers can

deduce from the counterexample waveform that the DUV has different behaviors under different

stall conditions, which helps debugging.

Bug: Wrong Transition Condition from CALC to DONE – The second bug creates a wrong

transition condition where the FSM only transits to DONE if the egress interface is ready and

79

transits to IDLE otherwise. With this bug, the GCD unit will function correctly if there is no egress

stalls; but the DUV will not generate valid output messages if there is egress stalls. Similar to

the unconditional transition bug, this bug can escape simple simulation tests that assume no egress

stalls.

BLEC detects this bug in under one minute. JasperGold identifies that the same_msgs_ast

assertion vacuously passes (i.e., the antecedent condition is unreachable) because under this bug the

strict and the perturbed DUV cannot generate a valid output message at the same cycle (perturbed

DUV has at least one cycle egress stall). But JasperGold does find a counterexample of infinite

length to the same_vals_ast assertion: the toplevel LI interface generates two input messages

and the strict DUV produces two output messages before becoming idle; the perturbed DUV does

not generate any output and remains idle for the rest of the trace. Similar to the unconditional

transition bug, verification engineers can leverage the counterexample to debug the design issue.

Bounded Proof: GCD Unit is Stall Invariant – I also leverage BLEC to generate a bounded

proof that the GCD unit without bugs is stall invariant. I make two minor changes to the GCD unit

design to help the FPV tool converge without undermining the stall invariant proof.

First, I make the observation that for large 32-bit inputs, the GCD unit may spend a significant

number of cycles in the CALC state to compute the greatest common divisor using the subtraction-

based Euclidean algorithm. Therefore, formally verifying the complete 32-bit GCD unit design

is intractable because the FPV tool has to examine all 32-bit input pairs and step through the

Euclidean algorithm calculation to find potential violations of the stall invariant property. To help

the FPV tool converge on the GCD unit design, I modify the state transition condition from state

CALC to DONE to expedite the GCD computation process. As shown in Figure 4.9, the control FSM

in the GCD unit transits from CALC to DONE when the registered B value is zero. I remove this

condition and make the transition to the DONE state unconditional. This change effectively reduces

the number of cycles required to compute the greatest common divisor.

Second, I apply a similar change to the bitwise-XOR operation in the latency-insensitive PE to

avoid reasoning about complex computations in the GCD unit datapath. As shown in Figure 4.9,

the datapath of the GCD unit includes a subtraction operation between the registered A and B

values. I replace the subtraction operation with a bitwise-AND operation so that the FPV tool can

reason about simpler bitwise-AND operations instead of a 32-bit subtraction.

80

F D X M W

enF enD enX enM enW

inst
RegFile
(Write)

imem_respimem_req

RegFile
(Read) ALU

dmem_req dmem_resp

ostallF

ostallDstallD ostallXstallX ostallMstallM ostallWstallW
Processor

jmp
br_taken

RVVI

order
insn

pc_wdata
pc_rdata

......

x_wdata
x_wb

val

Figure 4.10: Pipelined Processor – RVVI: RISC-V verification interface. ostall: if this pipeline stage is originating
an event that stalls (stall) this stage and all stages after; jmp: squash stage F if the decoded instruction is a jump
instruction; br_taken: squash stage F and D if the current instruction is a branch and the branch is taken. Each thick
black arrow represents one latency-insensitive val-rdy interface.

Both of the above changes do not undermine the stall invariant proof because the changes only

affect logic outside of the GCD unit’s handshake control logic. After applying the above two

changes, JasperGold is able to prove both the same_msg_ast assertion and the same_vals_ast

assertion in the GCD verification harness within 20 minutes.

4.5.3 The Pipelined RISC-V Processor

The final case study design is a five-stage pipelined RISC-V processor. Figure 4.10 shows the

simplified datapath and control diagram of the pipelined processor used in this case study. The

target processor RTL module communicates to the instruction memory and data memory through

four memory interfaces: memory requests are transferred through the imem_req and dmem_req

interfaces, and memory responses come back through the imem_resp and dmem_resp interfaces.

Internally, the processor has five pipeline stages: fetch (F), decode (D), execution (X), memory

(M), and write-back (W). The processor reads the register file at stage D and writes back to the

register file at stage W. The processor has a simple branch predictor that always predicts not taken.

In the event of a branch mis-prediction (jmp or br_taken), the processor squashes stage F (if a

jump instruction) or stage F and D (if a branch instruction) to discard invalid states. Each pipeline

stage may also originate a stall (ostall signals) in the event of hazards or when memory responses

have not arrived, which stalls all stages after the originating stage.

The BLEC verification harness of the processor is different from that of the previous case stud-

ies. I make the observation that the memory request latency-insensitive interfaces of the processor

are inherently stall variant: branch instructions may squash earlier memory requests and therefore

81

Figure 4.11: Pipelined Processor Bug – This figure shows the buggy behavior of the pipelined processor where the M
stage is not correctly stalled when a memory response is pending. The data memory response is pending (dmem_stall
is high) on cycle 8 but stage W does not stall, leading to incorrect data written back to the register file.

memory response stalls can lead to different informative memory requests. I choose to implement

equivalence checking on the RISC-V verification interface [rvv23], which exposes the states of the

processor in instruction commit order and is guaranteed to be stall invariant regardless of instruc-

tion and data memory stalls. The right side of Figure 4.10 shows some of the exposed processor

states used in the case study. val is the latency-insensitive valid signal which indicates if the output

signals are valid at a cycle; order is a counter that keeps track of the number of committed instruc-

tions; insn is the 32-bit instruction; pc_rdata is the PC register value for the current instruction

and pc_wdata is the PC register value for the immediate next instruction; x_wb is a bit vector that

tracks which architectural register is written; x_wdata is the content of all architectural registers

at instruction commit.

To provide instruction and data memory responses, I also include a behavioral memory backed

by the JasperGold proof accelerator described in Section 4.4.2. To retain generality of my method,

I do not fill the behavioral memory and instead allow the FPV tool to the memory response message

as free variables. To reduce the FPV tool time, I also add the assumption to the processor decode

stage that all instructions at the decode stage is a valid RISC-V instruction.

Bug: Not Stalling Pipeline When Memory Response is Pending – I examine a bug where

the processor does not correctly stall its pipeline when a data memory response is pending (that is,

stage W proceed to write back invalid data from stage M). For the processor in Figure 4.10, this

bug is equivalent to clamping the ostall_M signal in stage M to low.

82

JasperGold finds a 10-cycle counterexample to the same_msg_ast property on the RISC-V

Verification Interface (RVVI) in about 10 minutes. This counterexample includes 3 valid RISC-V

load word instructions that fetch words from the data memory and write them back to the register

file. Figure 4.11 shows the waveform of key pipeline control signals of the bugged processor. On

cycle 8, the response side of the data memory is stalled (indicated by dmem_stall being high).

The correct processor would stall stage M and perform no write-backs at stage W on cycle 9. The

strict processor without stalls on the data memory response interface also writes back the correct

messages because the bug only manifests with stalls in the M stage. However, the buggy processor

would still perform a write-back at stage W on cycle 9 with an incorrect data word, leading to

inconsistent RVVI informative events when compared to the strict processor.

Attempted Bounded Proof: Processor is Stall Invariant – Despite being able to find viola-

tions of the processor’s stall invariant property within a relatively short period of time, in the case

study JasperGold cannot establish a proof of the equivalence properties in BLEC verification har-

ness within a reasonable amount of time (48 hours wall time). The main reason for the extended

time to converge is the processor register file and the instruction and data memory. The target

RISC-V processor includes a register file of 32 32-bit entries, and the instruction and data mem-

ory both have 64 32-bit entires (I choose a small number of memory entries to reduce converge

time). These RTL memory modules represent an enormous state space, which the FPV tool has to

exhaustively search through to eventually generate a bounded proof of the stall invariant property.

I have attempted several methods to reduce the processor complexity by introducing extra con-

straints. For example, I add assumptions that certain RISC-V instructions will not appear to reduce

the decoder complexity; I remove the support for several arithmetic operations in the ALU; I also

reduce the bitwidth of the long data bus (x_wdata) in the RVVI to shrink the state space the FPV

tool needs to search through. Future research may need to further reduce the state space of the

verification harness to eventually establish a bounded proof of the stall invariant property.

4.5.4 Discussions

Based on my experiences performing the above case studies, I observe that BLEC is effective at

detecting bugs in the given latency-insensitive RTL modules. The FPV tool (JasperGold) usually

takes a reasonably short period of time to discover a counterexample to the stall invariant property

in the original RTL module. As a concrete example, in the RISC-V processor case study, Jasper-

83

Gold discovers a counterexample of 27 cycles in the processor RTL with uninitialized behavioral

instruction and data memory in 20 minutes.

However, it usually takes the FPV tools significantly longer time to achieve a bounded proof

of stall invariant on the given RTL module, and some manual changes are necessary to help the

FPV tool converge faster. Fortunately, BLEC is compatible with many design changes that can

significantly reduce tool converge time. Most of these changes reduce the complexity of the target

DUV’s datapath by replacing complex computations (typically with a large number of gates) with

simpler computations. Since the latency-insensitive handshake logic of most DUVs do not depend

on the exact values of these computations, those changes generally do not undermine the stall

invariant proof. Concrete examples of those changes include replacing the multiplication logic

with bitwise-XOR gates (PE case study) and replacing the subtraction logic with bitwise-AND

gates (GCD unit case study).

For agile hardware designers, BLEC can be smoothly integrated into their agile workflow be-

cause the algorithm shown in Figure 4.5 automatically constructs the verification harness for most

latency-insensitive DUVs. As part of the continuous integration pipeline, BLEC can be kept run-

ning in the background to find potential violations of the stall invariant property. However, hard-

ware generators that instantiate or interact with memory modules may face significant increase

in run time because FPV tools converge much slower on memory modules. Agile designers may

need to focus on applying BLEC to the unit tests of small latency-insensitive RTL modules to avoid

prolonged FPV tool time.

4.6 Related Work

Bounded model checking [CBRZ01] is a formal verification technique which verifies if a given

transition system obeys the specification of its intended behaviors. The industry has adopted

bounded model checking based formal verification techniques to verify the functional correct-

ness of large RTL designs [BLM01, CFF+01, BCRZ99, AK95]. Both these existing works and my

work leverage bounded model checking based formal verification methods to prove or find coun-

terexamples to the intended behaviors of RTL modules. However, there are two major differences

between the above existing works and my work. First, existing works mainly focus on verifying

the functional correctness of the RTL modules and my work focuses on finding violations of the

84

stall invariant property. Second, to achieve a detailed and unambiguous specification, the above ex-

isting works mainly reply on manual specifications of intended behaviors of an RTL module. This

requires intimate knowledge of both the design’s functionalities and the specification language,

which limits formal methods’ accessibility to a relatively small audience. In contrast, my proposal

democratizes the formal verification techniques by encapsulating details of the specification into

verification modules.

Carloni et al. propose a correct-by-construction methodology to develop latency-insensitive

designs using a helper modules including channels, relay stations, and shells [CMSSV99]. Shells

are wrapper modules around the target DUV to enable correct-by-construction latency-insensitive

communications with other LI channels. The authors claim that a shell can be automatically

synthesized from a given DUV, which reduces the time required to implement a correct latency-

insensitive RTL module. In the face of stalling events, the shell stalls the wrapped DUV instance

through clock gating to preserve its internal states and only allows state changes when all in-

put messages have become valid. Comparing to my work, Carloni et al.’s proposal represents

an orthogonal correct-by-construction solution to the verification challenge of latency-insensitive

designs.

Researchers have also explored properties similar to the stall invariant property and applied

it in other contexts. Dai et al. propose to leverage formal verification techniques to validate

high-level synthesis (HLS) results based on the latency-equivalence of the design under different

inputs [DKR+21]. Piccolboni et al. propose to formally verify the latency equivalence of differ-

ent high-level synthesis results to achieve high confidence in HLS results. Piccolboni’s proposal,

KAIROS, assumes an incremental modification workflow and verifies if the result of each synthesis

step produces results that are latency equivalent to the reference module. Similar to my proposal,

Dai et al. and Piccolboni et al. also construct a verification harness with latency-insensitive input

manipulation logic. However, both my work and their proposals have different focuses and rep-

resent orthogonal efforts on tackling HLS verification issues and a more traditional ASIC/FPGA

prototyping verification challenges. Suhaib et al. propose to validate LI components by verifying

the latency-equivalence between a LI component and its synchronous counterpart, both of which

are described using a verification modeling language [SMBS06]. My work focuses on verifying

the stall invariant property of LI components modeled at RTL, which includes most of the hard-

ware modules used in ASIC and FPGA prototyping. Wijayasekara investigates a similar property

85

to the stall invariant property in the context of asynchronous circuits and tackles the verification

challenges in the asynchronous context [Wij16], where as my work focuses on the correctness of

digital LI components.

4.7 Conclusions

Despite its success in enabling hardware standard libraries and numerous network-on-chip IPs,

latency-insensitive protocols have imposed a unique verification challenges in instance composi-

tion where existing simulation-based dynamic verification techniques require significant efforts to

build test suites that cover a large number of stall conditions. In this chapter, I propose a formal ver-

ification methodology to address the verification challenge of latency-insensitive RTL modules. I

introduce the stall invariant property of latency-insensitive RTL modules and make the observation

that most bugs in LI modules are violations of the stall invariant property. I propose bounded la-

tency equivalence checking, which constructs a verification harness accepted by a formal property

verification tool to find inconsistent latency-insensitive behaviors under different stall conditions.

I implement the proposed BLEC technique with a state-of-the-art commercial formal verification

tool and perform three case studies to evaluate its effectiveness. The case studies demonstrate that

BLEC can find all injected bugs within relatively short period of time. The case studies also find

existing commercial formal verification tools can provide a bounded proof of the stall invariant

property on many manually simplified RTL modules.

86

CHAPTER 5
TRANSLATION-IMPORT:

ADDRESSING VERIFICATION CHALLENGES
IN CO-SIMULATION

To better support sophisticated and highly-parametrized hardware generators, modern hard-

ware description languages (HDLs) are often embedded in a general-purpose host programming

language. To maximize development velocity, agile hardware designers generally model the target

hardware and create test benches in the host language before generating Verilog RTL for ASIC or

FPGA prototyping. Ideally, agile hardware designers should be able to run a comprehensive test

suite on both the host language hardware model (the native model) and the generated Verilog RTL

model (the external model) by reusing the same test bench in the host language. Unfortunately,

most of the existing agile hardware frameworks lack the support for this seamless co-simulation

between the host language and the prototyping language (such as Verilog).

In this chapter, I present translation-import, a systematic approach that enables seamless co-

simulation between the PyMTL3 HDL and multiple prototyping languages. Translation-import

consists of two highly extensible components: the translation framework and the import pass.

The translation framework is built on top of a register-transfer level intermediate representation

(RTLIR), which is a canonical in-memory representation of a PyMTL3 native model. RTLIR fa-

cilitates translation by providing a unified view of numerous hardware constructs and performing

comprehensive type checking on the IR. Based on RTLIR, the translation framework provides

user-friendly APIs that support the one-to-one mapping from a PyMTL3 construct to a prototyp-

ing language construct, which can be easily extended to new prototyping languages. On the other

hand, the import pass achieves seamless co-simulation by exposing an external model in PyMTL3

as an interactive model that can be incorporated into native PyMTL3 test benches. To make ex-

ternal models interactive, the import pass creates a wrapper, a series of C functions that manage

the status and ports of the model. The import pass compiles the target external model plus the

wrapper into a shared library with a standard C compiler and a simulator of the target prototyping

language. The shared library can then be dynamically linked into the host PyMTL3 process for

simulation. I also present a case study of an ultra-elastic coarse-grain reconfigurable array (UE-

87

CGRA) to demonstrate how translation-import improves functional verification productivity in an

agile workflow.

5.1 Introduction

Hardware description languages have profound impacts on the IP and verification reuse in

hardware developments. Traditional HDLs generally focus on the structural and behavioral mod-

eling of hardware and lack the expressiveness of most general-purpose programming languages

that enables sophisticated generators or generic test benches. To overcome this limitation, modern

HDLs for agile hardware are typically embedded in a programming language known as the host

language. These embedded HDLs often provide a collection of modeling primitives and utilities

implemented in the host language to support structural and behavioral modeling, parametrized

hardware generators, and reusable test benches. Embedded HDLs are ubiquitous in agile hardware

and significantly improve the IP and verification reuse because of the improved expressiveness of

their host languages over traditional HDLs.

Unfortunately, most of the existing embedded HDLs face a productivity challenge when agile

hardware designers try to verify the target hardware using simulations. To maintain a high develop-

ment velocity, designer want to implement both the target hardware and the test benches in the host

language (known as the native design and the native test benches) and iterate until the design passes

a reasonable number of unit and integration tests. After the designer has high confidence about the

design’s correctness, a prototypable design can be generated from the native design which can be

used for ASIC/FPGA prototyping purposes. Ideally, designers should be able to reuse the native

test benches to verify the correctness of the prototypable design. However, existing HDLs either

do not support the above productive verification workflow or have limited support of co-simulation

between the native test bench and the generated design. I refer to this dilemma of agile hardware

designers as a seamless co-simulation verification challenge.

5.1.1 A Taxonomy of Simulation-Based Verification in HDLs

To better understand the seamless co-simulation verification challenge, I present a taxonomy

of simulation-based verification strategies. Figure 5.1 shows four possible simulation strategies

with embedded HDLs, where host language indicates the host programming language of the HDL

88

Native Design Verilog Design

Verilog Test Bench

Verilog Simulation

Host Language Prototype Language

Native Design Verilog Design

Verilog Test Bench

Verilog Simulation

Host Language Prototype Language

Native Test Bench

Native Simulation

(a) Prototype Language TB Only (b) Host and Prototype Language TBs

Native Design Verilog Design

Host Language Prototype Language

Native Design Verilog Design

Host Language Prototype Language

Native Test Bench

Native Simulation

(c) Co-Simulation Only (d) Seamless Co-Simulation

Co-Simulation

Native Test Bench

Co-Simulation

Figure 5.1: A Taxonomy of Simulation-Based Verification – (a) only creates a test bench in the prototype language
which fails to leverage the host language for productive testing; (b) creates two test benches, which takes too much
verification time; (c) creates a native test bench but fails to iterate natively: only co-simulates the generated Verilog
(d) seamless co-simulation: iterate natively before co-simulating the generated Verilog.

and prototype language refers to the HDL used for ASIC/FPGA prototyping (typically Verilog).

Figure 5.1(a) corresponds to a Verilog-only simulation strategy. Under this strategy, agile hard-

ware designers only use the embedded HDL to create parametrized generators and fail to lever-

age the productive host language for test benches, which is not ideal for productive verification.

Figure 5.1(b) performs both native and Verilog simulations. However, this strategy requires the

implementation of at least one native test bench and one Verilog test bench, which significantly in-

creases the workload of verification. Figure 5.1(c) represents a co-simulation only strategy. Under

this strategy, agile hardware designers have to generate a Verilog design before co-simulating it

with the native test bench. This strategy does not support native simulation, which is critical to the

iterative improvement of the native design in the host language environment. Figure 5.1(d) presents

the seamless co-simulation strategy, which supports both native simulation and co-simulation with

Verilog. Comparing to the co-simulation only strategy, seamless co-simulation enables designers

to productively iterate on the native design using native simulation until a reasonably large number

of test cases have passed. Seamless co-simulation is the ideal simulation strategy in my taxonomy

because it allows rapid iterations of the native design without sacrificing co-simulation capabilities.

89

Test Bench

Python

Functional-Level

Cycle-Level

RTL

Simulation

SystemVerilog

RTL

import &
co-simulate

synthesize

translate

prototype
bring-up

ASIC/
FPGA

Analysis
Transform

Tracing
PyMTL3

Model

Test Bench
w/

Arbitrary
Python

Parameter
Specs

("dut", N=2)

Elaboration

PyMTL3
In-Memory
Intermediate

Representation
(IMIR)

Analysis Passes

PyMTL3 DSL PyMTL3 Passes

Linting, stats...

Instrumentation
Passes

Simulation...

Transform
Passes

Prototype...

(a) An Agile Hardware Workflow in PyMTL3 (b) An Overview of the PyMTL3 Framework

Figure 5.2: PyMTL3 Workflow – Hardware designers implement functional-level, cycle-level, or RTL models using
PyMTL3 modeling primitives. Designers can also use arbitrary Python language constructs for test benches. PyMTL3
passes (in italic) targets hardware models and test benches to enable features such as translation to SystemVerilog,
co-simulation, and prototype bring-up. Figure adapted from [JPOB20].

5.1.2 PyMTL3 Background

As a simulation-based verification strategy, seamless co-simulation is orthogonal to the choice

of HDLs and can be implemented in almost any embedded HDL. However, in this chapter, I fo-

cus on translation-import, a seamless co-simulation solution implemented in the PyMTL3 embed-

ded HDL. This section provides the relevant background about PyMTL3, an open-source Python

framework for agile hardware, which lays the foundation of the remaining sections in this chapter.

PyMTL3 is an open-source Python framework for hardware modeling, generation, simulation,

and verification [JPOB20]. It supports multi-level modeling including functional-level, cycle-level,

and RTL. Figure 5.2(a) shows an agile hardware workflow using PyMTL3. Hardware designers

implement the target model using a set of modeling primitives. Designers are also allowed to use

arbitrary Python code in their test benches. PyMTL3 supports translation from the RTL PyMTL3

model into SystemVerilog, which can then used to drive an ASIC/FPGA flow or co-simulate with

the native PyMTL3 test benches. To facilitate prototype bring-up, PyMTL3 also provides passes

that bridges the native test benches and the ASIC/FPGA prototype.

Figure 5.2(b) provides an overview of the PyMTL3 framework. For hardware designers,

PyMTL3 provides the PyMTL3 domain-specific language (DSL), which includes modeling prim-

itives to support hardware models, parameter specifications, and test benches. Elaboration is a

90

process which converts the target hardware models, the designer-specified parameters, and the

given test bench into a hierarchy of model instances. The representation of the elaborated hier-

archy is known as the in-memory intermediate representation (IMIR), which provides query and

modification APIs to allow post-elaboration operations on the instance hierarchy.

PyMTL3 passes provide a systematic approach to organizing and applying post-elaboration

utilities, including translation-import. As shown in Figure 5.2(b), there are three broad categories

of PyMTL3 passes: (1) analysis passes, which only collect information and statistics from the

elaborated hierarchy. Utilities such as linters and hierarchy statistics collectors can be conveniently

implemented as analysis passes. (2) instrumentation passes, which attach additional meta-data to

the target hierarchy of instances. Instrumentation passes do not modify the given instances, and

important utilities including simulation, tracing, and translation belong to the instrumentation pass

category. (3) transform passes, which may modify the given elaborated hierarchy such as modify-

ing connections and adding new components to the hierarchy. An example of transform passes is

the ASIC/FPGA prototype passes, which wrap the target hierarchy within a component that com-

municates to the PyMTL3 test benches. The translation-import mechanism is implemented as a

translation pass generator and an import pass in the PyMTL3 framework.

5.2 Translation-Import Mechanism in PyMTL3

In this section, I represent the design and implementation details of the translation-import

mechanism in PyMTL3. To provide an overview of the translation-import implementation, Fig-

ure 5.3 shows how translation and import passes converts a pure PyMTL3 model into a SystemVer-

ilog model that can be co-simulated with PyMTL3 test benches. As is shown in the figure, both the

translation pass and the import pass depend on register-transfer level intermediate representation

(RTLIR), which serves as a canonical representation of synthesizable PyMTL3 model instances.

The translation pass takes the RTLIR representation of a model as input and generates the source

code of a backend representation (typically SystemVerilog but can be other HDLs). The import

pass takes the RTLIR model and the generated backend source code and creates both a C wrapper

and a PyMTL3 wrapper for the target; the C wrapper is then compiled into a shared library together

with the Verilated RTL and then dynamically linked through CFFI (C Foreign Function Interface)

into the PyMTL3 wrapper.

91

Pure
PyMTL3
Instance

Translation
Pass

System
Verilog RTL

Import
Pass

PyMTL3
Wrapper

Verilator RTL C++
Source

C Wrapper
Source LLVM/GCC Shared

Library

CFFI

PyMTL3
Wrapped

SystemVerilog
Instance

PyMTL3
Passes

External
Tools

Files
RTLIR

Intermediate
Representation

Figure 5.3: PyMTL3 Translation and Import Passes – RTLIR: register-transfer level intermediate representation.
Verilator is an open-source simulator which takes Verilog/SystemVerilog RTL and compiles it into C++ source code.
LLVM/GCC represents standard C/C++ compilers that can compile the RTL C++ source code and C wrapper into
a shared library. CFFI, which stands for C Foreign Function Interface, is a Python package that facilitates loading
dynamic shared libraries.

The remaining section is organized as follows: Section 5.2.1 presents the design and imple-

mentation of RTLIR. Section 5.2.2 describes the translation framework, which is an extensible

translation pass generator based on RTLIR. Section 5.2.3 shows the design and implementation of

the import pass.

5.2.1 The Register-Transfer Level Intermediate Representation

RTLIR is an intermediate representation for synthesizable PyMTL3 RTL models. Comparing

to PyMTL3’s in-memory representation (IMIR), RTLIR provides a canonical representation to a

focused subset of the PyMTL3 DSL and enables self-contained sanity checks through type checks.

RTLIR consists of three main components: the RTLIR types, which represent the types used in

synthesizable RTL modeling; the structural RTLIR, which represents the structural modeling as-

pect of RTL models; and the behavioral RTLIR, which represents the behavioral modeling in the

form of an update block in PyMTL3.

RTLIR Types – RTLIR types carry important information about the target RTL model and

are a critical component of RTLIR. Figure 5.4(a) shows the core RTLIR types definitions, which

include three main kinds of types: data types, interface types, and structural modeling types.

92

1 module RTLIR_Types
2 {
3 -- Data Types
4 dtype = Vector(int nbits)
5 | Struct(string* fields, dtype* types)
6 | PackedArray(dtype* types)
7
8 -- Interface Types
9 itype = Port(direction dir, dtype type)

10 | Interface(string* names, itype* types)
11 | IfcArray(itype* types)
12
13 -- Structural Modeling Types
14 type = Signal(dtype type)
15 | Component(string name)
16 | Array(type *types)
17 }

(a) Core RTLIR Types

1 @bitstruct
2 class Foo:
3 x : Bits8
4 y : Bar
5
6 @bitstruct
7 class Bar:
8 x : [Bits4 for _ in range(2)]
9 y : Bits4

10
11 class Woo(Component):
12 def construct(s):
13 s.in_ = InPort(Foo)
14 s.out = OutPort(Bits8)
15
16 s.out[0:4] //= s.in_.y.x[0]
17 s.out[4:8] //= s.in_.y.x[1]

(b) Example

Figure 5.4: Core RTLIR Types and an Example Model – (a) RTLIR types include hardware data types, which are
commonly used to specify the data type of a signal, interface types, which are the types of potentially nested RTL
interfaces, and structural modeling types, which are the types of primitives such as signals and components. (b) Woo
has an input port of a nested struct data type.

Data types specify the kind of data that may pass through a port or a wire. They are recursively

defined over three cases: vector types, which are fixed width vectors; struct types, which may have

fields of arbitrarily nested data types; packed array types, which is a list of any data types. For

example, in Figure 5.4(b), the input port s.in_ has a struct data type with a nested field y. Line

16-17 show how to create connections between the output port and different entries in a packed

array data type. Interface types are the types of interfaces of an RTL model. They account for

the names of ports and nested interfaces and their corresponding interfaces types. As shown in

Figure 5.4(b), both s.in_ and s.out have interface types of struct and vector data type. Finally,

the structural modeling types are used for non-interface attributes of an RTL model. For example,

a model may instantiate a sub-component, and it has Component type with the name of component

class. Another commonly used structural modeling type is Signal, which describes the types of

wires. It is also possible to create a new structural modeling type by organizing some types into a

list, as is indicated by the Array case shown in Figure 5.4.

Structural RTLIR – Structural RTLIR provides a representation to structural modeling in

an RTL model. Figure 5.5(a) shows the definition of the signal expression (or sexpr), the core

structural RTLIR. Signal expressions describe a signal used in structural modeling, which typi-

cally involves signals that are connected. Signal expressions always have a root operand of type

CurrentComponent, which represents the model that owns the signal. The other cases in the

definition of sexpr represent operations that may yield a new signal. For example, Attribute

93

1 module Structural_RTLIR
2 {
3 sexpr = CurrentComponent(string name)
4 | Attribute(sexpr base, string attr)
5 | Index(sexpr base, sexpr index)
6 | Slice(sexpr base, sexpr lower, sexpr upper)
7 | Const(int n)
8 }

(a) Core Structural RTLIR

1 class Foo(Component):
2 def construct(s):
3 s.in_ = InPort(Bits8)
4 s.out = OutPort(Bits4)
5 s.adder = Adder(Bits2)
6
7 s.adder.in_ //= s.in_[0:2]
8 s.out[0:2] //= s.adder.out
9 s.out[2:4] //= 0

(b) Example

Figure 5.5: Core Structural RTLIR and an Example Model – (a) The definition of signal expressions, the main
component of structural RTLIR. (b) Foo demonstrates how to instantiate sub-components (Adder) and create connec-
tions, which are the main ways to perform structural modeling in RTLIR.

1 module Behavioral_RTLIR
2 {
3 -- Statements
4 stmt = Assign(expr target, expr value)
5 | If(expr cond, stmt* body, stmt* orelse)
6 | For(loopvar var, expr lo, expr hi, expr inc)
7
8 -- Expressions
9 expr = Concat(expr* values)

10 | ZeroExt(int nbits, expr value)
11 | SignExt(int nbits, expr value)
12 | BinOp(expr l, operator op, expr r)
13
14 loopvar = LoopVar(string name)
15 operator = Add | Sub | Mult
16 }

(a) Core Behavioral RTLIR

1 class Foo(Component):
2 def construct(s):
3 s.a = InPort(Bits4)
4 s.b = InPort(Bits4)
5 s.sel = InPort(Bits1)
6 s.out = OutPort(Bits8)
7
8 @update
9 def upblk():

10 if s.sel:
11 s.out[0:4] @= concat(s.a[0:2], s.b[2:4])
12 s.out[4:8] @= s.a + s.b
13 else:
14 s.out[0:4] @= zext(s.a[0:2], 4)
15 s.out[4:8] @= sext(s.b[0:2], 4)

(b) Example

Figure 5.6: Core Behavioral RTLIR and an Example Model – (a) the definition of the core behavioral RTLIR,
which is used in the behavioral modeling update blocks of PyMTL3 RTL models. (b) Foo includes an update block
upblk that demonstrates how behavioral RTLIR represents common behavioral modeling primitives.

represents the getting attribute operation, which yields a new signal by accessing a signal of the

current component or a field in a port of nested struct data type; Index represents the indexing

operation, which produces the signal at the given index or the bit signal at the given bit of a vector.

Figure 5.5(b) provides a concrete example of signal expressions. On line 7, s.adder.in_ is a

signal expression formed by two Attribute operations on on CurrentComponent; s.in_[0:2]

is a signal expression formed by a Slice operation on top of the in_ attribute of the current com-

ponent. Specially, literal values such as integers are also signal expressions (e.g., literal 0 on line

9). It it worth noting that signal expressions are typically used with RTLIR types to facilitate rea-

soning about operations between signals. For example, signal expression s.adder.in_ has type

Port(Vector(2)) and s.in_[0:2] has type Signal(Vector(2)). These information can help

designers deduce that this connection is well-formed because both sides have the same bitwidth

for their data types.

94

Behavioral RTLIR – Contrary to structural modeling which can leverage arbitrary Python

code to instantiate sub-components and create connections, the PyMTL3 behavioral modeling is

done inside update blocks and is often limited to a subset of Python for synthesizable RTL models.

Figure 5.6(a) shows the definition of the core behavioral RTLIR. Each statement (e.g., assign-

ment, if-else statement, for-statement) in an update block corresponds to a statement clause in the

behavioral RTLIR. Expressions in these statements are captured by the expr clause of behavioral

RTLIR’s definitions. This includes commonly used operations such as binary and unary operations

as well as hardware-specific modeling primitives such as concatenation (Concat) and extensions

(ZeroExt and SignExt).

As a concrete example, Figure 5.6(b) presents an example PyMTL3 model that includes be-

havioral RTL modeling. The update block upblk includes an if-else statement at the top level, and

the signal s.sel is used as its condition. There are four Assign statements in the if-else state-

ment, and each assignment is formed by combining signal assignments and hardware modeling

primitives such as concatenation and extension.

Type Checking Behavioral RTLIR – Behavioral modeling in PyMTL3 RTL models differs

significantly from structural modeling. All structural modeling primitives are executed, collected,

and converted to the PyMTL3 IMIR at elaboration time. Behavioral modeling primitives, however,

are only executed at simulation time. Since PyMTL3 passes are applied post-elaboration and

before simulation, this creates the need of a robust and systematic approach to verify if a given

behavioral modeling update block is well-formed. Behavioral RTLIR achieves this through type

checking.

The behavioral RTLIR type checker targets statements and signal expressions in update blocks

and takes a two-pass approach to perform type checking. In the first pass, the type checker re-

cursively walks down the behavioral RTLIR representation and computes the RTLIR type of each

expression. In the second pass, the type checker inspects the RTLIR type of each expression and

determines if a type error occurs. For Assign, the type checker recursively collects the RTLIR

type of both sides of the assignment and checks if they are the same and if the left hand side can

be assigned. For If, the type checker verifies if the condition expression has signal type. As a

concrete example, the update block upblk in Figure 5.6(b) contains one condition and four assign-

ments. For slicing operations (e.g., s.out[0:4]), the behavioral RTLIR type checker computes

the bitwidth of the vector by subtracting the lower bound from the upper bound. For concatenation

95

1 class Translator:
2 def visit(s, rtype):
3 # Dispatch based on the type of rtype:
4 # Vector, Struct, or PackedArray
5 ...
6
7 def visit_Vector(s, nbits):
8 raise NotImplementedError()
9

10 def visit_Struct(s, fields, types):
11 raise NotImplementedError()
12
13 def visit_PackedArray(s, types):
14 raise NotImplementedError()
15
16 ...

(a) Base Translator with Virtual APIs

1 class ExampleTranslator(Translator):
2 def visit_Vector(s, nbits):
3 return f"[{nbits-1}:0]"
4
5 def visit_Struct(s, fields, types):
6 results = []
7 for name, rtype in zip(fields, types):
8 results.append(s.visit(rtype))
9

10 return f"struct packed {{
11 {'\n'.join(results)}
12 }}"
13
14 def visit_PackedArray(s):
15 return f"[{s.ndims-1}:0]"

(b) Example Data Type Translator

Figure 5.7: Translation APIs and an Example Translator – (a) Base translator that defines the APIs of the transla-
tion framework. Each backend should inherit the base translator class. (b) An example translator that converts RTLIR
data types to strings.

and extensions, the type checker uses the second argument to determine the bitwidth of the vector.

The behavioral RTLIR type checker requires that the bitwidth to be constant at elaboration time.

However, to support the fixed-width slicing operations that are commonly used in Verilog, the type

checker allows slicing operations where the lower and upper bounds differ by a elaboration-time

constant.

5.2.2 The Translation Framework

To facilitate ASIC and FPGA prototyping, modern embedded HDLs almost always support

translation, which generates RTL hardware models in prototype languages such as SystemVer-

ilog from the native RTL models. In this section, I describe the design and implementation of

PyMTL3’s translation framework, an extensible translation pass generator that bridges the RTLIR

and multiple low-level prototype languages.

The translation framework is built on the RTLIR visitor, a class that provides methods to recur-

sively walk down the RTLIR types, behavioral RTLIR, and structural RTLIR. Each RTLIR node

has a corresponding visit method that may be overridden to allow programmatic inspection of

the RTLIR. Figure 5.7 presents the base translator and an example translator that converts RTLIR

data types to strings. The translator base class defines a dispatch method visit, which inspects the

type of its argument rtype and dispatch it to the corresponding handling method. For example, if

the rtype is a Struct RTLIR type, the visit_Struct method will be called with the appropriate

arguments. Figure 5.7(b) demonstrates how new backends can programmatically generate strings

96

from translator APIs. For example, simple RTLIR data types such as Vector and PackedArray

can easily fill in a template of definition with their arguments. More complex data types such as

Struct can be handled by recursively translating the individual fields and assembly them together

(note that Line 8 calls the dispatch method defined in the base translator class). The behavioral and

structural RTLIR can be similarly translated into a new backend.

I have implemented two backends of the translation framework in PyMTL3: one for Sys-

temVerilog and one for Verilog. The SystemVerilog backend naturally supports complex syntax

such as structs, unpacked arrays, and the always_comb and always_ff keywords, which the Ver-

ilog backend does not support. The Verilog backend differs from the SystemVerilog backend

mainly in the that it converts struct and arrays of signals into individual vector signals with a

common prefix. Thanks to the reusable API design of the translation framework, the majority of

the SystemVerilog backend could be reused and only APIs that deal with struct and array data

types and signals need to be overridden. This demonstrates that the translation framework is an

extensible and efficient approach to adding new translation backends in PyMTL3.

5.2.3 The Import Pass in PyMTL3

As shown in Figure 5.1(d), the co-simulation between the translated Verilog design and the

native test benches requires a communication mechanism between Verilog and the host language.

This section introduces the import pass, a PyMTL3 pass that enables seamless co-simulation by

dynamically loading the Verilog design into the host Python environment (also known as import-

ing). The remaining of this section describes the design and implementation of the import pass.

The import pass interacts with numerous files and tools to co-simulate Verilog with Python

test benches. Figure 5.3 shows how the import pass generates and interacts with different kinds

of files to import the translated SystemVerilog RTL back to Python. The import pass takes the

RTLIR and the SystemVerilog RTL of the target model as input and performs the import in four

steps. First, it generates the two wrappers (one in PyMTL3 and one in C) to allow communication

between the translated RTL and the Python test bench. Second, it invokes Verilator, an open-source

Verilog simulator, to compile the generated SystemVerilog RTL into C++ source code. Third, the

import pass invokes a C++ compiler to compile the C wrapper and the generated C++ source file

into a shared library. Finally, the import pass dynamically load the shared library using CFFI, a

97

Python Functions Called C Functions Explanations

__init__ dlopen* Initializes the imported model; dynamically loads the
compiled shared library into the current Python process.

__del__ destroy_model, dlclose* Finalizes the imported model; deallocates heap space and
closes the dynamically loaded shared library.

construct create_model Constructs the imported model; creates the Verilog model
and allocates necessary heap space.

comb_upblk comb_eval Combinationally propagate the port values of the
PyMTL3 wrapper into the compiled Verilog model.

seq_upblk seq_eval, has_assert_fired Ticks the compiled Verilog model and advances the clock
by one cycle; also checks if any assertions has fired.

assert_on assert_on Enables assertion in the compiled Verilog model.
line_trace line_trace Retrieves the line trace of the compiled Verilog model.

Table 5.1: The Python and C Interface of a Imported Model – Each Python function in the left column calls the
corresponding C functions in the right column. To implement these functions, the import pass generates a PyMTL3
wrapper and a C wrapper that define and implement these functions. *: this function is provided by the CFFI package
and is not part of the C wrapper.

Python package for loading and interacting with shared libraries, and the Python test bench can

then co-simulate with the generated RTL through the PyMTL3 wrapper.

Table 5.1 highlights the key functions exposed by the PyMTL3 wrapper (the Python Functions

column) and the C functions called under the hood (the Called C Functions column). In a typical

use case of the imported model, the Python functions are generally called in the following order.

__init__ initializes the imported model by dynamically loading the compiled Verilog model,

which is done by calling the dlopen API of the CFFI package. After initialization, the construct

method creates an instance of the imported model and allocates heap space for the model and

associated metadata. At each cycle of co-simulation, the PyMTL3 simulator calls the seq_upblk

method followed by comb_upblk. The former method evaluates the Verilog model before and after

a clock edge and updates the model’s states accordingly. The latter method then communicates the

PyMTL3 and Verilog port values. The assert_on and the line_trace functions may be called

during the co-simulation to enable assertions in the Verilog model or collect line trace from the

Verilog line trace function. Finally, when the imported model goes out of scope in Python, the

__del__ method destroys the model, frees the allocated heap space, and unload the loaded shared

library through dlclose CFFI API.

98

empty?

empty?

empty?

empty?

func

clk_sel

in_n_clk_sel 2b
2b

M
U

L
A

LU

en

2b

2b

2b

in_n_clk
in_n_rdy
in_n_val

in_n_data
in_w_clk_sel

in_w_clk
in_w_rdy
in_w_val

in_w_data
in_s_clk_sel

in_s_clk
in_s_rdy
in_s_val

in_s_data
in_e_clk_sel

in_e_clk
in_e_rdy
in_e_val

in_e_data

out_w_data

out_n_data

out_s_data

out_e_data

out_n_clk

SU

Accum

clk
switcher

clk
checker

9b
out_n_clk_sel

SU

SU

SU

Configuration and
Control Unit

out_w_clk
out_w_clk_sel

out_s_clk
out_s_clk_sel

out_n_rdy
out_n_val

out_w_rdy
out_w_val

out_s_rdy
out_s_val

out_e_rdy
out_e_val
out_e_clk
out_e_clk_sel

SRAM
(4KB)

SRAM
(4KB)

SRAM
(4KB)

SRAM
(4KB)

SRAM
(4KB)

SRAM
(4KB)

SRAM
(4KB)

SRAM
(4KB)

PE
(0,3)

PE
(0,2)

PE
(0,1)

PE
(0,0)

PE
(1,3)

PE
(1,2)

PE
(1,1)

PE
(1,0)

PE
(2,3)

PE
(2,2)

PE
(2,1)

PE
(2,0)

PE
(3,3)

PE
(3,2)

PE
(3,1)

PE
(3,0)

(a) 4x4 UE-CGRA PE Array (b) UE-CGRA PE

bypass0

bypass1

br
cond

cfg_immediate

cl
k1

cl
k2

cl
k3

cl
kr

st

Figure 5.8: UE-CGRA Overview – (a) A 4x4 UE-CGRA with 32KB SRAM scratchpads. The top and bottom rows
of PEs are directly connected to the scratchpads. (b) Overview of the UE-CGRA processing element (PE) design. The
PE may operate at three different clock frequencies (sprint, nominal, and rest) and each input interface (in_n/w/s/e)
is registered with a bisynchronous FIFO. Figure adapted from [TPO+21]

5.3 Case Study: Co-Simulation of an Ultra-Elastic CGRA

In Section 5.2, I described the design and implementation of the translation-import mechanism

in PyMTL3. In this section, I present a case study of testing an ultra-elastic coarse-grain re-

configurable array (UE-CGRA) using the proposed translation-import mechanism. I demonstrate

how translation-import improves the verification productivity of a complicated hardware genera-

tor, which incorporates mixed-language (Verilog) IPs, to verify the translated Verilog RTL using

the native PyMTL3 test bench

5.3.1 UE-CGRA Overview

Coarse-grain reconfigurable arrays (CGRAs) are an efficient architecture generally consists of

a grid of processing elements (PEs) connected with an interconnection network. Depending on the

target workload, the PEs and the network may be reconfigured to implement different functional-

ities. CGRAs are capable of higher performance and energy efficiency than general-purpose pro-

cessors and better programmability than fixed-function ASICs thanks to its reconfigurable nature.

99

However, irregular loops incur significant performance and energy inefficiencies on CGRAs be-

cause of the cross-iteration data dependency bottleneck. Ultra-elastic CGRAs (UE-CGRA) tackle

the irregular loop specialization challenge with per-PE fine-grain DVFS and can selectively sprint

or rest PEs to improve performance and energy efficiency.

Figure 5.8 provides an overview of the UE-CGRA architecture and the design of its processing

elements (PEs). In UE-CGRAs, the PEs are interconnected with a mesh network. The top and

bottom rows of PEs are also connected to an SRAM scratchpad. Each UE-CGRA PE can be

reconfigured to accept input from two out of its four neighboring PEs and perform either ALU

operations or a multiplication. Comparing to traditional CGRAs, UE-CGRAs allow individual

PEs to be reconfigured and run at different frequencies: spring, which is the fastest and generally

used for better performance; nominal, which is the default frequency; and rest, which is the slowest

and generally used outside the critical path. To support this, each PE also a clock checker and a

clock switcher to switch between different operating clocks.

UE-CGRA Verification challenges –UE-CGRA is a complex digital design with several com-

ponents and can operate different clock frequencies. The reconfigurable nature of UE-CGRA im-

poses a significant challenge to verify the hardware using Verilog test benches. However, the large

design size of UE-CGRA (typically including 64 PEs in an 8x8 arrangement) often significantly

slows down the speed of native simulation in host languages like Python. In this section, I leverage

the proposed seamless co-simulation methodology to tackle the above challenges and demonstrate

how translation-import in PyMTL3 can significantly improve verification productivity.

5.3.2 Experiment Methodologies

In this section, I describe the methodology I use to perform co-simulation experiments on the

UE-CGRA RTL design. I focus on explaining the design parameters and the microbenchmarks

used in the experiments.

Design Specification –The UE-CGRA PE array is implemented mostly in PyMTL3 RTL and

the clock switching and clock counting logic are implemented in Verilog. The target of verification

is a representative 8x8 UE-CGRA array instance (64 PEs) and it assumes the clock period of the

spring, nominal, and rest clock has a ratio of 2:3:9. The PE uses a ratiochronous clock-domain

crossing scheme and registers the input from its four neighbours with bisynchronous FIFOs. Com-

paring to the traditional asynchronous crossing scheme, the ratiochronous approach selectively

100

1 while(hd) {
2 if(hd->d==tgt)
3 return hd->d;
4 else
5 hd=hd->nxt;
6 }
7 return -1;

1 for(i=0;i<N;++i){
2 out = src[i]+err;
3 if(out>127) {
4 pixel = 0xFF;
5 err = out-pixel;
6 } else {
7 pixel = 0;
8 err = out;
9 }

10 dest[i] = pixel;
11 }

1 for(x=-S;x<=N;x++){
2 bright=total+
3 *ip++;
4 tmp=*dpt++*
5 *(cp-bright);
6 area+=tmp;
7 total+=tmp*bright;
8 }

1 for(k=0;k<G;++k){
2 t_r=Wr*r[2*j*G+G+k]
3 -Wi*i[2*j*G+G+k];
4 t_i=Wi*r[2*j*G+G+k]
5 +Wr*i[2*j*G+G+k];
6 r[2*j*G+G+k]=
7 r[2*j*G+k]-t_r;
8 r[2*j*G+k]+=t_r;
9 i[2*j*G+G+k]=

10 i[2*j*G+k]-t_i;
11 i[2*j*G+k]+=t_i;
12 }

1 for (i=0;i<21;++i){
2 BF_ENC(right,left,
3 s,p[i]);
4 temp=right;
5 right=left;
6 left=temp;
7 }

(a) llist (b) dither (c) susan (d) fft (e) blowfish

Figure 5.9: UE-CGRA Microbenchmarks – All five microbenchmarks used in the experiments map the core irreg-
ular loop of the corresponding algorithm to a UE-CGRA PE configuration. Pseudo code adapted from [TPO+21].

suppresses unsafe clock domain crossings and reduces both verification complexity and synchro-

nization latency penalties. The UE-CGRA PE supports a range of operations including integer

multiplication and common ALU operations: comparison, addition, subtraction, left and right

shifts, and bit-wise arithmetics. The PE also supports a merge operation phi and a branching

operation br. These two operations enable mapping loops with branches onto UE-CGRAs.

Microbenchmarks –Figure 5.9 shows the pseudo code of the microbenchmarks used to verify

the functionality of the UE-CGRA RTL. llist is a pointer-chasing microbenchmark. dither is

commonly used in image processing. susan is an image processing algorithm for edge finding and

noise filtering. fft implements the fast Fourier transform algorithm. blowfish is an encryption

algorithm. To test the UE-CGRA with these microbenchmarks, I extract the innermost irregular

loop and map it to UE-CGRA PE configurations. Each microbenchmark also corresponds to two

different UE-CGRA power configurations: one performance-optimized and one energy-optimized,

both of which are generated by the UE-CGRA power compiler [TPO+21]. At the end of co-

simulations, the native PyMTL3 test bench compares the output in UE-CGRA PE array to the

pre-computed reference output of the irregular loops.

5.3.3 Results and Analysis

Table 5.2 shows the simulation results of different UE-CGRA microbenchmarks using the

translation-import mechanism in PyMTL3. The simulation statistics include the trip count of

the target irregular loops, the number of SRAM reads and writes, and the simulation time mea-

sured in nominal clock cycles. Seamless co-simulation validates the idea that fine-grain DVFS in

CGRAs can improve performance of irregular loops: comparing the simulation time of the energy-

101

Microbenchmark Number of Tokens SRAM Reads SRAM Writes EOpt Sim. Time POpt Sim. Time

llist 1000 1999 1 8023 5359
dither 1000 1000 1000 8023 5662
susan 1000 1000 1 11026 7354
fft 1000 1000 1000 12043 8044
blowfish 32 32 1 865 523

Table 5.2: Simulation Results of UE-CGRA Microbenchmarks – Sim.: simulation. EOpt: energy-optimized.
POpt: performance-optimized. EOpt and POpt refer to two different UE-CGRA power mappings to maximize energy
efficiency or performance. Token count is equal to the trip count of the target irregular loop. Simulation time is
measured by the number of nominal cycles in PyMTL3 seamless co-simulation.

optimized configuration against the performance-optimized configuration, it should be clear that

selectively sprinting certain PEs in the critical path of the mapped loops can significantly speedup

the application.

It is also worth noting that UE-CGRAs have multiple clock domains and deriving the accurate

nominal cycle count is not trivial because PyMTL3 native simulation only supports one clock

domain. Fortunately, translation-import provides a clean and systematic solution. The PyMTL3

Verilog translation pass generates Verilog code that includes both the translated PyMTL3 model

and the Verilog clock switching and dividing logic. When the generated model is imported and

simulated, the PyMTL3 simulator toggles the main clock, which will be divided by the Verilog

clock divider into sprint, nominal, and rest clocks that drive UE-CGRA PEs. Since UE-CGRA

clock-domain crossings are ratiochronous, dividing the number of PyMTL3 simulator cycles by

the ratio of nominal clock periods yields the number of simulated nominal clock cycles.

Lastly, using the translation-import mechanism in PyMTL3 significantly improves the UE-

CGRA verification productivity. Leveraging the Python host language, it is much more productive

to implement the microbenchmarks, generate test inputs and reference outputs, and compare the

reference outputs against the co-simulation results. Moreover, the Python environment facilitates

debugging of the UE-CGRA. For example, identifying a UE-CGRA bug from waveform is tedious

and time-consuming because it requires visualizing dataflow information from simulation wave-

forms. Using PyMTL3’s line trace feature, I created a line trace function that visualizes UE-CGRA

activities based on RTL co-simulation states, which is much more intuitive than the waveform.

102

5.4 Conclusion

This chapter presents translation-import, a solution to the seamless co-simulation verification

challenges implemented in PyMTL3. The foundation of translation-import is the register-transfer

level intermediate representation (RTLIR), which provides a canonical representation for synthe-

sizable models in PyMTL3. Based on RTLIR, the translation framework provides clean interfaces

to generate RTL from PyMTL3 models and can be easily extended to different backends. The

import pass compiles the translated Verilog RTL into shared libraries and provides appropriate

wrappers to dynamically load these libraries into the Python environment. This chapter concludes

with a case study of co-simulating the ultra-elastic CGRA in PyMTL3. The translation-import

mechanism provides a clean solution to co-simulating UE-CGRAs and significantly improves ver-

ification productivity.

103

CHAPTER 6
THE CGRA TAPE-OUT CASE STUDY

The previous chapters identified and addressed verification challenges in a typical agile hard-

ware workflow: dynamic HDLs, generator development, instance composition, and co-simulation.

This chapter presents my work on prototyping a coarse-grain reconfigurable array (CGRA) to

demonstrate how the proposed techniques improve verification productivity. The chip was a

DARPA-funded, multi-university project on developing the Bigblade SoC in GlobalFoundries

14nm technology. Professor Michael B. Taylor’s group at University of Washington led the Big-

blade tape-out and did the physical design of CGRA. I was the Cornell University student lead for

the Bigblade project and led a team of graduate students to design, implement, and test the CGRA

module.

This chapter is organized as follows. I start by describing the details of the CGRA module,

including the overall architecture of the CGRA and preliminary physical design of the CGRA.

Then I describe how the proposed verification techniques in this thesis helped improve CGRA

verification velocity during the tape-out.

6.1 CGRA and Chip Details

The important application domains such as machine learning often demand high performance

and energy efficiency for continuously evolving kernels and algorithms. Comparing to general-

purpose processors or fixed-function ASICs, CGRAs provide a fabric for acceleration and effi-

ciency without sacrificing flexibility. The architecture community has demonstrated that CGRAs

can achieve significant performance and energy efficiency on important applications such as deep

neural networks and imaging processing [BHME18, XZP+20, SZP+20, VBP+16, FWC+18].

In this section, I present the details of the CGRA accelerator. I describe the overall architecture

of the CGRA and its preliminary physical design done at Cornell University.

CGRA Architecture – The main component of the taped out CGRA is an array of process-

ing elements (PEs) interconnected with a mesh network. Figure 6.1 shows the architecture of a

CGRA PE. It takes input from four sides (north, west, south, and east) and registers the inputs

with a two-element FIFO. The use of FIFOs allows elastic communications between neighboring

PEs: input messages can arrive at different cycles and they are only consumed when all required

104

A
LU

FM
A

en

funct

br
cond

cfg_immediate

bypass0

bypass1

RegFile

out_e_data
out_e_val
out_e_rdy

out_s_data
out_s_val
out_s_rdy

out_w_data
out_w_val
out_w_rdy

out_n_data
out_n_val
out_n_rdy

in_e_data
in_e_val
in_e_rdy

in_s_data
in_s_val
in_s_rdy

in_w_data
in_w_val
in_w_rdy

in_n_data
in_n_val
in_n_rdy

cfg_in_data
cfg_in_val

CfgReg
PE Control cfg_out_data

cfg_out_val

sel

Control Signals Data path

Figure 6.1: CGRA PE Architecture – ALU: arithmetic logic unit that supports common integer arithmetics, com-
parison, and bit-wise operations. FMA: fused multiply-add unit that supports fixed-width number multiplication and
addition.

operands have arrived. The elastic nature of PE communications facilitates mapping kernels to

the PE array. Depending on the content of the configuration register, the ALU (supports common

integer operations) or FMA (supports fused fixed-width number multiplication addition) operates

on two operands coming from either of the four sides and the internal register file. Depending on

the configuration, the PE can put the ALU/FMA results or register file content on any of the four

output interfaces. In addition, the PE also supports bypassing up to two input messages from any

input interface to any output interface to enable more flexible mapping.

Figure 6.2 shows the architecture of a CGRA with a 4x4 PE array (the taped out CGRA accel-

erator includes an 8x8 PE array and four 4KB SRAM banks; the smaller PE array is shown here for

simplicity). The CGRA module has three major components: the CGRA core, which consists of a

PE array and associated memory and configuration engines (MEs and CEs); the scratchpads, which

provides local storage of data; and the crossbar, which interconnects the CGRA core, accelerator

request interface, and the scratchpads. CGRA scratchpads consist of SRAM banks that store both

PE and ME configurations and data for computation. The MEs are small DMA units that, after

configuration, fetch data at a specified scratchpad address with a specified stride and pass fetched

105

MECE

CGRA Core

Control Signals

Config. Network

Data Network

MECE

MECE

MECE

CE ME ME

Crossbar

A
rray

R
equesters Sc

ra
tc

hp
ad

R
es

po
nd

er
s

Xcel Req. Interface

Scratchpads

SRAM
Bank 0PEPE

PEPE

PE PE

PEPE PE PE

PEPE PE PE

PE PE

ME ME

SRAM
Bank 1

SRAM
Bank 2

SRAM
Bank 3

Figure 6.2: CGRA Architecture – CE: configuration engine. ME: memory engine. PE: processing element. The
diagram shows the architecture of a 4x4 PE array CGRA accelerator, whereas the taped out CGRA accelerator contains
an 8x8 PE array.

data to its neighboring PE. The CEs operate in a similar way and pass configuration messages to

PEs and MEs through the configuration network.

CGRA Preliminary Physical Design – After implementing the target CGRA architecture in

PyMTL3 RTL, I pushed the CGRA architecture through a GlobalFoundries 14nm ASIC flow with

the help of Yanghui Ou from Batten Research Group. Figure 6.3 shows the preliminary results of

floor planning, placement, and routing. As shown in Figure 6.3(a), each PE in the 8x8 PE array

of the CGRA belongs to a soft grid of boxes in the floor plan, which significantly reduces the tool

time required for placement. Figure 6.3(b) shows the amoeba plot of the post-placement CGRA,

which shows that most standard cells in the PE are placed according to the floor plan. Finally,

Figure 6.3(c) shows the routed CGRA, which has a dimension of about 650 µm high and 500 µm

wide and was instantiated multiple times to create multiple CGRA accelerators. The preliminary

routing result also reveals the existence of routing hotspots due to the crossbar and the large number

(17) of requesters.

106

(a) CGRA Floorplan (b) Post-Placement Amoeba Plot of CGRA (c) Post-Routing CGRA

498.79 μm

650.75 μm

Figure 6.3: CGRA Preliminary Physical Design – The target CGRA has an 8x8 PE array an four 4KB SRAM
banks. The PE macro is 48 µm wide and 73 µm high. Figures based on the work of Yanghui Ou, who did preliminary
physical design for the CGRA.

6.2 Addressing the CGRA Verification Challenges

The target CGRA hardware has high complexity because of its reconfigurability and elasticity.

This complexity adds to the difficulty of verification in every step of the agile development of

the CGRA module. In this section, I describe how the techniques proposed in this thesis helped

improve the verification productivity of a small team of graduate students that were responsible for

the designing and testing of the CGRA module in the SDH tape-out.

6.2.1 GT-HDL for Safe and Performant CGRA Test Harness Composition

The first verification challenge arises in the mixed-typed composition of the CGRA instance,

where the statically typed CGRA is composed with a dynamically typed test harness. As described

in Section 2.1, existing dynamic HDLs suffer from the tension between providing safety guarantees

of mixed-typed compositions and simulation performance. Using the naive approach to safe guard

the mixed-typed CGRA test harness incurs high simulation overhead because of the large number

of connections within the CGRA PE array.

Solution – Inspired by the efficient mixed-typed compositions in GT-HDL, I leverage the type-

based simulation optimization techniques proposed in Section 2.4.2 to improve the CGRA test

107

1 class CGRA(Component):
2 def construct(s, r, c, W):
3 s.recv_n = [RecvIfc(W) for _ in range(c)]
4 s.pes = [PE(W) for _ in range(r * c)]
5 for y in range(r):
6 for x in range(c):
7 # Connecting north most row of PEs to CGRA
8 # interfaces on the north
9 if y == r - 1:

10 # Index out-of-range bug; only triggered if r > c
11 # Correct index: y*c+x
12 connect(s.pes[y*r+x].recv[N].msg, s.recv_n[x].msg)

(a) CGRA Generator with Bug

1 dut1 = CGRA(8, 8, Bits32)
2 dut1.elaborate() # Pass!
3
4 dut2 = CGRA(16, 16, Bits32)
5 dut2.elaborate() # Pass!
6
7 dut3 = CGRA(16, 8, Bits32)
8 dut3.elaborate() # Fail!
9

10 dut4 = CGRA(8, 16, Bits32)
11 dut4.elaborate() # Fail!

(b) Failing and Passing
CGRA Examples

Figure 6.4: Example CGRA Generator Bug – (a) the CGRA generator has three parameters: r and c, the number
of rows and columns in the PE array; W, the width of the PE array data path. The code in the shown for-loop tries to
connect the north most row of PEs to the north side interfaces of the CGRA. (b) the out-of-bound array indexing bug
occurs when a non-square PE array is instantiated.

harness simulation performance without compromising safety guarantees. With the simulation

type check pruning technique, GT-HDL removes all simulation-time type checks inside the CGRA

instance and only preserves the checks at the test harness and CGRA DUT interface. Signal coa-

lescing further removes redundant computation by setting up references between a statically typed

writer signal and several statically typed readers.

Results – To demonstrate the simulation performance of applying GT-HDL techniques, I com-

pare the simulation performance (measured in cycles/second) of the same CGRA test harness in

PyMTL3 versus in GT-HDL. On an 8x8 CGRA instance, GT-HDL achieves 36.35% better sim-

ulation performance than PyMTL3 (12.85 cycles/second vs 9.42 cycles/second). The improved

simulation performance enables shorter design-debug iteration cycles, which results in improved

verification productivity.

6.2.2 Symbolic Elaboration for CGRA Generator Development

The second CGRA verification challenge arises in generator development, where the enormous

generator parameter space often hides subtle design bugs that are difficult to discover with dynamic

verification techniques. Figure 6.4 shows an example of such CGRA bugs. Figure 6.4(a) details the

CGRA generator code that connects the north most row of PEs to the north side interfaces of the

CGRA. The generator contains a design bug where the designer indexes into the PE array s.pes

with an incorrect expression. As shown in Figure 6.4(b), this may cause index out-of-bound issues

108

but only with non-square PE arrays. Since the SDH tape-out targets a square CGRA PE array, this

bug is difficult to discover through simulation.

Solution – I leverage symbolic elaboration (Chapter 3) to tackle the CGRA verification chal-

lenges in generator development. Unlike dynamic testing techniques such as simulations, symbolic

elaboration does not rely on concrete generator parameters nor test vectors to discover bugs. In

addition, symbolic elaboration is capable of reasoning about arithmetics among bitwidths, array

lengths, and expressions, making it an ideal choice for subtle CGRA generator bugs.

When applying symbolic elaboration to the code in Figure 6.4(a), the symbolic elaborator picks

up the length information of the PE array s.pes from its definition and records the length to be r

* c, a symbolic expression. From the for-loop syntax, the symbolic elaborator also understands

that y ranges from 0 to r-1 and x ranges from 0 to c-1. When the elaborator reaches the index

expression y*r+x on line 12, it determines that the maximum index is (r-1)*r+c-1, which could

be larger than the maximum index of the array r*c-1. Based on this reasoning, the symbolic elab-

orator points out the potential out-of-bound error on line 12 and provides possible combinations of

parameters to trigger this error (e.g., r=16, c=8).

Results – I applied the symbolic elaborator on the CGRA generator in PyMTL3 to thoroughly

validate the common generator properties including matching bitwidths, correct local port direc-

tions, bounded array indexing, and valid hierarchical references. The symbolic elaborator reported

several bitwidth mismatches where a fixed width 32-bit signal is assigned to a signal of parame-

terized bitwidth. As the designer of the CGRA generator, I can confirm these design bugs were

introduced because the designer had a 32-bit CGRA target in mind and the unit tests failed to

detect these bugs because the tests targeted a 32-bit instance of CGRA. After fixing the bitwidth

mismatches, the symbolic elaborator was able to validate all generator properties for the CGRA

generator, which provides strong correctness guarantees not jut for the taped-out CGRA instance

but any instances produced by the CGRA generator.

6.2.3 Latency Equivalence Checking for PE Instance Composition

The third CGRA verification challenge happens during instance composition, where individual

PEs with latency-insensitive (LI) interfaces are connected to form an elastic reconfigurable com-

puting substrate. However, subtle bugs could appear in the complex handshake control logic of

the PE’s LI interfaces. Detecting these bugs with simulations requires a comprehensive test suite

109

val rdy msgN

val
rdy

msgW

PE

sel

val
rdy
msgE

val rdy msgS

acc
× +

Control

B

A

M
U
X

en

en

Figure 6.5: Example of PE Composition Verification Challenge – N, W: ingress interface on the north and west
side of PE; E, S: egress interface on the east and south side of PE. acc: accumulation register. The control unit has
to make sure the messages from N and W LI interfaces are correctly registered into A and B, and that contents of A
and B are consumed when E and S LI interfaces are ready. This PE represents a simpler PE design than the actual
reconfigurable PE used in the SDH CGRA tape-out.

that covers almost all stall events on the LI interfaces, which is prohibitively expensive for a small

team of agile hardware designers. Figure 6.5 shows a latency-insensitive PE with four LI inter-

faces. The PE control unit has to make sure that (1) the messages from the N and W LI interfaces

are registered into register A and B in pair and (2) the contents of A and B are consumed when the

E and S LI interfaces are ready.

Solution – I adopted the latency equivalence checking technique from Chapter 4 and applied

it to a simplified PE shown in Figure 6.5. Using the algorithm described in Section 4.3.2, I con-

structed a verification harness that perturbs the ingress N and W LI interfaces and formally verifies

if the egress E and S LI interfaces produce the same sequences of messages. Since the exact re-

sults of the accumulation is not critical for verifying the correctness of the LI handshake logic, I

replaced the PE multiplier with a bit-wise XOR unit to speedup the formal tool’s convergence.

Results – I used JasperGold FPV 2023.03 on a commodity server with 72 cores of Intel Xeon

E7-8867 v4 CPU and 256 GiB of main memory to carry out the formal verification of the PE.

JasperGold found a LI handshake bug in the initial PE design where the contents of B register could

get overwritten under certain delay conditions. After fixing this handshake logic error, JasperGold

was able to prove all formal assertions in the constructed test harness, which indicates that the PE

is stall invariant.

110

Unit Tests
Functional units, processing elements, memory engines, configuration engines,
eager fork adapter, CGRA core, CGRA accelerator

Integration Tests
Kernels: conv1d, vvadd, i-GEMM, f-GEMM, dither, FFT, FIR, latnrm, llist

Features: reconfig, bypass, reduction, rf-writeback, sram read, termination

Operations: add, sub, fadd, fsub, fmul, fma, eq, lt, gt, sgt, and, or, xor, sll, slr

Table 6.1: CGRA Functional Verification using Seamless Co-Simulation – Each item under Unit Tests corresponds
to a CGRA component that has directed unit tests. Each item under Integration Tests corresponds to a test case that
runs on the RTL CGRA module on the Bigblade silicon. Kernel refers to microbenchmarks that run on the CGRA.
Features correspond to test cases that stress test CGRA features (such as reconfiguration, termination, etc.). Operations
correspond to the supported arithmetic operations by CGRA.

6.2.4 Translation-Import for Functional Verification

Functional verification is the final and most challenging verification problem for the agile de-

velopment CGRA. Due to the reconfigurable PEs and interconnection networks, CGRA functional

verification needs a systematic approach to navigate through an enormous test input space and

validate the functionalities of CGRA.

Solution – I leveraged the seamless co-simulation technique from Chapter 5 to create a com-

plete test suite in Python for the target CGRA model. Table 6.1 shows the CGRA test suite, which

includes both unit tests and integration tests. For each test case shown in the table, I used the

translation-import framework to reuse the Python test bench for both the native PyMTL3 CGRA

and the translated Verilog CGRA.

The unit tests of CGRA include directed test cases for CGRA components such as the PEs,

MEs, and CEs. The unit tests also include directed test cases that can be run on the CGRA core

(only CGRA PE array) and the CGRA accelerator (only PE array, crossbar, and scratchpads).

Thanks to seamless co-simulation, the same test cases that were developed for the CGRA core can

be reused for the CGRA accelerator (both the PyMTL3 and Verilog versions). The integration tests

of CGRA leverage a test harness that connects a non-CGRA Bigblade mock-up and the CGRA

module, which provides detailed and accurate simulations for functional verification. There are

three categories of test cases in integration tests: kernels, which are microbenchmarks running on

the CGRA; features, which are critical CGRA features such as reconfiguration and termination;

operations, which are supported arithmetic operations by the CGRA. Each operation test case is

also randomized to allow the operation to be placed onto different PEs, which helps validate the

functionality of different PEs and network connections.

111

Results – The Cornell SDH CGRA tape-out team performed extensive simulations using the

test suite described in the previous section. The unit tests in the test suite enabled rapid feedbacks

for the agile hardware designers, which allowed the hardware designers to continue the imple-

mentation of features productively. The integration tests provided significant functional coverage

for the CGRA module thanks to the extensive operation test cases and its randomized counter-

parts. Using the test suite at RTL did not reveal functional bugs in the CGRA design. However,

the CGRA tape-out team discovered functional bugs that broke the gate-level simulations of the

CGRA driven by the input traces of the operation test cases. For example, the operation test case

for integer addition revealed that the PE ALU was not data-gated, which leads to inconsistent re-

sults. Overall, the test suite enabled by the translation-import mechanism introduced in Chapter 5

helped the agile designers achieve high design and verification productivity and cover subtle design

bugs which could have failed the tape-out.

6.3 Conclusion

In this section, I presented a case study of the SDH CGRA tape-out. I discussed the details of

the chip and how the techniques proposed in this thesis helped the Cornell SDH CGRA tape-out

team achieve higher verification productivity. Facing the unique challenges of the CGRA devel-

opment, I leveraged GT-HDL’s simulation type check pruning and signal coalescing techniques to

improve CGRA test bench’s simulation performance; I applied the symbolic elaborator to validate

CGRA generator properties in generator development; I proposed to leverage latency equivalence

checking to safeguard the complex latency-insensitive handshake logic in PEs to facilitate PE in-

stance composition; and the Cornell team leveraged seamless co-simulation to create a test suite

including comprehensive unit and integration tests. Putting together, the techniques proposed in

this thesis allowed for fast design iterations on the CGRA prototype, increased the design team’s

confidence of the correctness of the CGRA, and revealed subtle design bugs.

112

CHAPTER 7
CONCLUSION

This thesis presented my work on addressing the verification challenges in typical agile hard-

ware workflows. I argued that innovations across HDLs, generator development, instance com-

position, and co-simulation are necessary to augment existing agile hardware methodologies with

productive verification. I presented a case study of a CGRA tape-out to demonstrate the effective-

ness of the proposed techniques. In this chapter, I summarize my thesis contributions and describe

future research directions.

7.1 Thesis Summary and Contribution

This thesis began with the observation that specialized hardware systems generally have high

NRE costs that hinder the development of promising systems. Different from traditional hardware

methodologies which assume a monolithic workflow, agile hardware methodologies promise to

improve development productivity by iterating on an incomplete yet working prototype. How-

ever, verification challenges often arise from different steps of agile hardware workflows: HDLs,

generator development, instance composition, and co-simulation. I then presented four different

techniques to address the challenges in these steps.

I first introduced GT-HDL, an embedded HDL that enables safe and performant mixed-typed

compositions. The increasing adoption of dynamically typed test harnesses reveals the challenge

of having to sacrifice simulation performance to safeguard mixed-typed compositions. I propose

GT-HDL, an embedded HDL that leverage a combination of optional type checkers, guarded gen-

erator parameters, and type-based simulation optimizations to improve simulation performance of

dynamic HDLs without compromising safety.

I then introduced symbolic elaboration, an SMT solving-based technique to validate generator

properties. Verifying hardware generator properties becomes increasingly more challenging be-

cause highly sophisticated generators typically have a prohibitively large parameter space, which

makes enumerating parameter combinations intractable. Symbolic elaboration statically analyzes

hardware generators and converts generator properties into SMT-solvable integer constraints. Sym-

bolic elaboration can safeguard generators in agile hardware and significantly improve generator

verification productivity.

113

I focused on instance composition and proposed latency equivalence checking to verify latency-

insensitive handshake logics with formal verification. Latency-insensitive (LI) interfaces are ubiq-

uitous in agile hardware but the LI handshake logic is error-prone and difficult to debug. I defined

the stall invariant property of LI interfaces and introduced an algorithm to construct verification

harnesses for given LI RTL modules that proves or falsifies the stall invariant property. Latency

equivalence checking mitigates the instance composition verification challenge with formal verifi-

cation.

Shifting focus to the co-simulation verification challenges, I introduced the translation-import

mechanism to enable seamless co-simulation, which verifies the generated Verilog RTL using na-

tive Python test benches. The translation-import mechanism is based on RTLIR, a canonical repre-

sentation of synthesizable hardware models that enables a extensible translation framework. I also

presented a case study of co-simulating a UE-CGRA with Python test benches. Translation-import

enables seamless co-simulation to productively verify generated Verilog RTL using Python.

Lastly, I described a CGRA tape-out case study in GlobalFoundries 14nm technology to demon-

strate the effectiveness of the techniques proposed in this thesis. I leverage GT-HDL type-based op-

timizations to improve CGRA test harness simulation performance without compromising safety.

During CGRA generator development, symbolic elaboration identifies a subtle design bug and

validates the correctness of CGRA generator properties after fixing the bug. Latency equivalence

checking detects a potential PE LI handshake bug and provides waveform of a counterexample to

facilitate debugging. Translation-import enables productive random testing and hypothesis testing

of the CGRA Verilog RTL. Overall, the proposed techniques significantly speed up the CGRA

verification.

The major contributions of this thesis are as follows:

• I proposed GT-HDL, an embedded HDL that enables safe and performant mixed-typed com-

positions.

• I proposed symbolic elaboration, an SMT solving-based static analysis approach to validating

hardware generator properties.

• I proposed the stall invariant property and latency equivalence checking, a formal verification

technique that proves or falsifies the stall invariant property of latency-insensitive handshake

interfaces.

114

• I proposed a translation-import mechanism in PyMTL3 to enable seamless co-simulation of

generated RTL and the native Python test benches. I demonstrate how translation-import

improves verification productivity with a UE-CGRA co-simulation case study.

• I presented a case study of a CGRA tape-out in GlobalFoundries 14nm technology and apply

the techniques proposed in this thesis to overcome the verification challenges in the agile

development of the CGRA.

7.2 Future Work

In this section, I identify several future research directions based on the works in this thesis. For

each research direction, I describe the motivation, the possible approaches to the research question,

and its potential impacts.

7.2.1 Formalizing Safety Guarantees for Mixed-Typed Compositions

In Chapter 2, I describe GT-HDL, an embedded HDL that supports safe and performant mixed-

typed compositions. To provide safety guarantees for mixed-typed compositions, GT-HDL adopts

guarded generator parameters and simulation-time type checking, which insert runtime type checks

to prevent ill-typed parameters and values from propagating into statically typed instances. Despite

its success of preventing type errors in an engineering context, GT-HDL does not formalize the

safety guarantees for mixed-typed compositions, which leaves room for potential misunderstand-

ings between HDL experts and agile hardware designers.

Possible Approaches – Inspired by the type system research in the programming language

community, a type system typically represents a complete and unambiguous specification of safety

guarantees. Researchers have already explored languages with novel type system capabilities to

safe guard hardware designs. Filament [NdAS23] adopts timeline types to encode the latencies of

hardware modules, which allow compilers to verify if multiple modules can be composed safely

to form a statically scheduled pipeline. Parafil [NGLS24] takes the idea of timeline types one step

further and applies it to hardware generators to provide correctness guarantees for all instances

derived from a generator. Dahlia [NAT+20] uses time-sensitive affine types to enforce that memory

115

read and write accesses do not exceed the number of memory ports at any cycle at the source code

level.

Existing research works generally target one specific aspect of hardware design, and signifi-

cant research and development efforts remain to fully close the type system gap in practical HDLs.

To formulate and implement a generic and fully capable type system for hardware designs, re-

searchers may start by formalizing the semantics and type systems of modern HDLs before even-

tually reaching the formal specification of mixed-typed compositions. To establish such specifica-

tions, researchers might need to establish the formal semantics of HDLs, which lays the foundation

of building powerful type systems for HDLs. The fundamental difference between the semantics

of hardware description languages versus software programs may create significant challenges for

formalizing the semantics and type systems of HDLs.

7.2.2 Type Checking for Embedded Hardware Description Languages

Symbolic elaboration performs SMT solving-based static analysis to validate hardware gener-

ator properties implemented in PyMTL3. As a result, the PyMTL3 embedded HDL needs a static

checking step before elaborating and simulating the target models. This resembles significant sim-

ilarities to static type checking in statically typed programming languages, where the type checker

scans through source code and searches for type errors. Type checking is a promising approach

to systematically validate and enforce hardware generator properties. There has been some re-

search on type checking (e.g., BlueSpec [Nik04]) hardware generators, but they generally expose

a different abstraction than RTL and require significant efforts to design the HDL from ground

up. Therefore, designing and implementing effective type systems for embedded HDLs remains

an open research question.

Possible Approaches – One possible approach to type checking embedded HDLs is to lever-

age optional type checkers such as Mypy for Python. Unfortunately, these optional type checkers

typically lack the capabilities to encode generator properties. For example, Mypy cannot encode

parametrized bitwidths, which are commonly used in PyMTL3 generators. Research in this direc-

tion can explore extending existing host languages to support type checking of embedded DSLs.

This may require support of first-class embedded DSLs, which includes a specification of the target

type system that can be enforced with the native type checker of the host language.

116

Existing research works have already created representations for hardware development (typ-

ically in the form of HLS) that supports rigorous type checking. For example, Allo [CZX+24]

is an accelerator design language (ADL) that supports both transformations and type checking of

the functional specification of accelerators. Allo incorporates a simple type systems for arrays

partitioned with different strategies and uses a linear-time unification algorithm to assign memory

layout properties to each node in its representation.

7.2.3 Democratizing Formal Verification for Agile Hardware Methodologies

Formal verification is a powerful tool to tackle subtle and difficult bugs in hardware designs.

Despite recent efforts on democratizing formal verification [MMB+18], formal verification still

has relatively low adoption in agile hardware. There are two main challenges to democratizing

formal verification in agile hardware: (1) the lack of full-featured open-source formal verification

tools and (2) the needs of full specifications of the expected behaviors.

Possible Approaches – To improve the features of open-source formal verification tools, re-

searchers may want to prioritize the most-wanted features of hardware designers. For example,

temporal logic is a useful component of formal verification but has little support from open-source

tools. The continuous improvement of high-quality and openly available tools will surely boost

the adoption of formal verification.

Another possible approach to democratizing formal verification is to find out how to reduce the

needs of manual property specifications. For example, specifications can be generated from hard-

ware models that implement certain communication protocols; the property specifications may be

templated on certain parameters, which can be inferred from the RTL implementation. The stall

invariant property proposed in Chapter 4 can be conveniently inferred from RTL modules that use

val-rdy latency insensitive handshakes. Under limited decoupling through finite FIFOs, violations

of the stall invariant property can be effectively detected using commercial formal verification

tools. However, it remains an open research question to prove the full stall invariant property with-

out decoupling between the DUVs. Future research may investigate into alternative verification

harnesses radically different from the one proposed in Chapter 4 to achieve the full proof of the

stall invariant property.

117

7.2.4 Extensive and Productive Co-Simulation

Seamless co-simulation is an effective technique to boost verification productivity by reusing

the native test benches on translated RTL. In Chapter 5, I described translation-import, a technique

to co-simulate generated Verilog RTL (compiled with Verilator) and native PyMTL3 test benches.

However, it remains an open research question to extend co-simulation to other backends than

Verilog RTL and Verilator. For example, the Python test benches should be able to co-simulate with

C++ high-level behavioral models, gate-level hardware models backed by commercial simulators,

hardware on FPGAs, or ASIC prototypes.

Possible Approaches – One possible approach to enable extensive and productive co-simulation

is to design and implement a common interface between high-level test benches and other back-

ends. Then similar to the import pass in PyMTL3, the backend hardware can be imported and

exposed to the high-level programming language process. It may be challenging to design a uni-

fied interface for multiple backends, since some commercial simulators may require the control

of the main process and cannot be dynamically loaded as a shared library. In that case, more

engineering efforts are necessary to achieve seamless co-simulation.

118

BIBLIOGRAPHY

[AAB+16] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig,
Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patter-
son, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman. The Rocket Chip
Generator. Technical Report UCB/EECS-2016-17, EECS Department, University of
California, Berkeley, Apr 2016.

[ABG+20] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A. Mag-
yar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt, J. Wright, J. Zhao, Y. S.
Shao, K. Asanović, and B. Nikolić. Chipyard: Integrated Design, Simulation, and
Implementation Framework for Custom SoCs. IEEE Micro, May 2020.

[AHY+15] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A Scalable Processing-in-Memory
Accelerator for Parallel Graph Processing. Int’l Symp. on Computer Architecture
(ISCA), Jun 2015.

[AK95] D. P. Appenzeller and A. Kuehlmann. Formal Verification of a PowerPC Micropro-
cessor. Int’l Conf. on Computer Design (ICCD), 1995.

[Bal24] M. Ballance. PyVSC: SystemVerilog-Style Constraints, and Coverage in Python.
Online Webpage, 2024 (accessed Feb 23rd, 2024). https://github.com/fvutils/
pyvsc.

[BAT14] G. Bierman, M. Abadi, and M. Torgersen. Understanding TypeScript. European Conf.
on Object-Oriented Programming (ECOOP), 2014.

[BCD+18] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A Survey of
Symbolic Execution Techniques. ACM Computing Surveys, 2018.

[BCE+03] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Si-
mone. The Synchronous Languages Twelve Years Later. Proc. of the IEEE, 2003.

[BCJ+20] J. Balkind, T.-J. Chang, P. J. Jackson, G. Tziantzioulis, A. Li, F. Gao, A. Lavrov,
G. Chirkov, J. Tu, M. Shahrad, , and D. Wentzlaff. OpenPiton at 5: A Nexus for Open
and Agile Hardware Design. IEEE Micro, May 2020.

[BCRZ99] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying Safety Properties of a PowerPC-
Microprocessor Using Symbolic Model Checking without BDDs. Int’l Conf. on
Computer-Aided Verification (CAV), 1999.

[BCSS98] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware Design in Haskell.
Int’l Conf. on Functional Programming (ICFP), Sep 1998.

119

[BHME18] I. Bae, B. Harris, H. Min, and B. Egger. Auto-Tuning CNNs for Coarse-Grained
Reconfigurable Array-Based Accelerators. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), Nov 2018.

[BKK+10] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards. Clash: Structural
Descriptions of Synchronous Hardware Using Haskell. Euromicro Conf. on Digital
System Design (DSD), Sep 2010.

[BLM01] P. Bjesse, T. Leonard, and A. Mokkedem. Finding Bugs in an Alpha Microprocessor
Using Satisfiability Solvers. Int’l Conf. on Computer-Aided Verification (CAV), 2001.

[BM02] L. Benini and G. D. Micheli. Networks on Chips: A New SoC Paradigm. IEEE
Computer, 2002.

[BSDTH16] A. Bonnaire-Sergeant, R. Davies, and S. Tobin-Hochstadt. Practical Optional Types
for Clojure. European Symposium on Programming (ESOP), 2016.

[BVR+12] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. Asanović. Chisel: Constructing Hardware in a Scala Embedded Language.
Design Automation Conf. (DAC), Jun 2012.

[Car15] L. P. Carloni. From Latency-Insensitive Design to Communication-Based System-
Level Design. Proc. of the IEEE, 2015.

[CBRZ01] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model Checking Using Satisfia-
bility Solving. Formal Methods in System Design, 2001.

[CCA+11] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,
and T. Czajkowski. LegUp: High-Level Synthesis for FPGA-Based Processor/Accel-
erator Systems. Int’l Symp. on Field Programmable Gate Arrays (FPGA), Feb 2011.

[CDHK15] E. Cerny, S. Dudani, J. Havlicek, and D. Korchemny. SVA: The Power of Assertions
in SystemVerilog. Springer International Publishing, 2015.

[CFF+01] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y.
Vardi. Benefits of Bounded Model Checking at an Industrial Setting. Int’l Conf.
on Computer-Aided Verification (CAV), 2001.

[CGK+11] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Tillmann, and
W. Visser. Symbolic Execution for Software Testing in Practice: Preliminary As-
sessment. International Conference on Software Engineering (ICSE), 2011.

[CKES17] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss - An Energy-Efficient Re-
configurable Accelerator for Deep Convolutional Neural Networks. IEEE Journal of
Solid-State Circuits (JSSC), 52(1):127–138, Jan 2017.

120

[CLN+11] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 30(4):473–491, Mar 2011.

[CLX+16] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, and Y. W. andand Yuan Xie. PRIME:
A Novel Processing-in-memory Architecture for Neural Network Computation in
ReRAM-based Main Memory. Int’l Symp. on Computer Architecture (ISCA), Jun
2016.

[CMSSV99] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli. A
Methodology for Correct-by-Construction Latency Insensitive Design. Int’l Conf. on
Computer-Aided Design (ICCAD), 1999.

[CMSV99] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Latency Insensitive
Protocols. Int’l Conf. on Computer-Aided Verification (CAV), 1999.

[CMSV01] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of Latency-
Insensitive Design. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), Sep 2001.

[CTD+17] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and T. Sherwood. A
Pythonic Approach for Rapid Hardware Prototyping and Instrumentation. Int’l Conf.
on Field Programmable Logic (FPL), Sep 2017.

[CTN+22] A. Carsello, J. Thomas, A. Nayak, P.-H. Chen, M. Horowitz, P. Raina, and C. Torng.
mflowgen: A Modular Flow Generator and Ecosystem for Community-Driven Phys-
ical Design. Design Automation Conf. (DAC), Jul 2022.

[CZX+24] H. Chen, N. Zhang, S. Xiang, Z. Zeng, M. Dai, and Z. Zhang. Allo: A Programming
Model for Composable Accelerator Design. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2024.

[Dec04] J. Decaluwe. MyHDL: A Python-based Hardware Description Language. Linux Jour-
nal, Nov 2004.

[DKR+21] S. Dai, A. Klinefelter, H. Ren, R. Venkatesan, B. Keller, N. Pinckney, and B. Khailany.
Verifying High-Level Latency-Insensitive Designs with Formal Model Checking.
cs.LO arXiv:2102.06326, Feb 2021.

[DT01] W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip Interconnection
Networks. Design Automation Conf. (DAC), 2001.

[DTS20] D. Dangwal, G. Tzimpragos, and T. Sherwood. Agile Hardware Development and
Instrumentation With PyRTL. IEEE Micro, May 2020.

[Dub05] M. Dubash. Moore’s Law is Dead, Says Gordon Moore. Techwold, Apr 2005.

121

[FAP+12] K. E. Fleming, M. Adler, M. Pellauer, A. Parashar, A. Mithal, and J. Emer. Lever-
aging Latency-Insensitivity to Ease Multiple FPGA Design. Int’l Symp. on Field
Programmable Gate Arrays (FPGA), 2012.

[FF02] R. B. Findler and M. Felleisen. Contracts for Higher-Order Functions. Int’l Conf. on
Functional Programming (ICFP), 2002.

[FNT15] M. Faldborg, T. L. Nielsen, and B. Thomsen. Type Systems and Programmers: A
Look at Optional Typing in Dart. Master’s Thesis, Aalborg University, 2015.

[FWC+18] X. Fan, D. Wu, W. Cao, W. Luk, and L. Wang. Stream Processing Dual-Track CGRA
for Object Inference. IEEE Trans. on Very Large-Scale Integration Systems (TVLSI),
Jun 2018.

[FZ03] S. Fine and A. Ziv. Coverage Directed Test Generation for Functional Verification
using Bayesian Networks. Design Automation Conf. (DAC), Jun 2003.

[Git24] cocotb. Online Webpage, 2024 (accessed Feb 23rd, 2024). https://github.com/
cocotb/cocotb.

[Han24] P. Hanrahan. Magma. Online Webpage, 2024 (accessed Feb 23rd, 2024). https:
//github.com/phanrahan/magma/.

[HIT+13] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu. Elastic CGRAs. Int’l Symp. on
Field Programmable Gate Arrays (FPGA), Feb 2013.

[HLM+16] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. EIE:
Efficient Inference Engine on Compressed Deep Neural Network. Int’l Symp. on
Computer Architecture (ISCA), Jun 2016.

[HS07] T. A. Henzinger and J. Sifakis. The Discipline of Embedded Systems Design. IEEE
Computer, 2007.

[iee09] IEEE Standard VHDL Language Reference Manual. Online Webpage, 2009. https:
//ieeexplore.ieee.org/document/5981354.

[iee17] IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Ver-
ification Language. Online Webpage, 2017. https://ieeexplore.ieee.org/
document/8299595.

[IKL+17] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt,
C. Markley, J. Lawson, and J. Bachrach. Reusability is FIRRTL Ground: Hardware
Construction Languages, Compiler Frameworks, and Transformations. Int’l Conf. on
Computer-Aided Design (ICCAD), Nov 2017.

[JB99] J. Jennings and E. Beuscher. Verischemelog: Verilog Embedded in Scheme. Conf. on
Domain-Specific Languages (DSL), Oct 1999.

122

[JOP+21] S. Jiang, Y. Ou, P. Pan, K. Cheng, Y. Zhang, and C. Batten. PyH2: Using PyMTL3 to
Create Productive and Open-Source Hardware Testing Methodologies. IEEE Design
Test, 38:53–61, Apr 2021.

[JPOB20] S. Jiang, P. Pan, Y. Ou, and C. Batten. PyMTL3: A Python Framework for Open-
Source Hardware Modeling, Generation, Simulation, and Verification. IEEE Micro,
40:58–66, May 2020.

[Kin76] J. C. King. Symbolic Execution and Program Testing. Communications of the ACM,
1976.

[KMK+18] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton,
E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. Katz,
J. Bachrach, and K. Asanović. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out
System Simulation in the Public Cloud. Int’l Symp. on Computer Architecture (ISCA),
Jun 2018.

[KZVT17] M. Khazraee, L. Zhang, L. Vega, and M. B. Taylor. Moonwalk: NRE Optimization in
ASIC Clouds. Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Apr 2017.

[LCH+19] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and Z. Zhang. Het-
eroCL: A Multi-Paradigm Programming Infrastructure for Software-Defined Recon-
figurable Computing. Int’l Symp. on Field Programmable Gate Arrays (FPGA), Feb
2019.

[Leh23] J. Lehtosalo. Mypy - Optional Static Typing for Python. Online Webpage, 2017
(accessed Dec., 2023). http://mypy-lang.org.

[LGW+22] H. Liew, D. Grubb, J. Wright, C. Schmidt, N. Krzysztofowicz, A. Izraelevitz,
E. Wang, K. Asanović, J. Bachrach, and B. Nikolić. Hammer: A Modular and
Reusable Physical Design Flow Tool. Design Automation Conf. (DAC), Jul 2022.

[LKK+18] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen. RFUZZ: Coverage-Directed
Fuzz Testing of RTL on FPGAs. Int’l Conf. on Computer-Aided Design (ICCAD),
Nov 2018.

[LSC10] C.-H. Li, S. Sonalkar, and L. P. Carloni. Exploiting Local Logic Structures to Opti-
mize Multi-Core SoC Floorplanning. Design Automation Conf. (DAC), 2010.

[Ltd11] A. Ltd. AMBA AXI and ACE Protocol Specification, 2011.

[LW21] A. Li and D. Wentzlaff. PRGA: An Open-Source FPGA Research and Prototyping
Framework. Int’l Symp. on Field Programmable Gate Arrays (FPGA), 2021.

123

[LWC+16] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli, J. Kwak, R. Jevtić,
S. Bailey, M. Blagojević, P.-F. Chiu, R. Avižienis, B. Richards, J. Bachrach, D. Patter-
son, E. Alon, B. Nikolić, and K. Asanović. An Agile Approach to Building RISC-V
Microprocessors. IEEE Micro, Mar 2016.

[LZB14] D. Lockhart, G. Zibrat, and C. Batten. PyMTL: A Unified Framework for Vertically
Integrated Computer Architecture Research. Int’l Symp. on Microarchitecture (MI-
CRO), Dec 2014.

[MB08] L. D. Moura and N. Bjørner. Z3: an Efficient SMT Solver. Int’l Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Mar 2008.

[Mig23] Migen: A Python Toolbox For Building Complex Digital Hardware. Online Webpage,
2013 (accessed Dec., 2023). https://m-labs.hk/gateware/migen/.

[MMB+18] C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huff, and P. Hanrahan. CoSA:
Integrated Verification for Agile Hardware Design. Formal Methods in Computer
Aided Design (FMCAD), Oct 2018.

[MMI14] A. M. Maidl, F. Mascarenhas, and R. Ierusalimschy. Typed Lua: An Optional Type
System for Lua. Workshop on Dynamic Languages and Applications (DYLA), 2014.

[myh14] MyHDL: From Python to Silicon. Online Webpage, 2014 (accessed Oct 1, 2014).
http://www.myhdl.org.

[NAT+20] R. Nigam, S. Atapattu, S. Thomas, Z. Li, T. Bauer, Y. Ye, A. Koti, A. Sampson, and
Z. Zhang. Predictable Accelerator Design with Time-Sensitive Affine Types. ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI), Jun
2020.

[NdAS23] R. Nigam, P. H. A. de Amorim, and A. Sampson. Modular Hardware Design with
Timeline Types. ACM SIGPLAN Conf. on Programming Language Design and Im-
plementation (PLDI), Jun 2023.

[NGLS24] R. Nigam, E. Gabizon, E. Lam, and A. Sampson. Correct and Compositional Hard-
ware Generators. cs.PL arXiv:2401.02570, Jan 2024.

[Nik04] N. Nikhil. Bluespec System Verilog: Efficient, Correct RTL from High-Level Speci-
fications. Int’l Conf. on Formal Methods and Models for Co-Design (MEMOCODE),
Jun 2004.

[NM15] M. Naylor and S. Moore. A Generic Synthesisable Test Bench. Int’l Conf. on Formal
Methods and Models for Co-Design (MEMOCODE), Sep 2015.

[NTLS21] R. Nigam, S. Thomas, Z. Li, and A. Sampson. A Compiler Infrastructure for Accel-
erator Generators. Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Apr 2021.

124

[NZP12] A. Nahir, A. Ziv, and S. Panda. Optimizing Test-Generation to the Execution Plat-
form. Asia and South Pacific Design Automation Conference (ASP-DAC), Jan 2012.

[ORM22] A. Olofsson, W. Ransohoff, and N. Moroze. A Distributed Approach to Silicon Com-
pilation. Design Automation Conf. (DAC), Jul 2022.

[PB23] P. Pan and C. Batten. Formal Verification of the Stall Invariant Property for Latency-
Insensitive RTL Modules. Int’l Conf. on Formal Methods and Models for Co-Design
(MEMOCODE), Sep 2023.

[PGW+20] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao, C. Zhao, Z. Azad,
S. Canakci, B. Veluri, T. Guarino, A. Joshi, M. Oskin, and M. B. Taylor. BlackParrot:
An Agile Open-Source RISC-V Multicore for Accelerator SoCs. IEEE Micro, May
2020.

[PJOB23] P. Pan, S. Jiang, Y. Ou, and C. Batten. Symbolic Elaboration: Checking Genera-
tor Properties in Dynamic Hardware Description Languages. Int’l Conf. on Formal
Methods and Models for Co-Design (MEMOCODE), Sep 2023.

[POJB23] P. Pan, Y. Ou, S. Jiang, and C. Batten. The Case for Gradually Typed Hardware De-
scription Languages. Workshop on Languages, Tools, and Techniques for Accelerator
Design (LATTE), Mar 2023.

[py23] Python 3.7 Documentation - Abstract Syntax Trees. Online Webpage, 2021 (accessed
Dec., 2023). https://docs.python.org/3.7/library/ast.html.

[RKJ08] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid Types. ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), 2008.

[rvv23] RISC-V Verification Interface. Online Webpage, 2023. https://github.com/
riscv-verification/RVVI.

[SAB10] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to Know about
Dynamic Taint Analysis and Forward Symbolic Execution (But Might Have Been
Afraid to Ask). IEEE Symposium on Security and privacy, 2010.

[SGS+16] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna. Driller: Augmenting Fuzzing through Selective Symbolic
Execution. Network and Distributed System Security Symposium, 2016.

[SMBS06] S. Suhaib, D. Mathaikutty, D. Berner, and S. Shukla. Validating Families of Latency
Insensitive Protocols. IEEE Trans. on Computers (TC), 55(11):1391–1401, Nov 2006.

[SMT+11] C. Salama, G. Malecha, W. Taha, J. Grundy, and J. O’Leary. Static Consistency
Checking for Verilog Wire Interconnects. Higher-Order and Symbolic Computation,
2011.

125

[Spi23] SpinalHDL. Online Webpage, 2013 (accessed Dec., 2023). https://spinalhdl.
github.io/SpinalDoc-RTD/.

[ST06] J. G. Siek and W. Taha. Gradual Typing for Functional Languages. Scheme and
Functional Programming Workshop (SFP), Sep 2006.

[ST07] J. G. Siek and W. Taha. Gradual Typing for Objects. European Conf. on Object-
Oriented Programming (ECOOP), Jul 2007.

[SVCB15] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined criteria for gradual
typing. Summit on Advances in Programming Languages (SNAPL), 2015.

[SWD+12] O. Shacham, M. Wachs, A. Danowitz, S. Galal, J. Brunhaver, W. Qadeer, S. Sankara-
narayanan, A. Vassilev, S. Richardson, and M. Horowitz. Avoiding Game Over:
Bringing Design to the Next Level. Design Automation Conf. (DAC), Jun 2012.

[SZP+20] A. Soorishetty, J. Zhou, S. Pal, D. Blaauw, H.-S. Kim, T. Mudge, R. Dreslinski, and
C. Chakrabarti. Accelerating Linear Algebra Kernels on a Massively Parallel Recon-
figurable Architecture. Int’l Conf. on Acoustics Speech and Signal Processing, May
2020.

[Tay18a] M. B. Taylor. BaseJump STL: SystemVerilog Needs a Standard Template Library for
Hardware Design. Design Automation Conf. (DAC), Jun 2018.

[Tay18b] M. B. Taylor. Basejump STL: SystemVerilog Needs a Standard Template Library for
Hardware Design. Design Automation Conf. (DAC), 2018.

[TAZ+21] C. Tan, N. B. Agostini, J. Zhang, M. Minutoli, V. G. Castellana, C. Xie, T. Geng,
A. Li, K. Barker, and A. Tumeo. OpenCGRA: An Open-Source Unified Framework
for Modeling, Testing, and Evaluating CGRAs. Int’l Conf. on Application-Specific
Systems, Architectures, and Processors (ASAP), Jul 2021.

[TFG+16] A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek, and M. Felleisen. Is Sound
Gradual Typing Dead? Annual Symp. on Principles of Programming Languages
(POPL), Jan 2016.

[TGC+20] X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, and P.-E. Gaillardon. OpenFPGA:
An Open-Source Framework for Agile Prototyping Customizable FPGAs. IEEE Mi-
cro, Jul 2020.

[TH19] L. Truong and P. Hanrahan. A Golden Age of Hardware Description Languages: Ap-
plying Programming Language Techniques to Improve Design Productivity. Summit
on Advances in Programming Languages (SNAPL), May 2019.

[THF08] S. Tobin-Hochstadt and M. Felleisen. The Design and Implementation of Typed
Scheme. Annual Symp. on Principles of Programming Languages (POPL), 2008.

126

[THFF+17] S. Tobin-Hochstadt, M. Felleisen, R. Findler, M. Flatt, B. Greenman, A. M. Kent,
V. St-Amour, T. S. Strickland, and A. Takikawa. Migratory Typing: Ten Years Later.
Summit on Advances in Programming Languages (SNAPL), May 2017.

[THS+20] L. Truong, S. Herbst, R. Setaluri, M. Mann, R. Daly, K. Zhang, C. Donovick, D. Stan-
ley, M. Horowitz, C. Barrett, and P. Hanrahan. fault: A Python Embedded Domain-
Specific Language for Metaprogramming Portable Hardware Verification Compo-
nents. Int’l Conf. on Computer-Aided Verification (CAV), Jul 2020.

[TOJ+19] C. Tan, Y. Ou, S. Jiang, P. Pan, C. Torng, S. Agwa, and C. Batten. PyOCN: A Unified
Framework for Modeling, Testing, and Evaluating On-Chip Networks. Int’l Conf. on
Computer Design (ICCD), 2019.

[TPO+21] C. Torng, P. Pan, Y. Ou, C. Tan, and C. Batten. Ultra-Elastic CGRAs for Irregu-
lar Loop Specialization. Int’l Symp. on High-Performance Computer Architecture
(HPCA), Feb 2021.

[TXL+20] C. Tan, C. Xie, A. Li, K. J. Barker, and A. Tumeo. OpenCGRA: An Open-Source
Unified Framework for Modeling, Testing, and Evaluating CGRAs. Int’l Conf. on
Computer Design (ICCD), Oct 2020.

[VBP+16] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky, and M. Horotiwz.
Evaluating Programmable Architectures for Imaging and Vision Applications. Int’l
Symp. on Microarchitecture (MICRO), Oct 2016.

[VKSB14] M. M. Vitousek, A. M. Kent, J. G. Siek, and J. Baker. Design and Evaluation of
Gradual Typing for Python. Symp. on Dynamic Languages, Oct 2014.

[WaK97] D. C. Wang, A. W. appel, and J. L. Korn. The Zephyr Abstract Syntax Description
Language. Conf. on Domain-Specific Languages (DSL), Oct 1997.

[Wij16] V. M. Wijayasekara. Equivalence Verification for NULL Convention Logic and
Latency-Insensitive Circuits. Ph.D. Thesis, Department of Electrical and Computer
Engineering, North Dakota State University, 2016.

[WLP+14] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross. Q100: The Architecture
and Design of a Database Processing Unit. Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Mar 2014.

[XYT+22] Y. Xu, Z. Yu, D. Tang, G. Chen, L. Chen, L. Gou, Y. Jin, Q. Li, X. Li, Z. Li, J. Lin,
T. Liu, Z. Liu, J. Tan, H. Wang, H. Wang, K. Wang, C. Zhang, F. Zhang, L. Zhang,
Z. Zhang, Y. Zhao, Y. Zhou, Y. Zhou, J. Zou, Y. Cai, D. Huan, Z. Li, J. Zhao, Z. Chen,
W. He, Q. Quan, X. Liu, S. Wang, K. Shi, N. Sun, and Y. Bao. Towards Developing
High Performance RISC-V Processors Using Agile Methodology. Int’l Symp. on
Microarchitecture (MICRO), Oct 2022.

127

[XZP+20] Y. Xiong, J. Zhou, S. Pal, D. Blaauw, H.-S. Kim, T. Mudge, R. Dreslinski, and
C. Chakrabarti. Accelerating Deep Neural Network Computation on a Low Power
Reconfigurable Architecture. Int’l Conf. on Circuits and Systems (ISCAS), Oct 2020.

[ZANA22] J. Zhao, A. Agrawal, B. Nikolic, and K. Asanović. Constellation: An Open-Source
SoC-Capable NoC Generator. International Workshop on Network on Chip Architec-
tures (NOCARC), Oct 2022.

128

