Appears in the Proceedings of the 2025 IEEE Int’l Symp. on Workload Characterization (IISWC), October 2025

EntoBench: A Benchmark Suite and
Evaluation Framework for Insect-Scale Robotics

Derin Ozturk, Nick Cebry, Angela Cui, Hang Gao, Julie Villamil, E. Farrell Helbling, Christopher Batten
Cornell University, Ithaca, NY

Abstract—EntoBench is the first open, MCU-ready benchmark
suite and evaluation framework that captures the full insect-
scale robot pipeline. Thirty-one kernels, each configurable for
float, double, or fixed-point arithmetic, map how milliwatt power
budgets and tight memory constraints can reshape algorithmic
trade-offs. A synchronized GPIO harness couples logic-analyzer
timing with inline current sensing, allowing any Cortex-M0+,
M4, M33, or M7 board to report latency, energy, and peak
power under cache-on/off condition and varied kernel parameters.
More than 400 experiment runs reveal systematic patterns linking
architecture features to achievable autonomy, providing a rigorous
baseline for future software optimization and hardware-software
co-design in this emerging cyber-physical domain. The full
framework and benchmark suite are released as open source.

I. INTRODUCTION

Insect-scale robots, typically characterized by lengths under
S5cm and masses below 5g, are a rapidly growing area of
robotics research. These platforms promise transformative ca-
pabilities in fields such as search-and-rescue and environmental
monitoring. At these scales, familiar physical intuitions begin
to break down: scaling laws introduce new constraints on
actuation, sensing, and control, requiring roboticists to employ
micro-intuition [28] and look towards biology for inspiration
[18] in the robot design process. The effect is an explosion of
diversity across demonstrated systems (e.g., flyers [10, 14, 36,
37, 56, 68], crawlers [3, 14, 32, 41, 54, 61, 69], jumpers [2, 8,
39, 61], swimmers [60, 67], gliders [22, 38, 55], and striders [27,
62, 64]) reflecting a wide range of form factors, actuation
strategies, and control architectures tailored for operation at
the insect scale.

A major trend in recent years is the push toward full
autonomy in insect-scale robots, encompassing sensor, actuator,
power, and compute autonomy. Sensor autonomy refers to
the robots ability to carry its own sensors to sense its
own state and the state of its environment without external
infrastructure. Actuator autonomy requires onboard actuators
and drive circuitry that enable meaningful, taskable locomotion
through the right mechanical design and signal generation.
Power autonomy refers to untethered operation using onboard
energy sources such as batteries, solar cells, or other har-
vesting approaches. Finally, compute autonomy entails the
robot’s ability to carry processors capable of running the full
sensing-to-actuation pipeline within the robot’s constraints and
application requirements. Each of these pillars of autonomy
should be viewed as a spectrum, with robots occupying
different points which are heavily affected by size, weight,
and power constraints. While most demonstrated insect-scale

systems currently rely on external position tracking, off-board
computation, and tethered power sources, next-generation
platforms aim to be self-sufficient: sensing and understanding
their environment and internal state, making control decisions
in real time, and doing so under tight size, weight, power, and
timing constraints. Among these four pillars of autonomy, we
argue that compute autonomy is the most critical to address
first. Processor selection has recently been emphasized for its
influence on algorithmic feasibility and efficiency in insect-
scale robots [18]. The choice of onboard compute directly
determines what sensing and control strategies are feasible
and what power budget is sustainable, setting the stage for a
virtuous robot-hardware-software co-design loop. Furthermore,
optimized compute systems may unlock new capabilities for
these robots, beyond enabling operation outside the lab.

The challenge of compute autonomy for insect-scale robots
likely necessitates a multi-faceted approach, involving custom
hardware, innovative hardware-software co-design, and robotics
algorithms heavily optimized for extreme resource constraints.
Achieving this requires a rigorous and accurate assessment of
computational workloads. However, current practices in the
insect-scale robotics field often lack the detailed, measurement-
driven characterization common in computer systems research.
For instance, relying on high-level metrics such as Floating
Point Operations (FLOPs) per second, a common practice for
assessing both computational efficiency and power efficiency
in some recent insect-scale robotics literature [25, 65, 70],
can be misleading. Indeed, applying such FLOP counting
approaches to workloads representative of those in advanced
insect-scale systems can lead to underestimations of actual cycle
counts on target microcontroller units (MCUs) by as much as
79.84% and 80.87% for the workload studied in [51], and also
fails to address that average power consumption (estimated
from FLOPs and the datasheet) is not adequate for comparing
efficiency of different workloads, underscoring the critical need
for direct measurement and characterization on target hardware.

To enable meaningful progress in tackling compute-
autonomy on these constrained systems, we need benchmark
suites and evaluation frameworks that reflect the realities
of these insect-scale platforms. Existing robotics benchmark
suites [5, 6, 9, 44] do not meet these needs for several reasons
(see Table I). First, they do not reflect current insect-scale
robotics algorithms or pipelines. Second, they assume an
abundance of compute resources and software stacks that are
impractical for insect-scale deployments. Third, their modular-
ity and extensibility are limited in practice; for example, some

TABLE 1
COMPARISON OF ROBOTICS BENCHMARK SUITES

Ch teristi MAV Robot RTR Ro Ento
aracteristic Bench Perf Bench Wild Bench

Insect Scale X X X X v
Resource Constrained X X X X v
Modular & Extensible v v v v v
Energy &

Power Focused v v X x v
End-to-End v X X v X

suites simply aggregate open-source projects with disparate
build systems, making it difficult to integrate new kernels or
target new hardware platforms uniformly. Fourth, they neglect
energy as a first-class metric, measuring it only coarsely (e.g.,
system-level average power) or not at all for individual compute
kernels. Lastly, while some suites do not evaluate full end-to-
end deployments, we view this as an important future direction.
Since such deployments remain rare at the insect scale, we
focus on individual kernels for this current work.

In this work, we introduce EntoBench, an MCU-ready,
open benchmark suite and evaluation framework tailored
for insect-scale robotics. EntoBench is MCU-agnostic, modular
and extensible: each kernel is a stand-alone C++ template that
can switch between float, double, or fixed-point arithmetic, and
users can easily add new workloads or iterate on existing ones.
A synchronized GPIO harness aligns logic-analyzer timestamps
with inline current sensing, so any ARM Cortex-M board can
report latency, energy, and peak power, all without altering
application code.

Building on this infrastructure we contribute three things
and demonstrate their value through four deployment-driven
case studies. First we release the evaluation framework itself,
ready to benchmark on STM32-based microcontrollers and
adaptable to other commercially available development boards.
Second, we provide a curated suite of 30 perception, estimation
and control kernels each with template-based parameterization
and some with variants. Some of these workloads have not
been demonstrated on Cortex-M class hardware before to our
knowledge. Third, we deliver a cross-platform characterization
over 400 measured datapoints that exposes how caches, floating
point units, memory footprints, and numeric formats steer
feasibility in ways FLOP tallies cannot capture. We then show
how EntoBench can be used in four case studies that (i) prove
vision kernels under tight exteroception budgets, (ii) map the
tradeoffs in precision versus energy for high-rate inertial filters,
(iii) test whether static FLOP counts predict real sensor-fusion
cost, (iv) explore how motion-aware minimal solvers reshape
the robustness-efficiency balance in visual pose estimation.
Finally, we sketch a path from kernel timings to full closed-
loop benchmarks for end-to-end system evaluation. Together
these elements turn raw measurements into actionable guidance
for next-generation insect-scale robots.

II. RELATED WORK

To motivate the need for EntoBench, we review two lines of
prior work in benchmarking and evaluation: robotics specific
suites, which model realistic pipelines but assume far richer
hardware than insect-scale MCUs, and general embedded
benchmark suites, which target MCUSs yet ignore robotics
workloads.

A. Robotics-Oriented Benchmark Suites

A growing number of robotics benchmarking suites target
realistic workloads and pipelines, but they assume far more
compute, memory, and software infrastructure than is feasible
for insect-scale platforms. These suites emphasize system-
level evaluation but largely overlook the microcontroller-level
constraints relevant to our setting.

MAVBench couples an AirSim-based closed-loop simulator
with an application suite that measures perfomance, power, and
flight endurance for micro-aerial vehicles running on Jetson-
class SoCs [9]. The workloads consider include tasks such as
3D mapping and other computational kernels that are currently
not realistic for insect-scale hardware. Although the work links
compute to battery life, it evaluates kernels using ROS and
reports only board-level power, leaving unanswered questions
on how individual algorithms behave in latency and energy on
insect-scale hardware.

RobotPerf standardizes ROS 2 computational graphs across
CPUs, GPUs, and some FPGAs and publishes throughput,
latency, and average power numbers using a vendor-agnostic
harness [45]. The emphasis on middleware portability is
valuable for larger robots, yet its focus on computational graphs
on more powerful hardware, and its reliance on the ROS 2
ecosystem, differs significantly from the realities of deployment
on insect-scale hardware.

RTRBench and its sucessor, RoWild, are robotics bench-
mark suites built for computer architecture studies [5, 6].
RTRBench provides 16 real-time kernels and analyzes them
in zsim, an x86 simulator. RoWild expands the set, executes
on real CPUs and GPUs, and places emphasis on 5 different
case studies, each resembling a deployment on a different
robot. Both ship one representative workload per task and omit
direct energy measurement, arguing that energy and power
consumption for larger robots is dominated by actuation.

B. General Embedded Benchmark Suites

Beyond robotics-specific suites, several benchmarks target
general embedded systems, with some specifically focusing on
energy consumption. EntoBench draws inspiration from their
methodologies while specializing in the distinct challenges of
insect-scale robots.

ULPMark (EEMBC) [24] assesses ultra-low-power MCUs
via energy-per-operation scores across CPU and peripheral
profiles. While effective for general ULP benchmarking,
it lacks robotics-specific workloads and fine-grained task
characterization. Embench [53] replaces outdated synthetic
benchmarks (e.g., Dhrystone) with representative C programs.
Embench-IoT focuses on IoT tasks, while Embench-DSP adds

floating-point signal processing kernels (e.g., IIR and FIR
filtering). BEEBS [52] targets energy measurement, using
GPIO toggling to delimit benchmarks for external power
monitoring—an approach mirrored by EntoBench. However,
BEEBS workloads are drawn from generic suites. MLPerf Tiny
[7] benchmarks TinyML workloads (e.g., keyword spotting,
wake word detection) across software and hardware stacks.
Its emphasis on system-wide energy measurement is valuable,
but its tasks remain in the ML inference domain. Despite
their contributions, none of these suites adequately address the
computational patterns or constraints of robotics applications,
especially those operating at the insect scale.

The insights and methodologies from these general and
energy-aware embedded benchmarks have informed the design
of EntoBench. However, EntoBench’s primary contribution lies
in its specialized focus on the unique workload characteristics
and evaluation needs of insect-scale robotics, providing a
tailored suite that addresses the specific software and hardware
co-design challenges in this resource-starved domain.

III. COMPUTE AUTONOMY FOR
INSECT-SCALE ROBOTS

While general-purpose robots benefit from powerful proces-
sors, modular software stacks, and generous energy budgets,
insect-scale robots have severe size, weight and power (SWaP)
constraints that impose strict limits on sensing, actuation,
compute, and power. Research on these systems has primarily
focused on mechanism design and locomotion strategies, with
simple point solutions for proprioceptive sensing and control,
and open-loop power strategies. Due to the constraints these
robots face, the insect-scale robot computational pipeline
generally looks different from that of larger robots, focusing
on the classical feedback control loop (see Figure 1) and
not considering computational stages such as semantic scene
understanding, localization, mapping, collision avoidance, or
planning. Onboard MCUs need to (1) interface with sensors,
(2) compute robot pose, (3) update control parameters, and (4)
generate actuation signals. In addition to tightening SWaP
constraints, as we scale down robots, mass drops faster
than structural stiffness, which causes the natural resonant
frequencies of the robot body to increase. For example, in [32],
when scaling down a crawling inset-scale robot from 45.1mm
and 1.41g to 22.5mm and 0.32g, the optimal stride frequency
tripled. In other words, insect-scale robots have faster dynamics
and require faster control loop and and state estimation update
rates, consequently requiring faster computation and clock
speeds [30, 36, 71].

Onboard sensors need to sense the robot’s state (proprio-
ception) and external environment (exteroception). Sensors
for insect-scale robots include inertial measurement units
(IMUs [26, 33, 65]), time-of-flight range finders (ToF [23,
34, 65, 70]), low-resolution optic flow vision sensors [23,
65], or high resolution cameras [S1]. These sensors have
varying communication interfaces (I2C, SPI, analog), and
feedback rates (10Hz-2kHz generally, reaching upwards of
50 MHz for cameras), which are important metrics for any

> Control Robots &y _
Xp41 = Axg + Bug +w, Z
B kyk = Cx:: + Dui + v:)
o+ -
2 - /AN
2 ~b
[
-~ oot ™
= State Estimation Sensors
. 5 Optimal State Estimate — -
% Predicted State Measurement % b g m:
«n J
Fig. 1. The Insect-Scale Robot Pipeline — Extreme size, weight, and

power constraints have generally restricted insect-scale robots to considering
computation only for high-rate feedback control.

onboard compute system. Estimation algorithms (e.g., linear
interpolation, Kalman Filtering, Extended Kalman Filtering)
then compute pose estimates from raw sensor data. These
estimation algorithms require varying levels of compute (e.g.,
matrix inversion, floating point math, non-linear optimization).
Insect-scale controllers range between model-free PID control,
linear-time invariant controllers, nonlinear adaptive controllers,
and model predictive controllers, depending on the application
and the required feedback rate, accuracy and precision of the
robot state [11, 12, 19, 21, 23, 25, 26, 29, 33]. Finally, these
control parameters need to map to motor control signals, which
either vary PWM or PFM signals [36, 46]. An onboard MCU
needs to have sufficient inputs and outputs, numerical precision,
and loop frequency to meet the requirements of this pipeline.
Runtime is also of critical importance, and onboard batteries
can be limited to 1.8 MJ/kg [69].

Commercial off-the-shelf MCUs that meet the SWaP require-
ments of these robots are limited to 8- or 32-bit Atmel AVR
chips or ARM Cortex-M cores. These existing systems operate
without an operating system, sometimes with no hardware
floating-point unit, and under strict power and memory budgets.
We focus our work on 32-bit ARM Cortex-M cores, as 8-bit
cores are not practical for robotics workloads. Available SRAM
ranges anywhere from “32KB to "2MB, limiting onboard
sensor data. Additionally, power consumption scales with clock
frequency squared, and these microcontrollers have flexible,
internal clock generation mechanisms that can scale compute
power to fit requirements during active periods and low-
power sleep modes for inactive periods. Mapping the sensing,
estimation, and control algorithms onto Cortex-M processors
demands budgeting for heterogeneous memories (flash, SRAM,
tightly coupled memory), optional instruction and data caches,
and the presence, or absence, of FPUs and DSP extensions.

Executing the entire insect-scale pipeline within the severe
SWaP constraints of these robots remains a formidable chal-
lenge, and consequently most published prototypes still rely
on off-board processors and tethers for computation. This gap
underscores the importance of a rigorous and reproducible eval-
uation framework that targets suitable insect-scale hardware.

IV. ENTOBENCH

To rigorously evaluate algorithms under the constraints of
insect-scale robotics, we introduce EntoBench, a modular
framework and benchmark suite designed for real-time ex-
ecution on microcontrollers. EntoBench emphasizes realistic
workloads, hardware-awareness, and configurability, enabling
better system-level design and exploration, and sets the stage
for future work in hardware-software-robot co-design. This
section begins by first outlining the 5 design goals that guide
the creation of EntoBench, then describing the structure of
the framework and it key components, and finally presents the
curated benchmark suite organized by pipeline stage.

A. Design Goals

EntoBench is designed around five core principles that
address the unique requirements of insect-scale robotics evalu-
ation:

Representative Pipeline Coverage. EntoBench targets
the main pipeline stages of current insect-scale autonomy—
perception, state estimation, and control—omitting mapping
and planning, whose footprints exceed on-chip limits and
have not been explored at this scale. Kernels are drawn from
published work or the immediate research frontier.

Suitable for Resource-Constrained Platforms. Benchmarks
must assume no external memory, and limited SRAM/FLASH.
They must avoid dynamic allocation, virtual functions and
heavy libraries; template metaprogramming should handle
compile-time variants to take advantage of known parameters
and operating conditions.

Modular and Extensible Design. Each kernel should
be implemented as a standalone component with minimal
dependencies, exercised through a common harness, and
include unit tests. Users should be able to swap precision
modes, test new kernels, or compose pipelines with minimal
changes.

Treat Energy and Peak Power as First-Class Metrics.
The framework must report both cumulative energy and
instantaneous peak power, because on insect-scale robots energy
per kernel sets mission endurance during untethered operation,
while bursts in current consumption can brown-out custom
made power electronics.

Forward-Looking and Evolvable. The framework must
be designed to evolve alongside the fast-moving landscape of
insect-scale robotics. As new sensors, actuators, algorithms, and
platforms emerge, the suite’s modular structure should allow
for workloads to be updated, replaced, or expanded, mirroring
Embench’s call for sustainable, relevant benchmarking in
dynamic domains [53].

B. Evaluation Framework

The EntoBench evaluation framework, illustrated in Figure 2,
keeps benchmark code and measurement infrastructure strictly
separate, enabling easy reuse and extension. Compile time
templates are used thoughout the codebase for specialization
and inlining. Table II shows the different parameters EntoBench
supports across different categories. At the heart of EntoBench

Supported Deployments
’

L/

LY =
m

ARM Cortex-M R

emel 3

=
Problem Specification

class Problem<Kernel, .. > {
const char* deserialize();
bool serialize(char*);
void run();
bool validate();

) =

Native

gems5* gacem>

Problem-specific
Data Containers

\ J
e)
Harness -
Evaluation Experiment |10
Stats Orchestration P
\§ J
ROI GPIO Semihosting
................ <
D C t :
- ' i)/na:nlc’url;en“‘: ClDataset"\C
TR R N IR O .9 Host
 EnergyAnalysis . (L Results©)

Fig. 2. Overview of the EntoBench Framework

are the following components, which work in concert to enable
rigorous benchmark definition, execution, and measurement:

Kernels. Each workload is a stand-alone C++ template
parameterized by algorithm variant, scalar type (float, double,
fixed-point), and dimension, where applicable. Kernels depend
only on Eigen and sometimes various specialized utility
functions that are useful for workloads that are from the
same general category. We support a custom fixed-point type
with full Eigen integration, enabling easy deployment on
microcontrollers without FPUs.

Problem Specifications. Object-oriented problem specifi-
cations that employ the curiously recurring template pattern
wrap kernels into fully evaluable tasks via the EntoProblem
base class interface. This interface defines how inputs are
synthesized or loaded, how the kernel is invoked solve (),
and how results are validated validate (). It also encodes
metadata like dataset needs, such as RequiresDataset
(useful for microbenchmarking) and SavesResults (to
reduce interaction with the host computer), and integrates with
ExperimentIO for file I/O. This abstraction allows kernels
to be reused across simple synthetic tasks or realistic pipelines
with recorded sensor data.

Harness. A generic driving harness instantiates problems,
toggles region of interest GPIOs (start_roi, end_roi)
and orchestrates benchmarks based on user parametrizable
cache warm up and repetitions parameters. Our limited support
in the microarchitectural simulator gem5 supports setting
regions of interest with conditionally compiled code using
the same toolchain for MCU builds and deployed on gem5’s
provided ARM processor model.

TABLE II
PARAMETER CATEGORIES AND EXAMPLE PARAMETERS

Category Parameters
Harness Repetitions, Cache Control
Verbosity, Data I/O Configuration
General Scalar Precision, Data Types, Tolerances
. Image Dimensions, Feature Counts
Perception

Detection Thresholds, Window Sizes

Model Dimensions, Sensor Configuration,

State Estimation g0 1 bes, RANSAC Configuration

Prediction Horizon, System Size,

Control L
Convergence Criteria

MCU Abstraction Layer. We provide a lightweight hard-
ware abstraction layer for system clock configuration, on-chip
cache management, cycle counting, and GPIO pin toggling.
These GPIOs are critical for EntoBench’s energy and timing
instrumentation, allowing external logic analyzers and power
monitors to track precise execution intervals.

Energy Measurement Setup. We combine a Saleae Logic
2 analyzer and a STLINK-V3PWR current probe to measure
dynamic power during execution. A dedicated GPIO trigger
pin initiates the STLINK-V3PWR recording, while a separate
latency pin marks ROI boundaries. Sampling at 100 kHz
with 50 nA resolution, this setup enables synchronized and
repeatable energy and peak power measurements. A Python
script is used to synchronize both data logs to yield latency,
energy, and peak-power per run.

Build System. EntoBench has a modular CMake build
system that targets (1) native Linux/Mac, (2) Cortex-M via
the ARM GCC Embedded Toolchain and OpenOCD, and (3)
gem5 (limited support, no validated MCU models). New board
support is handled via thin CMake tool-chain files. Semihosting
plays the key role of moving data between host and MCU.
All benchmarks can be configured via JSON files that our
build system uses for build-time parameters such as Reps,
Verbosity, and TotalRuns.

C. Benchmark Suite

EntoBench ships 31 microcontroller-ready kernels spanning
perception, state estimation, and control, each lifted from
published insect-scale work or its immediate frontier. Table III
lists the kernels in current suite with full static metrics that
are expanded in Section V. Table IV accompanies it listing
dynamic metrics for the same kernels.

Perception. Three corner detectors with descriptors,
fastbrief [35, 57], orb [58], and SIFT [43], cover
the invariance and compute spectrum. Motion tracking via
optical flow is represented by iterative Lucas Kanade [4],
(1kof), image interpolation [63] (iiof), and brute force
block matching [1] (bbof). Together these provide building
block towards visual(-inertial) odometry, place recognition, and
SLAM.

State Estimation. High-rate attitude filters (mahony,
madgwick, fourati) are included and support float, double,

and fixed point formats. Sensor fusion is covered by two
recently proposed EKFs for insect-scale flapping wing aerial
vehicles: a 4-state RoboFly filter [65] that fuses asynchronous
time-of-flight (ToF), optical flow, and IMU data, and a 10-
state RoboBee EKF that fuses ToF and IMU data. Our generic
EKF wrapper supports synchronous or asynchronous updates,
implementing the sequential update and truncated update logic
presented in [65], and allows users to specialize measurement
and dynamics updates for their platform.

Geometric pose estimation spans absolute and relative pose
solvers, ranging from minimal solvers—p3p [20], up2p for
absolute pose [40], and 5pt [49], up2pt [13], u3pt [20] for
relative pose—to linear solvers—dl1t [31], homography [31,
51], and up3pt [13]. up2p, and u3pt require knowledge
of the gravity direction, easily provided by an IMU, and
up2pt, up3pt require knowledge of gravity direction and
a planar motion constraint. All plug into a compile-time
configurable 1o-ransac wrapper [15] with optional linear or
nonlinear local refinement, and optional final bundle adjustment.
Together these can be used to quantify how structural and
sensor priors as well as robust estimation, shape energy and
latency, providing more building blocks towards visual(-inertial)
odometry alongside our perception kernels.

Control. Kernels range from a sparse 4x4 LQR
(fly-1qgr) and it’s 10 time-step horizon TinyMPC suc-
cessor (fly-tiny-mpc), to an OSQP-based ADMM
MPC [17] (bee-mpc), an SE(3) geometric controller [42,
46] bee-geom, and a sliding mode adaptive controller
bee-smac [11, 12]. Benchmarks focus on high-level reference
computation only; actuator mapping (e.g., piezoelectric actuator
pulses for flapping wing) is left out. TinyMPC and LQR are
generic where dynamics and sensor matrices can be easily
changed.

Future Extensions. Planned near-term expansions include
lightweight factor graph optimization [50], CNN-based monoc-
ular depth estimation and object recognition [72], and higher-
level navigation kernels [73]. EntoBench will grow iteratively,
welcoming community-driven contributions, with versioned
releases that will keep the suite reproducible and well docu-
mented.

V. WORKLOAD CHARACTERIZATION

Every EntoBench kernel is profiled twice, once with caches
disabled and once with caches enabled, on STM32G474 (M4,
128 KB SRAM), STM32U575 (M33, 1 MB SRAM), and
STM32H7A3 (M7, 1.4MB SRAM) MCUs. Problem sizes
are chosen so that the M4’s SRAM is sufficient, making
reported results directly comparable across MCUs. Notably for
perception tasks, feature detection is performed with 160x160
images and optical flow performed with 80x80 images. The
single exception is the SIFT detector, which exceeds the
memory of the M4 and M33 and is therefore reported only on
the M7. Architectural details for the three boards appear in
Table V; full latency, energy, and peak-power numbers with
caches on and off are collected in Table IV. Before going

TABLE III
BENCHMARK SUITE STATIC METRICS — FLASH SIZE AND STATIC INSTRUCTION MIX BREAKDOWN

M4 Instr. Mix M33 Instr. Mix M7 Instr. Mix
Stage Kernel Category Dataset Flash F I M B F I M B F 1 M B
P fastbrief Feat. Extr. midd-stereo 5088 113 598 282 200 112 600 269 198 112 618 282 205
P orb Feat. Extr. midd-stereo 11616 671 1267 464 506 677 1236 465 474 463 984 395 312
P sift Feat. Extr. midd-stereo 76268 - - - - - - - - 2219 4346 2167 1188
P lkof Opt. Flow midd-flow 45844 516 6557 4646 3141 518 6529 4578 3135 518 6529 4578 3135
P iiof Opt. Flow midd-flow 1280 57 175 130 59 57 147 115 57 57 147 115 57
P bbof Opt. Flow midd-flow 2936 296 336 216 98 303 312 234 86 277 288 204 77
S mahony Att. Est. bee-synth 1560 195 112 9% 74 196 108 98 74 192 110 9% 72
S madgwick Att. Est. bee-synth 1424 168 114 99 62 171 110 101 62 168 114 99 60
S fourati Att. Est. bee-synth 3088 543 138 133 71 588 134 136 70 533 138 132 69
S fly-ekf (sync) Kalman Filt. fly-synth 29072 3650 2632 1381 986 3820 2628 1412 976 3488 2295 1272 772
S fly-ekf (seq) Kalman Filt. fly-synth 29072 3650 2632 1381 986 3820 2628 1412 976 3488 2295 1272 772
S fly-ekf (trunc) Kalman Filt. fly-synth 29072 3650 2632 1381 986 3820 2628 1412 976 3488 2296 1272 772
S bee-ceekf Kalman Filt. bee-hil 38432 4351 3818 2132 1200 4598 3828 2049 1194 4110 3494 2118 986
S p3p Abs. Pose abs-synth 12132 1446 974 387 541 1424 968 392 524 1310 311 230 190
S up2p Abs. Pose up-abs-synth 3720 630 179 147 73 630 180 144 73 629 180 146 73
S dit Abs. Pose abs-synth 18908 2404 1655 1203 668 2429 1637 1230 659 2393 1644 1199 617
S absgoldstd Abs. Pose abs-synth 31332 4088 2420 1342 1035 4185 2392 1275 1005 3881 1667 1290 779
S up2pt Rel. Pose str-rel-synth 3160 420 217 149 131 418 218 147 130 420 215 148 131
S up3pt Rel. Pose str-rel-synth 8500 559 1166 848 374 562 1164 858 373 569 1164 839 376
S u3pt Rel. Pose upr-rel-synth 9388 1136 673 327 378 1137 667 330 360 866 365 247 195
S Spt Rel. Pose rel-synth 73932 5550 8259 5235 3779 5892 8240 5208 3814 5543 8090 5219 3740
S 8pt Rel. Pose rel-synth 30364 3860 2475 1902 1033 4027 2474 1832 1009 3818 2471 1892 981
S relgoldstd Rel. Pose rel-synth 87464 5465 10198 7165 4594 5547 10144 7392 4599 5241 9860 7085 4369
S homography Abs./Rel. Pose homog-synth 4976 824 202 222 117 821 204 224 117 826 180 213 108
S abs-lo-ransac Robust Pose ~ rob-abs-synth 119132 7795 14217 9462 6328 7973 14122 9477 6302 7453 13433 9281 5826
S rel-lo-ransac Robust Pose rob-rel-synth 164660 12597 18919 12682 7902 12997 18849 12808 7874 11937 18281 12812 7533
C Afly-tiny-mpc Opt. Ctrl. fly-traj 64676 3390 7683 5583 3590 3550 7683 5769 3586 3396 7819 6024 3565
C fly-lqr Opt. Ctrl. fly-traj 1484 125 175 111 58 112 169 127 60 126 175 110 58
C bee-mpc Opt. Ctrl. bee-synth 80760 2277 9782 6749 4649 2333 9777 6725 4676 2316 9529 6605 4551
C bee-geom Geom. Ctrl. bee-synth 21952 3333 1064 1252 384 3348 1031 1324 373 3119 768 1184 199
C bee-smac Adapt. Ctrl. bee-traj 33840 3423 3268 1385 1496 3476 3233 1400 1463 4005 1561 875 745
TABLE IV

BENCHMARK SUITE DYNAMIC METRICS — LATENCY, ENERGY, AND PEAK POWER WITH AND WITHOUT CACHES

Latency (us) Energy (1J) Pmnax (mW)
M4 M33 M7 M4 M33 M7 M4 M33 M7
Stage Kernel C NC C NC C NC C NC C NC C NC C NC C NC C NC
P fastbrief 26K 26K 24K 46K 11K 34K 3K 3K 702 1K 2K 4K 132 131 35 35 161 128
P orb 54K 54K 42K 8IK 20K 55K 7K 7K IK 2K 3K 6K 146 142 35 37 174 128
P sift - - - - 2M 4M - - - - 207K 483K - - - - 216 130
P lkof 18K 19K 13K 22K 6K 17K 2K 2K 424 699 852 2K 202 200 39 41 200 126
P iiof 2K 2K 2K 3K 840 2K 199 196 45 73 94 198 108 106 27 30 122 120
P bbof 468 469 381 590 191 244 52 98 11 9 26 55 115 106 32 38 160 128
S mahony 2 2 6 9 2 3 02 02 02 03 02 03 106 104 33 37 121 123
S madgwick 2 2 3 309 1 02 02 3 7 01 02 100 96 30 32 108 118
S fourati 7 8 6 8 3 4 07 08 0.1 02 03 04 118 116 31 32 123 122
S fly-ekf (sync) 40 45 34 39 14 26 5 5 1 1 2 3 136 133 36 36 147 127
S fly-ekf (seq) 57 67 43 57 18 32 7 8 1 2 2 4 132 128 36 37 149 128
S fly-ekf (trunc) 43 48 29 46 15 38 5 5 09 1 2 4 131 128 35 36 161 125
S bee-ceekf 4K 4K 4K 7K 2K 4K 529 532 109 200 204 450 139 137 38 36 150 127
S p3p 129 136 116 198 11 18 14 15 3 6 1 2 120 118 31 33 131 120
S up2p 12 13 10 12 4 7 1 2 02 04 05 07 127 125 34 34 132 126
S dit 408 441 301 432 140 301 49 51 9 13 17 34 148 143 37 38 148 127
S absgoldstd 4K 4K 3K 5K 2K 4K 491 517 93 160 217 405 189 187 41 40 189 153
S up2pt 14 15 12 15 5 8 1 2 03 04 06 09 115 113 30 32 129 122
S up3pt 25 26 19 28 9 19 3 3 05 09 1 2 128 124 35 36 152 127
S u3pt 16 17 14 19 7 11 2 2 03 05 07 1 113 113 31 33 134 124
S Spt 682 737 605 860 267 498 84 88 18 27 32 56 145 138 42 40 158 126
S 8pt 228 250 173 244 79 157 26 28 5 7 10 18 136 133 37 36 148 128
S relgoldstd 3K 3K 3K 4K 1K 3K 357 369 72 111 160 294 161 158 44 40 201 145
S homography 37 40 31 47 14 33 4 5 4 7 2 4 131 130 37 35 166 127
S abs-lo-ransac 5K 5K 22K 34K 5K 9K 624 630 578 988 550 982 135 132 35 36 154 132
S rel-lo-ransac 42K 44K 39K 54K 19K 37K 5K 5K IK 2K 2K 4K 144 140 41 41 189 134
C Afly-tiny-mpc 168 176 151 228 68 181 20 21 5 7 9 21 139 134 39 37 170 127
C Aly-lgr 1 1 1 2 05 1 0.2 0.1 0.0 0.1 0.1 02 122 120 35 35 165 121
C bee-mpc 8K 8K 7K 13K 3K 10K 1K 1K 213 399 477 2K 151 147 37 36 183 128
C bee-geom 73 81 68 83 26 75 8 9 2 2 4 9 120 117 36 35 167 124
C bee-smac 611 641 619 998 45 87 69 71 17 28 6 10 125 121 38 35 163 122

Notes for TABLE III and TABLE IV: Flash size (B) is reported for the M4 build. For sift, flash corresponds to the M7 build. There are very minor
differences in Flash size, if any, between the same program compiled for a different Cortex- M processor. Instruction mix reported is number of instructions for
Float, Integer, Memory, Branch. Dynamic metrics reported use same datasets listed with static metrics.

through each category of kernels, we describe some notable
high level trends.

Memory Placement. The use of caching drastically improves
the performance for the M7 and generally improves the
performance of the M33. For the M7 this is due to memory
placement, where the vendor linker script places stack in AXI-
SRAM for the M7. Caches can also drastically increase the
peak power, especially on the M7 with the largest difference
of 86 mW encountered during SIFT, signaling a drastic energy
vs peak power tradeoff. The M4 sees slight increases in peak
power when using its small, loosely-coupled cache added by
the manufacturer that sits between FLASH and the processor.
Optimizing memory placement of both instructions and data
is considered out of scope for this work due to the fact that
different microcontrollers models can have drastically different
memory layouts.

Importance of Process Node. Modern silicon processes
make the M33, a more recent Cortex-M offering, the most
energy efficient MCU in our tests. However, few M33 products
are offered in wafer-level chip-scale packages in a footprint
suitable for insect-scale robots. These processors are an in
between of the M4 and M7, providing a very similar pipeline
structure as the M4 but with I- and D- cache support as
part of the ARMv8-M Mainline architecture. These cores
should become the new workhorse for general insect-scale
deployments, with M7 reserved for robots that can afford
larger payloads and power sources.

Feature Detection. fastbrief and orb are integer only
except for gaussian blurring in both, and rotated feature and
descriptor computation in orb. There efficiency is carried over
even into Cortex-M as they are primarily a masked pixel-wise
threshold test. sift is very expensive, especially memory-wise,
building four Difference-of-Gaussians (DoG) and using 128-
byte descriptors, and barely fits the M7 even with incremental
pyramid and DoG building as well as re-computing blurred
images to save space.

Optical Flow. Lucas Kanade (1kof) is the most computa-
tionally expensive due to pyramid creation and computation of
spatial and temporal gradients. All optical flow kernels scale as
the patch size centered on the tracked feature increases. Block
matching (bbof) represents the other end of the spectrum,
where matching using sum-of-absolute differences is especially
efficient in the M7’s superscalar pipeline.

Attitude Estimation. Attitude filters, Mahony, Madgwick,
and Fourati, all require less than 2k cycles. They are primarily
made up of vector operations, and the choice of which one
should come down to the complexity of parameter tuning for
the specific platform. Mahony and Madgwick in this chart
are for IMU architectures, where no magnetometor is present,
whereas Fourati may only be used with a MARG architecture,
where it is present. Upgrading to a MARG architecture only
results in a slight increase in latency.

Extended Kalman Filters. The four-state f1y—ekf and
ten-state bee—-ceekf are dominated by matrix and vector
operations. Constant Jacobians make the RoboFly variant
markedly faster. Despite using sparse dynamics and sensor

TABLE V
CONSIDERED CORTEX-M ARCHITECTURES FOR SEC. V

MCU Key Features

Cortex-M4 3-stage pipeline (ARMV7E-M), up to ~200 MHz, optional
SP FPU, widely available even in ultra-compact packaging
(e.g., WLCSP).

Cortex-M33 3-stage pipeline (ARMv8-M), up to ~200 MHz, optional
SP FPU, optional coprocessor interface, less commonly
available in ultra-compact packaging (e.g., WLCSP).

Cortex-M7 6-stage superscalar pipeline with branch prediction

(ARMV7E-M), up to ~600 MHz, optional SP or DP FPU,
optional I/D caches, optional tightly coupled memory
(TCM), widely available even in ultra-compact packaging,
typically larger than M4/M33

measurement matrices, it is impossible to realize their potential
computation benefits in a generic EKF framework. Eigen’s
sparse matrix class resulted in slower computation due to
control flow and dynamic memory allocation overhead.

Pose Estimation. Motion- and/or gravity- aware solvers
(up2p, up2pt, up3pt, and up3pt) are orders of magnitude
cheaper than linear baselines such as dlt or the 8-pt
algorithm, which pay the full cost of an SVD. LO-RANSAC
workloads couple p3p and 5-pt solvers with nonlinear local
optimization and polishing using a 25% inlier ratio, exposing
how iteration count amplifies per solver cost. We expand on
this in Case Study #4.

Control. The sparsity of the LQR implementation can’t
be taken advantage of, due to the same issues mentioned
with our EKFs. TinyMPC involves dense and iterative matrix-
vector products at start-up, which could be moved completely
offline. We note that this start-up computation can exceed
available stack space on the M4 if the horizon length is too
long, motivating compile-time generation. OSQP MPC is the
only control kernel with iterative optimization, which can be
seen by the instruction breakdowns.

VI. CASE STUDIES

This section demonstrates how EntoBench enables quantita-
tive evaluation of representative kernels across perception, state
estimation, and control—the core stages of the insect-scale
robotics pipelines. Each case study explores how algorithm,
scalar type, dataset and/or architecture interact to shape latency,
energy, and memory demands under real-world constraints.

We highlight how EntoBench enables consistent evaluation
across diverse tasks and platforms, with task-specific correct-
ness metrics incorporated where applicable. The following
subsections describe the setup, research questions, and key
findings for each domain.

A. Case Study #1: High-Resolution Exteroception Under
Tight Energy Budgets

Motivation. Insect-scale robots face a pronounced extero-
ception gap: the onboard sensors they can power and process
deliver far less environmental richness than typical robotics
autonomy stacks demand. Even when microcameras like the

(a) .
104] Midd
Lights
2 ol RRX® April
=
S 6 .
= X
) P
] / X
’ % 7%
7 2
0! o
FB ORB FB ORB FB ORB
400
®) 5l
350 ©
=
w
@ 2.5 F300 =
g =
= 2.0 250 &
”2- 200 '§
5 151 B :
—_— F150 =
ESEER & B O E
O k100 3
| IO W N
0.0 e |
LK I BB BB-V
M4 [M33 0 [M7

Fig. 3. Cycle Counts for Feature Detection and Optical Flow — (a)
Computational complexity for feature detection algorithms across three datasets
and (b) comparison of four optical flow kernels of varying complexity.

NanEyeC are integrated, designers often mitigate computational
cost through aggressive trade-offs, processing only fixed-size
regions [70], using extremely low resolution sensors [23],
downsampling in software [70], or sparsifying their pixel
stream by, for example, using reduced exposure to isolate
bright features [51]. These simplifications are critical to meet
energy and real-time constraints, but their cost in perception
quality is not well understood.

Meanwhile, advances in wafer-level imaging and microcon-
troller architecture design (e.g., ARM Helium SIMD extensions
in Cortex-M55/M85, RISC-V Scalable Vector) promise to
widen the feasible design space for perception-rich autonomy.
This case study quantifies how algorithmic complexity and
input data characteristics jointly shape energy and latency
footprints, setting a baseline for evaluating future SIMD-
enabled microcontrollers.

Methodology. We evaluate two perception tasks, feature
detection (fastbrief, orb) and optical flow, 1kof, iiof,
bbof, across two realistic datasets collected with an insect-
scale appropriate camera, the NanEyeC: (1) a highly textured
surface, and (2) a sparse, LED-illuminated dataset mimicking
constrained lighting conditions from [51]. We measure latency,
cycles, and energy consumption on Cortex-M4, M33, and M7.

Results. Figure 3 clearly shows that input data characteristics
and algorithm choice strongly affect energy and latency. orb
feature detection is 1.5-2.5x more costly in cycles and energy
than fastbrief across all MCUs and datasets. All algorithms
run faster and use less energy on the sparse lights dataset
compared to the more textured Middlebury and April datasets.

TABLE VI
ENERGY AND PEAK POWER FOR PERCEPTION KERNELS ON
CORTEX-M4, M33, AND M7

Energy Prax
Kernel Data M4 M33 M7 M4 M33 M7
fastbrief midd 3167 702 1532 132 35 161
lights 2086 471 1031 127 33 163
april 4193 853 1873 133 35 173
orb midd 6574 1218 2564 146 35 174
lights 3208 679 1422 132 33 169
april 7950 1110 2358 147 35 174
Ikof midd 2296 424 852 202 39 200
bbof midd 52 11 26 115 32 160
bbof-vec midd 19 4 11 128 38 170
iiof midd 199 45 94 108 27 122

Energy reported in microjoules (uJ) and peak power in milliwatts (mW).
Results shown for representative datasets: Midd, Lights, and April. All
measurements taken with cache enabled.

Parameter tuning could be very effective for both feature
detectors if input data characteristics are known ahead of time
for specific applications.

For optical flow, 1kof (LK) is an order of magnitude
more demanding than block-based bbof (BB) or iiof (II)
methods. Vectorized block-based flow bbof-v (BB-V) further
reduces cycles by almost 4x compared to standard BB, showing
the dominance of the sum of absolute differences (SAD)
computation that is easily vectorizable with 32-bit, 4-lane
USADAS instructions.

It is important to note that block-based matching algorithms
utilizing SAD computations are particularly well suited for
the limited DSP vector instruction set provided by Cortex-M
devices (M4, M7, M33). The 4x improvement in BB—V demon-
strates how algorithms that align well with available SIMD
instructions can achieve significant performance gains, while
more complex feature detection algorithms like fastbrief
face greater vectorization challenges due to their irregular
memory access patterns and conditional operations that cannot
be easily implemented without significant overhead.

Actionable Insights. Using EntoBench, we highlight the data
dependence perception algorithms have in terms of energy and
latency while also showing the promise of vectorization. System
designers must benchmark with real input data while tuning
algorithm parameters for maximal reliability and lowest energy
cost. Vectorization is promising, but is not straightforward using
the very limited 32-bit SIMD support available on Cortex-M4,
M33, and M7. New vector instruction sets for microcontrollers
may be critical in future designs.

B. Case Study #2: The Precision-Energy Frontier in High-Rate
Proprioceptive Estimation

Motivation. Case Study #1 highlighted exteroception chal-
lenges, emphasizing how sensor input quality and algorithmic
choices jointly influence computational feasibility. However,
insect-scale robots must also rapidly integrate high-rate inertial
data (proprioception) hundreds to thousands of times per

(@ 100
751
50 1

251

Failure Rate (%)

0 4 8 12 16 20 24 28 32
Decimal Bits

(b) 100

751

501

Failure Rate (%) ~

251

Decimal Bits

—— Madgwick —— Mahoney Fourati

Fig. 4. Attitude Estimation Fixed Point Failure Rate Analysis — Solid, dashed,
and dotted line represent failure rates on a simulated IMU dataset from a
RoboBee motion capture, a straight line trajectory of a water strider, and an
active steering trajectory from a water strider. (a) Portrays the failure rate
of fixed point arithmetic for the Mahony and Madgwick IMU based attitude
estimators. (b) Portrays the failure rate for Mahony, Madgwick, and Fourati
MARG based attitude estimators.

second. Attitude estimation algorithms are lightweight enough
to run on minimal MCUs (e.g., Cortex-M0+) without floating
point hardware, reducing power, PCB complexity, and cost,
making them an attractive option during the MCU selection
phase. Yet without hardware FPUs, designers must either
pay the price of software emulated floating point (float,
double) or resort to fixed-point arithmetic, introducing
complexity due to context-dependent numeric precision tuning
and increased risk of numeric instability.

Methodology. We use EntoBench to systematically explore
the precision-energy tradeoff of three widely used attitude
filters, Mahony, Madgwick, and Fourati, on Cortex-M0+, M4,
and M33, to show the cost of moving from MO+ to the next
tier Cortex-M offerings that include an FPU and benefits of
newer process technology. We evaluate on three datasets, the
first a synthetically generated dataset using real motion capture
data of RoboBee in a hover scenario, the second of the water
strider GammaBot [27] performing striding in a straight line,
and the last of GammaBot performing a steering maneuver. We
evaluate Mahony and Madgwick in two contexts: one when
only accelerometer and gyroscope data are present, denoted
IMU or I, and one when magnetometer data is also present,
denoted MARG or M. We vary fixed-point format, qus. n,
through the full range of possible values and track the failure
rate, counting events due to fixed-point overflow, quaternion
norm drift, early exits from near-zero divisors, and large attitude
errors exceeding 2.5° where ground truth is available. We select
one of the fixed points formats and compare across M0+, M4,
and M33.

TABLE VII
LATENCY, ENERGY, AND PEAK POWER FOR ATTITUDE FILTERS ON
CORTEX-MO0+, M4, AND M33

Latency Energy Prmax
Filter Format MO+ M4 M33 MO+ M4 M33 MO+ M4 M33
mahony (I) £32 369 2 2 5K 205 68 15106 34
y q7.24 218 8 6 3K 832 198 15120 33
madgwick (T) £32 430 2 2 6K 193 60 15100 30
g q7.24 399 15 12 6K 1588 396 15 117 33
mahony (M) £32 642 4 4 9K 338 132 15105 33
y q7.24 3.0K 11 8 43K 1213 280 15 120 35
32 832 4 4 11K 332 136 15 104 34

madgwick (M) 754 492 18 15 7K 1936 510 15 119 34

32 139K 7 6 19K 679 180 15 118 30
q7.24 701 20 17 10K 2159 578 15 134 34

fourati (M)

Latency reported in microseconds (ys), energy in nanojoules (nJ), and peak
power in milliwatts (mW). Filters evaluated in both floating point (f32) and
fixed point (q7.24) formats. (I) denotes inertial-only filters, (M) denotes
magnetometer-inclusive filters.

Results. First, Figure 4 shows the complexity of choosing a
proper fixed-point format, even for relatively simple attitude
estimators. Dynamic range is needed given that the input sensor
data across accelerometer, gyroscope, and magnetometer can
vary. The three datasets we test on exhibit different distributions
of these sensor values, dependent on the maneuver performed,
where gyroscope data can be the hardest to account for
as its reports readings in rad/s, an unbounded unit. As for
computational performance, Table VI-B shows that despite
the lower power draw of MO+ it is limited heavily by its
slower clock speed and basic 2-stage pipeline, with energy
consumption larger than both M4 and M33 despite its lower
power draw. This highlights a key embedded design principle:
minimizing energy often requires racing to idle on more
capable microcontrollers, rather than relying solely on low-
power hardware. The M33’s superior energy efficiency stems
primarily from its newer process node, as discussed earlier,
demonstrating generational improvements beyond architectural
enhancements. Last, we note that fixed point is slower on the
M4 and M33 due to the need to shift back every multiply.

Actionable Insights. EntoBench highlights significant prac-
tical challenges introduced by fixed-point arithmetic, even for
lightweight algorithms like attitude estimation. Optimal numeric
precision selection strongly depends on platform dynamics,
sensor characteristics, maneuver profiles, and update rates,
emphasizing the continued importance of hardware FPUs for
robustness. Future automated tools for more in depth fixed
point sensitivity analysis and analytical methods for converting
floating point algorithms to fixed point representations with
provable guarantees on accuracy and failure rate could dramati-
cally streamline moving to fixed point representations. Making
it easier to utilize the most area, energy and weight efficient
microcontrollers available for select tasks. The M33’s superior
performance reinforces how newer process technology nodes
can provide significant energy benefits, making it the optimal

choice when packaging constraints permit, even beyond its
architectural improvements over older MCU generations.

C. Case Study #3: Is FLOP Counting a Good Model for
Latency or Energy Consumption?

Motivation. While Case Study #2 showed that numeric
precision governs energy and latency in proprioceptive kernels,
full sensor fusion is essential for enabling closed-loop control
in the lab without relying on external motion capture systems.
Recent insect-scale robots increasingly rely on Extended
Kalman Filters to fuse inertial and exteroceptive cues, yet
many works justify feasibility using only static FLOP counts
and datasheet-based power estimates. These estimates implicitly
assume idealized computation, often neglecting the effects of
memory access, control flow, or algorithmic structure. As robots
push toward fully onboard sensing and control, we must re-
examine whether FLOP counting meaningfully predicts real
performance on microcontrollers.

Methodology. We use EntoBench to benchmark sensor
fusion and control algorithms deployed on flapping-wing
MAVs: (i) the fly—-ekf [65], which fuses IMU, optical
flow, and time-of-flight data using two asynchronous update
strategies, sequential update (S) and truncated update (T);
(ii) the bee-ceekf [47], which integrates ToF and IMU
sensors; (iii)) £1y—1qgr [19] for linear quadratic regulation;
and (iv) fly-tiny-mpc, which employs TinyMPC [48] with
a 10-step horizon using the LQR infinite horizon formulation
from [19].

Results. Table VIII clearly shows that static FLOP counts
alone fail to predict real-world latency, energy, and power
for embedded sensor fusion. Practical implementations incur
substantial overhead from memory access, conditionals, and
matrix sparsity—none of which are captured in FLOP-based
estimates. This discrepancy can mislead system designers,
especially when provisioning energy or scheduling high-rate
estimation loops.

This was also apparent in the fly-1qgr kernel, where
the 4x4 sparse LQR gain cannot be fully taken advantage
of to yield the performance estimated in the supplemental
material provided. While bespoke hand-tuned implementations
can approach FLOP-based estimates by exploiting sparsity
and avoiding general-purpose library overhead, this approach
becomes impractical as algorithms grow in complexity, limiting
the scalability of FLOP-based design methodologies. For
example, TinyMPC, which is the logical next step from
fly—-1gr as mentioned in the supplemental material of [19],
shows a 17-33x gap between FLOP-estimated and measured
energy consumption, demonstrating that more complex optimal
control algorithms require significant implementation effort to
meet FLOP-based performance predictions.

Actionable Insights. Static FLOP tallies and arithmetic
operation counting are safe if careful considerations are made
with the implementation on target hardware; real deployment
must measure or model memory traffic and control flow.
Designers should (i) augment FLOP tallies with a simulated
trace to derive an instruction-weighted energy model and (ii)

TABLE VIII
CYCLES AND ENERGY PER UPDATE ON CORTEX-M4, M33, AND M7

Cycles Est. Energy Meas. Energy
Kernel FLOPs M4 M33 M7 M4 M33 M7 M4 M33 M7
fly-ekf (S) 2696 10k 6.4k 5.1k 1.5 0.17 1.1 7 1 2
fly-ekf (T) 1036 7k 44k 42k 0.6 0.07 04 5 09 2
bee-ceekf 1063 744k 559k 424k 0.6 0.07 04 529 109 204
fly-lqr 30 230 160 136 0.02 0.002 0.01 0.15 0.03 0.07
fly-tiny-mpc 1000 29k 22k 19k 0.6 0.06 04 20 49 93

Estimated energy based on FLOPs (uJ) and nominal per-cycle current
consumption from MCU datasheets. Measured energy is per update (uJ).
fly-tiny-mpc cycle estimate is for a 10-step horizon.

push for MCU-friendly sparse-matrix libraries or compiler
passes that exploit fixed sparsity without resorting to hand-
tuned code.

D. Case Study #4: Minimal Solver and Robust
Estimation Trade-offs for Relative Pose Estimation

Motivation. While high-rate inertial pipelines investigated in
Case Studies #2 and #3 deliver the responsiveness required for
aggressive control, long-horizon autonomy demands a comple-
mentary mechanism for drift correction, typically achieved
through geometric visual cues. Relative pose estimation,
especially from monocular image pairs, provides this correction.
Many minimal solvers exploit structural priors, e.g., known
gravity or planar motion, mirroring the design choices of insect-
scale robots like GammaBot, which operates on water surfaces
with constrained motion and known upright orientation. Upright
pose estimation solvers (e.g., u3pt, up2pt, up3pt) exploit
the assumption that the camera orientation relative to gravity is
known, reducing the degrees of freedom in the pose estimation
problem, enabling more efficient computation. up2pt and
up3pt also assume planar motion along the ground plane,
similar to a vehicle, or a water strider inspired insect-scale
robot such as one seen in [27].

Designers of insect-scale systems often incorporate such pri-
ors to reduce computational burden—examples include reduced-
state EKFs with constant Jacobians, as seen in RoboFly. These
assumptions are baked into estimator and controller design, yet
visual pose estimation solvers have not received the same level
of principled evaluation. Moreover, real-world use demands
robustness to outliers and sensor noise, making it important to
benchmark not only standalone solvers, but also their behavior
when embedded in robust estimation frameworks. In this case
study, we use EntoBench to evaluate both aspects, quantifying
how structural priors and robust estimation strategies trade
off accuracy, latency, and energy—offering a first-of-its-kind
template for system-level visual estimation analysis at the insect
scale.

Methodology. Using EntoBench, we evaluate our minimal
relative pose solvers and their use in a LO-RANSAC framework.
We generate 1000 synthetic problems for all kernels tested, as
commonly done in pose estimation literature, allowing for fair
comparison across approaches when controlling parameters

(@)

&0 Noise (pix)
?4- . 0.
g N 0.25
m,| EE 05
3
g, ‘
Spt 8pt-8 8pt-16 8pt-32 8pt-64 up3pt-3 up3pt-8 up3pt-16 up3pt-32
() 10°
wn
o
)
S
O ot
Spt u3pt up2pt 8pt-8 8pt-16 8pt-32 8pt-64 up3pt-3 up3pt-8 up3pt-16 up3pt-32
(0=
g
5 100 1
3
°
[
e
S
/e~ 0-
Spt u3pt up2pt 8pt-8 8pt-16 8pt-32 8pt-64 up3pt-3 up3pt-8 up3pt-16 up3pt-32
120
©) @ . ®
10 175
«» 100
8 150
= —~
g 8 Z 125
3) 3 5
= s 2 100
v 60 2107 z
z 3 10 8
5 ¥
§ 40 L .
=
20
P 25
10
(U 0
8pt Spt u3pt up3pt up2pt Spt u3pt up3pt up2pt Spt u3pt up3pt up2pt
@ M4 @ wM33 [M7 [float double

Fig. 5. Combined Relative Pose Estimation and LO-RANSAC Analysis — All plots compare float (solid) and double (diagonal hatched) precision. Plots
(a) Rotation error in degrees for minimal and linear relative pose solvers showing accuracy degradation with increasing noise. Linear solvers (e.g., 8pt—-N,
representing 8—pt using N correspondences) see improved robustness to noise with increasing feature correspondences. (b-c) Computational cycle counts
and peak power consumption in mW for relative pose solvers at 0.1 pixel noise across different MCU architectures. (d) LO-RANSAC average RANSAC
iterations until convergence for different inner loop solvers, demonstrating the importance of minimal solvers. (e-f) Computational cycle counts and peak power
consumption for LO-RANSAC using different minimal solvers across different MCU architectures. The 8-pt method is excluded due to its computational

overhead making it impractical for insect-scale systems.

such as pixel noise. When testing our robust estimators, the
outlier ratio was set to 25% and 0.5 pixels standard deviation
noise was used.

Results. As shown in Figure 5, the use of double is not
worth the cost in latency on MCUs without a double precision
FPU, nor does it provide consistently better accuracy when
using well-conditioned data. The 8pt method is not as accurate
unless overdetermined even when using proper normalization.
Linear solvers (8pt, and up3pt) scale linearly in cycles as N
increases due to their reliance on SVD for the overdetermined
case. Minimal solvers with known motion or sensor priors are
reliable and fast, but further testing needs to be done when
known gravity direction is more noisy and the planar motion
constraint is loosened.

Robust estimation amplifies the gaps between these minimal
solvers. The 8-pt method was not worth it in practice,
requiring theoretically many RANSAC samples and failing
to find pose estimates with a minimal sample. The 5-pt
method, although only requiring around 2x the number of
iterations as the upright solvers, is much slower in practice,
due to the strenuous Grobner basis approach it performs and
the fact that it can return up to 10 solutions, which all must
be validated each iteration.

Actionable Insights. Leveraging motion or gravity priors
in robust pose estimation can lower the gap and brings
visual-inertial odometry and SLAM in sight for insect-scale
deployment. The benefit of gravity priors alone justify the
use of coupled camera-IMU sensor suites despite increased

mass, power, and integration costs. We also note that robust
pose estimation may not always show up in real-time visual
odometry and SLAM, but also in structure from motion, where
the robot may intermittently take pictures, detect features, and
estimate pose, while slowly optimizing the trajectory over time.

E. Beyond Kernels: Toward Closed-Loop Benchmarks and
End-to-End Evaluation

The kernels profiled so far feed a low-level controller that
keeps an insect-scale robot on some trajectory. Meeting high
update rates is necessary but what ultimately matters when
closing the loop is task-level performance such as disturbance
rejection, agility, and energy spent per mission. Designers
can choose anything from hand-tuned PID to linear MPC,
which might all fit on the same MCU yet yield very different
trajectories and power draw. Estimator assumptions matter too:
the EKFs in Case Study #3 rely on flat ground and hover
assumptions, so drift is likely to appear more aggressively in
sloped or textured terrains and while performing more agile
maneuvers. Kernel-level timing therefore tells only part of the
story.

Data and Simulation Gap. Large robots enjoy rich datasets
and mature simulators [16, 59, 66] with open-source robot
models. Insect-scale robots lack both: data logs are hard to
acquire without access to a real robot, and no open simulator
has mature and high fidelity models that capture the small-scale
physics of these platforms. Without them, designers must guess
how kernel trade-offs propagate to mission-level success.

Long-term Roadmap. We plan to extend EntoBench with
an open insect-scale simulator that plugs into the current
evaluation harness. Controllers will run end-to-end while the
framework logs both the compute cost we have presented in this
work, as well as task-level metrics (e.g., path error, completion
rate). This will answer questions kernel timing alone cannot:
How coarse can the dynamics model be before energy savings
hurt success? Is co-scheduling enough when all three stages
share one processor, or is heterogeneous compute required?
Building and validating such a simulation will require close
collaboration with insect-scale roboticists, but mapping the
path now clarifies why today’s kernel results matter and where
the systems community can contribute next.

VII. CONCLUSION

EntoBench delivers the first rigorous workload characteri-
zation for insect-scale robots. Its 30-kernel suite mirrors their
perception-estimation-control pipeline and pairs it with a low-
cost harness for Cortex-M MCUs, providing a systematic and
reproducible process for evaluating latency, energy, and peak-
power across kernels and MCUs. This process may reveal
non-intuitive architecture-algorithm trade-offs and serves as a
basis for software optimization and guiding hardware-software
co-design.

Four case studies show the range of insights this enables:
(1) scene texture, algorithm choice, and available SIMD width
jointly bound vision energy; (2) fixed-point arithmetic pays
off only when area or integration constraints dominate or if

provable guarantees can be made on numerical stability; (3)
static FLOP or cycle counts break down when estimating
runtime and energy consumption; (4) motion aware minimal
solvers make robust visual odometry viable on insect-scale
hardware.

EntoBench is open-source, modular and intended to grow.
Planned long-term additions include a lightweight insect-scale
dynamics simulator, curated insect-scale robot datasets, and
microarchitectural simulator support, enabling true closed-loop
valuation of autonomy stacks on real hardware. We invite
the systems and robotics community to contribute kernels,
platforms, and data so that EntoBench can evolve into the
standard yardstick for compute autonomy at the insect scale.

ACKNOWLEDGMENTS

This work was supported in part by NSF CSSI Award
#2311890 and a Cornell College of Engineering SPROUT
award.

REFERENCES

[1] “An open source and open hardware embedded metric optical flow CMOS
camera for indoor and outdoor applications,” in Int’l Conf. on Robotics
and Automation (ICRA).

[2] C. A. Aubin, R. H. Heisser, O. Peretz, J. Timko, J. Lo, E. F. Helbling,
S. Sobhani, A. D. Gat, and R. F. Shepherd, “Powerful, soft combustion
actuators for insect-scale robots,” Science, vol. 381, Sep 2023.

[3] A. T. Baisch and R. Wood, “Design and fabrication of the harvard
ambulatory micro-robot,” Int’l Symp. on Robotics Research (ISRR), Aug
2011.

[4] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying

Framework,” International Journal of Computer Vision, vol. 56, no. 3,

pp. 221-255, Feb 2004.

M. Bakhshalipour and P. B. Gibbons, “Agents of autonomy: A systematic

study of robotics on modern hardware,” Measurements and Analysis of

Computing Systems (MACS), Dec 2023.

[6] M. Bakhshalipour, M. Likhachev, and P. B. Gibbons, “Rtrbench: A
benchmark suite for real-time robotics,” Int’l Symp. on Performance
Analysis of Systems and Software (ISPASS), May 2022.

[71 C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,

X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, D. Patterson, D. Pau,

J. sun Seo, J. Sieracki, U. Thakker, M. Verhelst, and P. Yadav,

“Benchmarking tinyml systems: Challenges and direction,” Computing

Research Repository (CoRR), vol. arXiv:2003.04821, Aug 2020.

S. Bergbreiter and K. S. Pister, “Design of an autonomous jumping

microrobot,” Int’l Conf. on Robotics and Automation (ICRA), Apr 2007.

B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust, and V. J.

Reddi, “Mavbench: Micro aerial vehicle benchmarking,” Int’l Symp. on

Microarchitecture (MICRO), Oct 2018.

Y. Chen, E. F. Helbling, N. Gravish, K. Ma, and R. J. Wood, “Hybrid

aerial and acquatic locomotion in an at-scale robotic insect,” Int’l Conf.

on Intelligent Robots and Systems (IROS), Aug 2015.

P. Chirarattananon, K. Y. Ma, and R. J. Wood, “Adaptive control for

takeoff, hovering, and landing of a robotic fly,” Int’l Conf. on Intelligent

Robots and Systems (IROS), Nov 2013.

, “Adaptive control of a millimeter-scale flapping-wing robot,”

Bioinspiration and Biomimetics, vol. 9, no. 2, p. 025004, May 2014.

S. Choi and J.-H. Kim, “Fast and reliable minimal relative pose estimation

under planar motion,” fmage and Vision Computing, vol. 69, pp. 103-112,

Jan 2018.

Y. M. Chukewad, J. James, A. Singh, and S. Fuller, “Robofly: An

insect-sized robot with simplified fabrication that is capable of flight,

ground, and water surface locomotion,” IEEE Transactions on Robotics,

pp. 2025-2040, May 2021.

O. Chum, J. Matas, and J. Kittler, “Locally Optimized RANSAC,” in

Pattern Recognition, G. Goos, J. Hartmanis, J. Van Leeuwen, B. Michaelis,

and G. Krell, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,

vol. 2781, pp. 236-243.

[5

[t

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation
for games, robotics and machine learning,” http://pybullet.org, 2016-2019.
A. De, R. McGill, and R. J. Wood, “An efficient, modular controller
for flapping flight composing model-based and model-free components,”
Int’l Journal of Robotics Research (IJRR), vol. 41, no. 4, Apr 2022.

G. C. H. E. de Croon, J. J. G. Dupeyroux, S. B. Fuller, and J. A. R.
Marshall, “Insect-inspired ai for autonomous robots,” Science Robotics,
vol. 7, no. 67, Jun 2022.

D. Dhingra, K. Kaheman, and S. B. Fuller, “Modeling and LQR control
of insect sized flapping wing robot,” npj Robotics, vol. 3, no. 1, p. 6,
Mar 2025.

Y. Ding, J. Yang, V. Larsson, C. Olsson, and K. Astrom, “Revisiting the
P3P Problem,” in 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). Vancouver, BC, Canada: IEEE, Jun 2023,
pp. 4872-4880.

N. Doshi, K. Jayaram, S. Castellanos, S. Kuindersma, and R. Wood,
“Effective locomotion at multiple stride frequencies using proprioceptive
feedback on a legged microrobot,” Bioinspiration and Biomimetics,
vol. 14, no. 5, p. 056001, Jul 2019.

D. S. Drew, N. O. Lambert, C. B. Schindler, , and K. S. J. Pister,
“Toward controlled flight of the ionocraft: A flying microrobot using
electrohydrodynamic thrust with onboard sensing and no moving parts,”
IEEE Robotics and Automation Letters (RAL), vol. 3, no. 4, pp. 2807—
2813, Oct 2018.

P-E. J. Duhamel, C. O. Perez-Arancibia, G. L. Barrows, and R. J. Wood,
“Biologically Inspired Optical-Flow Sensing for Altitude Control of
Flapping-Wing Microrobots,” IEEE/ASME Transactions on Mechatronics,
vol. 18, no. 2, pp. 556-568, Apr 2013.

EEMBC, “ULPMark® Benchmark,” Embedded Microprocessor Bench-
mark Consortium (EEMBC), Benchmark Specification, 2019.

S. Fuller, Z. Yu, and Y. P. Talwekar, “A gyroscope-free visual-inertial
flight control and wind sensing system for 10-mg robots,” Science
Robotics, vol. 7, no. 72, Nov 2022.

S. B. Fuller, E. F. Helbling, P. Chirarattananon, and R. J. Wood, “Using
a mems gyroscope to stabilize the attitude of a fly-sized hovering robot,”
Int’l Micro Air Vehicle Conf., Aug 2014.

H. Gao, S. Jung, and E. F. Helbling, “High-speed interfacial flight of
an insect-scale robot,” Int’l Conf. on Robotics and Automation (ICRA),
May 2024.

A. Ghosh, “Scaling laws,” Mechanics Over Micro and Nano Scales, May
2011.

B. Goldberg, N. Doshi, K. Jayaram, and R. J. Wood, “Gait studies for
a quadrupedal microrobot reveal contrasting running templates in two
frequency regimes,” Bioinspiration and Biomimetics, vol. 12, no. 4, Jun
2017.

B. Goldberg, R. Zufferey, N. Doshi, E. F. Helbling, G. Whittredge,
M. Kovac, and R. Wood, “Power and control autonomy for high-speed
locomotion with an insect-scale legged robot,” IEEE Robotics and
Automation Letters (RAL), vol. 3, no. 2, pp. 987-993, Apr 2018.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge, UK ; New York: Cambridge University
Press, 2003.

K. Hayaram, J. Shum, S. Castellanos, E. F. Helbling, and R. Wood,
“Scaling down an insect-size microrobot, hamr-vi into hamr-jr,” Int’l
Conf. on Robotics and Automation (ICRA), May 2020.

E. F. Helbling, S. B. Fuller, and R. J. Wood, “Pitch and yaw control of a
robotic insect using an onboard magnetometer,” Int’l Conf. on Robotics
and Automation (ICRA), May 2014.

——, “Altitude Estimation and Control of an Insect-Scale Robot with
an Onboard Proximity Sensor,” in Robotics Research, A. Bicchi and
W. Burgard, Eds. Cham: Springer International Publishing, 2018, vol. 2,
pp. 57-69.

D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, E. Mair, G. D. Hager,
D. Burschka, M. Suppa, and G. Hirzinger, “Adaptive and Generic Corner
Detection Based on the Accelerated Segment Test,” in Computer Vision
— ECCV 2010, K. Daniilidis, P. Maragos, and N. Paragios, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, vol. 6312, pp. 183-196.
N. T. Jafferis, E. F. Helbling, M. Karpelson, and R. Wood, “Untethered
flight of an insect-sized flapping-wing microscale aerial vehicle,” Nature,
vol. 570, pp. 491-495, Jun 2019.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

J. James, V. Iyer, Y. Chukewad, S. Gollakota, and S. B. Fuller, “Liftoff
of a 190 mg laser-powered aerial vehicle: The lightest wireless robot to
fly,” Int’l Conf. on Robotics and Automation (ICRA), May 2018.

K. Johnson, V. Arroyos, A. Ferran, R. Villanueva, D. Yin, T. Elberier,
A. Aliseda, S. Fuller, V. Iyer, and S. Gollakota, “Solar-powered shape-
changing origami microfliers,” Science Robotics, vol. 8, no. 82, Sep
2023.

M. Kovac, M. Fuchs, A. Guignard, J.-C. Zufferey, and D. Floreano, “A
miniature 7g jumping robot,” Int’l Conf. on Robotics and Automation
(ICRA), May 2008.

Z. Kukelova, M. Bujnak, and T. Pajdla, “Closed-Form Solutions to
Minimal Absolute Pose Problems with Known Vertical Direction,” in
Computer Vision — ACCV 2010, R. Kimmel, R. Klette, and A. Sugimoto,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, vol. 6493,
pp. 216-229.

Y. Lai, C. Zang, G. Luo, S. Xu, R. Bo, J. Zhao, Y. Yang, T. Jin, Y. Lan,
Y. Wang, L. Wen, W. Pang, and Y. Zhang, “An agile multimodal micro-
robot with architected passively morphing wheels,” Science Advances,
Dec 2024.

T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor UAV on SE(3),” in IEEE Conf. on Decision and Control
(CDC). Atlanta, GA: IEEE, Dec 2010, pp. 5420-5425.

D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
Nov 2004.

V. Mayoral-Vilches, J. Jabbour, Y.-S. Hsiao, Z. Wan, M. Crespo-Alvarez,
M. Stewart, J. M. Reina-Muiioz, P. Nagras, G. Vikhe, M. Bakhshalipour,
M. Pinzger, S. Rass, S. Panigrahi, G. Corradi, N. Roy, P. B. Gibbons,
S. M. Neuman, B. Plancher, and V. J. Reddi, “Robotperf: An open-
source, vendor-agnostic, benchmarking suite for evaluating robotics
computing system performance,” Computing Research Repository (CoRR),
vol. arXiv:2309.09212v2, Jan 2024.

V. Mayoral-Vilches, J. Jabbour, Y.-S. Hsiao, Z. Wan, A. Martinez-Farifia,
M. Crespo—Alvarez, M. Stewart, J. M. Reina-Mufioz, P. Nagras, G. Vikhe,
M. Bakhshalipour, M. Pinzger, S. Rass, S. Panigrahi, G. Corradi, N. Roy,
P. B. Gibbons, S. M. Neuman, B. Plancher, and V. J. Reddi, “RobotPerf:
An Open-Source, Vendor-Agnostic, Benchmarking Suite for Evaluating
Robotics Computing System Performance,” 2023.

R. McGill, N. seung Patrick Hyun, and R. J. Wood, “Modeling and
control of flapping-wing micro-aerial vehicles with harmonic sinusoids,”
IEEE Robotics and Automation Letters (RAL), vol. 7, no. 2, Dec 2021.
A. Naveen, J. Morris, C. Chan, D. Mhrous, E. F. Helbling, N.-S. P. Hyun,
G. Hills, and R. J. Wood, “Hardware-in-the-Loop for Characterization
of Embedded State Estimation for Flying Microrobots,” 2024.

K. Nguyen, S. Schoedel, A. Alavilli, B. Plancher, and Z. Manchester,
“Tinympc: Model-predictive control on resource-constrained microcon-
trollers,” Int’l Conf. on Robotics and Automation (ICRA), May 2024.
D. Nister, “An efficient solution to the five-point relative pose problem,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 6, pp. 756-770, Jun 2004.

E. Olson, “AXLE: Computationally-efficient trajectory smoothing using
factor graph chains,” in Int’l Conf. on Robotics and Automation (ICRA).
Xi’an, China: IEEE, May 2021, pp. 7443-7448.

D. Ozturk, Z. Wang, and E. F. Helbling, “Absolute pose estimation for a
mm-scale vision system,” Int’l Conf. on Intelligent Robots and Systems
(IROS), Oct 2024.

J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open Benchmarks for
Energy Measurements on Embedded Platforms,” Sep 2013.

D. Patterson, J. Bennett, M. Bennett, H. Chelin, D. Harris, J. Hellar,
W. Jones, K. Moron, P. Savini, R. Shepherd, R. Simar, Z. Susskind, and
S. Wallentowitz, “Embench IOT 2.0 and DSP 1.0: Modern Embedded
Computing Benchmarks,” Computer, vol. 58, no. 5, pp. 37-47, May
2025.

R. S. Pierre and S. Bergbreiter, “Gait exploration of sub-2 g robots
using magnetic actuation,” IEEE Robotics and Automation Letters (RAL),
vol. 2, no. 1, pp. 3440, Jan 2017.

H. K. H. Prasad, Y. M. C. Ravi Sankar Vaddi, E. Dedic, I. Novosselov,
and S. B. Fuller, “A laser-microfabricated electrohydrodynamic thruster
for centimeter-scale aerial robots,” PLOS ONE, vol. 15, p. €0231362,
Apr 2020.

Z. Ren, S. Kim, X. Ji, W. Zhu, F. Niroui, J. Kong, and Y. Chen, “A
high-lift micro-aerial-robot powered by low-voltage and long-endurance
dielectric elastomer actuators,” Advanced Materials, vol. 34, p. 2106757,
Nov 2021.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner
Detection,” in Computer Vision — ECCV 2006, A. Leonardis, H. Bischof,
and A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
vol. 3951, pp. 430-443.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Int’l Conf. on Computer Vision (ICCV).
Barcelona, Spain: IEEE, Nov 2011, pp. 2564-2571.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles,” in Field and
Service Robotics, M. Hutter and R. Siegwart, Eds. Cham: Springer
International Publishing, 2018, vol. 5, pp. 621-635.

B. H. Shin, K.-M. Lee, and S.-Y. Lee, “A miniaturized tadpole robot using
an electromagnetic oscillatory actuator,” Journal of Bionic Engineering,
Mar 2015.

S. Singh, Z. Temel, and R. S. Pierre, “Multi-modal jumping and crawling
in an autonomous springtail-inspired microrobot,” Int’l Conf. on Robotics
and Automation (ICRA), May 2024.

Y. S. Song and M. Sitti, “Stride: A highly maneuverable and non-tethered
water strider robot,” Int’l Conf. on Robotics and Automation (ICRA),
May 2007.

M. V. Srinivasan, “An image-interpolation technique for the computation
of optic flow and egomotion,” Biological Cybernetics, vol. 71, no. 5, pp.
401-415, Sep 1994.

S. H. Suhr, Y. S. Song, S. J. Lee, and M. Sitti, “Biologically inspired
miniature water strider robot,” Robotics: Science and Systems (RSS),
2005.

Y. P. Talwekar, A. Adie, V. Iyer, and S. B. Fuller, “Towards sensor
autonomy in sub-gram flying insect robots: A lightweight and power
efficient avionics system,” Int’l Conf. on Robotics and Automation (ICRA),
May 2022.

E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-
based control,” in Int’l Conference on Intelligent Robots and Systems
(IROS). Vilamoura-Algarve, Portugal: IEEE, Oct 2012, pp. 5026-5033.
C. K. Trygstad, E. K. Blankenship, and N. O. Perez-Arancibia, “A new
10-mg sma-based fast bimorph actuator for microrobotics,” Int’l Conf.
on Intelligent Robots and Systems (IROS), Oct 2024.

R. J. Wood, “The first takeoff of a biologically inspired at-scale robotics
insect,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 341-347, Apr
2008.

X. Yang, L. Chang, and N. O. Pérez-Arancibia, “An 88-milligram insect-
scale autonomous crawling robot driven by a catalytic artificial muscle,”
Science Robotics, vol. 5, no. 45, p. eaba0015, Aug 2020.

Z. Yu, J. Tran, C. Li, A. Weber, Y. P. Talwekar, and S. Fuller,

“Tinysense: A lighter weight and more power-efficient avionics system

for flying insect-scale robots,” Computing Research Repository (CoRR),
vol. arXiv:2501.03416, Jan 2025.

X. Zhang, M. Lok, T. Tong, S. K. Lee, B. Reagen, S. Chaput, P.-E. J.
Duhamel, R. J. Wood, D. Brooks, and G.-Y. Wei, “A fully integrated
battery-powered system-on-chip in 40-nm cmos for closed-loop control
of insect-scale pico-aerial vehicle,” IEEE Journal of Solid-State Circuits
(JSSC), vol. 52, no. 9, pp. 2374-2387, Sep 2017.

H. Zheng, S. Rajadnya, and A. Zakhor, “Monocular depth estimation
for drone obstacle avoidance in indoor environments,” Int’l Conf. on
Intelligent Robots and Systems (IROS), Oct 2024.

X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu,
Y. Cao, C. Xu, and F. Gao, “Swarm of micro flying robots in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm5954, May 2022.

APPENDIX
A. Abstract

EntoBench reproduces the paper’s latency, peak power, and
energy measurements on STM32 Nucleo boards. This appendix
gives hardware/software requirements, Ubuntu 24.04 setup
(toolchain, Python environment, GUI tools), and a step-by-step
workflow (build/flash, acquire logic/current traces, run analysis
scripts) to regenerate the Workload Characterization results.

B. Artifact check-list (meta-information)

« Algorithm: Insect-Scale Robotics Kernels

o Program: C/C++, bare-metal kernels, benchmarking harness,
energy measurement scripts

« Compilation: cross-compilation (arm-none-eabi),
Native (x86, ARM64)

« Binary: ARM Cortex-M ELF Firmware

o Data set: robot data, simulated data

« Run-time environment: Bare-metal ARM Cortex-M Micro-
controller

« Hardware: ARM Cortex-M, STM32-Nucleo

Execution: Manual + scripted; make targets; GUI for

measurements

Metrics: Latency, Cycle Counts, Peak Power, Energy

Output: Measurement Logs, Terminal Output

Experiments: kernel benchmarks, workload characterization

How much disk space required (approximately)?: 10 GB

How much time is needed to prepare workflow (approxi-

mately)?: 0.5-1 hr

« How much time is needed to complete experiments (approx-
imately)?: 0.5-1 hr for 5 experiments

« Publicly available?: Yes

o« Workflow automation framework used?: None (shell + make)

o Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
16931570

e o o o o

C. Description

EntoBench is organized as a modular benchmarking frame-
work for insect-scale robotics workloads. Kernels are compiled
into standalone bare-metal benchmarks and executed on STM32
Nucleo boards. Measurement scripts and harnesses automate
flashing, cycle counting, and collection of current traces.

The experiment workflow is designed to reproduce the results
in the Workload Characterization section of the paper. In
practice, this means (1) building and flashing benchmark kernels
to supported microcontrollers, (2) collecting logic analyzer and
current measurements with GUI tools, and (3) running Python
analysis scripts to derive latency, peak power, and energy.

1) How to access: Users may access the artifact using the
following DOI: https://doi.org/10.5281/zenodo.16931570. They
may also access the code at https://github.com/cornell-brg/
ento-bench.

2) Hardware dependencies: To use EntoBench users ideally
have access to the following hardware:

o STLINK-V3PWR for Current Measurements, Flashing,
and Semihosting

« Saleae Logic Pro Analyzer

e One or more of the following STMicroelectronics STM32
Nucleo Development Boards: NUCLEO-STM32G474RE,
NUCLEO-STM32U575Z1Q, NUCLEO-STM32H7A3ZIQ

It should be possible to follow this processing using
an X-NUCLEO-LPMOI1A current probe, commonly seen in
TinyML performance benchmarking papers, but we do not
provide official support and instructions for this setup. Another
programmer may be used, such as an STLINK-V3SET, ST-
LINK/V2, etc., such that the STLINK-V3PWR is used solely
for current measurements. However, this artifact appendix
assumes the user has the hardware listed above.

3) Software dependencies: To use EntoBench,
users must manually download two user applications,
STM32CubeMonPwr and Saleae Logic 2, in addition
the cross-compilation toolchain used (GNU ARM Embedded
Toolchain), several software packages that may be installed
via the command line for build support, and setting up a
Python environment that can run our energy analysis scripts.

D. Installation

Installation of the required software for Ubuntu 24.04 is
outlined below. Installation on MacOS should be similar,
using brew instead of apt, and installing the MacOS
STM32CubeMonPwr application instead of the Linux one.
The following instructions were performed on a newly installed
Ubuntu 24.04 system.

a) Packages installed via the Command Line.: We provide
automation scripts in the scripts/ directory to simplify
installation. To install the needed system packages, run:

% cd scripts/install
% ./00-install-system-packages.sh

This script installs all necessary build prerequisites, including
build-essential, cmake, pkg-config, autotools,
libjim-dev, jimsh, and openjdk-17-jre. Java version
17 will be set as the system default if multiple versions are
installed.

b) Embedded Toolchain Installation.: The ARM GNU
Embedded Toolchain (v14.3) is installed automatically by:

o

% ./0l-install-arm-toolchain.sh

This downloads the official multilib binaries into -~/
.toolchains/arm-none-eabi-14.3, updates PATH
in ~/.bashrc, and verifies the installation. After running,
open a new shell or source .bashrc so the toolchain is
available.

¢) Python Environment.: A dedicated virtual environment
at -/ .venvs/entobench-ae is created by:

% ./02-setup-python-venv.sh

This installs common scientific packages (NumPy, Pandas,
SciPy, Matplotlib). To use it later:

[

% source ~/.venvs/entobench-ae/bin/activate

d) Current Measurement and Logic Analyzer Support.:
After completing the above, install support for the STLINK-
V3PWR by running:

% ./03-setup-udev-stlinkv3pwr.sh

This adds a permissive udev rule and reloads rules so the
device is accessible without sudo. Unplug and replug the
STLINK-V3PWR once.

Two GUI applications must still be installed manually:

o STM32CubeMonPwr. Download from https://www.st.
com/en/development-tools/stm32cubemonpwr.html. We
used v1.2.1 (vl.1.1 also supported). Extract to -~/
workspace/external.

« Saleae Logic 2. Download the Applmage from https:
/Isupport.saleae.com/logic-software/sw-installation and
place it under ~/external/logic2/.

After placing both applications, register convenient aliases:

o

./04-register-cmp-logic2.sh
source ~/.bashrc

o

This sets up cube-monitor-pwr and logic2
e) Verification.: Finally, verify the installation with:

o

% ./05-verify-setup.sh

This script checks that the toolchain, Python environment, Java
runtime, and STLINK-V3PWR device permissions are all set
up correctly.

E. Experiment workflow

As stated earlier, our experiment workflow requires manual
interaction when collecting latency, peak power, and energy
measurements. Cycle counts may always be gathered automat-
ically using our build commands. We now provide a step-by-
step example using an example kernel, that is not part of the
benchmark suite that can be found in benchmark/example.
The example kernel is vector—-vector add. The same
process can be replicated for all benchmarks shown in the
Workload Characterization section.

1) Prepare the experiment environment.

a) From the project root, set up the experiment and
build folders:

% ./scripts/flow/00-setup-experiment-env

b) This creates measurement directories separated by
MCU and pipeline stage, as well as build folders
(build-g474, build-u575, build-h7a3).

c) A list of benchmark target commands can be found
in docs/workload-char-targets.txt.

2) Launch required applications.

a) From the project root, you can conveniently launch
the applications needed for full measurement using
the following command.

o

% scripts/flow/0l-launch-apps

b) Start STM32CubeMonPwr (CMP). NOTE: CMP
can error sometimes and which usually requires
device reconnection and potentially closing and
restarting the app.

¢) Start Logic 2.

d) Open a new terminal window for build commands.

provided

e) Configuration guides are
i and

n docs: ae—-gui-setup.md
ae—-hardware-setup—-guide.md

3) Run the example benchmark with current and logic
analyzer acquisition.
a) In Logic 2, press Play.
b) In CMP, press Start Acquisition.
¢) Navigate to the build folder corresponding to the
connected MCU (e.g., G474) from the project root:

o

cd build/build-g474
% make stm32-flash-bench-example-
semihosted

d) OpenOCD will flash the program and the Harness
will print output in the terminal.

4) Save measurement data.
a) In Logic 2:

e Save a .sal file into experiments/ae/m4/
example/example-cache. The folder has already
been created for you.

o Export raw data to the same directory.

b) In CMP:

e Press Save Graph and store the output in the
same directory. NOTE: The Save Graph button
can be hard to click correctly. Try clicking in
the bottom right corner.

c) File names are arbitrary; analysis scripts will
rename them automatically.

5) Analyze the experiment.
a) Activate the Python environment:

o

% source ~/.venvs/entobench-ae/bin/
activate

b) Run the analysis script from the project root:
% ./scripts/flow/02-analyze-energy.sh \
-d experiments/ae/m4/example/benchmark
—example-cache

c) Outputs include cycle counts, average energy, peak
power, and latency.

F. Evaluation and Expected Results

Compare the results in the terminal from running the example
workflow above with results shown in the document found in

docs/expected-results.md.

G. Experiment customization

To change experiment orchestration settings, especially
available caches on or off,

customization-example.md.

see the docs/experiment-—

